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Preface

The International Workshop “Applied Methods of Statistical Analysis. Simulations and
Statistical Inference” is organized by Novosibirsk State Technical University with the support
of European Seminar “Mathematical Methods for Survival Analysis, Reliability and Quality of
Life” (http://www.utc.fr/ nlimnios/SEMINAIRE/index.html) involving many of our friends and
colleagues including N. Balakrishnan, C. Huber, H. Lauter, N. Limnios, M. Mesbah, M. Nikulin
and V.Solev from European and North American universities. The purpose of our Workshop is
to organize interesting meeting on different statistical problems of interest. This seminar aims
to provide an overview of recent research in the areas of survival analysis, reliability, quality of
life, and related topics, from both statistical and probabilistic points of view. The European
seminar supported many international conferences and workshops in the recent past including
GOF’2000 (Goodness-Of-Fit) in Paris and MMR’2000 (Mathematical Methods in Reliability) in
Bordeaux, an international workshop on “Parametric and Semi-parametric Models” organized by
Mont Saint Michel in 2003, LAD’2004 in Saint Petersburg on Longevity, Aging and Degradation
models, Biostat’2006 in Cyprus, ALT’2008 (Accelerated Life Testing) in Bordeaux, ALT’2010 in
Clermont-Ferrand, MMR’2009 in Moscow and MMR’2011 in Beijing.

Statistical academics and students from Novosibirsk participated in many of these meetings,
and now we have this nice meeting in Novosibirsk. This city is very well known for its funda-
mental contributions to the development of theory of the probability, mathematical statistics,
stochastical processes and statistical simulation. The meeting has focused on recent results in ap-
plied mathematical statistics and primarily on testing statistical hypotheses, statistical methods
in reliability and survival analysis, nonparametric methods, robust methods of statistical analysis,
statistical simulation of natural processes, simulation and research of probabilistic regularities,
application of statistical methods.

The Workshop proceedings would certainly be interesting and useful for specialists who use
statistical methods for data analysis in various applied problems arising from engineering, biology,
medicine, quality control, social sciences, economics and business.

M. Nikulin,
B. Lemeshko,

N. Balakrishnan
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M. Krnjajić, D. Draper
Bayesian Model Specification: Some Problems Related to Model Choice and Calibration 133

M. Maltsew, Yu. Kharin
Statistical Analysis of Markov Chains of Conditional Order 143

E. Ferreira, W. Stute
Comparing Predictive Accuracy 151

S. Postovalov, M. Shakhmametova
Reduction of the Average Sample Number in Sequential Scheme of Testing Hypotheses 158

N. Saaidia
A Chi-Squared Test for the Family of Inverse Gaussian Distributions for Censored Data 167

E. Chimitova, H. Liero, M. Vedernikova
Application of Classical Kolmogorov, Cramer-von Mises-Smirnov and Anderson-Darling
Tests for Censored Samples 176

Nonparametric Methods

N. Zagoruiko, I. Borisova, V. Dyubanov, O. Kutnenko
Using FRiS-Function for Nine Medical Tasks Solving 187

A. Medvedev
Non-Parametric Stochastic Approximation in Adaptive Systems Theory 195

D. Bezmen, L. Golub, A. Medvedev
About Regression Characteristics Nonparametric Estimation in the Identification Problem213

6



Applied Methods of Statistical Analysis. Simulations and Statistical Inference

R. Boyko, Ya. Demchenko
Non-Parametric H-Models of Thermal Processes 224

V. Kocheganov, M. Tikhov
Test of Goodness of Fit in Dose-Effect Model based on Finite Sample 237

I. Foox, I. Glukhova, G. Koshkin
Semi-recursive Nonparametric Algorithms of Identification and Forecasting 240

A. Abdushukurov
Nonparametrical Estimation of Survival Functions by Censored Data 249

V. Solev
Nonparametrical Estimation of Density from Indirect Observation 253

Application of Statistical Methods

O. Omelchenko
Planning Seismic Networks 261

P. Pristavka, B. Ryabko
Practical Application of Forecasting Method Based on Universal Measure 269

I. Nechta, A. Fionov
Applying Statistical Methods to Text Steganography 278

A. Lysyak
Gradient Statistical Attack at Block Cipher RC6 285

V. Gubarev
Non-Linear Probability Models and Problems of Their Application 295

Robust Methods of Statistical Analysis

A. Kalinin, D. Lisitsin
Robust Estimation of Qualitative Response Regression Models 303

Yu. Kharin, I. Badziahin
Statistical Forecasting for Censored Autoregressive Time Series 310

S. Dovgal, D. Lisitsin
Robust Estimation of Count Response Regression Models 318

7



Novosibirsk, 20-22 September, 2011

Statistical Simulation of Natural Processes

N. Kargapolova, L. Saveliev, V. Ogorodnikov
Modeling of Nonstationary Processes with Periodic Properties on Basis of Markov Chains323

O. Soboleva, E. Kurochkina
Effective Coefficients of Maxwell’s Equations with Multiscale Isotropic Random Conduc-
tivity and Permittivity 331

S. Artemiev, V. Korneev
Numerical Analysis of SDE on Supercomputeres 340

B. Kargin
Monte Carlo Modelling of the Optical Radiation Transfer in Stochastic Scattering Media350

B. Kargin, A. Kargin, M. Lavrov
Monte Carlo Modelling in Problems of Lidar Remote Sensing of Crystal Clouds from
Satellites 355

T. Averina
Application of the Modified Method of the Maximum Section for Statistical Modeling of
Systems with a Separated Time 358

A. Voytishek, I. Graifer
Construction of ”Modelled” Probabilistic Densities 368

S. Gusev
Sensitivity of a Diffusion Process to the Moving Boundary Parameters 377

A. Zorine
Optimization of a Time-Sharing Queueing Process in Random Environment with Means
of Computer Simulation 386

S. Prigarin, K. Litvenko
Numerical Simulation of the Sea Surface and Extreme Ocean Waves with Stochastic Spec-
tral Models 394

S. Prigarin
Stochastic Models of Broken Clouds (a Few Simulation Examples) 403

A. Burmistrov, M. Korotchenko
Statistical Modeling Method for Kinetic Traffic Flow Model with Acceleration Variable 411

8



Applied Methods of Statistical Analysis. Simulations and Statistical Inference

M. Yakunin
Stochastic Models of the Price Series for Trade Algorithms 420

S. Brednikhin, B. Kargin
Monte Carlo Modeling the Radiation Heat Transfer with Temperature Correction 426

9



Part I

Simulation and Research of
Probabilistic Regularities



Applied Methods of Statistical Analysis. Simulations and Statistical Inference

Simulation and Research of Probabilistic Regularities

in Motion of Traffic Flows

M.A. Fedotkin, E.V. Kudryavtcev, M.A. Rachinskaya
N.I. Lobachevsky State University of Nizhni Novgorod

National Research University
Nizhni Novgorod, Russia
e-mail: fma5@rambler.ru

Abstract

A random number of vehicles crossed a transverse line of a highway during an arbitrary
interval of time and a random number of vehicles situated on an arbitrary part of the
highway at a fixed instant of time form a complicated stochastic dependence. In case of bad
weather and bad road conditions the spatial intervals between the neighbouring vehicles at
a fixed instant of time (a spatial characteristic of the flow) are dependent and have different
probability distributions. Under these conditions, the intervals between moments of crossing
the transverse line of the highway by the consecutive vehicles (a temporal characteristic of
the flow) are also dependent and have different probability distributions. In this paper some
probabilistic regularities in motion of this kind of traffic flows are researched.

Keywords: flow of vehicles, traffic batch, system of Kolmogorov differential equations,
limiting probability distribution, parameters estimate.

Introduction

At present a great number of monographs and articles [1] deal with the mathematical theory of
traffic flows in case of independent intervals between the consecutive moments when vehicles cross
a certain transverse line in the highway. It is based on the assumption that the vehicles are ho-
mogeneous and uniform. At the same time in the real traffic some of similar assumptions couldn’t
be realized. For example, motion of a traffic flow could be complicated by the extreme weather
conditions or by the heterogeneity of the vehicles. Also, their speeds are continuous random vari-
ables with the different distribution functions and the distances between the following vehicles
are dependent and have different probability distributions. That is why observable traffic flow
demands a mathematical model differed from those which are described in the classical queueing
theory. A description of the flow of non-homogeneous vehicles is carried out in a nontraditional
way, which is based on the analysis of the size distribution of so-called traffic batches and the
slow vehicles flow distribution.

1 Distribution of traffic batch length

If the road surface is in a satisfactory state and the weather conditions are quiet enough, the
motion of all kinds of vehicles will be quite unimpeded. Therefore, the flow could be described by
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a Poisson flow. On the contrary, passing one vehicle by another one will become risky, dependent
and will take considerable period in bad weather (fog, snow, icy conditions and so forth). In this
situation we often observe formation of so-called traffic batches (groups of vehicles, motorcades)
on intensive highways. Thus these flows could not be Poisson. The first who faced with this
situation was Bartlett [2] observed a road traffic near to London in 1963. Bartlett and some
other researchers did not manage to find a suitable distribution law for the dependent periods
of the consecutive crossings of virtual stop line. Observing the traffic on highways close to large
cities it was noticed that a traffic batch consists of one slow leading vehicle and a queue of some
fast ones, which wait for an opportunity of overtaking. So it becomes necessary to construct a
model of the spatial location of the vehicles in the highway. For this target an easy mechanism
of traffic batches formation in case of intensive traffic and bad road conditions was offered. For
a big number of highways it was found that without slow vehicles fast ones move free enough
to suppose their joining to the motorcade have Poisson distribution with intensity λ > 0. This
type of flows was researched in detail in [1], where a problem of unimpeded traffic was discussed.
Consider basic probability space (Ω,F ,P(·)). Let the symbol ω denote an elementary outcome or
an element of certain event Ω. We will omit it in some cases to save space. Denote by ξ(ω; t,∆t)
a random number of fast vehicles that join the slow one according to the Poisson law during the
interval of time [t, t+ ∆t).

Every slow vehicle can be interpreted as an servicing device for fast vehicles. Here the service
time means the random passing time. In practice this time considerably depends on a number of
vehicles in the batch (batch length). Let a random variable χ(ω; t) measure this amount at the
point of time t ≥ 0. Denote by η(ω; t,∆t) a random number of fast vehicles which pass the slow
one during the period [t, t + ∆t). We may naturally assume that the conditional probability of
events generated by the random variable η(ω; t,∆t) in case of small ∆t > 0 can be defined by the
following relations:

P({ω : η(ω; t,∆t) = 0}|{ω : χ(ω; t) = 2, ξ(ω; t,∆t) = 0}) = 1− µ1∆t+ o(∆t),

P({ω : η(ω; t,∆t) = 1}|{ω : χ(ω; t) = 2, ξ(ω; t,∆t) = 0}) = µ1∆t+ o(∆t),

P({ω : η(ω; t,∆t) = 0}|{ω : χ(ω; t) = 3, ξ(ω; t,∆t) = 0}) = 1− µ2∆t+ o(∆t),

P({ω : η(ω; t,∆t) = 1}|{ω : χ(ω; t) = 3, ξ(ω; t,∆t) = 0}) = µ2∆t− o(∆t),

P({ω : η(ω; t,∆t) = 0}|{ω : χ(ω; t) = m, ξ(ω; t,∆t) = 0}) = 1− µ3∆t+ o(∆t),

P({ω : η(ω; t,∆t) = 1}|{ω : χ(ω; t) = m, ξ(ω; t,∆t) = 0}) = µ3∆t− o(∆t),

m = 4, 5, . . .

(1)

where o(∆t) is an infinitesimal of higher order relative ∆t as t→ 0. Parameters µ−1
1 and µ−1

2 in
the equalities (1) specify an average passing time during which the fast vehicle can pass the slow
one in cases when the traffic batch consists of two and three vehicles respectively. By analogy
parameter µ−1

3 in the same equalities defines an average passing time when the batch consists
of more than three vehicles. We will term parameters µ1, µ2, µ3 passing intensities in respective
cases. That is how the dependence between the average passing time and the length of traffic
batch is simulated. The probabilities in (1) don’t depend on time t. That’s why we will omit
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symbol t for the sake of simplification of record and designate variable η(ω; t,∆t) as η(ω; ∆t).

The last equality from relations (1) can be interpreted in the following way. When the
length of the batch is fixed, the conditional probability of an event consisted in fact that not less
than two vehicles pass the slow during the period ∆t (wherever it situates) is an infinitesimal of
higher order relative ∆t. Denote by Q(t,m) the probability P({ω : χ(ω; t) = m}) when we have
fixed t > 0 and fixed m = 1, 2, . . . So a set of probabilities {Q(t,m);m = 1, 2, . . .} defines the
distribution of a number of vehicles in the batch at the point of time t ≥ 0.

With the help of reasonings analogous to those which are usually used in the queueing theory
we can derive an infinite system of linear differential first-order equations for the probabilities
Q(t,m), when t ≥ 0 and m = 1, 2, . . . If we fix quantity m in the random event {ω : χ(ω; t+∆t) =
m}, it will be easy to reveal the next equality

{ω : χ(ω; t+ ∆t) = m} =

=
∞⋃
k=1

∞⋃
n=0

{ω : χ(ω; ∆t) = k, ξ(ω; ∆t) = n, η(ω; ∆t) = k + n−m}.
(2)

Using these relations and formulas (1) we get an infinite system of Kolmogorov linear dif-
ferential equations:

dQ(t, 1)/dt = −λQ(t, 1) + µ1Q(t, 2),

dQ(t, 2)/dt = λQ(t, 1)− (λ+ µ1)Q(t, 2) + µ2Q(t, 3),

dQ(t, 3)/dt = λQ(t, 2)− (λ+ µ2)Q(t, 3) + µ3Q(t, 4),

dQ(t,m)/dt = λQ(t,m− 1)− (λ+ µ3)Q(t,m) + µ3Q(t,m+ 1),m ≥ 4.

(3)

Now suppose that at the moment t = 0 the number of vehicles in the batch is fixed and
equals i. So dynamics of the batch length distribution is defined by the solution of system (3)
with the initial conditions Q(0, i) = 1, Q(0,m) = 0, where m ≥ 1 and m 6= i.

Note that to get an explicit solution of the system (3) we should derive and solve a par-
tial differential equation for a generating function Πχ(t)(t, z) =

∑∞
m=1 z

mQ(t,m) like it is usually
done in the most tasks of queuing theory. However in our case a solution process is too te-
dious and nontrivial. Fortunately according to our task we need only some characteristics and
properties of the distribution of the traffic batch length under tending t → ∞, i.e. some prop-
erties of the solution of system (3) as t → ∞. Common properties of solutions of the similar
systems were researched in detail in Kolmogorov’s, Feller’s, Ledermann’s, Karlin’s, Clarke’s, Mc-
Gregor’s, Reuter’s and Fedotkin’s works. According to their results if λ < µ3, the solution of
system (3) exists. Moreover, it is unique and satisfies the next conditions:

∑∞
m=1Q(t,m) = 1,

limt→∞Q(t,m) = Q(m) > 0 (for any m = 1, 2, . . .) and
∑∞

m=1Q(m) = 1. We can note that
the limits mentioned here don’t depend on initial conditions and can be derived from a solution
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of the infinite system of linear algebraic equations

0 = −λQ(1) + µ1Q(2), 0 = λQ(1)− (λ+ µ1)Q(2) + µ2Q(3),

0 = λQ(2)− (λ+ µ2)Q(3) + µ3Q(4),

0 = λQ(m− 1)− (λ+ µ3)Q(m) + µ3Q(m+ 1), m = 4, 5, . . .

(4)

The distribution {Q(m);m = 1, 2, . . .} is named the limiting or the ergodic for the number
χ(ω) of all-type vehicles in the traffic batch. This distribution describes so-called stationary
regime of the traffic motion. Conceptually the condition λ < µ3 means that intensity of joining
to the slow vehicle should be smaller than passing intensity. Under this condition the system (4)
is a result of passage to the limit t→∞ in all equations of the system (3) simultaneously subject
to the equalities limt→∞(dQ(t,m)/dt) = 0, limt→∞Q(t,m) = Q(m), m ≥ 1. Let us remark that
if we have fixed m ≥ 1, then limt→∞(dQ(t,m)/dt) exist. Moreover, this limit is equal to zero for
any possible m. If not, we would get an unbounded increase of absolute value of quantity Q(t,m)
as t→∞. Note it is impossible since quantity Q(t,m) defines the probability. No we should pass
to solution of the system (4).

Let’s define a quantity um = −λQ(m) + µ3Q(m + 1) for m = 3, 4, . . . From the first three
equations of the system (4) we get Q(2) = λµ−1

1 Q(1), Q(3) = λ2µ−1
1 µ−1

2 Q(1) and Q(4) =
λ3µ−1

1 µ−1
2 µ−1

3 Q(1). That’s why u3 = −λQ(3) + µ3Q(4) = 0. From the system (4) we ob-
tain um − um−1 = 0, m ≥ 4. Therefore um = 0 for m ≥ 3. It now follows that Q(m) =
λ2µ−1

1 µ−1
2 (λµ−1

3 )m−3Q(1). Substituting α = λµ−1
1 , β = λµ−1

2 , γ = λµ−1
3 , subject to condition∑∞

m=1Q(m) = 1 and inequality λ < µ3, we finally get

Q(1) = (1 + α+ αβ/(1− γ))−1, Q(2) = α(1 + α+ αβ/(1− γ))−1,

Q(m) = αβγm−3(1 + α+ αβ/(1− γ))−1,m ≥ 3.
(5)

If we replace (1 + α + αβ/(1 − γ))−1 by p, we obviously have the following expression for
the generating function Πχ(t, z) =

∑∞
m=1 z

mQ(m) = p(z + αz2 + αβz3(1 − γz)−1). There will
be no difficulty in showing that the expressions for the basic numerical characteristics satisfy the
equalities

Mχ(ω) = p(1 + 2α+ αβ[2(1− γ)−1 + (1− γ)−2]),

Dχ(ω) = (α+ αβ[(1− γ)−1 + (1− γ)−2 + 2(1− γ)−3]+

+α2β[−(1− γ)−2 + 2(1− γ)−3])p2 + p2α2β2[−(1− γ)−3 + (1− γ)−4].

(6)

The formulas (4) and equality γ = λµ−1
3 make it possible to give the next easy meaning of the

parameter γ when we talk about highway traffic in groups. The parameter γ specify a highway
saturation rate by fast vehicles and it should be named utilization of the highway. Indeed, if
µ3 > λ and as µ3 → λ, we clear have p → 0 and γ → 1. That’s why the mathematical
expectation of the number of all-type vehicles in the batch increases in the stationary regime
unboundly. In practice this very fact can be observed by motorists when the weather conditions
become considerably worse and there appear lengthy traffic jams. Let’s take one important note.
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It is easy to notice that if α = β = γ, the given distribution coincides with the geometric
distribution. From the equalities α = λµ−1

1 , β = λµ−1
2 , γ = λµ−1

3 we reveal coincidence mentioned
above is possible only if µ1 = µ2 = µ3. In other words, if the average passing time doesn’t depend
on the number of vehicles in the traffic batch, we deal with the geometric distribution.

2 Traffic flow properties

A slow vehicles density (a number of slow vehicles per a unit length of the highway) in the
real traffic flow is considerably smaller than a density of the fast ones. It can be assumed that
in the stationary regime the slow vehicles move independently, so that the traffic flow of slow
vehicles is supposed being the Poisson with the intensity µ. Let the maximal length of a highway
section on which the average number Mχ(ω) of vehicles is situated be much less than an average
distance between the following slow vehicles. We can now assume that all the vehicles forming
one autocade cross the virtual stop line simultaneously. For this kind of flows denote as κ(ω; t) a
random number of all-type vehicles crossed the fixed transverse line during the period of time [0, t).
For this variable introduce the generating function Πκ(t)(t, z) =

∑∞
m=0 z

mP({ω : κ(ω; t) = m}).
For the generating function Πκ(t)(t, z) the following equality takes place:

Πκ(t)(t, z) = e−µt×

×
∞∑
k=0

zk{
[ k
2
]∑

n=0

αn[
(µtp)k−n

n!(k − 2n)!
+

min{k−2n,n}∑
m=1

βm
k−2n−m∑
l=0

γl
(µtp)k−n−m−lC l

m+l−1

(n−m)!m!(k − 2n−m− l)!
]},

where
[
k
2

]
means integer part of k

2
.

This implies that our flow is defined by parameters µ, α, β and γ.
For the distribution {P({ω : κ(ω; t) = k}), k ≥ 0} of the flow {κ(ω; t) : t ≥ 0} the following

equalities take place:

P({ω : κ(ω; t) = 0}) = e−µt,P({ω : κ(ω; t) = k}) =

= e−µt
[ k
2
]∑

n=0

αn

 (µtp)k−n

n!(k − 2n)!
+

min{k−2n,n}∑
m=1

βm
k−2n−m∑
l=0

γl
(µtp)k−n−m−lC l

m+l−1

(n−m)!m!(k − 2n−m− l)!

 .
Let Mκ(ω; t) and Dκ(ω; t) be an expectation and a variance of the random variable κ(ω; t)

respectively; then

Mκ(ω; t) = µtp

(
1 + 2α+ αβ

[
2

1− γ
+

1

(1− γ)2

])
,

Dκ(ω; t) = µtp

(
1 + 4α+ αβ

[
4

1− γ
+

3

(1− γ)2
+

2

(1− γ)3

])
.
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For the skewness Sk(κ(ω; t)) and the excess Ex(κ(ω; t)) we have equalities:

Sk(κ(ω; t)) =

(
1 + 8α+ αβ

[
8

1− γ
+

7

(1− γ)2
+

6

(1− γ)3
+

6

(1− γ)4

])
×

×(µtp)−1/2

(
1 + 4α+ αβ(

4

1− γ
+

3

(1− γ)2
+

2

(1− γ)3
)

)− 3
2

,

Ex(κ(ω; t)) = (1 + 16α+ αβ[
16

1− γ
+

15

(1− γ)2
+

14

(1− γ)3
+

12

(1− γ)4
+

24

(1− γ)5
])×

×(µtp)−1

(
1 + 4α+ αβ(

4

1− γ
+

3

(1− γ)2
+

2

(1− γ)3
)

)−2

.

Sum of n independent flows of this kind with parameters µi, αi, βi and γi (i = 1, n) is
flow of the same kind if and only if γ1 = γ2 = ... = γn. The summary flow has parameters:
µ =

∑n
i=1 µi, α =

∑n
i=1 µiαipi/

∑n
i=1 µipi, β =

∑n
i=1 µiαiβipi/

∑n
i=1 µiαipi,γ = γ1.

3 Case of low intensity of traffic flow

In case discussed above we assumed that intensity of the fast vehicles motion is sufficiently high.
Further, we suppose that the passing intensity exceeds the intensity of the fast vehicles joining
to the motorcade considerably. In this case relatively small motorcades generate indeed. Let N
be their maximal length. It entails the batch joining mechanism changes in case when there are
already N vehicles in the batch. If the fast vehicle catches up with the full batch consisted of N
vehicles, it will join the batch, but at the same time the fast vehicle following right the slow one
will pass it at the same instant. That’s why we should change or add some calculations to our
previous reasoning. First of all in equalities (1) parameter m varies within 4 ≤ m ≤ N . Moreover
it is necessary to add the following equality:

P({ω : η(ω; t,∆t) = 1}|{ω : χ(ω; t) = N, ξ(ω; t,∆t) = 1}) = 1.

Also in (2) range of the unification index k is now 1 ≤ k ≤ N . Parameter m in the
system of equations (3) has limits 4 ≤ m ≤ N − 1 and there is one more equation in this system
concerned with dynamics of batch in case of its fullness:

dQ(t, N)/dt = λQ(t, N − 1)− µ3Q(t, N).

We get the following stationary distribution of the vehicles number in the batch:

Q(1) = (1 + α+ αβ(1− γN−2)/(1− γ))−1,

Q(2) = α(1 + α+ αβ(1− γN−2)/(1− γ))−1,

Q(m) = αβγm−3(1 + α+ αβ(1− γN−2)/(1− γ))−1, 3 ≤ m ≤ N.

(7)

It could be easily shown that equalities (7) turn into (5) as N →∞.
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Let’s consider an important for practice case N = 3 when the fast vehicles density is rather
small and they pass the slow one rather rapidly. It follows that we study a non-ordinary Poisson
flow and in every calling instant one arrival comes with a probability of p = (1 + α + αβ)−1,
two arrivals — with a probability of q = α(1 + α + αβ)−1 and three — with a probability of
s = αβ(1 + α + αβ)−1. For the one-dimensional distributions Pk(t), k ≥ 0, of the flow
{κ(t) : t ≥ 0} of the same probabilistic structure the following equalities are true

Pk(t) = e−µt
[ k
2
]∑

i=0

[ k−2i
3

]∑
j=0

(
k − i− 2j

i, j, k − 2i− 3j

)
pk−2i−3jqisj

(µt)k−i−2j

(k − i− 2j)!
, k ≥ 0.

The sum of m independent non-ordinary Poisson flows with parameters µj, pj and qj (where
j = 1, 2, . . . , m) is non-ordinary Poisson flow with parameters

µ =
m∑
j=0

µj, p = (
m∑
j=0

µjpj)/(
m∑
j=0

µj), q = (
m∑
j=0

µjqj)/(
m∑
j=0

µj).

For the numerical characteristics of random variable κ(ω; t) we have expressions

Mκ(ω; t) = µt(1 + q + 2s),

Dκ(ω; t) = µt(1 + 3q + 8s),

Sk(κ(ω; t)) = (µt)−
1
2 (1 + 7q + 26s)(1 + 3q + 8s)−

3
2 ,

Ex(κ(ω; t)) = (µt)−1(1 + 15q + 80s)(1 + 3q + 8s)−2.

(8)

It was revealed that the expressions for the numerical characteristics in case of unlimited
batch length turn into formulas (8) if γ = 0. Conceptually this conversion means an instantaneous
passing in case when the batch consists of more than three vehicles. It matches up with the
physical meaning of the parameter γ = λµ−1

3 because we denoted µ3 as the passing intensity
when the batch length exceeds three.

To sum it up two similar models developed and studied above harmonize with each other.
Thus we could consider these models to be correct.

4 Parameters estimate

These theoretical models require to be verified in practice. We should ascertain they conform with
the real data. Today there already devised a lot of criteria of this type of verification. However
if we want to apply them, we should know the parameters value of the system.

Let n be an all-types batches number observed in the traffic flow. Let us introduce the
following notation. Denote mi (i = 1, 2, . . . , r − 1) as a batches number of length i, and mr

as a batches number of length not less than r (r ≥ 5). For the model of the traffic flow with
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the unlimited length of autocades the following minimum chi-square parameters estimator were
derived:

α =
nm2

(n−m1)m1

,

β =
(m3 +m4 + . . .+mr−1 − (r − 3)mr)

(m3 + 2m4 + 3m5 + . . .+ (r − 3)mr−1)

(n2 − 2nm1 +m2
1 − nm2)

(n−m1)m1

,

γ =
m4 + 2m5 + 3m6 + . . .+ (r − 3)mr

m3 + 2m4 + 3m5 + . . .+ (r − 3)mr−1

.

In case of low traffic intensity we have the following estimates:

p =

[
1 +

n−m1 −m2 −m3

Km1

+
m3(Km1 + n−m1 −m2 −m3)

Km1(m1 +m2)

]−1

,

q =
n−m1−m2−m3

Km1

1 + n−m1−m2−m3

Km1
+ m3(Km1+n−m1−m2−m3)

Km1(m1+m2)

,

s =

m3(Km1+n−m1−m2−m3)
Km1(m1+m2)

1 + n−m1−m2−m3

Km1
+ m3(Km1+n−m1−m2−m3)

Km1(m1+m2)

.

In the equalities above K > 0 is a certain proportionality coefficient. This coefficient is
defined by the traffic conditions and as a rule approximately equals one.

Conclusion

Two problems were solved. The first one is building and study of the probabilistic model of both
spatial and temporal traffic flow characteristics when we observe heavy traffic with rather bad
road and weather conditions. The second one is building and study of the same model but in case
of relatively low fast vehicles density. The correctness of these models was showed up. Parameters
of the corresponding distribution laws were estimated.
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Abstract
In present work, a “real-time” ability to simulate and research the distributions of tests

statistics in the course of testing the complex goodness-of-fit hypothesis (for distributions
with estimated parameters) is implemented by the use of parallel computing. It makes it
possible to make correct statistical inferences even in those situations when the distribution
of the test statistic is unknown (before the testing procedure starts).
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Introduction

In composite hypotheses testing in the form H0 : F (x) ∈ {F (x, θ), θ ∈ Θ}, when the estimate θ̂
of scalar or vector distribution parameter θ is calculated by the same sample, the nonparametric
goodness-of-fit Kolmogorov, ω2 Cramer-Mises-Smirnov, and Ω2 Anderson-Darling tests lose their
distribution-free property.

The value
Dn = sup

|x|<∞
|Fn(x)− F (x, θ)| ,

where Fn(x) is the empirical distribution function, n is the sample size, is used in Kolmogorov test
as a distance between the empirical and theoretical laws. When testing hypotheses, this statistic
is usually used with Bolshev’s correction (Bolshev, [3]) in the form (Bolshev and Smirnov, [4])

SK =
6nDn + 1

6
√
n

(1)

where Dn = max(D+
n , D

−
n ), D+

n = max
1≤i≤n

{
i
n
− F (xi, θ)

}
, D−

n = max
1≤i≤n

{
F (xi, θ)− i−1

n

}
, n is the

sample size, x1, x2, . . . , xn are sample values in an increasing order. The distribution of statistic (1)

in testing simple hypotheses obeys the Kolmogorov distribution law K(S) =
∞∑

k=−∞
(−1)ke−2k2s2 .

In ω2 Cramer-Mises-Smirnov test, one uses a statistic in the form

Sω = nω2
n =

1

12n
+

n∑
i=1

{
F (xi, θ)−

2i− 1

2n

}2

, (2)
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and in test of Ω2 Anderson-Darling type (Anderson and Darling, [1, 2]), the statistic in the form

SΩ = −n− 2
n∑
i=1

{
2i− 1

2n
lnF (xi, θ) +

(
1− 2i− 1

2n

)
ln(1− F (xi, θ))

}
. (3)

In testing a simple hypothesis, statistic (2) obeys the distribution (see Bolshev and Smirnov, [4])
with the CDF

a1(S) = 1√
2s

∞∑
j=0

Γ(j+1/2)
√

4j+1
Γ(1/2)Γ(j+1)

exp
{
− (4j+1)2

16S

}
×
{
I− 1

4

[
(4j+1)2

16S

]
− I 1

4

[
(4j+1)2

16S

]}
,

where I− 1
4
(·), I 1

4
(·) are modified Bessel functions, Iν(z) =

∞∑
k=0

(z/2)ν+2k

Γ(k+1)Γ(k+ν+1)
, |z| <∞, |arg z| < π,

and statistic (3) obeys the distribution (Bolshev and Smirnov, [4]) with the CDF

a2(S) =
√

2π
S

∞∑
j=0

(−1)j Γ(j+1/2)(4j+1)
Γ(1/2)Γ(j+1)

exp
{
− (4j+1)2π2

8S

}
×

∞∫
0

exp
{

S
8(y2+1)

− (4j+1)2π2y2

8S

}
dy.

1 Statistic distributions of the tests in testing composite

hypotheses

In composite hypotheses testing, the conditional distribution law of the statistic G(S|H0) is
affected by a number of factors: the form of the observed law F (x, θ) that corresponds to the true
hypothesis H0; types and number of parameters to be estimated; sometimes, it is a specific value
of the parameter (e.g., in case of gamma-distribution, inverse Gaussian law, generalized Weibull
distribution, beta-distribution families); the method of parameter estimation.

The paper Kac [13] was a pioneer in investigating statistic distributions of the nonparametric
goodness-of-fit tests with composite hypotheses. Then, various approaches to the solution to this
problem where used (Darling [6, 7], Durbin [8, 9, 10], Gihman [12], Martynov [27], Pearson
and Hartley [30], Stephens [31, 32], Chandra [5], Tyurin [33], Tyurin [34], Dzhaparidze and
Nikulin [11], Nikulin [28, 29]).

In our research (Lemeshko and Postovalov [14, 15, 16], Lemeshko and Maklakov [17],
Lemeshko [18, 24, 25], Lemeshko and Lemeshko [19, 20, 21], Lemeshko S. [26]), statistic distri-
butions of the nonparametric goodness-of-fit tests are investigated by the methods of statistical
simulation, and approximate models of the laws are found for constructed empirical distributions.
The most complete list of the constructed models of statistic distributions and tables of percent-
age points for nonparametric goodness-of-fit tests is provided in Lemeshko [18, 24, 25]. These
models and tables are usable when testing complex hypotheses if maximum likelihood estimators
were applied.

For a number of distributions often used in applications for description of random variates,
distributions of statistics of nonparametric goodness-of-fit tests only have a limited set of depen-
dences: the form of the observed law F (x, θ) that corresponds to the true hypothesis H0; types
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and number of parameters to be estimated; the method of parameter estimation. In these cases,
there are no impediments for studying test statistic distributions by means of statistical simula-
tion and further construction of approximate models for them when testing complex hypothesis
(Lemeshko [18, 24, 25]).

Complications arise in case the statistic distributions G(S |H0 ) of nonparametric goodness-
of-fit tests depend on a certain value of parameter/parameters of the distribution F (x, θ) when
testing complex hypotheses (for gamma distribution, two-sided exponential law, inverse Gaussian
law, generalized Weibull distribution, and beta-distribution families).

The existing dependence on parameters values should not be neglected. For example, in
composite hypotheses testing subject to gamma-distribution with the density function f(x, θ) =
xθ0−1

θ
θ0
1 Γ(θ0)

exp
(
− x
θ1

)
, limiting statistics distributions of the nonparametric goodness-of-fit tests de-

pend on value of the form parameter θ0. Figure 1 illustrates the dependence of the Kolmogorov
statistic distribution upon the value θ0 in testing a composite hypothesis only in the case of
calculating maximum likelihood estimates (MLE) for the scale parameter of gamma-distribution.

The most serious impediment to a complete solution of the problem of testing complex
hypotheses with the use of non-parametric goodness-of-fit tests is that the distributions of the
test statistics depend on specific values of shape parameters of the observed laws. In papers
(Lemeshko [18, 19, 20, 21, 24, 25]) models of distributions of statistics were obtained for a limited
set of combinations of (integer) values of shape parameters (for gamma distribution, two-sided
exponential law, inverse Gaussian law, generalized Weibull distribution, and beta-distribution
families). It is unrealistic to build the models for an infinite set of combinations of the parameters
values.

Figure 1: The Kolmogorov statistic (1) distributions for testing composite hypotheses with
calculating MLE of scale parameter

In present work, a “real-time” ability to simulate and research the distributions of tests
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statistics in the course of testing the complex goodness-of-fit hypothesis (for distributions with
estimated parameters) is implemented by the use of parallel computing. It makes it possible
to make correct statistical inferences even in those situations when the distribution of the test
statistic is unknown (before the testing procedure starts).

2 Testing complex hypotheses in “real-time”

In present work, an approach is proposed and implemented that is based upon authors’ evolving
software and the use of simulation (Lemeshko [23]). Computational processes in the simulation
of statistics of various tests can be parallelized rather easily by the use of available resources of
nearby computer network. This makes it possible to dramatically reduce the time required for
simulation (studying) an unknown distribution of the statistic G(S|H0). Statistical analysis is
carried out by the following scheme (Fig. 2) in case of the use of nonparametric goodness-of-fit
tests for testing complex hypotheses in regard to laws with characteristic dependence of statistic
distribution on parameter values. Such an approach was used in Lemeshko [22]. Here the studying
of G(S|H0) is carried out in “real-time” of testing the hypothesis.

x1, x2, . . . , xn
↓

Calculation of θ̂ for F (x, θ)

↓
Calculation of the test statistic S∗

↓
Simulation: GN(Sn|H0) for H0 : F (x) ∈ {F (x, θ), θ ∈ Θ} when θTRUE = θ̂

↓
Calculation of P {Sn > S∗}

Figure 2: Testing the complex hypothesis H0 : F (x) ∈ {F (x, θ), θ ∈ Θ}

When testing complex the hypothesis H0 : F (x) ∈ {F (x, θ), θ ∈ Θ} by an existing sample
x1, x2, . . . , xn, the parameter vector estimate θ̂ for the law F (x, θ) is found in accordance with the
selected method. Then, the value of statistic S∗ of the goodness-of-fit test in use is calculated in
accordance with the estimate θ̂ found. For making an inference on whether to reject or to accept
the hypothesis H0 under test, it’s necessary to know the distribution G(S |H0) of the test statistic
that corresponds to the parameter value θ̂.

After that, statistical simulation procedure is started that results in obtaining empirical
distribution GN(Sn |H0) of the test statistic for the corresponding sample volume n and the given
number of simulations N and F (x, θ) with the parameters vector θ = θ̂. One can find an estimate
of an achieved significance level P{Sn > S∗} or estimates of percentage points by the use of
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empirical distribution GN(Sn |H0) . The hypothesis is not rejected if P{Sn > S∗} > α, where α
is a given type I error probability.

The value of N defines the required accuracy of simulation of G(Sn |H0) : the greater N
the better. However, time spent for simulation increases along with growth of N , therefore, one
can determine N during parallelization of simulation process basing upon available computer
resources (number of processors and cores) that could be used for the problem under solution.

The probability that elements of θ̂ are integer is zero. Thus, one should cautiously use models
and percentage points of test statistic distributions for values of parameters close to integer ones
provided in (Lemeshko [18, 19, 20, 21, 24, 25]) as, with interpolation applied, results obtained
can be far from the true distribution G(S |H0) with the given θ̂.

Let us consider an example where a complex hypothesis is tested in regard to the inverse

Gaussian law with the density function f(x) =
(

θ1
2πx3

)1/2
exp

(
− θ1(x−θ0)2

2θ20x

)
. In this case, distribu-

tions G(S |H0) of the nonparametric tests depend on specific values of θ0 and θ1.
The sample under analysis is presented in Table 1 (θ0 = θ1 = 2.5). Maximum likelihood

estimates of the parameters: θ̂0=2.4706, θ̂1=2.5769. In Table 2, values of the tests statistics and
achieved significance levels (P-values) obtained by test statistic distributions simulated (in “real
time”) under different values of N are given.

Table 1: 100 pseudorandom numbers from the inverse Gaussian distribution

0.278 0.633 0.928 1.078 1.334 1.937 2.297 2.630 3.554 5.674
0.312 0.686 0.933 1.080 1.497 1.965 2.362 2.919 3.593 5.989
0.358 0.716 0.936 1.089 1.612 1.991 2.364 2.995 3.948 6.284
0.361 0.776 0.938 1.113 1.671 2.012 2.417 3.002 3.996 6.863
0.362 0.777 0.956 1.119 1.680 2.026 2.467 3.120 4.053 7.580
0.374 0.789 0.996 1.159 1.687 2.027 2.566 3.149 4.141 7.644
0.403 0.796 1.038 1.165 1.731 2.069 2.577 3.166 4.363 7.874
0.590 0.805 1.053 1.166 1.735 2.146 2.599 3.224 4.597 9.236
0.597 0.822 1.060 1.192 1.763 2.210 2.621 3.278 5.022 11.704
0.599 0.849 1.066 1.245 1.898 2.213 2.628 3.528 5.201 20.069

It should be noted, that distributions of nonparametric goodness-of-fit test statistics (1)–
(3) for θ̂0 =2.4706, θ̂1=2.5769 differ substantially from corresponding distributions under different
combinations of integer values of θ0 and θ1.

Another example is generalized Weibull distribution with the density function

f(x; θ0, θ1) =
θ0

θ1

xθ0−1
(
1 + xθ0

) 1
θ1
−1
exp

{
1−

(
1 + xθ0

) 1
θ1

}
,

θ0 = θ1 = 2.5 (Table 3). Maximum likelihood estimates of the parameters: θ̂0 = 2.4718, θ̂1 =
2.5187. Values of the tests statistics and P-values obtained by simulation are given in Table 4.
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Table 2: P-values of the tests for different volumes of simulations (inverse Gaussian distribution)

Test S∗ P {Sn > S∗}
N=1000 N=5000 N=10000 N=100000 N=1000000

K 0.59361 0.656 0.668 0.668 0.670 0.671
ω2 0.05380 0.562 0.576 0.574 0.578 0.578
Ω2 0.35021 0.556 0.570 0.568 0.566 0.566

Table 3: 100 pseudorandom numbers from the generalized Weibull distribution

0.199 0.647 0.932 1.059 1.253 1.648 1.855 2.033 2.482 3.356
0.248 0.703 0.937 1.060 1.367 1.664 1.891 2.180 2.500 3.474
0.311 0.734 0.939 1.067 1.444 1.680 1.892 2.218 2.658 3.583
0.316 0.793 0.941 1.086 1.482 1.692 1.920 2.221 2.679 3.791
0.317 0.794 0.956 1.091 1.488 1.700 1.948 2.279 2.703 4.040
0.333 0.806 0.991 1.122 1.493 1.701 2.000 2.293 2.741 4.062
0.373 0.812 1.025 1.127 1.521 1.725 2.006 2.301 2.835 4.139
0.600 0.821 1.038 1.128 1.523 1.770 2.017 2.328 2.932 4.587
0.608 0.837 1.043 1.147 1.541 1.807 2.029 2.354 3.104 5.351
0.611 0.862 1.049 1.188 1.624 1.808 2.032 2.470 3.174 7.676

Table 4: P-values of the tests for different volumes of simulations (generalized Weibull
distribution)

Test S∗ P {Sn > S∗}
N=1000 N=5000 N=10000 N=100000 N=1000000

K 0.60473 0.670 0.672 0.670 0.673 0.675
ω2 0.05519 0.596 0.599 0.594 0.597 0.597
Ω2 0.35462 0.577 0.580 0.580 0.580 0.580
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Conclusions

In this work, software is implemented that makes it possible to test complex hypotheses with the
use of nonparametric goodness-of-fit test in cases when statistic distributions depend on specific
values of the observed distributions.

This research was partially supported by the Russian Foundation for Basic Research (Project
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Abstract

Classical tests for homogeneity of variances (Fisher’s, Bartlett’s, Cochran’s, Hartley’s,
Neyman-Pearson’s, Levene’s, modified Levene’s, Z-variance, Overall-Woodward modified Z-
variance, O’Brien tests) and nonparametric tests (Ansari-Bradley’s, Mood’s, Siegel-Tukey’s,
Capon’s and Klotz’s tests) have been considered. Distributions of classical tests statistics
have been investigated under violation of assumption that samples are normally distributed.
The comparative analysis of power of classical tests with power of nonparametric tests has
been carried out. Tables of percentage points for Cochran’s test have been made for distri-
butions which are different from normal. Software, that allows us to apply tests correctly,
has been developed.

Keywords: homogeneity of variance test, power of test.

Introduction

Testing for samples homogeneity is frequently of interest in a number of research areas. The
question can be about homogeneity of samples distributions, population means or variances.
Of course, conclusions in full measure can be made in the first case. However, researcher can
be interested in possible deviations in the sample mean values or differences in variances of
measurements.

One of the basic assumptions to formulate classical tests for comparing variances is normal
distribution of samples. It is well known, that classical tests are very sensitive to departures from
normality. Therefore, the application of classical criteria always involves the question of how valid
the obtained results are in this particular situation.

In this work classical Bartlett’s, Cochran’s, Fisher’s, Hartley’s, O’Brien, Neyman-Pearson’s,
Levene’s, modified Levene’s, Z-variance, Overall-Woodward modified Z-variance tests [1, 2] are
compared, nonparametric (rank) Ansari-Bradley’s, Mood’s, Siegel-Tukey’s, Capon’s and Klotz’s
tests [1] are considered.

The purpose of our study was to:

• investigate distributions of the statistics for several tests when samples are not normally
distributed;

• make a comparative analysis of the criteria power for concrete competing hypotheses;
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• give a possibility to apply classical tests when the normality assumption may not be true.

A null hypothesis of equal variances for m samples is H0 : σ2
1 = σ2

2 = · · · = σ2
m and the

alternative hypothesis is H1 : σ2
i 6= σ2

j , where the inequality holds at least for one pair of subscripts
i, j.

Statistical simulation methods and developed software were used to investigate statistics
distributions, to calculate percentage points and to estimate tests power for different competing
hypotheses. Each test statistic was computed N = 106 times. In this case an absolute value of the
difference between the true law of statistics distribution and a simulated empirical distribution
does not exceed 10−3.

Distributions of the statistics were investigated using various distributions, in particular, in
the case when simulated samples are in the family of distributions with the density:

De(θ0) = f(x; θ0, θ1, θ2) =
θ0

2θ1Γ(1/θ0)
exp

(
−
(
|x− θ2|
θ1

)θ0)
(1)

using different values of the shape parameter θ0. This family can be a good model for error
distributions of many measuring systems. Special cases of the family De(θ0) are the Laplace
(θ0 = 1) and the normal (θ0 = 2) distributions. This family makes it possible to set various
symmetric distributions that differ from the normal distribution. That is a smaller value of the
shape parameter θ0 leads to a ”heavier” tails of the distribution.

We also consider chi-square distributions (df = 6, df = 5) to approximate skewed distribu-
tions where the chi-square distribution with 6 degrees of freedom is less skewed than the one with
5 degrees of freedom.

In the comparative analysis of the tests power we consider the competing hypotheses of the
form H1 : σ2 = dσ1 (d 6= 1). Some tests can be applied when number of samples is more then two.
For these tests we consider hypotheses when different number of samples have another variance.

1 Classical tests of variances homogeneity

1.1 Bartlett’s test

The test statistic is:

T = M

(
1 +

1

3(k − 1)

(
k∑
i=1

1

νi
− 1

N

))−1

, (2)

where M = N ln

(
1
N

k∑
i=1

νiS
2
i

)
−

k∑
i=1

νi lnS
2
i , k - the number of samples, νi = ni − 1, ni - sample

size of ith sample, N =
k∑
i=1

νi, S
2
i - the unbiased estimate of variance for the ith sample.

If hypothesis H0 is true, all νi > 3 and samples are normally distributed, the statistic (2) is
almost independent of the sample size and has approximately χ2

k−1 distribution. If samples are
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not from a normal population, the distribution of the statistic depends on the sample size and
differs from χ2

k−1.

1.2 Cochran’s test

The Cochran’s test is defined as following:

C =
S2

max

S2
1 + S2

2 + · · ·+ S2
k

, (3)

where S2
max = max(S2

1 , S
2
2 , . . . , S

2
k), S

2
i - the unbiased estimate of variance for the ith sample, k -

the number of samples.

Distribution of Cochran’s test statistic depends on the sample size. The reference litetature
gives tables with percentage points for limited number of values n, that are used in hypothesis
testing. If the test statistic (3) exceeds the critical value, the null hypothesis is rejected.

1.3 Fisher’s test

Fisher’s test is used to test hypothesis of variances homogeneity for two samples with sample sizes
n1 and n2. The test statistic has a simple form:

F =
S2

1

S2
2

, (4)

where S2
1 and S2

2 - the unbiased sample variances.

If samples are normally distributed and hypothesis H0 : σ2
1 = σ2

2 is true, statistic (4) has
the Fn1−1,n2−1-distribution.

1.4 Hartley’s test

Hartley’s test is very simple to calculate. Its test statistic is just a ratio between the largest
sample variance and the smallest:

H =
S2

max

S2
min

(5)

where S2
max = max(S2

1 , S
2
2 , . . . , S

2
k), S

2
min = min(S2

1 , S
2
2 , . . . , S

2
k), S

2
i - the unbiased estimate of

variance for the ith sample, k - the number of samples.

One can find in literature table of values created by Hartley. This table evaluates the test
statistic with degrees of freedom k and n − 1 (if n1 = n2 = · · · = nk = n). Reject H0 if the test
statistic (5) is more than critical value, otherwise do not reject H0.
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1.5 Neyman-Pearson’s test

The test statistic is defined as ratio between arithmetic mean and geometric mean of variance
estimates:

P =

1
k

k∑
i=1

S2
i(

k∏
i=1

S2
i

) 1
k

, (6)

where k - the number of samples.

1.6 Levene’s test

If Xij’s represent the raw scores, Levene’s test statistic is defined as:

L =

(N − k)
k∑
i=1

ni
(
Z̄i − Z̄

)2
(k − 1)

k∑
i=1

ni∑
j=1

(
Zij − Z̄i

)2 , (7)

where k - the number of samples, ni - sample size of ith sample, N =
k∑
i=1

ni - total sample size,

Zij = |Xij − X̄i|, X̄i - the mean of the ith sample, Z̄i - the mean of Zij for ith sample, Z̄ - the
overall mean of the Zij.

In some descriptions of this test it is said that statistic (7) has a Fk−1,N−k-distribution.
Actually distribution of Levene’s test statistic is not Fisher’s distribution! If sample sizes are
less than 40, the distribution of the statistic differs greatly grom Fisher’s. We must take it into
account when using this test.

Levene’s test is less sensitive to departures from normality as compared to other classical
tests. However it has less power.

1.7 Modified Levene’s test

The modified Levene’s test is nearly identical to the original Levene’s test. Brown and Forsythe
suggested using the sample median instead of the mean in computing Zij. That is Zij = |Xij−X̃i|,
where X̃i - the median of the ith sample.

This test is more robust than original Levene’s test.
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1.8 Z-variance test

The test statistic is:

V =

k∑
i=1

Z2
i

k − 1
, (8)

where Zi =

√
ci(ni−1)S2

i

MSE
−
√
ci(ni − 1)− ci

2
,MSE =

k∑
i=1

ni∑
j=1

(Xij−X̄i)
2

N−k , k - the number of samples,

ci = 2 + 1
ni

, ni - sample size for ith sample, S2
i - the unbiased estimate of variance for ith sample,

N =
k∑
i=1

ni - total sample size, Xij - jth observation in ith sample, X̄i - the mean of ith sample.

If samples are normally distributed and null hypothesis is true, statistic (8) does not depend
on sample size and has approximately Fk−1,∞-distribution.

1.9 Overall-Woodward modified Z-variance test

As other classical tests Z-variance test is extremely sensitive to departures from normality, so
Overall and Woodward conducted a series of studies to determine a c value so that variances of
the Zi would remain stable when samples are not normally distributed. Using regression, they
found a c value based on sample size and kurtosis.

The new c value is evaluated as following:

ci = 2.0

(
2.9 + 0.2

ni

K̄

) 1.6(ni−1.8K+14.7)
ni

,

where ni - sample size of the ith sample, K̄ - the mean of the kurtosis indices for all samples.

The index of kurtosis is Ki =

ni∑
j=1

G4
ij

ni−2
, where Gij =

Xij−X̄i√
ni−1

ni
S2
i

.

Our study has shown that this test remains stable for distributions with different kurtosis
indices. However it is not true for skewness indices.

1.10 O’Brien test

Every raw score Xij is transformed using the following formula:

Vij =
(ni − 1.5)ni(Xij − X̄i)

2 − 0.5S2
i (ni − 1)

(ni − 1)(ni − 2)
,

where ni - sample size for ith sample, X̄i - the mean of ith sample, S2
i - the unbiased estimate of

variance for ith sample.
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After this transformation the mean of V-values will be equal to the variance for original

scores, that is V̄i =

ni∑
j=1

Vij

ni
= S2

i .
The O’Brien test statistic will be the F-value computed on applying the usual ANOVA

procedure on the transformed scores Vij. When null hypothesis is true, this test statistic has
approximately Fk−1,N−k-distribution.

2 Nonparametric (rank) tests

Nonparametric analogues of variance homogeneity tests are used to test hypotheses that two
samples with sample sizes n and m are from population with equal dispersion characteristics. To
calculate test statistic we use ranks instead of sample values.

2.1 Ansari-Bradley’s test

Tha Ansari-Bradley’s test statistic is:

A =
m∑
i=1

(
m+ n+ 1

2
−
∣∣∣∣Ri −

m+ n+ 1

2

∣∣∣∣) , (9)

where m,n - sample sizes (m ≤ n), Ri - rank of ith value of sample with sample size m in general
variational row.

Discreteness of statistics distribution can be practically neglected when m,n > 40.

2.2 Mood’s test

The test statistic is defined as following:

M =
m∑
i=1

(
Ri −

n+m+ 1

2

)2

, (10)

where m,n - sample sizes (m ≤ n), Ri - rank of ith value of sample with sample size m in general
variational row.

Discreteness of statistics distribution can be practically neglected when m,n > 20.

2.3 Siegel-Tukey’s test

The general variational row X1 ≤ X2 ≤ · · · ≤ XN (N = n+m) is transformed into sequence:

X1, XN , XN−1, X2, X3, XN−2, XN−3, X4, X5, . . .
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When m ≤ n the test statistic is defined as:

W =
m∑
i=1

Ri, (11)

where Ri - rank of ith value of sample with sample size m in transformed row.
Discreteness of statistics distribution can be practically neglected when m,n > 30.

2.4 Capon’s test

Capon’s test statistic is:

K =
m∑
i=1

am+n(Ri), (12)

where m,n - sample sizes (m ≤ n), Ri - rank of ith value of sample with sample size m in general
variational row, ai(j) - the mean value of square of jth order statistic in sample with sample size
i from standard normal distribution.

2.5 Klotz’s test

The test statistic is defined as:

Q =
m∑
i=1

u2
Ri

m+n+1

, (13)

where m,n - sample sizes (m ≤ n), Ri - rank of ith value of sample with sample size m in general
variational row, uγ - γ-quantile of standard normal distribution.

3 Comparative analysis of power

At the given probability of a type I error α (to reject the null hypothesis when it is true) it
is possible to judge about the advantages of the test by the value of power 1 − β, where β -
probability of type II error (not to reject the null hypothesis when alternative is true).

The study of power of classical tests for several competing hypotheses H1 : σ2 = dσ1 (d 6= 1)
has shown that Bartlett’s, Cochran’s, Hartley’s, Fisher’s, Neyman-Pearson’s and Z-variance tests
have equal power for two normal samples and Levene’s test power is much less in this case.

As for non-normal distributions, for example, family of distributions with density (1),
Bartlett’s, Cochran’s, Hartley’s, Fisher’s, Neyman-Pearson’s and Z-variance tests remain equal
in power, and Levene’s test power is also much less. However, for heavy-tailed (for example, the
Laplace distribution) and skewed distributions Levene’s test is more powerful than the others.
Furthermore modified Levene’s test outperformed the original test in this case.

Bartlett’s, Cochran’s, Hartley’s, Levene’s, Neyman-Pearson’s, O’Brien, Z-variance and mod-
ified Z-variance tests can be applied when number of samples k > 2. In such situations the power
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of these tests is different. If k > 2 and normality assumption is true, these tests can be ordered
according to the decrease of power in the following way:

Cochran’s � O’Brien � Z-variance � Bartlett’s, Neyman-Pearson’s � modified Z-variance �
Hartley’s � Levene’s, modified Levene’s.

The preference order also remains in case of violation of a normality assumption. When
samples are from heavy-tailed or skewed distributions, this preference order changes. For example,
in the case of the Laplace distribution Levene’s test has a greater power. Also modified Levene’s
test is more powerful than the original one.

However if number of samples with smaller value of variance is less than number of samples
with greater value, power of Cochran’s test significantly goes down. So in this case we should
prefer O’Brien, Z-variance, Bartlett’s or Neyman-Pearson’s test.

The study of the nonparametric criteria power has shown that Mood’s test power is the
highest. And other nonparametric tests, as Siegel-Tukey’s, Ansari-Bradley’s, Capon’s and Klotz’s
have practically equal power. But for skewed distributions all nonparametric tests are biased
(power of test is less than significance level).

4 Cochran’s test for non-normal distributions

The main and valid reason for using nonparametric tests is based on the fact that these test
statistics are distribution-free. But this is true if both samples are from the same population. If
samples are not identically distributed, nonparametric tests depend on both sample laws and even
the order in which these laws are used.

Also classical tests have a great advantage in power over nonparametric tests. This advan-
tage remains when samples are not normally distributed. Therefore, there is every reason to study
distributions of classical criteria for testing variances homogeneity. To study distributions means
to develop distribution models or tables of percentage points. It should be done for non-normal
distributions mostly used in practice. Among the tests studied Cochran’s test seems to be the
most suitable for this purpose.

Tables of upper percentage points (1%, 5%, 10%) for Cochran’s test were made using sta-
tistical simulation for the number of samples m = 2÷ 5 when simulated samples were taken from
an exponential family of distributions (1) with shape parameter θ0 = 1, 2, 3, 4, 5. The results
obtained can be used in situations when distribution from an exponential family (1) with an ap-
propriate parameter θ0 is a good model for the observed variables. Computed percentage points
expand possibilities to apply Cochran’s test.

5 Software for testing hypotheses

It is impossible to develop distribution models for all distributions and sample sizes. So we
have developed software that allows us to correctly apply tests for comparing variances when
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samples are from any distributions. We can choose any distribution from the list and simulate a
distribution of the statistic. Also we can set any size of simulated samples of statistics according
to required precision.

Then we define a p-value using simulated statistic distribution. Simulation process is done
using parallel computing, so speed of simulation depends on number of CPU cores and takes not
much time to make correct decision when testing the hypothesis of equal variances.
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Abstract

The algorithm generating the sample of random numbers of defined distribution and
numerical characteristics (expectation, dispersion, etc.) is considered. The high accuracy of
algorithm working on sample modeling is shown. The general principle of sample generation
allows assigning the given approach in a category of random-numbers generation algorithms
that combining such algorithms in group of ”precision random-numbers generator”.

Introduction

Theme of development, being discussed, has been suggested by the stochastic modeling problem,
which importance for practice recently increases. If the model is constructed adequately to
physical process then experiments, concerned with object or process behavior studying varying
the input parameters, external effects influence, may be conducted. Also it is important to study
more thoroughly physical and mathematical connections in the process to find new regularities
and to establish an interference of parameters and object variables, to fill up qualitative knowledge
of process, to fill the lost or inexact data. It is hard and sometimes even impossible to study the
real object. In such a case the importance of imitating modeling becomes extremely significant.
The model gives an opportunity to implement various situations, including atypical for the given
process or object, to analyze its behavior changing parameters of an input or the variables, the
researcher is interested in.

1 General performance of modeling problem

The general scheme of process accepted in the identification theory is resulted lower [1].
Here designations are accepted: x(t) – the output vector variable of the process, u(t) – the

control vector effect, µ(t) – the input vector variable of the process, ωi(t) : i = 1, 2, . . . , k – the
variables of the process controlled during functioning of the object, ξ(t) – the stochastic vector
effect, t concluded parenthesis – the continuous time, H with sign above – the communication
channels corresponding to different variables, including control devices, instruments for measure-
ment of observable variables, the sign t in the bottom of variables (x, ω, u, µ) – means discrete
time.

Control of variables (x, ω, u, µ) is carried out through time interval
∆t, i.e. xi, ω

1
i , . . . , ω

k
i , ui, µi, i = 1, s – measure sample of process variable
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Figure 1: Scheme of process
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amount of sampling, h(t) with sign above – random noise of corresponding process variables.
The researches stated in given article, have a direct bearing on values of h(t). It will be a ques-
tion of random noise modeling having the definite distribution law and numerical characteristics.

2 On modeling stochastic processes

In the past years there were many heuristic algorithms, first of all because fresh wordings of
problems do not give in to strict mathematical statement. And it means, more often, absence
of analytical synthesis procedure of those or other algorithms, proofs of corresponding conver-
gence theorems which presence was considered earlier as a measure of the validity, legitimacy of
the further actions. Thereupon it is necessary to consider a method of statistical modeling as
a conclusive stage, instead of an illustration of those or other algorithms functioning. The last
essentially increases requirements to carrying out of similar research. Here deciding is possibility
of single cycle reiteration of numerical experiments by other researches. On this way necessity of
work with the random noise, distributed under the concrete law, is important. In practice existing
random-numbers generators is rather conditionally named corresponding to stated distribution
laws. The deviation on samples with small amounts is especially appreciable. All classical genera-
tion algorithms [2] are right, first of all, on enough great amount of sample. The offered approach
of random noises modeling, operating in communication channels of input-output variables of
object, is oriented on continuous processes research.

At research of many stochastic processes assume that the probability density of random
factors (noise) submits to any law. Then there is analytical a research, in particular will specify,
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that the error of electric and not electric values measurement submits in the electric ways to the
normal law. In problems of the reliability theory use distribution of Weibull (intensity of refusal),
lognormal distribution is characteristic for many concrete physical and socio-economic situations
(the size and weight of the particles formed at crushing; a salary of the worker; the sizes of space
formations; durability of the product working in a mode of deterioration and ageing, etc.) [3].

3 General method of random-numbers generation

Let’s consider generation trick of points set for one-dimensional random variable.
Let it is necessary to generate statistically independent sample of a random variable X with

the set probability density and distribution parameters f(x,mx, σx, . . .). Let’s designate through
n – quantity of generated points (amount of the future sample). Following step it is necessary to
set an interval [a, b], in which sample is need to generate.

Sample of generated points should cover most full all area of possible values, but for the clear
reasons it is necessary to cut off distribution ”tails” where the probability of values X drawing
becomes small. In this case it is necessary to define this order smallness and, for example, to
accept to sample reception that interval, in which f(x,mx, σx, . . .) not less some value. Let’s
define this value proportionally fmax(x,mx, σx, . . .):

f(x = a,mx, σx,, . . .) = f(x = b,mx, σx,, . . .) = 0.01 · fmax(x,mx, σx,, . . .), (1)

for distributions which begin from x = 0, accordingly to accept a = 0, and b to define from the
above-stated reasons. If it is not possible to define border of intervals analytically, it is possible to
apply any numerical procedures for the decision of the nonlinear equation. If it is not obviously
possible for making analytically, using numerical procedures may be demanded for a finding of
distribution extremum.

Figure 2: Graphic interpretation of algorithm

All intervals we will break on equal subinterval [a = x0, x1, . . . , xk = b]. The quantity of
intervals will be equal k and is set by the user. In everyone subinterval average value of density
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function under the formula is set:

f(xj−1) + f(xj)

2
= f(x̃j), x̃j ∈ [xj−1, xj]. (2)

The probability of hit of a random variable X in j-th an interval is the area, limited to
density function on a piece [xj−1, xj], we will designate it through pj:

P (xj−1 ≤ X ≤ xj) = pj =
f(xj−1) + f(xj)

2
· (xj − xj−1). (3)

Based on the law of large numbers with growth of sample amount n random variable values,
random event coming frequency approach to probability of this event then it is possible to accept:

pj =
nj
n
, (4)

where nj – quantity of random variable values hits X in an interval [xj−1, xj] from total amount
of values.

Then it is possible to define quantity of points which it is necessary to throw in an interval
[xj−1, xj] that the generated sample corresponded to the set distribution law. The quantity of
points will be equal:

nj = [pj · n] , (5)

which snatch in an interval [xj−1, xj], for example, under the uniform law or any built in generation
function of a concrete programming language. In this case quality of the built in random-numbers
generator becomes noncritical.

Set of the points, received in the way described above on all intervals, form random variable
sample X, distributed on the given law f(x,mx, σx, . . .), and having all demanded values of
parameters. The choice of points from the presented set of values can be executed also by any
built in extraction function of data from array of values.

4 Numerical researches of random-numbers generators un-

der given law

Some results of numerical modeling are resulted lower according to the offered algorithm and
estimations of random variable characteristics on the generated sample.

The random variable distributed under the normal law N (µ, σ2), µ = 0, σ2 = 1 has been
considered. Density and distribution law of the normal law:

f (X,µ, σ) =
1√

2πσ2
exp

(
− (X − µ)2

2σ2

)
, F (X,µ, σ) =

∫ X

−∞
f (t, µ, σ) dt (6)

The distribution density of this random variable and also its estimation, constructed on the
basis of independent measurements sample is resulted lower [4].
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Figure 3: Distribution density of the normal law and its estimation

The estimation distribution density, resulted on fig. 3, is constructed on the basis of sample
with amount s = 500, quantity subintervals k = 30. Selective estimations of distribution law’s

parameters, averaged on 1000 experiments, have made
_
µ= −0.002,

_
σ

2
= 0.977. On it and the

subsequent figures curves of distribution function and its estimation are not allocated because
they coincide.

Also the random variable distributed on lognormal law X ∼ LogN (µ, σ2), µ = 0, σ2 = 0.5
has been considered. Density and distribution law of the lognormal law:

f (X,µ, σ) =

{
1√

2πXσ
exp

(
−(lnX−µ)2

2σ2

)
, X > 0;

0, X ≤ 0,
F (X,µ, σ) =

∫ X

−∞
f (t, µ, σ) dt (7)

The distribution density of this random variable, and also its estimation, constructed on
the basis of independent measurements sample is resulted lower [4, 5].

Figure 4: Distribution density of the lognormal law and its estimation

The estimation distribution density, resulted on fig. 4, is constructed on the basis of sample
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with amount s = 500, quantity subintervals k = 30. Selective estimations of distribution law’s

parameters, averaged on 1000 experiments, have made
_
µ= −0.011,

_
σ

2
= 0.497.

Further the random variable distributed under the two-parametrical law of Weibull [4, 5] is
considered. The law and density of distribution look like:

F (X, a, b) =

{
1− e−(Xb )

a

, X ≥ 0;
0, X < 0,

f (X, a, b) =

{
a
b

(
X
b

)a−1
e−(Xb )

a

, X ≥ 0;
0, X < 0,

(8)

where a – parameter of form, b – parameter of scale.

Figure 5: Distribution density of the Weibull’s law and its estimation

In the experiment, which results are represented on fig. 5, the amount of generated sample
is equal s = 500, quantity subintervals k = 30. True values of parameters a = 2, b = 1, and their

selective values
_
a= 2.012,

_

b= 0.994.

Conclusion

In the present article the approach to random variables generation under the given law with the
specified parameters is offered. Numerical researches for Weibull’s, normal and lognormal laws
of random variable distribution are conducted. In a problem of discretely-continuous processes
statistical modeling there is a necessity to use methods of random variables generation under
given law. Also in article results of numerical researches of the offered method are represented.
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Abstract

This paper presents the investigation results for the Nikulin-Rao-Robson (NRR) chi-
square type test. The distributions of the NRR test statistic have been investigated by
means of computer simulation technique depending on the sample size, censoring distribu-
tion, proportion of censoring and number of intervals. Simulation studies of chi-square test
statistic distributions have been shown for type I, II and random censoring. Using computer
simulation we have studied the power of the NRR test for close competing hypotheses.

Keywords: Nikulin-Rao-Robson chi-square test, goodness-of-fit, censored samples, test
power, Monte Carlo simulations

Introduction

In research area related to reliability and survival analysis lifetimes are typically right censored
[7]. The observed data are usually presented as (X1, δ1), . . . , (Xn, δn), where δi = 1 if Xi is an
observed lifetime, and δi = 0 if Xi is a censoring time which means that lifetime of i-th individual
is greater than Xi. There are various types of right-censoring mechanism:

• If individuals are observed at a predetermined time, then the censoring is called type I
censoring.

• If a life test is terminated whenever a specified number of failures have occurred, it is called
type II censoring.

• Let lifetime T and censoring time C are independent random variables from distribution
functions F (t) and FC(t) respectively. All lifetimes and censoring times are assumed mutu-
ally independent, and it is supposed that FC(t) does not depend on any of the parameters of
F (t). So, Xi = min(Ti, Ci) and δi = 1{Ti ≤ Ci}, it is called independent random censoring.

In this paper we consider the problem of testing composite hypothesis of the kind:

H0 : F (t) ∈ {F (t, θ), θ ∈ Θ},

in which parameters are unknown and should be estimated from a censored sample.
Various goodness-of-fit tests were developed for right-censored samples. Hollander and Peña

in 1992 [5] developed a chi-square goodness-of-fit test for simple hypotheses with censored data.
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Version of a chi-square test for censored samples was published by Habib and Thomas in 1986 [3].
Modifications of the chi-square test for a composite hypothesis with censored data were proposed
by Akritas in 1988 [1] and J. H. Kim in 1993 [6]. Test statistic distributions for all these chi-square
type tests for randomly censored data are influenced by distribution of censoring times. They
are based on idea of comparing observed and expected numbers of failures in grouping intervals,
which was also developed by Hjort [4].

The NRR chi-square type test statistic suggested by Nikulin in 2010 [2] has the limiting
distribution that doesn’t depend on the proportion of censoring and censoring type. The NRR
chi-square test can be used for the right censored and truncated samples. No simulation studies
have been published to confirm obtained asymptotical results in case of limited sample sizes yet.

The objective of this paper is to investigate the NRR statistic distributions under null
hypothesis with Monte Carlo simulations for different censoring types in case of small sample
sizes. Also we study the power of the NRR test for close competing hypotheses.

1 Nikulin-Rao-Robson chi-square test

For chi-square type tests the observed interval [0, τ ] is divided into k grouping intervals I1, . . . , Ik,
where Ij = (aj−1, aj], a0 = 0, ak = τ , j = 1, . . . , k. As well as other chi-square type tests the
NRR test is based on the vector of differences between the numbers of observed and “expected”
failures in the grouping intervals. Under a null hypothesis H0 this test is based on the statistic [2]

Y 2 =
k∑
j=1

(Uj−ej)2

Uj
+Q,

where Uj =
n∑

i:Xi∈Ij
δi is the number of observed failures in the j-th interval,

ej is the “expected” number of failures in the j-th interval.

Q = W T Ĝ−W ,

where

W = ĈÂ−1Z = (W1, . . . ,Wm)T , Wl =
k∑
j=1

ĈljÂ
−1
j Zj.

Ĝ = î− ĈÂ−1ĈT = [ĝll′ ]m×m, ĝll′ = îll′ −
k∑
j=1

ĈljĈl′jÂ
−1
j ,

m is the number of estimated parameters.

Z = (Z1, ..., Zk)
T , Zj = 1√

n
(Uj − ej).

Â is the diagonal k × k matrix with diagonal elements
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Âj =
Uj
n

.

îll′ = 1
n

n∑
i=1

δi
∂ lnλ(Xi,θ̂)

∂θl

∂ lnλ(Xi,θ̂)
∂θl′

,

Ĉlj = 1
n

n∑
i:Xi∈Ij

δi
∂
∂θl

lnλ
(
Xi, θ̂

)
, j = 1, . . . , k; l, l′ = 1, . . . ,m,

where λ(t) is the hazard rate function and θ̂ is the maximum likelihood estimate (MLE) of un-
known parameter obtained by the original ungrouped censored sample. The limiting distribution
of the NRR test statistic is χ2

r, r = rank(V̂ −). V̂ − is calculated as follows

V̂ − = Â−1 + Â−1ĈT Ĝ−ĈÂ−1.

So, the hypothesis is rejected with significance level α if Y 2 > χ2
α (r).

2 Choice of grouping intervals

In [2] it was recommended to calculate aj as random data functions. The idea is to divide the
interval [0, τ ] into k intervals with equal expected numbers of failures. Thus, aj are calculated as
follows

Ek =
n∑
i=1

Λ
(
Xi, θ̂

)
,

Ej = j
k
Ek, j = 1, . . . , k,

bi = (n− i) Λ
(
X(i), θ̂

)
+

i∑
l=1

Λ
(
X(i), θ̂

)
.

If Ej ∈ [bi−1, bi], j = 1, . . . , k − 1 then

âj = Λ−1

((
Ej −

i∑
l=1

Λ
(
X(l), θ̂

))
/ (n− i+ 1) , θ̂

)
, âk = X(n),

where Λ−1 is the inverse of the function Λ. We have 0 < â1 < â2 < ... < âk = τ . Under this
choice of the intervals ej = Ek/k for any j.

It is important to note that in the case of small sample size this grouping method can result
in such a splitting into intervals, that some intervals do not contain any failure (Uj = 0). In
simulation studies such samples were eliminated.
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3 Simulation studies: NRR statistic distribution

By means of computer simulation technique we have investigated the distributions of the NRR test
statistic for different sample sizes n, censoring distributions FC(t) and proportions of censoring
c = 10, 20, . . . , 80%. Empirical distributions of the NRR test statistic have been simulated by the
following algorithm:

1. Generate a complete sample T1, . . . Tn from the distribution under null hypothesis H0 being
tested: Ti = F−1

0 (ξi), i = 1, . . . , n, where ξi ∼Uniform(0, 1).

2. Transform the complete sample T1, . . . Tn to censored sample (X1, δ1), . . . , (Xn, δn) according
to one of censoring schemes.

(a) For type I censoring: set the value of censoring time tc,
so Xi = min(Ti, t

c) and δi = 1{Ti ≤ tc}, i = 1, . . . , n.

(b) For type II censoring: set the number of complete observations r,
so Xi = min(Ti, T(r)) and δi = 1{Ti ≤ T(r)}, i = 1, . . . , n, where T(r) is r-th ordered
statistic.

(c) For random censoring: generate a sample C1, . . . Cn from the distribution of censoring
times FC(t),
so Xi = min(Ti, Ci) and δi = 1{Ti ≤ Ci}, i = 1, . . . , n.

3. Estimate unknown parameters of the distribution F0(t) from the obtained censored sample
(X1, δ1), . . . , (Xn, δn) by the maximum likelihood method.

4. Calculate the values of boundary points a0, . . . , ak as suggested in Section 2 for given number
of grouping intervals k .

5. Calculate the NRR test statistic S as suggested in Section 1.

6. Repeating steps 1-5 N times we obtain a sample of NRR statistics S1, . . . , SN , for which an
empirical distribution function (e.d.f) G(S|H0) is constructed.

In this Section simulation results for the NRR statistic distributions are presented for N =
16600. We simulated samples under null hypothesis from the Weibull distribution with the shape
parameter equal to 2 and the scale parameter equal to 2. In case of random censoring we need to
specify the distribution of censoring times. We have chosen two different families of distributions
for censoring times: Beta-I distribution family with probability density function

fC (t; θ) =Beta-I(θ1, θ2, θ3) = 1
θ3B(θ1,θ2)

(
t
θ3

)θ1−1(
1− t

θ3

)θ1−1

and the Weibull distribution family with

fC (t; θ) =Weibull(θ1, θ2) = θ1
t

(
t
θ2

)θ1
exp

(
−
(
t
θ2

)θ1)
.
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Censoring distributions are given in Table 1. The distribution parameters were adjusted so
that the average proportion of censoring under considered null hypothesis would be equal to
10, 20, . . . , 80%. In the case of Beta-I distributions censored observations appear in the variational
series of a censored sample approximately uniformly, as opposed to the Weibull distributions, for
which censored observations appear generally at the end of the variational series.

Table 1: Censoring distributions

Proportion of
censoring, %

Censoring distributions

10 Beta-I(1.81,1,7) Weibull(6.88,3.44)
20 Beta-I(1.19,1,7) Weibull(5.74,2.87)
30 Beta-I(1,1.24,7) Weibull(4.96,2.48)
40 Beta-I(1,1.83,7) Weibull(4.32,2.16)
50 Beta-I(1,2.58,7) Weibull(3.74,1.87)
60 Beta-I(1,3.58,7) Weibull(3.18,1.59)
70 Beta-I(1,5.01,7) Weibull(2.62,1.31)
80 Beta-I(1,7.36,7) Weibull(2,1)

Figure 1 presents the NRR statistic distributions for randomly censored samples, when
censoring distribution is from the Beta-I family and the censoring proportion c = 10, 20, . . . , 80%,
according to Table 1. The sample size n = 100 and the number of grouping intervals k = 5. As
you can see from the figure the test statistic distributions differ from the limiting χ2

4 distribution,
especially for censoring rate over 50%. And the greater the censoring degree, the greater the
distance from empirical distributions to the limiting χ2-distribution. Although not included, the
NRR statistic distributions for I and II censoring types have similar dependency in relation to
the censoring proportion.

Figure 2 illustrates the empirical statistic distributions for different sample sizes and the
corresponding limiting distribution. The empirical distributions were obtained by randomly cen-
sored samples with censoring distribution from the Beta-I distribution family, the proportion of
censoring c = 40% and the number of grouping intervals k = 5. As you can see from the figure,
the obtained empirical distribution of the NRR statistic is rather close to the limit distribution
χ2

4 for sample size n = 300. So, if the censoring degree is large, then the larger sample size is
needed in order to ensure the closeness of empirical distributions to the limiting distribution of
considered statistic.

In Figure 3 you can see the empirical distributions of NRR statistic which were simulated by
randomly censored samples with different distributions of censoring times for the same proportion
of censoring c = 20%. The sample size n = 100 and number of intervals k = 4. We may conclude
that in case of small sample sizes the NRR test statistic distributions depend on not only on the
censoring degree, but also on the distribution of censored observations. And the convergence of
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Figure 1: NRR test statistic distribution for different proportions of censoring

Figure 2: NRR test statistic distributions for different sample sizes
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statistic distributions to the limiting χ2-distribution in the case of censoring distribution from the
Weibull family (when censored observations are mainly located at the end of variational series)
turned out to be slower than in the case of the Beta-I distribution of censoring times.

Figure 3: NRR test statistic distributions for different distribution families of censoring times

4 Power of the NRR chi-square test

It is interesting to consider the test power for close competing hypotheses and to compare the NRR
test by power with other nonparametric goodness-of-fit tests. In [8] the modified Kolmogorov,
Cramer-von Mises-Smirnov and Anderson-Darling tests for censored samples of type I and II were
investigated by means of computer simulation technique. The power of these tests was estimated
in particular for following pair of competing hypotheses:

H0: Weibull distribution - f (t; θ) = θ1
t

(
t
θ2

)θ1
exp

(
−
(
t
θ2

)θ1)
and

H1: Gamma distribution - f (t; θ) = 1
θ2Γ(θ1)

(
t
θ2

)θ1−1

exp
{
− t
θ2

}
.

Let us consider the power of the NRR test on the same pair of competing hypotheses. In
this study we simulated the NRR test statistic distributions G(S|H0) and G(S|H1) for type II
censored samples of the size n = 300. The number of simulated samples N = 105. Unknown
parameters were estimated with the maximum likelihood method by original censored samples.
The NRR test power results for the significance level α = 0.1 are given in Table 2. The power of
Kolmogorov (K), Cramer-von Mises-Smirnov (C-M-S) and Anderson-Darling (A-D) tests, which
were obtained in paper [8] for the same sample size and censoring scheme, are given for the
comparison.
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Table 2: Power of goodness-of-fit tests

Goodness-of-fit test Proportion of censoring
10% 20% 30% 40% 50% 60% 70% 80%

K 0.51 0.26 0.16 0.14 0.17 0.26 0.43 0.38
C-M-S 0.46 0.18 0.12 0.13 0.15 0.21 0.31 0.58
A-D 0.46 0.18 0.12 0.13 0.14 0.19 0.30 0.68

NRR, k=4 0.53 0.43 0.34 0.28 0.21 0.18 0.14 0.11
NRR, k=5 0.52 0.42 0.33 0.27 0.21 0.17 0.14 0.12
NRR, k=6 0.54 0.41 0.33 0.26 0.22 0.17 0.14 0.13

As you can see from Table 2 with the censoring proportion growth the power of NRR test
decreases. The NRR test for considered composite hypotheses is the most powerful in case of
censoring proportion lower than 60%. For heavily censored data the NRR test have lower power
than other considered tests. The values of NRR test power for different numbers of grouping
intervals are very close to each other.

Conclusions

The NRR chi-square test has a number of advantages comparing with other nonparametric
goodness-of-fit tests. At first, the limiting statistic distribution does not depend on the dis-
tribution of censoring times. However, simulations have shown that for small sample sizes the
distributions of NRR test statistic depend on the proportion of censoring as well as the distribu-
tion of censoring times in variational series. Secondly, the power of the NRR chi-square test in the
case of considered pair of competing hypotheses is higher than the power of modified Kolmogorov,
Cramer-von Mises-Smirnov and Anderson-Darling tests for censored samples.
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Abstract

Probabilistic estimation method of the average straight residual lifetime for nuclear power
plants (NPPs) systems and their constituent elements is considered. The mathematical
model for calculating of this reliability characteristic for the objects to be recovered from
the initial data on failures censored interval is presented. Besides, the issue of its accuracy
estimating using the bootstrap method is considered.

Keywords: residual lifetime, system, element, reliability characteristic, operational
data.

Introduction

Currently, increased attention of researchers in the reliability theory is given to the analysis of
technical object operation subject to the aging. This problem is particularly relevant in the
nuclear power industry. The most of power capacities in nuclear power engineering were put into
operation in the 70ies-80ies. Today operating organizations are oriented to extend the assigned
lifetime of the NPPs, but for the reasonable prolongation of the lifetime of power units as a whole
and their individual components, systems, parts, etc. reliability analysis of all the constitu-ent
elements, assemblies and systems is required.

In this paper the problem of estimating the residual operating time between failures of
renewal objects is solved. It is assumed that the strategy of maintenance facilities include mon-
itoring for proper operation of functioning, as well as routine preventive and emergency repairs.
The proposed method for estimating the residual operating time is based on building a stochastic
model, which is mathematically described by the Voltaire integral equation. One of the problems
that appear during the calculation of systems reliability characteristics is the problem of deter-
mining the reliability of elements included in the structure of the system using operational failure
information. During the NPPs reliability characteristics calculations the reliability characteristics
is assessed as well as confidence estimation is required. It means that the problem becomes to
the task of assessing the accuracy of the calculated parameters.
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1 Problem Definition

One of the conditions for the extension of equipment assigned lifetime is the substantiation of
its reliability. The present article is concerned with computational methods for determining the
reliability of renewal facilities, when repairs are possible and provided by regulatory, technical,
repair and design documentation. In the capacity of determinants of reliability a residual operat-
ing time of the object was selected by the authors. A residual operating time is an operating time
of the object from the beginning of the operation or installation into the system to the recovery
to date of failure.

The general practice of calculating the reliability characteristics of renewal systems is based
on the application of the mathematical methods of the renewal theory under the assumption that
the system renewal time is small in comparison with the normal operating time value and it can
be neglected. As a result, in the capacity of the computational model the model of regenerative
processes is used, which suggests that during the repairs carried out a complete restoration of
all the original properties of the system. This model describes well the practical situation when
the renewal of the system in operative condition after failure means the replacement of the failed
element by the same type element from repair kits or spare parts.

However, even with a simple model calculation of the residual operating time is a very
complicated mathematical problem, an analytic solution of which can be obtained only in special
cases with a parametric specification of the original data. In addition, nuclear power has a large
number of serviced systems and equipment, the renewal time of which has the same order of
magnitude that the operating time to failure. During the operation diagnostic tests organized in
a special way are carried out, spare equipment sets are created that is installed into the system
in case of failure. Repair system including the current plan, secondary and capital repairs is
organized and planned. All these facts lead to the conclusion that the renewal time can not be
neglected. In this case, it is necessary to use the theory of alternating processes for the description
of models of equipment functioning.

Thus, the task of this paper is the construction of adequate and reliable models of the resid-
ual lifetime estimating taking into account the different operation strategies, service activities.

2 The Estimation of Straight Residual Time for Renewal

Objects

2.1 The Strategy of the System Operation with a Built-in Monitoring
Efficiency and Low Renewal Time

In modern technical systems different devices of the equipment efficiency monitoring are used.
Early detection of failures and defects allows carrying out procedures for their elimination and,
consequently, exploit the technical facilities more effectively. The system which is characterized
by the presence of elements with faultiness control is going to be considered in this paper. In
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case of failure of a subsystem the operation staff immediately become aware of the failure element
(e.g., the alarm indication goes off). Monitoring of performance is carried out constantly.

Let’s consider the model of the objects operation, which has a built-in test system. In the
case of failure the system becomes inoperable and the emergency maintenance work to renew
functionality shall be started.

Let’s suppose that in initial time t0 = 0 the object is in working condition. The system
operates until failure τi. Built-in monitoring system instantly and unambiguously provides infor-
mation about the place of failure to service staff, and system renewals for a negligible time. After
restoring the system continues to operate until the next failure. The cycle of such states changing
is repeated until a certain time t. Denote time to failure at the i-th operating cycle ξi. Described
strategy of functioning is shown in Figure 1.

Figure 1: The strategy of the system with failure indication and a small recovery time

In [1] a process {V t
i , t≥0, i = 1, 2, ...} called the straight residual time process is described,

where
V t
i = τi+1 − t. (1)

It should be noted that V t is the straight residual time, or the residual operating time of system
at time t.

Also in [1] showed that the average straight residual time can be defined as

MV t(t) = (H(t) + 1)

∫ ∞

0

ufξ(u)du− t. (2)

where fξ(t) is a failure density function, H(t) renewal function, which is determined by solving
of the equation

H(t) = Fξ(t) +

∫ t

0

H(t− u)dFξ(u).

However, in practice this analytical solution for the straight residual time is quite difficult to
be use even in special cases, because it is not always possible to calc an estimation of the renewal
function.

It’s possible to find the average straight residual lifetime MV t(t) using the definition of the
mathematical expectation of the time remaining until the next system failure, starting at time t
in which the system was operable. According to this definition

MV t(t) = M

∞∑
i=0

(τi − t)·I{τi≤t < τi+1}, (3)
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where τi - the failure time. Then

MV t(t) =
∞∑
i=0

M(τi − t)·I{τi≤t < τi+1} =
∞∑
i=0

ψi(t). (4)

Write down the expression under the summation sign

ψi(t) =

∫ ∞

0

∫ ∞

0

(s+ x− t)·I{s≤t < s+ x}fτi(s)fξ(x)dxds =

∫ ∞

0

xϕi(t;x)dx (5)

Let’s make the Laplace transform of the inner integral ϕi(t;x) and obtain:

ϕi(p;x) = f τi(p)·g(p;x) = (f ξ(p))
i·g(p;x), (6)

where g(p;x) the image of the function g(t;x) = fξ(t+ x). Then the Laplace function of average

straight residual lifetime MV t(p) will be determined by the expression

MV t(p) =
1

1− f ξ(p)
·
∫ ∞

0

xg(p;x)dx.

Turning to the originals, it obtains the Voltaire integral equation

MV t(t) =

∫ ∞

0

xfξ(t+ x)dx+

∫ t

0

MV t(u)fξ(t− u)du. (7)

Its solving allows estimating the value of the average straight residual lifetime.

2.2 Calculation of the Characteristics Used in the Equation for Av-
erage Straight Residual Time

In order to make calculations of reliability characteristics including average straight residual time
it is necessary to know the density function of operating time to the i-th failure and renewal
time. It should be note that information obtained from operating experience should be used to
estimate the density functions. It is important for the described method that failure times of
devices are unknown when the collection of data on nuclear power systems (NPS) equipment
failures is performed. There is only data about the number of failures of the same-type elements,
distributed at intervals of efficiency. As the range of efficiency a calendar year is considered. In
other words, failures are grouped by the operating year and only the facts of failures are known.
Based on the analysis of such statistics it is quite difficult to determine the distribution of failure
time. In order to renew the density of failure time the method of kernel estimates is used.

Consider the observation period for the object operation as an array of observation time
intervals −→

LR = [(l1, r1); (l2, r2); ...; (ls, rs)],
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where the random number of failures

−→ν = [ν1, ν2, ..., νs]

has taken place. Note that the intervals are disjoint and the right border of the considered interval
is equal to the left border of the subsequent interval ri = li+1.

Let’s consider that n is the total number of failures, m is the number of similar objects
forming this failure flow. Suppose that in case of failure the failed element is replaced by another
analog with the same characteristics. In this case, there is a complete renewal of the system.
Consequently, the failure flow parameter ω(t) can be determined. If there are data about failures
censored intervals for the failure flow parameter following kernel estimation is obtained

ω̂(t) =
s∑
i=1

νi
m(ri − li)

(
G(
t− li
h

)−G(
t− ri
h

)
+ ε(t), (8)

where

G(x) =
1√
(2π)

∫ x

−∞
exp

(
−u

2

2

)
du

- Gaussian kernel; h is the locality parameter (the measure that depends on the standard deviation
of the failure time); ε(t) is the estimated systematic errors of the failure flow parameter which
should be obtain as

ε(t)≈ 1

2a

[
erfc

(
an/m− t√

2nσ2/m

)
+ exp

(
2at

σ2

)
·erfc

(
an/m+ t√

2nσ2/m

)]
.

As it is known from renewal theory, the failure flow parameter is related with the density distri-
bution of failure time through the Voltaire integral equation

fξ(t) = ω(t)−
∫ t

0

f(τ)ω(t− τ)dτ . (9)

Thus, having sufficient statistical data, it is possible to estimate the density distribution of the
failure time, solving the equation (9), and then estimate the mathematical expectation of straight
residual lifetime (7). Lets consider the example of calculation. Suppose it is known that the
system consists of m = 4 the same elements. The vector of failures is

ν = (1, 9, 3, 4, 3, 2, 1, 0, 3, 0, 3, 0, 0, 0, 0, 1, 0, 6, 1, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0). (10)

Data are grouped by operating years, the total number of failures amounted to n = 42 for s = 34
years. Using formula (8) for these elements let’s estimate the failure flow parameter and then
solving the equation (9), define the density of failure. The result of the density distribution
calculation is shown in Figure 2.

Now the mathematical expectation of straight residual lifetime can be estimated using for-
mula (7). Solving the equation (7) and taking into account these initial data, the following
estimate of the average straight residual lifetime for the element can be obtained (Figure 3).

Thus, the presented methodology allows to obtain the estimation of the straight residual
lifetime and to predict the residual lifetime of the technical objects.
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Figure 2: The kernel estimation of failure time density

Figure 3: The mathematical expectation of average straight residual time
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3 The Estimations Accuracy Determination for the Av-

erage Straight Residual Lifetime

Determining the accuracy estimation of the mathematical expectation of straight residual lifetime
is a quite difficult task in the set of initial conditions. In the case of nonparametric estimation for
the moment it is not yet decided how to obtain estimation for the variance of the straight residual
time. Therefore, the authors suggest carrying out estimation of the accuracy using bootstrap
method.

Bootstrap method was described in [2], and its essence is that one-sample statistics of
observations is transformed into many samples with the same sample size. The transformation is
carried out on basis of the primary sample and taking into account its distribution law.

Thus, the main idea of the bootstrap method is in the multiplication of the available data.
The task is to simulate random samples with the same size as the primary sample. In addi-
tion, each simulated sample is generated by random selection with the returning of one of the
events from the primary sample. This procedure allows to build the sampling distribution of
the estimated feature without any additional assumptions and to make nonparametric confidence
intervals. Let’s explain the essence of the accuracy estimating of the bootstrap method applied
to the sample paragraph 2.2, where a vector of element failures grouped by operating years is
defined.

In the contrast to the classical application of the bootstrap method, in our case, the available
data are grouped by operating year and failure times are unknown. Therefore, if in case of the
classical bootstrap method implementation a random uniformly distributed variable is played on
the axis of the probability (interval [0, 1]) and then it is projected to the axis of failure times, but
in our case it is necessary to map the simulated random uniformly distributed variable on the
axis of failures events implementation.

Let’s consider the sequence of action in determining the accuracy of the estimated feature
with bootstrap method.

Step 1. Each failure event is assigned to an ordinal index i and determine to the observation
time interval when happened. There are n failures distributed in k observation time intervals.
For our example (n = 42, k = 34), there are 1st failure in 1st observation time interval, 2nd-10th
failures in 2nd interval, 11th-13th failures in 3rd interval, etc.

Step 2. The axis of the probability is divided to n equal disjoint intervals [0, y1), [y1, y2), ...,
[yn−1, yn]. Simulate a random uniformly distributed variable U [0, 1] on the axis of the probability.
Determine which of the n observation time intervals contains this variable. If [yi−1, yi), then it
means that the event with index i is realized. Repeat the operation of modeling n times, thereby
a sample of the event numbers of the failures is built. Finding events should be assigned to
observation time intervals according to the partition, in step 1. Using the obtained bootstrap
sample as input data, let’s calculate the expectation of straight residual lifetime MV t

1 .
Step 3. Repeat step 2 many times independently. Thus a lot of ratings MV t

i are got.
Step 4. For nonparametric estimation performance limits of the confidence intervals are

defined as follows. First, set the significance level α in accordance with the confidence level of
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1 − 2α. Secondly, define the boundaries of intervals that satisfy the following relations for the
given α.

α =
d(MV t

i ≤MV t
low)

r
; (11)

1− α =
d(MV t

i ≤MV t
high)

r
; (12)

where r is the amount of bootstrap repetitions; d(MV t
i ≤MV t

high) is the number of parameter
MV t bootstrap repetitions which took values less than MV t

high. In this case, evaluation MV t
low

and MV t
high defined by expressions (10) and (11) will characterize the approximate confidence

interval, corresponding to a confidence probability 1 − 2α. The results of MV t
low and MV t

high

calculations according to initial data of the represented example and formulas (10) and (11) are
shown in figure 4.

Figure 4: The construction of confidence intervals for estimating of average straight residual
lifetime

The advantage of the represented method is the possibility to build the confidence interval
for estimation besides the estimation of the reliability features on the basis of initial censored
sample of small size.

Conclusions

In this paper the method of estimating the average straight residual lifetime is considered and
the algorithm for estimating the calculations accuracy is described. The distinctive feature of
the presented method is the possibility of using non-parametric methods of estimation. The
considered method allows carrying out practical research, taking into account the quality of
available basic statistical data. This method can be used to estimate the reliability characteristics
of systems with complex service strategies.
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Abstract

In this paper we investigate dependences between associated diseases that a person has
at the end of his live and the cause of death. We analyze public data about cause-specific
mortality in conjunction with the problem of average risk estimation on empirical data.
The use of the theory of Vapnik-Chervonenkis provides informative results about differences
between distributions of associated diseases in group of people who died of cancer and group
of people who died of another disease. This difference uncovers a relationship between some
groups of associated diseases and risk of death of cancer.

Keywords: cancer mortality, distributions discrepancy, selection of associated diseases,
the Vapnik-Chervonenkis dimension.

Introduction

Investigation of relationships between health and mortality is relevant because of longevity in-
crease, which is observed in developed countries starting from the second part of the XX century.
In order to release economic and social pressure due to ageing of population it is important to
have the solution to following problems: obtaining reliable estimates for expected age structure
of the population, gaining knowledge of factors responsible for “healthy aging” and understand-
ing the impact of different diseases in cause-specific mortality. The last problem is known as
mortality-comorbidity problem. This problem is especially important for old age groups in which
the mortality is at the high level and several chronic diseases are presented.

Nowadays there is a great volume of statistical data for mortality and morbidity of the
aged people. These data allow us to investigate the factors responsible for maintaining health
in aging population, to evaluate the influence of heredity, environment and lifestyle. Recent
publications explain observed increase of human life expectancy by the reduction of mortality at
middle age [2, 3, 4]. There is a hypothesis that people who are down in health have a high margin
of “active longevity”, because enduring high morbidity risk in young and middle ages gives an
advantage in survival in old age. Effective adaptation of people with chronic diseases may serve
as a biological basis for this phenomenon. If this hypothesis is correct we need to focus preventive
measures in young and middle ages to ensure the “healthy aging”. Relationship between the
cause specific mortality and chronic diseases can be an indirect confirmation of the relationship
between increased morbidity and reduced mortality. In the research the Multiple Cause-of-Death
Public-Use Data for 2007 by the National Center for Health Statistics USA [5] are investigated.
Distribution of associated diseases presented by the ICD10 codes among people who died of cancer
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(C00-C97) is compared with the same distribution among people who died of another disease. In
order to select more “important” diseases associated with cancer mortality we solve a problem
of contrasting the distributions. By the problem of contrasting of the distributions we mean the
selection of associated diseases for which one observes the most distinguishable distributions of
these diseases among people died of cancer against people died of other diseases.

We used symmetrized Kullback-Leibler divergence as a difference measure between the two
distributions. For a set of associated diseases the symmetrized Kullback-Leibler divergence was
estimated from the data as a half sum of mixed entropies corrected by a penalty term. This term
takes into account both the amount of empirical data and the number of considered associated
diseases. In this report the technique based on the Vapnik-Chervonenkis dimension was used for
construction of such penalty term.

The results show that in a group of women at the age of 45-75 years, which died of cancer,
not more than 9 of 126 classes of associated diseases influence on cancer mortality. Considering
partition into groups of diseases we conclude that the class of chronic pulmonary and respiratory
diseases is one of the most important comorbidity class of cancer and non cancer mortality
differentiation. This research validates the hypothesis that presence of asthma could decrease
development and mortality of cancer [3, 6].

1 Definitions

In this section we introduce some definitions and notation that will be used throughout the paper.
We consider the problem of estimation a distance between two distributions p1(x) and p2(x)

on empirical data, where p1(x) is a distribution of associated diseases among people who died
of cancer (let’s name this group as a cancer group), p2(x) – a distribution of associated diseases
among people who died of another disease (non cancer group). Associated diseases are grouped
into classes according to their ICD10 classification, x is a group of associated diseases.

We used symmetrized Kullback-Leibler divergence as a distance between empirical

estimates p̂1(x) and p̂2(x) of the two distributions: D = −1
2

(∑
x

p2(x) ln p̂1(x)
p2(x)

+
∑
x

p1(x) ln p̂2(x)
p1(x)

)
For each block of associated diseases values ni and mi are calculated, where ni is a number

of people of cancer group which had a disease from the ith block, mi – a number of people
of non cancer group which had a disease from the ith block. Cancer and non cancer groups
have histograms of associated diseases: g1 = (n(1), n(2), . . . , n(k)) and g2 = (m(1),m(2), . . . ,m(k)),
where k – a number of blocks and blocks are sorted in descending order of the absolute difference

between the values ni/
k∑
i=1

ni and mi/
k∑
i=1

mi.

To find a set of associated diseases which are the most important for difference between
cancer and non cancer death we consider different sets of blocks of associated diseases. Let α
be a variable which labels what set of blocks we use now, Σ is a set of all possible sets α. In
an experimental part we create follow sequence of variables α: α(1) – the first block of associated
disease, α(2) – the first and the second blocks,. . . , α(k) – all blocks, where the order of blocks
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the same as in histograms above. Distributions of associated diseases now dependend of the
variable α, and the symmetrized Kullback-Leibler divergence takes form

D(α) = −1

2

(∑
x

p2(x, α) ln
p̂1(x, α)

p2(x, α)
+
∑
x

p1(x, α) ln
p̂2(x, α)

p1(x, α)

)
In the rest of the article we consider a functional of average risk as a criterion characterizing

criterion of the distance D(α):

M(α) = −1

2

(∑
x

p2(x, α) ln p̂1(x, α) +
∑
x

p1(x, α) ln p̂2(x, α)

)
(1)

The distributions p1(x, α) and p2(x, α) are unknown and they are approximated by frequen-
cies. We can use a trivial approximation by frequencies ν1(x, α) and ν2(x, α) which are equal
to a portion of people who had an associated disease x and died of cancer or of another disease
respectively. If x is an ith block of associated disease, α consists of k blocks, then frequencies are
defined as:

ν1(x, α) =
ni
k∑
i=1

ni

, ν2(x, α) =
mi

k∑
i=1

mi

,

To avoid zero value under logarithm in (1) we use empirical estimates p̂1(x) and p̂2(x) of
distributions p1(x) and p2(x) in form:

p̂1(x, α) =
ni + 1
k∑
i=1

ni + k

, p̂2(x, α) =
mi + 1
k∑
i=1

mi + k

(2)

These expressions are Bayes estimates of probabilities if a priori distribution of probabilities

on the k-fold simplex given by ∆k = {p1, . . . , pk :
k∑
i=1

pi = 1, pi ≥ 0, i = 1, . . . , k} is uniform.

By substitution of ν1(x, α) and ν2(x, α) instead of p1(x, α) and p2(x, α) in (1) we obtain so
called empirical risk

Me(α) = −1

2

(∑
x

ν2(x, α) ln p̂1(x, α) +
∑
x

ν1(x, α) ln p̂2(x, α)

)
=

= −1

2

 1
k∑
j=1

mj

k∑
i=1

mi ln
ni + 1
k∑
j=1

nj + k

+
1

k∑
j=1

nj

k∑
i=1

ni ln
mi + 1
k∑
j=1

mj + k


(3)

The deviation between the average risk and the empirical risk can be estimated in form of
an inequality

M(α) > Me(α)− d(α, η),
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which is valid with probability η.
By maximizing on α the right part of the inequality we determine the set of classes of

associated diseases for which distribution of the associated diseases in cancer group maximal
differs of the distribution of the associated diseases in non cancer group. The form of the penalty
term d(α, η) and some empirical results are discussed in the rest of the article.

2 Vapnik-Chervonenkis evaluation

In this section we consider functionals of the average and the empirical risks and discuss an
applicability of Vapnik-Chervonenkis evaluation as a bound of the difference between these risks.

We consider the functional of the average risk M(α) in the form (1) and the functional of
the empirical risk Me(α) in the form (3).

Let xα1i, i = 1, . . . , Lα1 denote a block of associated diseases which ith person form the
cancer group had, where Lα1 is a number of people who belonged to the cancer group and had
an associated disease from a set α. In the same way, let xα2i, i = 1, . . . , Lα2 denote a block of
associated diseases which ith person form the non cancer group had. Then we can obtain the
following expression for the empirical risk (3):

Me(α) = −1

2

 1

Lα2

Lα2∑
i=1

ln p̂1(x
α
2i, α) +

1

Lα1

Lα1∑
i=1

ln p̂2(x
α
1i, α)

 (4)

We want to use the Vapnik-Chervonenkis result from [1] about the uniform convergence of means
to expectations in a class of bounded functions. The result is as follows: assume F (x, α) –
a measurable function for all α ∈ Σ with respect P (x) in probability space X, M(α) is an
expectation of this function for all α:

M(α) = EF (x, α) =

∫
F (x, α)dP (x)

Then assume an independent sample with the distribution P(x): X l = x1, . . . , xl. For all α we
calculate an empirical mean for F (x, α) for X l

Me(α) =
1

l

l∑
i=1

F (xi, α)

If the function F (x, α) is bounded: 0 ≤ F (x, α) ≤ a then the inequality holds:

P

{
sup
α∈Σ

|M(α)−Me(α)| > aε

}
≤ 6MS(2l) exp

[
−1

4
ε2(l − 1)

]
, (5)

where MS(2l) is a growth function of a system of events A = {x : F (x, α) ≥ c, c > 0, α ∈ Σ}.
The proof of (5) and a definition of the function MS(2l) are given in [1]. From (5) it follows that
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with probability not less than 1− η for any α ∈ Σ it holds

|M(α)−Me(α)| ≤ 2a

√
ln 6M s(2l)− ln η

l − 1
(6)

To use this inequality let’s prove that the function F (x, α) = − ln p̂i(x, α) is bounded in our
task. Hence, we should prove two inequalities:

a1 ≤ ln p̂i(x, α) ≤ a2, i = 1, 2

Indeed, we don’t consider associated diseases which neither people from the cancer group nor

form the non cancer groups has. Then we have p̂i(x, α) > c > 0 and − ln
(
p̂i(x,α)
ce

)
< 1. By

definition (2): p̂i(x, α) < 1 and therefore − ln
(
p̂i(x,α)
ce

)
> ln(ce).

So we’ve proved an equality:

ln(ce) < − ln

(
p̂i(x, α)

ce

)
< 1

Functions ln
(
p̂i(x,α)
ce

)
, i = 1, 2 are bounded and it is clear that:

− 1

2

 1

Lα2

Lα2∑
i=1

ln

(
p̂1(x

α
2i, α)

ce

)
+

1

Lα1

Lα1∑
i=1

ln

(
p̂2(x

α
1i, α)

ce

) =

= ln(ce)− 1

2

 1

Lα2

Lα2∑
i=1

ln p̂1(x
α
2i, α) +

1

Lα1

Lα1∑
i=1

ln p̂2(x
α
1i, α)

 ,

and we can use the inequality riskseval for the empirical risk estimation. With the estima-
tion MS(2l) ≤ (2(Lα1 + Lα2 ))k this leads to the inequality which holds with probability not less
than 1− η for all sets of associated diseases composed not more than k classes

M(α) > Me(α)− 2

√√√√2k−1
(
ln

2(Lα1 +Lα2 )

2k−1 + 1
)
− ln η

5

(Lα1 + Lα2 )− 1
(7)

2.1 Experimental results

In this section we present the analysis of the data about human comorbidity and mortality. We
are interested in differences between two groups of people: people who died of cancer and people
who died of another disease. Usually a person in addition to underlying disease (the cause of
death) has a list of associated diseases. Therefore there are certain distributions of associated
diseases in these two groups of people.

67



Statistical Methods in Reliability and Survival analysis

For the analysis the Multiply Cause-of-Death Public-Use data for 2007 are used. These data
contain the information about people who died in 2007 year. About each person we have: age,
date of death, a disease which was a cause of death, a list of associated diseases. We made our
differences analysis on the data of women morbidity.

We consider the age range in which the cancer mortality is the most common. Figure 1
shows a percentage of deaths of cancer depending on age. The horizontal axis corresponds to an
age of death; the vertical axis corresponds to a percentage of cancer deaths among all women
death at the certain age. Figure 1 shows that the majority of cancer deaths (more than 30%) are
in the age interval between 45 and 75 ages. In the rest of the article we consider the group of
women who died at the age interval 45-75 years. At the first step of our analysis we consider 24

Figure 1: Histogram of proportion of women died of cancer

classes of associated diseases; these classes correspond to the first letter in the ICD10 code.
A number of women from the cancer or non cancer group who had the associated disease

from fixed class is calculated (according to our definitions ni and mi respectively). Classes of as-

sociated diseases are sorted in descending order of the absolute difference between values ni/
k∑
i=1

ni

and mi/
k∑
i=1

mi.

To evaluate the empirical and average risks for the experimental data and to find a set of
associated diseases which are the most important for difference between cancer and non cancer
death we consider different sets α of classes of associated diseases. We create the following
sequence of sets α: α(1) = {F}, α(2) = {F,T}, α(k) — all considered classes, where the order of
classes is the same as defined above.

Using the mortality data we calculate values of the empirical risk functional of the form (3)
for each set α. According to inequality (7) we evaluate the lower bound of the average risk. In
figure 2 the empirical risk Me(α) and the lower bound of the average risk M(α) are plotted. The
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lower bound of the average risk reaches its maximum on the set α = {F,T, J, I,E,D,N, S,R,G,K}
and determines the set of classes of associated diseases for which the distribution of associated
diseases in the cancer group maximally reliably differs from the distribution of associated diseases
in the non cancer group.

Figure 2: Empirical and average risks for classes of associated diseases

The classes of associated diseases combined by the first letter of the ICD10 code are too large
and heterogeneous. At the second step of our analysis we consider more detailed composition of
diseases classes: now we use blocks of diseases defined by letter and the two digits of the ICD10
code. These blocks are defined in standard classification.

For these blocks of associated diseases we perform the same comparison of the empirical and
average risks. From figure 3 one can conclude that the cancer group maximally differs from the non
cancer group on nine blocks of associated diseases. We emphasize such diseases as: Ischemic heart
diseases (I20-I25), Hypertensive diseases (I10-I15), Other diseases of the respiratory system (J95-
J99), Chronic lower respiratory diseases (J40-J47), Circulatory and respiratory systems (R00-
R09), Renal failure (N17-N19), Diabetes mellitus (E10-E14), Obesity and other hyperalimentation
(E65-E68), Influenza and Pneumonia (J09-J18). Some of these diseases may play protective role
against cancer death, some can be artifacts. A part of the found relationships between cancer and
associated diseases are well-known, some of these relationships are being discussed in professional
area [6].

2.2 Conclusion

This paper is devoted to the problem of investigation of links between risk of cancer death
and associated morbidity. It is mathematically formalized as the problem of contrasting the
distributions of associated diseases among people died of cancer and among people died of another
disease. To solve this problem we evaluate the average risk on the empirical data using the Vapnik-
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Figure 3: Empirical and average risks for blocks of associated diseases

Chervonenkis inequalities. We perform two partitions of groups of diseases and obtain the better,
more interpretable results on the second partition (letter and two digits of the ICD10 code).
It turns out that nine blocks of associated diseases have reliably different distributions in the
cancer and non cancer groups. This allows us to discuss the role of some chronic diseases and
conditions in cancer mortality. The aim of the future investigations is consideration of the more
“tiny” classes of associated diseases that reduce cancer mortality. For such classes one should use
more precise estimation for the average risk than estimation based on the Vapnik-Chervonenkis
approach.
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Abstract

This paper is devoted to the problems of goodness-of-fit testing with parametric AFT-
model. Modified nonparametric goodness-of-fit tests such as Kolmogorov test, Cramer-von
Mises-Smirnov test and Anderson-Darling test by samples of residuals are investigated. The
problem of baseline distribution selecting is considered.

Keywords: AFT-model, censored data, samples of residuals, Kolmogorov test, Creamer-
von Mises-Smirnov test, Anderson-Darling test.

Introduction

There are many problems of longevity and aging data in different areas such as medicine, survival
analysis, reliability studies, econometrics, etc. This is so-called time-to-event data. In medicine
this event may be the time of death, time of changes in some bio-chemical indices or time of remis-
sion after some treatment. In engineering this event may be time of failure for some interesting
device or technical system.

Let the nonnegative random variable ξ denote the time-to-event or failure time of an indi-
vidual. The probability of an item surviving up to time t is given by the survival function.

S(t) = Pr {ξ > t} = 1− F (t), (1)

where F (t) is cumulative distribution function of random variable ξ.
In survival analysis an individual’s survival depends on some characteristics or conditions of

the experiment. Usually these characteristics are coded as the so-called covariates, which could
be time-dependent.

It is often necessary to obtain reliability results from experiment more quickly then it is
possible with data obtained under normal conditions. In these cases experimenter may use Ac-
celerated Failure Time Models. In AFT-models time-to-event data are obtained under some
accelerated stress conditions, which shorten the life of test items. For example, covariate x is
accelerated with respect to a covariate z, if:

Sx(t) ≤ Sz(t). (2)

The aim of such testing is to estimate survival function of an individual under the normal
conditions basing on data obtained in Accelerated Life Testing.
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1 AFT-model

Consider two plans of experiment [1]:
1. Experimenter divide individuals into k groups and they are tested under accelerated

constant over time stresses x. Therefore ni items are tested under xi stress condition.
2. Individuals are tested under step stress condition:

x (t) =


x0 t0 < t and t ≤ t1
x1 t1 < t and t ≤ t2
...
xk−1 tk−1 < t and t ≤ tk

(3)

In addition plan of experiment may be the combination of these two plans.
Under the AFT-model survival function Sx(t) is determined by baseline survival function

S0 and positive function r(x, β):

Sx(t) = S0

 t∫
0

ds

r(x(s), β)

 (4)

Stress function is usually parameterized in one of following ways:
1. Log-linear model: r(x, β) = eβ0+β1x;
2. Power rule model: r(x, β) = eβ0+β1lnx;

3. Arrhenius model: r(x, β) = eβ0+
β1
x ;

4. Model for vector stress: r(x, β) = eβ0+β1x1+...+βmxm .
For parametric AFT-models it is supposed that baseline survival function S0(t) belongs

to some parametric family of distributions. For example: exponential model, Weibull model,
Gamma model, power generalized Weibull model, inverse Gaussian model and so forth.

In survival analysis and reliability studies, time-to-event data are usually right censored.
That means a time-to-event T is observed only if T ≤ TC , where TC is a censoring time. There
are various types of right censoring schemes [3]:

1. Type I censoring: all items are tested until a pre-specified censoring time TC ;
2. Type II censoring: only k first failure times are observed, and for remained subjects

censoring time is TC = T(k), where T(k) is failure time of k-th item;
3. Type III censoring (random censoring): the failure times T1, ..., Tn and the censoring

times C1, ..., Cn are independent positive random variables.
Let denote Ti and Ci as the failure and censoring times of the i-th item respectively. Set

Xi = min (Ti, Ci) (5)

Usually right censored data are presented as:

(X1, δ1) , ..., (Xn, δn) (6)
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where δi = 1{Ti≤Ci} is an indicator of the event.

Estimates of AFT-model parameters can be found with maximum likelihood method, where
likelihood function is:

L (Tn) =
n∏
i=1

f δi(Xi)S
1−δi(Xi) (7)

If the stresses are constant over time, then survival function of item which failed under xi
stress is:

Sxi(t) = S0

(
t

r(xi, β)

)
(8)

But if we have time-dependent stress (3) then survival function of item which failed under
xi stress is:

Sxi(t) = S0

(
t− ti
r(xi, β)

+
i∑

j=0

tj − tj−1

r(xj−1, β)

)
(9)

2 Testing goodness-of-fit with AFT-model

It is often difficult to choose the distribution law for baseline survival function S0 because usually
there is no prior information about lifetime distribution. After estimation of model parameters
one should test goodness-of-fit of obtained model to the sample of observations. So, testing
goodness-of-fit is an essential part of statistical analysis. One approach to testing goodness-of-
fit with parametric AFT-model is based on residuals which in case of fixed covariates can be
calculated as following:

zi =
Xi

r(xi, β)
(10)

But if we have time-depended covariates (3) then residuals can be calculated as follows:

zi =
Xi − ti
r(xi, β)

+
i∑

j=0

tj − tj−1

r(xj−1, β)
(11)

If the model (4) is appropriate the sample of residuals Zn = {zi}i=1,n belongs to the
distribution F0, which is standardized by the scale parameter (scale parameter is equal to 1).
The hypothesis about goodness-of-fit of the sample of residuals to F0 can be tested with the
classical goodness-of-fit tests: the Kolmogorov test, the Cramer-von Mises-Smirnov test and the
Anderson-Darling test. But the main problem with analysis of residual samples is that that data
in reliability studies is often censored and the classical statistic inference cannot be applied.
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So the hypothesis about goodness-of-fit of the sample of residuals to the baseline distribution
F0 can be tested with modified goodness-of-fit tests. These modifications are based on using the
Kaplan-Meier estimator instead of empirical distribution function [5].

The Kolmogorov test statistic is given with the statement

Dn = sup
t<∞

|F̂n(t)− F0

(
t, θ̂
)
| (12)

the Cramer-von Mises-Smirnov test statistic

W 2
n = n

∞∫
−∞

(
F̂n(t)− F0(t, θ̂)

)2

dF0(t, θ̂). (13)

and the Anderson Darling test statistic

A2
n = n

∞∫
−∞

(
F̂n(t)− F0(t, θ̂)

)2 dF (t, θ̂)

F0(t, θ̂)
(
1− F0(t, θ̂)

) . (14)

where F̂n(t) is the Kaplan-Meier estimator [4] by censored sample.
It should be noted that we have a composite hypothesis, for which test statistic distributions

G(S|H0) are affected by a number of factors: the form of assuming lifetime distribution F0(t),
the type and the number of estimated parameters, the method of parameter estimation and other
factors.

In [6] the approximations of statistic distribution models and the tables of percentage points
were obtained for testing composite hypotheses by the Kolmogorov, Cramer-von Mises-Smirnov
and Anderson-Darling tests using the maximum likelihood estimates of unknown parameters.
These approximations were obtained for complete data without covariates.

It has been shown that for testing goodness-of-fit with parametric AFT-model by complete
data one can use approximations of obtained in [6]. In case of censored data statistic distributions
are affected by the censoring degree. Figure 1 shows the dependence of statistic distributions from
censoring degree:

So for censored data approximate p-values in testing goodness-of-fit can be obtained by
simulation. It is quite possible if we have type I or type II censored data, but in case of random
censoring process which often occurs in survival analysis there is a problem of ambiguity in
simulating censored observations because the distribution of censoring times is unknown.

3 Motorette Failure Time Data

Let us consider the Motorette Failure Time Data [2-3].Failure times and the plan of the experiment
are given in Table 1.

The parameterization of the stress function was chosen as: r(z[x], β) = eβ0+β1z[x], where
z[x] = 1000

273.2+x
.
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Figure 1: The Anderson-Darling test statistic distributions for censored data

Table 1: Failure Times and Plan of the Experiment

Temperature C◦ Failure times
150 Censored: 10 at 8064*
170 1764, 2772, 3444, 3542, 3780, 4860, 5196 Censored: 3 at 5448*
190 408, 408, 1344, 1344, 1440 Censored: 5 at 1680*
220 408, 408, 504, 504, 504 Censored: 5 at 528*
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In Table 2 MLE of the model parameters, log-likelihood function and 95% confidence inter-
vals for different parametric models are given.

Table 2: Failure Times and Plan of the Experiment

Fo MLE Confidence
interval

lnL

Exp β0 = −15.28 -24.05 -6.97 -155.36
β1 = 10.84 7.08 14.92
β0 = −12.96 -15.73 -9.12

Weibull β1 = 9.54 7.82 10.84 -146.28
ν = 3.08 2.15 4.90
β0 = −14.56 -18.05 -10.05

Gamma β1 = 9.58 7.64 11.18 -147.37
ν = 4.46 2.56 9.82
β0 = −10.53 -13.40 -7.05

PGW β1 = 9.67 7.95 10.88 -145.87
ν0 = 2.63 1.78 4.17
ν1 = 0.001 0.0002 0.0096
β0 = −13.27 -16.99 -8.67

LogNorm β1 = 9.65 7.59 11.39 -148.57
ν = 0.59 0.37 0.83

From Table 2 one cal see that by values lnL the Weibull AFT-model and the Power Gener-
alized AFT-model fit the data better than other considered models. Figure 2 shows the survival
functions for these two models under the ”normal” stress conditions - temperature 130◦:

The hypothesis about goodness-of fit with these parametric AFT-models was tested by
modified nonparametric tests by samples of residuals. Note that in this study data are type I
censored (censored degree is about 57%). So statistic distributions G(S|H0) were obtained by
means of computer simulation. Table 3 presents the results of goodness-of-fit testing by modified
nonparametric tests by samples of residuals.

As one can see from Table 3 both of considered models fit the data, but obtained p-values
for Weibull AFT-model are bigger than for PGW AFT-model. So we can make a conclusion
that the Weibull AFT-model fits the Motorette Failure Time Data better than other considered
models.
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Figure 2: Weibull AFT-model and PGW-AFT-model survival functions

Table 3: Results of goodness-of-fit testing

Kolmogorov test Cramer-von
Mises-Smirnov
test

Anderson-
Darling test

Sn p Sn p Sn p
Weibull 1.64 0.48 0.36 0.48 1.93 0.46
PGW 1.63 0.42 0.35 0.41 1.90 0.40
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Conclusions

We have briefly discussed the problem of the goodness-of-fit testing with parametric AFT-model.
By means of computer simulation and developed software system we have investigated omnibus
statistics distributions for testing goodness-of-fit with AFT-model basing on residuals.

It has been shown that in case of complete samples it is possible to use the approximations of
statistic distributions given in [6] or to obtain p-values by simulation for data without covariates.
In case of random censored samples which often occur in survival analysis there is a problem
of ambiguity in simulating censored observations because the distribution of censoring times is
unknown. But if we have type I or type II censored data, we don’t have any problems with
modeling censored samples and p-values can be obtained by simulation.

In the paper we considered the example of Motorette Failure Time Data [2-3] which include
17 complete lifetimes and 23 type I censored observations. Various parameterizations of the
baseline survival function for the AFT-model have been compared for these data. Goodness-of-fit
testing has been carried out by modified nonparametric tests with statistic distributions G(S|H0),
obtained by simulation.
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Abstract

In this work we consider a simple step-stress model under progressive Type-II censoring
based on an extension of the exponential distribution, which provides a more flexible model
than the exponential model. This new generalization of the exponential distribution has
been recently introduced by Nadarajah and Haghighi (2010), and can be used for modeling
lifetime data. For this simple step-stress model the maximum likelihood estimates of its
parameters as well as the corresponding observed fisher information matrix are derived.
A method for simulating data from an extension of the exponential distribution in the
presence of progressive Type-II censoring is proposed. Using this method we conducted a
simulation study for estimating the parameters of simple step-stress model and then provided
asymptotic and bootstrap confidence intervals for the parameters.

Keywords: An extension of the exponential distribution, Bootstrap, Coverage prob-
abilities, Cumulative exposure model, Fisher information matrix, Step-stress test, Type-II
censoring.

Introduction

Today’s many products are designed to operate without failure for years or more. Thus, few units
will fail in a test of particular length at normal use conditions. A simple way to accelerate the time
to failure of such products is to run the product at a higher normal stress. Generally, information
from tests at high levels of stresses is extrapolated, through a reasonable statistical model, to
obtain estimates lifetime at normal use conditions. Accelerated life testings are used widely in
industries, particulary to obtain timely information on the reliability of products. The stress
loading in an accelerated life testing can be applied various ways. A common stress loading is
step stress loading wherein a unit is first subjected to a specified constant stress x1 for a specified
length of time τ1. If it does not fail, it is subjected to a higher stress level x2 for a specified time
τ2 and so on. The stress on a unit is thus increased step by step until it fails. If there is a single
change of stress, the accelerated life test is called a simple step-stress test. For considering the
cumulative effect of exposure at sequential stress levels, the cumulative exposure models are used.
In this paper, we consider the problem of estimation in step-stress accelerated life tests under an
extension of the exponential model and progressive Type-II censoring.
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Recently a generalization of the exponential distribution has been presented by Nadarajah and
Haghighi (2010), so-called an extension of the exponential distribution. The generalization always
has a decreasing probability density function and yet allows for increasing, decreasing and constant
hazard rates. It was shown that this new family can be used as an alternative for Weibull, gamma
and exponentiated exponential distributions. An extension of the exponential distribution has a
closed form expression for survival function as follows:

S(t) = exp{1− (1 +
t

λ
)α}, (1)

for α > 0, λ > 0 and t > 0. The corresponding cumulative distribution function (cdf), probability
density function (pdf) and quantile function are

F (t) = 1− exp{1− (1 +
t

λ
)α}, (2)

f(t) =
α

λ
(1 +

t

λ
)α−1 exp{1− (1 +

t

λ
)α}, (3)

and

Q(p) = λ{(1− log(1− p))
1
α − 1}, 0 < p < 1. (4)

For α = 1, the family reduces to the exponential distribution. The new family is a particular case
of the power generalized Weibull family introduced by Bagdonaviçius and Nikulin (2002). They
used this family as the baseline of the AFT model for FTR data. It is interesting to mention
that the new distribution can be interpreted as a truncated Weibull distribution, supposing Z =
Y − 1/λ, the distribution is the same as that of Z truncated at zero, when Y is a Weibull random
variable. We refer the readers to Nadarajah and Haghighi (2010) for details about the properties
of this family.

1 The model and assumptions

Some basic assumptions are considered as followings:

1) Two stress levels x1 and x2 (x1 < x2) are used.
2) For any level of stress, the lifetime distribution of the test unit follows pdf given by (3).
3) The scale parameter of cdf F (t) is a log-linear function of stress, i.e.,

logλ(xi) = β0 + β1xi, i = 0, 1, 2, (5)

where β0, and β1(< 0) are unknown parameters depending on the nature of the product, and the
method of test and x0 is use-stress.
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4) The constant α doesn’t depend of the stress level.

The test is conducted as follows. An ensemble of n units is initially placed on stress x1. At
the time of the first failure, R1 units are randomly removed from the remaining n − 1 surviving
units. At the second failure R2 units from the remaining n− 2−R1 units are randomly removed
and so on. The experiment continues until a pre-specified time τ . Then the stress is changed
to x2. Under stress x2 the experiment continues until mth failure is observed and at which time
all remaining Rm = n−m− R1 − R2 − ...− Rm−1 units are removed. The Ri are fixed prior to
the study. Let n1 denote the random number of failures that occur before τ and n2 = m − n1

the number of failures that occur after τ . The observed data are then the ordered failure times
t1:m:n < t2:m:n < ... < tm:m:n. An extension of the exponential step-stress model is formulated as
follows.

F (t) =

{
F1(t), 0 ≤ t < τ,
F2(t− τ + τ ′), τ ≤ t <∞.

where Fi(t) = 1− exp{1− (1 + t
λi

)α}, and τ ′ = (λ2

λ1
)τ is the solution of F1(τ) = F2(τ

′). Thus the
pdf of the lifetime of the test unit is

f(t) =

{
f1(t), 0 ≤ t < τ,
f2(t− τ + (λ2

λ1
)τ), τ ≤ t ≤ η.

where, for i = 1, 2,

fi(t) =
α

λi
(1 +

t

λi
)α−1 exp{1− (1 +

t

λi
)α}.

The likelihood of the observed failure times given by

L(β0, β1) = C

{
n1∏
i=1

f1(ti:m:n)[1− F1(ti:m:n)]
Ri

}{
m∏

i=n1+1

f2(ti:m:n)[1− F2(ti:m:n)]
Ri

}
,

It is observed that the estimation procedure, through the likelihood equations, does not result in
closed-form for the maximum likelihood estimators of the parameters β0 and β1. Therefore, we
have to solving the likelihood equations by numerical methods. The observed information matrix
is derived by computing the negative of the second partial and mixed partial derivatives of log
L(β0, β1) with respect to β0 and β1. It is not possible to derive the exact confidence intervals for
the parameters. Hence, we will consider the asymptotic and bootstrap confidence intervals for the
model parameters. We also provide different bootstrap confidence intervals including bootstrap-t,
percentile and adjusted percentile (BCa) CIs.

We proposed following theorem for simulating progressive Type-II data from an extension
of the exponential distribution.
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1.1 Theorem

Let Z1, Z2, ..., Zm be random variables from standard exponential distribution. Let

t1 = b

[(
1 +

Z1

n

) 1
α

− 1

]

t2 = b

[(
1 +

Z1

n
+

Z2

n− 1−R1

) 1
α

− 1

]

t3 = b

[(
1 +

Z1

n
+

Z2

n− 1−R1

+
Z3

n− 2−R1 −R2

) 1
α

− 1

]
.

.

tm = b

(1 +
Z1

n
+

Z2

n− 1−R1

+ ...+
Zm

n−m+ 1−
∑m−1

1 Ri

) 1
α

− 1


Then t1, t2, ..., tm is the progressive Type-II censored sample from F (ti) = 1− exp{1− (1 + ti

b
)α}.

2 Simulation

A Mote Carlo simulation study is carried to evaluate the bias, mean square error and asymptotic
confidence interval for the parameters. We also discussed the construction of confidence intervals
for the parameters based on the different bootstrap methods and compared them in the terms of
the coverage probabilities through a simulation study. Finally, a numerical example is presented
to illustrate all the methods discussed here.
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1 Motivation

It may happen that among the factors that have an impact on the occurrence of a certain event
we want to predict, some of them are difficult to obtain. It can be due to their high cost or else
to the time spent to get them. In that case, and if the purpose is purely predictive, and not at all
explanatory, it may happen that dropping such factors has a very low cost in terms of predictive
ability of the model. The aim of this paper is to derive the asymptotic properties of an estimator
of an index of predictive ability, the IDI, when both the full model and the reduced model are
estimated on the same data set, together with their IDI. Having thus a confidence interval for
their comparative predictive ability, we have elements allowing us to conclude whether we can
drop or not certain pertinent factors.

2 Framework

Let X = (Y,Z) be a random variable such that Y is binary with values in {0, 1}, P (Y = 1|Z =
z) = p(z), and Z is a k-dimensional real variable, with distribution Q(z) with density q(z)
with respect to some measure µ. We have a data set X = (X1, · · · , Xn) consisting in n i.i.d.
observations of X, and two models for predicting Y on the basis of Z are to be compared:

Model 1 P (Y = 1|Z = z) = p1(z)
Model 2 P (Y = 1|Z = z) = p2(z)

while the unknown true distribution of X is given by

P (Y = 1|Z = z) = p(z)
dQ(z) = q(z)dµ(z)

This setting originates from the following special problem in epidemiology:
Yi is the indicator of the occurrence of a certain disease for subject i. Occurrence of this event
is to be predicted to happen within a fixed period of time, the prediction being based on the
value zi of Z observed on subject i. Z is a k-dimensional covariate, p1 and p2 are logistic models,
denoted g1 and g2 in the sequel. While g1 is including all k components of Z, g2 is obtained by
throwing away Zk which is a genetic feature. We consider the case when a test of fit of the full
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model g1 shows that Zk is a pertinent covariate, that is its coefficient is significantly different from
0. It may happen that, in spite of the fact that g1 is a better model than g2, the improvement in
prediction is not significant, due to the fact that the coefficients of the remaining covariates are
modified so as to fit better the data at the cost of giving misleading false effects for the remaining
covariates. The reason for avoiding the last covariate, even though it is a pertinent one, may be,
as is the case for a genetic feature, the fact that it is not available for all the subjects that could
be involved in the study, or else it would be too expensive or too long to obtain its values in view
of the magnitude of the small benefit it would provide.
We stress that, while q(z) is the true distribution of Z, we do not assume that the full model g1

is the true model for the data.
The aim of this work is to derive the asymptotic properties of the IDI in order to obtain confi-
dence intervals for IDI (Integrated Discrimination Improvement) and other related measures of
comparison of prediction performances. Several indexes for comparing prediction ability of two
models can be found in Pencina et al.[1]. Properties of M-esdtimators as can be found in C.
Huber[2] are used for derivng the asymptotic properties of IDI.

3 Application to French Alzheimer data

n = 4486 patients aged ≥ 65, included in a cohort between September 1999 and November
2000, are followed during several years. Covariates such as sex, age at inclusion, sociological,
psychological and biological factors as well as three genetic factors are considered that could
influence the occurrence of Alzheimer dsease. Among the 4486 patients, 162 became Alzheimer
within 4 years. Only one of the three genetic factors is shown to be pertinent and is included in
the best fitting logistic model for predicting this occurrence. Nevertheless, the IDI between the
two models with and without the genetic factor is not significant. This allows us to think that
the search for this costly factor could be avoided without loosing much as long as prediction only
is concerned, and not structural explanation.
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Abstract

Two-parameter Birnbaum-Saunders distribution is widely used in industry for reliability.
In this paper we give a modified chi-squared goodness-of-fit test for Birnbaum-Saunders
distribution when the data are right censored. Random grouping intervals of the data
function are used.

Introduction

Birnbaum-Saunders distribution is an important distribution in shape-scale family used for failure
time data especially when the failures are due to crack. This distribution was proposed by
Birnbaum and Saunders (1969a, b) with two parameters, named as shape and scale parameters.
The PDF and CDF of this distribution is unimodal and is very popular in modeling fatigue
failures in industry, as an alternative to other unimodal distributions such as the lognormal and
inverse Gaussian.

The cumulative distribution function of two-parameter Birnbaum-Saunders distribution is

F (t;α, β) = Φ

[
1

α

{(
t

β

) 1
2

−
(
β

t

) 1
2

}]
, 0 < t <∞, α, β > 0, (1)

where α is the shape parameter, β is the scale parameter and Φ(x) is the standard normal
distribution function. The probability density function can be written as

f(t;α, β) =
1

2
√

2π αβ

{(
β

t

) 1
2

+

(
β

t

) 3
2

}
exp

[
− 1

2α2

(
t

β
+
β

t
− 2

)]
,

0 < t <∞, α, β > 0.

We can write the survival function and the hazard function by using the following relationships;

S(t;α, β) = 1− F (t;α, β), λ(t;α, β) =
f(t;α, β)

S(t;α, β)
.

Two-parameter Birnbaum-Saunders distribution has been studied at large scale (see e.g. Desmond
(1985,1986), Balakrishnan et al. (2007,2009), Johnson et al. (1995), Kundu et al. (2008), Lemonte
et al. (2007), Volodin et al. (2000) ). Some authors used this distribution for censored data (see
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e.g. Lawless, (1982), Leiva et al. (2007), Zhihui et al. (2006))but there is not much work done
on goodness-of-fit test for Birnbaum-Saunders distribution when the data are censored.

Here we give a modified chi-square goodness-of-fit test for this model when the data are right
censored. We use the approach of Nikulin-Rao-Robson (NRR) (Bagdonavicius, et al.(2010) and
Bagdonavicius, Nikulin (2011)). We give the explicit form of all the elements of the quadratic form
of NRR statistic. We apply this test for the head and neck cancer data (censored) and the data
analyzed by Kundu et al. (2008) (non-censored). In both case maximum likelihood estimators
are used. This paper was initiated by the paper of (Kundu, D., Kannan, N. and Balakrishnan,
N. (2008))

We illustrate the test with two real data examples, of which one is censored data while
the second is non-censored data. The graphical comparison of the non parametric Kaplan-Meier
estimation and the maximum likelihood estimation is given for each data.

1 Right censored data, composite hypothesis and ML func-

tion

We observe the right censored sample

(X1, δ1), . . . , (Xn, δn), (2)

where
Xi = Ti ∧ Ci, δi = 1{Ti≤Ci}.

where T1, · · · , Tn are the failure times which are absolutely continuous i.i.d. random variables and
Ci are censoring times which are independent. The probability density function of the failure time
T1 belongs to a parametric family {f(·,θ), θ ∈ Θ ⊂ Rm}. It means that we have the parametric
composite hypothesis as

H0 : F (x) ∈ F0 = {F (x,θ), x ∈ R1, θ = (θ1, · · · , θm)T ∈ Θ ⊂ Rm} ⊂ F

which means that the failure times T follow follow the distribution with cdf F of the parametric
class F0 and θ is an unknown m-dimentional parameter and F0 is a differentiable completely
specified cdf.

Let us consider the distribution of the random vector (Xi, δi) in the case of random censoring
with absolutely continuous censoring times Ci. So we can write the loglikelihood function for non-
informative censored data as

`(θ) =
n∑
i=1

δi lnλ(Xi,θ) +
n∑
i=1

lnS(Xi,θ){ θ ∈ Θ}. (3)
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Here we have {θ = (α, β)t ∈ Θ}, as in this paper we consider that the failure time belongs to
the Birnbaum-Saunders distribution. So we write the log likelihood function for this distribution
as

` =
n∑
i=1

δi

[
ln
(

1
2
√

2π

)
− lnα− ln β + ln

{(
β
t

) 1
2 +

(
β
t

) 3
2

}
− 1

2α2

(
t
β

+ β
t
− 2
)
−

ln

{
1− Φ

(
1
α

{(
t
β

) 1
2 −

(
β
t

) 1
2

})}]
+

n∑
i=1

ln

[
1− Φ

(
1
α

{(
t
β

) 1
2 −

(
β
t

) 1
2

})]
If θ̂ is the estimator of the parameter θ then the ML estimator satisfies the equation:

˙̀(θ̂) = 0; (4)

here ˙̀ is the score vector:

˙̀(θ) =
∂

∂θ
`(θ) =

(
∂

∂α
`(θ),

∂

∂β
`(θ)

)T
.

Fisher’s information matrix is

I(θ) = −Eθ
῭(θ),

where

῭(θ) =
n∑
i=1

δi
∂2

∂θ2 lnλ(Xi,θ)−
n∑
i=1

∂2

∂θ2 Λ(Xi,θ).

The censored sample (2) may be written in the form of random processes

(N1(t), Y1(t), t ≥ 0), · · · , (N1(t), Y1(t), t ≥ 0), (5)

where

Ni(t) = 1Xi≤t,δi=1, Yi(t) = 10≤t≤Xi ,

Using these processes we obtain two useful relations:
Using these processes under non-informative and random censoring the considered we can

write the loglikelihood functions the form

`(θ) =
n∑
i=1

∫ ∞

0

{lnλ(u,θ)dNi(u)− Yi(u)λ(u,θ)}du, (6)

from where it follows that

˙̀(θ) =
n∑
i=1

∫ ∞

0

∂

∂θ
lnλ(u,θ) dMi(u,θ), (7)
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῭(θ) =
n∑
i=1

∫ ∞

0

∂2

∂θ2 lnλ(u,θ) dMi(u,θ)

−
n∑
i=1

∫ ∞

0

∂

∂θ
lnλ(u,θ) (

∂

∂θ
lnλ(u,θ))Tλ(u,θ)Yi(u)du, (8)

where

Mi(t,θ) = Ni(t)− Ai(t) = Ni(t)−
∫ t

0

Yi(u)λ(u,θ)du.

is martingale of the counting process Ni(t).

By tradition, accepted in survival analysis and reliability, we suppose that the processes
Ni and Yi are observed finite time τ > 0. It means that at time τ observation of all objects is
censored, so in the place of censoring time Ci, censoring time Ci ∧ τ are used. We denote them
once more by Ci. The process N(t) shows for any t > 0 the number of observed failures in the
interval [0, τ ] and the process Y (t) shows the number of objects which are at risk (not failed, not
truncated and not censored) just prior the time t, t < τ .

So from these processes we can write the matrix of second derivatives in the following form

῭(θ) =

∫ τ

0

∂2

∂θ2 lnλ(u,θ) dN(u)−
∫ τ

0

∂2

∂θ2λ(u,θ)Y (u)du

=

∫ ∞

0

∂2

∂θ2 lnλ(u,θ) dM(u,θ)−
∫ τ

0

∂

∂θ
lnλ(u,θ) (

∂

∂θ
lnλ(u,θ))Tλ(u,θ)Y (u)du.

and the Fisher’s information matrix is

I(θ) = −Eθ
῭(θ) = Eθ

n∑
i=1

∫ ∞

0

∂

∂θ
lnλ(u,θ) (

∂

∂θ
lnλ(u,θ))Tλ(u,θ)Yi(u)du. (9)

Consistency and asymptotic normality of the ML estimators θ̂ holds under the some well known
regularity conditions (see e.g. Hjort (1990), Bagdonavicius et al).

The score vector is

∂`

∂α
=

n∑
i=1

δi

− 1

α
+

1

α3

(
t

β
+
β

t
− 2

)
+

Φ
′
α

(
1
α

{(
t
β

) 1
2 −

(
β
t

) 1
2

})
1− Φ

(
1
α

{(
t
β

) 1
2 −

(
β
t

) 1
2

})


−
n∑
i=1

 Φ
′
α

(
1
α

{(
t
β

) 1
2 −

(
β
t

) 1
2

})
1− Φ

(
1
α

{(
t
β

) 1
2 −

(
β
t

) 1
2

})
 ,
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∂`

∂β
=

n∑
i=1

δi

− 1

β
+

1
2t

{(
t
β

) 1
2

+ 3
(
β
t

) 1
2

}
(
β
t

) 1
2 +

(
β
t

) 3
2

− 1

2α2

(
− t

β2
+

1

t

)
+

Φ
′

β

(
1
α

{(
t
β

) 1
2 −

(
β
t

) 1
2

})
1− Φ

(
1
α

{(
t
β

) 1
2 −

(
β
t

) 1
2

})
− n∑
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 Φ
′

β

(
1
α

{(
t
β

) 1
2 −

(
β
t

) 1
2

})
1− Φ

(
1
α

{(
t
β

) 1
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(
β
t

) 1
2
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 ,

where Φ
′
(x) = φ(x) = 1√

2π
e−x

2/2. Now we have

Φ
′

α

(
1

α

{(
t

β

) 1
2

−
(
β

t

) 1
2

})
=

=
1√
2π

exp

[
− 1

2α2

(
t

β
+
β

t
− 2

)][
− 1

α2
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t

β

) 1
2

−
(
β

t

) 1
2

}]

= − 1√
2π α2
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t

β

) 1
2

−
(
β

t

) 1
2

}
exp

[
− 1

2α2

(
t

β
+
β

t
− 2
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Φ
′

β

(
1

α

{(
t

β

) 1
2

−
(
β

t

) 1
2

})
=

=
1√
2π

exp

[
− 1

2α2

(
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β
+
β
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− 2
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1

α
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(
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)− 3
2

(
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(
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)
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=
1√
2π
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1

α
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(
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β
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2

− 1

2t

(
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β

) 1
2

}]
exp
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− 1

2α2

(
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β
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= − 1
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√

2π αt
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β

) 3
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+
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β

) 1
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exp
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2α2
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β
+
β
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2 NRR statistic

We consider the individual data so divide the interval [0, τ ] into k > s smaller intervals

Ij = (aj−1, aj], a0 = 0, ak = τ,
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and let denote by

Uj = N(aj)−N(aj−1) =
∑

i:Xi∈Ij

δi

the number of observed failures in the j-th interval, j = 1, 2, ..., k.
Considering the equality

EN(t) = E

∫ t

0

λ(u,θ0)Y (u)du

we can ”expect” to observe

ej =

∫ aj

aj−1

λ(u, θ̂)Y (u)du (10)

failures; here θ̂ is the MLE of the parameter θ. To have a chi-square test we shall construct the
NRR statistic (see Nikulin (1973b,c), Rao & Robson (1974)) based on the statistic

Z = (Z1, ..., Zk)
T , Zj =

1√
n

(Uj − ej), j = 1, ..., k. (11)

Set for l = 1, · · · ,m and j, j′ = 1, · · · , k

Vj = V (aj)− V (aj−1), vjj′ = Cov (Vj, Vj′),

Aj = A(aj)− A(aj−1), Cj = (C1j, ..., Cmj)
T = C(aj)−C(aj−1),

V = [vjj′ ]k×k, C = [Clj]m×k.

and denote by A the k × k diagonal matrix with diagonal elements A1, ..., Ak, where

A(t) =

∫ t

0

λ(u,θ0)y(u)du, C(t) =

∫ t

0

∂

∂θ
lnλ(u,θ0)λ(u,θ0)y(u)dt,

Under some regularity conditions we have

Z
d→ Y ∼ Nk(0,V ), as n→∞

with
V = A−CT i−1(θ0)C.

where the matrix i(θ0) = limn→∞ I(θ0)/n is positive definite and one can write

I(θ̂)/n
P→ i(θ),

where θ̂ is the root of the equation (4).
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The test statistic is

Y 2
n = ZT V̂

−
Z. (12)

where

V̂
−

= Â
−1

+ Â
−1

Ĉ
T
Ĝ

−
ĈÂ

−1
,

is the general inverse of the matrix V̂ , and Ĝ = î− ĈÂ
−1

Ĉ
T
.

The limit distribution of the statistic Y 2
n is chi-square with r = rank(V −) = Tr(V −V )

degrees of freedom. If G is non-degenerate then r = k.

So the test statistic can be written in the following simple form

Y 2
n =

k∑
j=1

(Uj − ej)
2

Uj
+Q, (13)

where

Q = W T Ĝ
−1

W , W = ĈÂ
−1

Z = (W1, ...,Wm)T ,

Ĝ = [ĝll′ ]s×s, ĝll′ = îll′ −
k∑
j=1

ĈljĈl′jÂ
−1
j , Wl =

k∑
j=1

ĈljÂ
−1
j Zj.

îll′ =
1

n

n∑
i=1

δi
∂ lnλ(Xi; θ̂)

∂θl

∂ lnλ(Xi; θ̂)

∂θl′
, Ĉ lj =

1

n

∑
i:Xi∈Ij

δi
∂

∂θ
lnλ(Xi, θ̂),

Âj = Uj/n, Uj =
∑

i:Xi∈Ij

δi, Zj =
1√
n

(Uj − ej),

i = 1, · · · , n, j = 1, · · · , k, l, l′ = 1, · · · ,m.
Denote by ĝll

′
the elements of Ĝ

−
. The quadratic form Q can be written as follows

Q =
m∑
l=1

m∑
l′=1

Wlg
ll′Wl′ .

Chi-squared test for the hypothesis H0: The hypothesis is rejected with approximate
significance level α if Y 2

n > χ2
α(k), where χ2

α(k) is the upper quantile of chi-square with k degree
of freedom.

Remark. It is proved that under right censoring the limit distribution of the test statistic
does not change (see Bagdonaviius, Kruopis and Nikulin (2010)).
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Choice of intervals âj: Set

bi = (n− i)Λ(X(i), θ̂) +
i∑
l=1

Λ(X(l), θ̂).

where X(i) is the ith element in the ordered statistics (X(1), · · · , X(n)).
If i is the smallest natural number verifying Ej ∈ [bi−1, bi], j = 1, · · · , k − 1 then

(n− i+ 1)Λ(a, θ̂) +
i−1∑
l=1

Λ(X(l), θ̂) = Ej

and

âj = Λ−1

(
[Ej −

i−1∑
l=1

Λ(X(l), θ̂)]/(n− i+ 1), θ̂

)
, âk = max(X(n), τ)

where Λ−1 is the inverse of cumulative hazard function Λ. We have 0 < â1 < â2 · · · < âk = τ .
With this choice of intervals ej = Ek/k for any j where Ek =

∑n
i=1 Λ(Xi, θ̂). Usually in real

application we fix k.

Remark: Bagdonavicius et al. (2010) give the explicit formula to estimate aj for the
shape-scale family of distributions in the form inverse hazard function. As there is no explicit
form of the inverse hazard function of Birnbaum-Saunders distribution, so we estimate intervals
by iterative method.

We can estimate the Fisher information matrix by using the equality

îll′ =
1

n

n∑
i=1

δi
∂ lnλ(Xi; θ̂)

∂θl

∂ lnλ(Xi; θ̂)

∂θl′
.

The elements of the Fisher information matrix are

î11 =
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n
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2

,
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î12 =
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n
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And

Ĉ lj =
1

n

∑
i:Xi∈Ij

δi
∂

∂θ
lnλ(Xi, θ̂)

where
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3 Head and Neck Cancer Data

The survival times in days for the patients (n = 51) in arm A of the head and neck cancer trial
are as below (δ = 42): The data was first used by Effron (1988), and then Haghighi(2004).

7, 34, 42, 63, 64, 74*, 83, 84, 91, 108, 112, 129, 133, 133, 139, 140, 140, 146, 149, 154,
157, 160, 160, 165, 173, 176, 185*, 218, 225, 241, 248, 273, 277, 279*, 297, 319*, 405,

417, 420, 440, 523*, 523, 583, 594, 1101, 1116*, 1146, 1226*, 1349*, 1412*, 1417 .

* censoring
The maximum likelihood estimators of Birnbaum-Saunders distribution by taking into account
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the survival times in months are; α̂ = 1.4390, β̂ = 7.6851. We take 5 intervals i.e. k=5. Further
results to calculate the Y 2 are shown below (using the intervals proposed by Bagdonavicius,
Kruopis and Nikulin (2010)):

Figure 1: The empirical survival function (Kaplan-Meier) and the fitted survival functions (ML).

j 1 2 3 4 5
âj 2.0371 3.8279 7.1816 15.8970 46.5537
Uj 3 7 16 10 6
ej 8.55876 8.55876 8.55876 8.55876 8.55876

Ĝ =

(
1.062956 · 1013 −1.056587 · 1012

−1.056587 · 1012 1.050257 · 1011

)
.

Wl = (−7398797 735422)T

The value of test statistic is Y 2 = X2 + Q = 15.4067 + 6.7804 = 22.1871, and the P-value is
p = P{χ2

5 > 22.1871} = 0.00048 (CR = 11.0705). So from the result we can say that Birnbaum-
Saunders distribution does not fits the head and neck cancer data.

Data of survival times of guinea pigs

This data by Bjerkedal (1960), was used by Gupta et al. (1997) and D. Kundu et al. (2008).
The data represent the survival times of guinea pigs injected with different doses of tubercle bacilli.
Here, we are primarily concerned with the animals in the same cage that were under the same
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regimen. The regimen number is the common logarithm of the number of bacillary units in 0.5
ml of challenge solution; i.e., regimen 6.6 corresponds to 4.0 × 106 bacillary units per 0.5 ml
(log(4.0× 106) = 6.6). Corresponding to regimen 6.6, there were 72 observations listed below (no
censoring):

12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56,
57, 58, 58, 59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75,
76, 76, 81, 83, 84, 85, 87, 91, 95, 96,98, 99, 109, 110, 121, 127, 129, 131,

143,146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 341, 341, 376

The maximum likelihood estimators of Birnbaum-Saunders distribution by taking into account
the survival times in months are; α̂ = 0.76, β̂ = 77.5370367. We take 8 intervals i.e. k=8. Further
results to calculate the Y 2 are shown below:

Figure 2: The empirical survival function (Kaplan-Meier) and the fitted survival functions (ML).

j 1 2 3 4 5 6 7 8
âj 33.0031 45.8625 58.4605 75.7942 101.7081 140.8752 207.7677 376
Uj 8 5 10 17 12 6 5 9
ej 8.9549 8.9549 8.9549 8.9549 8.9549 8.9549 8.9549 8.9549

Ĝ =

(
81919470537 −548295941
−548295941 3678042

)
.

Wl = (−40424.4446 177.1083)T

The value of test statistic is Y 2 = X2 + Q = 12.51517 + 1.08025 = 13.59542, and the P-value is
p = P{χ2

8 > 13.59542} = 0.093 (CR = 15.50731). So from the result we have no reason to reject
our hypothesis of Birnbaum-Saunders distribution.
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On Validation of Models in Demography

Léo Gerville-Réache, Mikhail Nikulin, Ramzan Tahir
IMB, University of Bordeaux, France

Abstract

In demography, Gompertz and Makeham models have significant role in modeling and
in analysis of mortality and ageing. Till the end of 20th century, researchers have been
used the tables of mortalities for demographic analysis but in the end of 20th century due
to the development in statistical methods of survival analysis one can treat the individuals
data even with the information of censoring. Weibull model is considered the alternative for
Gompertz model (Juckett and Rosenberg, (1993)). The Gompertz, Makeham, and Weibull
distributions are compared with respect to the goodness-of-fit to the table of mortality and
to the individuals data in presence of censoring. For data from the table of mortality, test
statistic considered by Gerville-Reache and Nikulin (2000) is used. For censored individual
data the test is based on the NRR-statistic where the choice of random grouping intervals
is considered as given by Hjort (1990), Akritas (1988), Bagdonavicius, Kruopis and Nikulin
(2010).

Keywords:Demography, Gompertz model, Makeham model, Weibull model, Composite
hypothesis, ML estimators, Chi-square test, Censoring, NRR statistic.

Introduction

In demography and actuarial sciences models selection for some specific data is vital for fur-
ther analysis and decision making. Testing the two-parameter Gompertz distribution (Gompertz
(1825)) to model the rate of mortality has been used for a long time, where the rate of mortality
increases with the age. Gompertz-Makeham (William Makeham (1860)) model with one addi-
tional parameter covers the mortality independent of age. The researchers have been used the
life and mortality tables to find the force of mortality. Gerville-Reache and Nikulin (2000) gave
a chi-square type goodness-of-fit test for Makeham model using the table of mortality (grouped
data). In section 3 we briefly discuss their proposed statistic and also we compare Makeham
model with Gompertz and Weibull models for different age groups. But now with the advanced
technology and data collection techniques, one can have the individual’s information (ungrouped
data) also with censoring mechanism. Gompertz and Makeham models are frequently used in
demography but in survival analysis many other parametric models are used (see Bagdonavicius
and Nikulin (2002)).

Mostly the researcher compare Gompertz model with the Weibull model due to its flexible
parameters (Gavrilov & Gavrilova (2001)). Logistic distribution can be another alternative for
Gompertz (Wilson (1994)). The Gompertz function is a better choice for all causes of mortal-
ity and combined disease categories while the Weibull model has been shown a better choice
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over Gompertz model for a specific cause of mortality (Juckett & Rosenberg (1993)). A little
work is done for Gompertz-Makeham model in the presence of censoring (Wang et all. (1998)).
Estimation of parameters and construction of test-statistic is difficult when the data are censored.

For individual data with censoring the test is based on the Nikulin-Rao-Robson statistic
known as NRR statistic Y 2

n : a modified chi-squared test which is based on the differences be-
tween two estimators of the probabilities in each interval. One estimator is based on the empirical
distribution function and the other is on the ML estimators of unknown parameters of the tested
model from ungrouped data (See Nikulin (1973), Rao and Robson (1974), Drost (1988), LeCam et
al. (1983), Van der Vaart (1998), Zhang (1999). That is we partition the total time [0, τ ], where
τ is the maximum time, into k intervals and we observe the number of failures Uj in each interval
I1, · · · , Ik and expected number of failures ej by using the maximum likelihood estimators of the
tested model. So the test is based on the vector Z = (Z1, · · · , Zk)T , where Zj = 1√

n
(Uj − ej),

j = 1, · · · , k. Random grouping intervals are used and the end points of the interval aj are
estimated as a random data function. In literature some other modifications in the chi-square
goodness-of-fit tests for censored data have been proposed (see for example Habib and Thomas
(1986), Hollander and Pena (1992), Akritas (1988), Hjort (1990), Kim (1993)).

Bagdonavicius and Nikulin (2010) demonstrated the goodness-of-fit test for many paramet-
ric models but in this paper we only give for the Gompertz, Makeham and Weibull models. Some
details on the Gompertz, Makeham and Weibull models are given in section 2. The NRR statistic
for composite hypotheses, and application of the test for Gompertz and Weibull distributions are
given in section 4, and 5 respectively. Non-parametric estimation of survival function in demog-
raphy and actuaries is given in section 6.

1 Gompertz-Makeham and Weibull Models

Gompertz model of aging is widely used in demography and other scientific disciplines e.g.
medical sciences, survival analysis, actuarial sciences and reliability. It was proposed by Benjamin
Gompertz in 1825, now known as Gompertz law. This is the first mathematical model to explain
the exponential increase in mortality rate with age (Gompertz (1825)). He explained that the
law of geometric progression pervades in mortality after a certain age. Gompertz mortality rate
can be presented as

µx = θeνx, (θ, ν) > 0, x > 0, (1)

where θ is known as the baseline mortality, ν the age specific growth rate of the force of mortality.
Mortality rate µx in demographic notation is the equivalent to the failure rate µ(x) in reliability
or hazard rate in survival analysis. The Gompertz law has been the main demographic model
since its discovering to fit the human mortality (see e.g. Gavrilov & Gavrilova (2001), Ricklefs &
Scheuerlein (2002)).
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Since Gompertz model gives the rate of mortality only related to age and does not take
into account the other factors independent of age, so other authors tried to modify this model
to fulfill the the requirement of real data. William Makeham (1860) modified the Gompertz
model considering some other causes of death independent of age by proposing the so called
Gompertz-Makeham law of mortality as

µx = γ + θeνx, where (γ, θ, ν) > 0 x > 0. (2)

Here the first term γ (Makeham parameter) is a constant and non-aging component of failure rate
(e.g. accidents, independent of age) and the second term θeνt is the Gompertz function depending
on age (aging factor).

The Weibull distribution is one of the most widely used distributions in survival analysis
and reliability due to the characteristics of its shape parameter ν. The mortality rate or hazard
function is

µx =
ν

θν
xν−1, for x ≥ 0 (θ, ν) > 0. (3)

The hazard function of the Weibull distribution can be decreasing, constant or increasing accord-
ing to the value of its shape parameter i.e. three Weibull models can make a bathtub shape,
but now there are some models like generalized Weibull model which can have bathtub shape
(Bagdonavicius and Nikulin (2002)). The Weibull law is more commonly applicable for technical
devices while the Gompertz law is more common for biological systems (Gavrilov & Gavrilova
(1991)). When the Gompertz law fails to follow some biological failure mechanism, the best
alternative is Weibull law due to its basis in reliability theory. If the probability of failure at
the start of the system is almost zero, the failure rate increases with the power function with
age i.e. Weibull law and if the system have defects at the beginning, the failure rate increases
exponentially with age i.e. Gompertz law. So to apply the Weibull law in demography, biological
population should be independent of initial deaths. Logistic distribution is considered as the
other alternative for Gompertz distribution (Vanfleteren et al. (1998)).

2 Test statistic for the table of mortality

Consider x = 0 as the origin of time for an individual of age x and Tx is a random variable for
its residual life from this origin. The probability of death is

tqx = P{0 < Tx ≤ t}, t > 0, x > 0.

So the annual rate of mortality for the people having age x can be defined as

qx = P{0 < Tx ≤ 1}, x > 0.
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A relation between the rate of mortality and the instantaneous rate of mortality µx is

qx = 1− exp

(
−
∫ x+1

x

µydy

)
, x > 0.

The theoretical annual rate of mortality in the case of Gompertz model can be written as

qx = 1− exp

(
−θ
ν
eνx(eν − 1)

)
, θ, ν > 0. (4)

In the same way we can find the theoretical annual rate of mortality for Makeham, Weibull and
other parametric models.

We observe the n persons independent of mortality and we regroup them in the same age,
say ω groups, where ω is the maximum age in years. The group Gx contains `x persons of age x
(x = 0, · · · , ω − 1) and qx is the probability of death of each individual in the year. Let denote
Dx the number of deaths in the group Gx.
Using the data Dx and `x from the table of mortality, we can obtain the empirical annual rate of
mortality observed at age x, such that

Qx =
Dx

`x
,

which follow the binomial law with parameters `x and qx. According to the central limit theorem
if minx(`x) →∞ when n→∞, then Q = (Q0, · · · , Qω)

t ∼as Nω(q, P ), where q = (q0, · · · , qω−1)
t

and P is the diagonal matrix of the elements qx(1−qx)
`x

for x = 0, 1, · · · , ω−1. So we can write that

(Dx − `xqx)
2

`xqx(1− qx)
∼as χ2

1.

As it is shown in Gerville-Reache & Nikulin (2000),

X2
ω =

ω−1∑
x=0

(Dx − `xqx)
2

`xqx(1− qx)
∼as χ2

ω.

One can use this statistic for testing simple hypotheses, as one uses the classical statistic of Pear-
son for testing simple hypotheses (See Greenwood and Nikulin (1996)).

Estimation of parameters in Composite hypothesis
Let consider the composite hypothesis

H0 : qx = qx(θ), θ = (θ1, · · · , θs)t ∈ Θ ⊆ Rs, s < ω.

We estimate the parameters by maximum likelihood method using the data from the table of
mortality. We have the random variable Dx which follows the binomial law of parameters `x and
qx. The likelihood function is

L(θ) =
ω−1∏
x=0

(
Dx

`x

)
[qx(θ)]

Dx [1− qx(θ)]
`x−Dx .

103



Testing Statistical Hypotheses

We take the estimator θ̂ that maximizes the likelihood function, i.e.

θ̂ = argmaxL(θ)

One can find the maximum likelihood estimator θ̂ for θ by solving the following score vector

∂ lnL

∂θi
= 0,∀i = 1, · · · , s.

Let consider the statistic

X2
ω(θ̂) =

ω−1∑
x=0

(Dx − `xqx(θ̂))
2

`xqx(θ̂)(1− qx(θ̂))
∼as χ2

ω−s.

Gerville-Reache & Nikulin (2000) shown that under the hypothesis H0, X
2
ω(θ̂) asymptotically

follows a chi-square statistic with ω− s degrees of freedom, where s is the number of parameters
to be estimated, from where it follows that we may use this statistic for testing H0. One can see
that the statistic X2

ω(θ̂) is different from the classical Pearson statistic.

Example: Analysis of data from the table of mortality (INSEE, Gironde 1990)

The data in Table 1 is from INSEE Aquitaine-France, give the number of deaths of the year
1990 in each age group of 5 year, where Dx are the numbers of deaths and `x are the numbers of
habitants for each age group on 1st January 1990.

This data is used for the validity of three models i.e. Gompertz, Makeham, and Weibull model.
The rate of mortality for these three models is adjusted with maximum likelihood estimators and
then the value of chi-square is calculated. In the case of the adjustment between 5 and 84 years of
age, the annual rate of mortality neither follow the Gompertz, Makeham, nor the Weibull models.
But when the adjustment is between the age groups of 30 and 74 year, the the Makeham model
is accepted. The Gompertz model also becomes valid along with Makeham when the model is
adjusted for the age between 50 and 79 years. It means that Gompertz model is validated in
the older age and it coincide the theory regarding Gompertz model. The Weibull model becomes
closer but still it does not fits this data significantly. The calculated values of the test statistic
with corresponding p-values are shown in table 2 and the fitted models are well presented in the
following three figures.
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Table 1: Table of Mortality (INSEE, Gironde 1990)

age `x Dx

5-9 75498 14
10-14 77284 16
15-19 90337 45
20-24 102544 91
25-29 91339 92
30-34 90769 128
35-39 93324 156
40-44 96692 226
45-49 64575 195
50-54 57974 247
55-59 61871 384
60-64 62473 622
65-69 61122 958
70-74 36425 944
75-79 37124 1341
80-84 29541 2020

3 Goodness-of-fit test for right censored data

(NRR-Statistic)

Here we apply the survival analysis methods in demography where we have individual information
with right censoring. For this purpose Bagdonavicius, Kruopis and Nikulin (2010) proposed a
goodness of fit test based on the NRR statistic (Nikulin (1973), Rao & Robson (1974), Drost
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Table 2: Table of Mortality (INSEE, Gironde 1990)

Gompertz Makeham Weibull

Age Groups X2
ω(θ̂) p-value X2

ω(θ̂) p-value X2
ω(θ̂) p-value

5-84 214.19 ≈ 0 99.98 ≈ 0 2363.98 ≈ 0
30-74 45.62 ≈ 0 1.98 0.92 158.93 ≈ 0
50-79 9.01 0.11 8.48 0.08 25.44735 0.0001
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(1988), Van der Vaart (1998)). We give a chi-squared type test for testing composite parametric
hypothesis when individual data are right censored.

Let us consider the composite hypothesis

H0 : F (x) = F (x,θ), x ∈ R1, θ = (θ1, · · · , θm)T ∈ Θ ⊂ Rm

i.e. the distribution of failure times T belongs to the given parametric class. Here we consider
Gompertz, Makeham and Weibull as parametric families.

Suppose we have right censored individual data as

(X1, δ1), . . . , (Xn, δn), Xi = Ti ∧ Ci, δi = 1{Ti≤Ci}, (5)

where T1, · · · , Tn are the failure times which are absolutely continuous i.i.d. random variables
and Ci are the censoring times which are independent. The probability density function of the
failure times T1 belongs to a parametric family {f(·,θ), θ ∈ Θ ⊂ Rm}. Denote by

St(θ) = Pθ{T1 > t}, and Λt(θ) = −lnSt(θ) =

∫ t

0

µy(θ)dy, θ ∈ Θ,

the survival function and the cumulative hazard function, respectively. With non-informative
random censoring mechanism the loglikelihood function can be writen as,

`(θ) =
n∑
i=1

δi lnµXi(θ) +
n∑
i=1

lnSXi(θ), {θ ∈ Θ}. (6)

ML estimators can be find by equating the score vector ˙̀(θ̂) to zero and the Fisher’s information
matrix is I(θ) = −Eθ

῭(θ). Consistency and asymptotic normality of the ML estimators θ̂ hold
under some regularity sufficient conditions (Hjort (1990), Bagdonavicius, Kruopis and Nikulin
(2010)).

To construct the test we introduce the two counting process and write the censored sample
(5) as

(N1(t), Y1(t), t ≥ 0), · · · , (Nn(t), Yn(t), t ≥ 0), (7)

where
Ni(t) = 1{Xi≤t,δi=1}, Yi(t) = 1{Xi≥t},

N(t) =
n∑
i=1

Ni(t), and Y (t) =
n∑
i=1

Yi(t).

Using these data one can calculate immediately the non-parametric Nelson-Aalen estimator

Λ̂(t) =

∫ t

0

dN(u)

Y (u)
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for the unknown cumulative hazard function Λ, and the famous non-parametric Kaplan-Meier
estimator

Ŝ(t) = Ŝ(t−)

(
1− ∆N(t)

Y (t)

)
for the unknown survival function S(t) = 1− F (t) when the censored data are ungrouped.

Suppose that the processes Ni, Yi are observed at finite time τ . Then divide the interval
[0, τ ] into k > s smaller intervals

Ij = (aj−1, aj], a0 = 0, ak = τ.

Let denote the number of observed failures in the j-th interval, j = 1, 2, ..., k as

Uj = N(aj)−N(aj−1) =
∑

i:Xi∈Ij

δi

Choice of random grouping intervals âj is made to overcome the problem of very small expected
number of events for some interval. This can happen in demography because the number of
deaths at early age are very few. Set

bi = (n− i)ΛX(i)
(θ̂) +

i∑
l=1

ΛX(l)
(θ̂),

where X(i) is the ith element in the ordered statistics (X(1), · · · , X(n)). If i is the smallest natural
number verifying Ej ∈ [bi−1, bi], j = 1, · · · , k − 1, then

(n− i+ 1)Λa(θ̂) +
i−1∑
l=1

ΛX(l)
(θ̂) = Ej,

and

âj = Λ−1

(
[Ej −

i−1∑
l=1

ΛX(l)
(θ̂)]/(n− i+ 1), θ̂

)
, âk = max(X(n), τ),

where Λ−1 is the inverse of cumulative hazard function Λ. We have 0 < â1 < â2, · · · , âk = τ .
With this choice of intervals the expected number of failures are

ej = Ek/k,

for any j where Ek =
∑n

i=1 ΛX(l)
(θ̂). Usually in real application we fix k.

For testing H0 Bagdonavicius and Nikulin (2010) considered the following statistic

Y 2
n = ZT V̂

−
Z,
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where
V̂

−
= Â

−1
+ Â

−1
Ĉ
T
Ĝ

−
ĈÂ

−1

is a consistent estimator of a generalized inverse V − of the asymptotic variance-covariance matrix
V = V (θ) of the statistic

Z = (Z1, ..., Zk)
T , Zj =

1√
n

(Uj − ej), j = 1, ..., k, (8)

and
Ĝ = î− ĈÂ

−1
Ĉ
T
.

So the test statistic can be written in the simple form as

Y 2
n =

k∑
j=1

(Uj − ej)
2

Uj
+Q,

where
Q = W T Ĝ

−1
W , W = ĈÂ

−1
Z = (W1, ...,Wm)T ,

Ĝ = [ĝll′ ]s×s, ĝll′ = îll′ −
k∑
j=1

ĈljĈl′jÂ
−1
j , Wl =

k∑
j=1

ĈljÂ
−1
j Zj.

îll′ =
1

n

n∑
i=1

δi
∂ lnλ(Xi; θ̂)

∂θl

∂ lnλ(Xi; θ̂)

∂θl′
, Ĉ lj =

1

n

∑
i:Xi∈Ij

δi
∂

∂θ
lnλ(Xi, θ̂),

Âj = Uj/n, Uj =
∑

i:Xi∈Ij

δi, Zj =
1√
n

(Uj − ej),

i = 1, · · · , n, j = 1, · · · , k, l, l′ = 1, · · · ,m.
The statistic î = − 1

n
῭(θ̂) is also a consistent estimator of i(θ0) but it is prefered to use the above

estimator to ensure that both components of the following RRN test statistic are non-negative
for any n.

Denote by ĝll
′
the elements of Ĝ

−
. The quadratic form Q can be written as follows:

Q =
m∑
l=1

m∑
l′=1

Wlg
ll′Wl′ .

The limit distribution of the statistic Y 2
n is chi-square with r = rank(V −) = Tr(V −V ) degrees

of freedom. If G is non-degenerate then r = k.

Statistical inference for the hypothesis H0: The hypothesis is rejected with approxi-
mate significance level α if Y 2

n > χ2
α(r).
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4 Goodness-of-fit test for Gompertz and Weibull models

Let consider the hypothesis that under H0 the distribution of the failure times is Gompertz with
hazard function and commulative hazard function as;

µx = θeνx, Λx =
θ

ν
(eνx − 1) x > 0, (θ, ν) > 0,

The loglikelihood function is

`(θ, ν) =
n∑
i=1

{
δi[ln θ + νXi]−

θ

ν
(eνXi − 1)

}
,

Let denote by θ̂ and ν̂ the ML estimator of θ and ν.
Since the matrix G is found to be degenerated so quadratic form can be written as:

Q =
W 2

2

ĝ22

where

ĝ22 = î22 −
k∑
j=1

Ĉ2
2jÂ

−1
j , î22 =

1

n

n∑
i=1

δiX
2
i , Ĉ2j =

1

n

∑
i:Xi∈Ij

δiXi,

Âj =
Uj
n
, W2 =

k∑
j=1

Ĉ2jÂ
−1
j Zj, Zj =

1√
n

(Uj − ej)

. Choice of âj: Set

bi = (n− i)
eν̂X(i) − 1

ν̂
+

i∑
l=1

eν̂X(l) − 1

ν̂
, i = 1, · · · , n

If i is the smallest natural number verifying the inequalities

bi−1 ≤
j

k
bn ≤ bi

then for j = 1, · · · , k − 1

âj =
1

ν̂
ln

{
1 + ν̂

(
j

k
bn −

i∑
l=1

eν̂X(l) − 1

ν̂

)
/(n− i+ 1)

}
, âk = max(X(n), τ)

For such choices of intervals we have ej = θ̂bn/k for any j.
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The zero hypothesis is rejected with an approximate significance level α if Y 2
n > χ2

α(k).

Example: This example is taken from the industry. n = 120 electronic devices were ob-
served for time τ = 5.54 (years). The number of failures is δ =113. Suppose that the following
failure times have a Gompertz distribution:

1.7440, 1.9172, 2.1461, 2.3079, 2.3753, 2.3858, 2.4147, 2.5404, 2.6205, 2.6471,
2.837, 2.8373, 2.8766, 2.9888, 3.0720, 3.1586, 3.1730, 3.2132, 3.2323, 3.3492,
3.3507, 3.3514, 3.3625, 3.3802, 3.3855, 3.4012, 3.4382, 3.4438, 3.4684, 3.5019,
3.5110, 3.5297, 3.5363, 3.5587, 3.5846, 3.5992, 3.654, 3.6574, 3.6674, 3.7062,
3.7157, 3.7288, 3.7502, 3.7823, 3.8848, 3.8902, 3.9113, 3.9468, 3.9551, 3.9728,
3.9787, 3.9903, 4.0078, 4.0646, 4.1301, 4.1427, 4.2300, 4.2312, 4.2525, 4.2581,
4.2885, 4.2919, 4.2970, 4.3666, 4.3918, 4.4365, 4.4919, 4.4932, 4.5388, 4.5826,
4.5992, 4.6001, 4.6324, 4.6400, 4.7164, 4.7300, 4.7881, 4.7969, 4.8009, 4.8351,
4.8406, 4.8532, 4.8619, 4.8635, 4.8679, 4.8858, 4.8928, 4.9466, 4.9846, 5.0008,
5.0144, 5.0517, 5.0898, 5.0929, 5.0951, 5.1023, 5.1219, 5.1223, 5.1710, 5.1766,
5.1816, 5.2441, 5.2546, 5.3353, 5.4291, 5.4360, 5.4633, 5.4842, 5.4860, 5.4903,

5.5199, 5.5232, 5.5335,

The maximum likelihood estimators of Gompertz model are; θ̂ = 0.0051, ν̂ = 1.1586 . We take
10 intervals i.e. k=10. Further results to calculate the Y 2 are shown below:

j 1 2 3 4 5 6 7 8 9 10
âj 2.70 3.33 3.74 4.07 4.34 4.57 4.78 5.00 5.25 5.54
Uj 10 9 23 12 9 6 7 13 13 11
ej 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3

î22 = 16.7779, ĝ22 = 0.0141, W2 = −0.3737.

The matrix G is degenerate, so r = k − 1 = 9. The value of test statistic is Y 2 = X2 + Q =
15.1130 + 9.8867 = 24.9997, and the P-value is pv = P{χ2

9 > 24.9997} = 0.0053 (CR = 16.9190).
So from the result we can say that failure times don’t follow Gompertz distribution.

Weibull Distribution
Suppose that the failure times follow a Weibull model. The maximum likelihood estimators of
Weibull model are; θ̂ = 4.6078, ν̂ = 4.9554 . We take 10 intervals i.e. k=10. Further results to
calculate the Y 2 are shown below:

j 1 2 3 4 5 6 7 8 9 10
âj 2.89 3.36 3.70 3.98 4.24 4.47 4.68 4.90 5.16 5.54
Uj 13 9 17 12 7 8 8 13 11 15
ej 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3
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î22 = 0.0618, ĝ22 = 0.0027, W2 = −0.0545.

The matrix G is degenerate, so r = k − 1 = 9. The value of test statistic is Y 2 = X2 + Q =
9.2692 + 1.0845 = 10.3536, and the P-value is pv = P{χ2

9 > 10.3536} = 0.3226 (CR = 16.9190).
So from the result we have no reason to reject that the failure times follow the Weibull distribu-
tion.
Here Weibull model gives the better fit, so it can be used as the alternative to the Gompertz
model. As this data is related to the technical device and according to Gavrilov & Gavrilova
(2001) technical deceives fails according to the Weibull law. Also from Figure 4 it can be seen
the behavior of Gompertz model, that is, in later times the failure rate increases very fast.

5 Non-parametric estimation of survival function using

the data from table of mortality

If there is no information about the model, one can estimate the survaival function by using
non-parametric estimation method. In case of right censored individual sample (5), it is easy to
use the well known Kaplan-Meier estimation method for estimating the survival function St and
consequently the distribtuon function 1 − St of the failure times. One can estimate the survival
function S(t) from the grouped data, for example from the table of mortality with censoring in
the following way.

Suppose we oberve n0 individuals and the time sacle is divided in k intervals

[a0, a1[, [a1, a2[, ..., [aj−1, aj[, ... , [ak−1, ak[. (9)

Consider the j − th interval Ij = [aj−1, aj[ (j = 1, ..., k), a0 = 0, ak = +∞.
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We obsereve dj- the number of individals die in the interval Ij, (j = 1, ..., k). cj- the number
of individuals censored in the interval Ij, (j = 1, ..., k). and note nj- le number of individuals
at risque (not died and not censored) at time aj, (The number of individuals who enter in the
Ij+1-th interval). So

nj = nj−1 − dj − cj. (10)

Note that rj- the number of individuals at death risk in the interval Ij. If all censores are
at the start of the interval Ij, then

rj = nj−1 − cj. (11)

If all censores are at the end of the interval Ij, then rj = nj−1. But the censoring times are
unknown. Therefore we suppose that the censores are uniformally distributed in the interval Ij
and hence we take

rj = nj−1 − cj/2. (12)

Let denote
q1 = P{T > a1} = S(a1),

and
qj = P{T > aj|T > aj−1}

the conditional probability of being alive at aj given that it was alive at aj−1. So

qj =
P{T > aj}
P{T > aj−1}

,

and hence
P{T > aj} = qj · P{T > aj−1} =

qj · qj−1P{T > aj−2} = ... = qj · qj−1 · · · q2 · q1 =

j∏
i=1

qi.

So we have

Sj = P{T > aj} =

j∏
i=1

qi.

Either
pj = 1− qj = P{T ≤ aj|T > aj−1},

the conditional probability of death in the interval Ij given that it was alive at aj−1. So we can
write

Sj =

j∏
i=1

(1− pi). (13)
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The number of deaths di in the interval Ii follow approximatally binomial law with parameters ri
and pi, so Edi ≈ ripi and the probability pi is estimated by

p̂i =
di
ri
. (14)

So the suvival function Sj = S(tj) is estimated by

Ŝj =

j∏
i=1

(1− p̂i) =

j∏
i=1

(
1− di

ri

)
=

j∏
i=1

(
1− di

ni − ci/2

)
. (15)

This is the analog of Kaplan-Meier estimator for group data and it is also called product limit
estimator.
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Abstract
We consider continuous random variables, look at conditional distributions and find that

the estimation of unknown conditions can be used for modeling categorical data. We in-
troduce maximum likelihood estimates for the conditional parameters and so we find scaled
values for the categories by maximum likelihood. With these methods the scaling for the
levels of the factors in models of analysis of variance can be solved. Under normal distribu-
tions explicit solutions are given, for other distributions, e.g. for survival distributions, the
scaling is described by copulas and different methods of estimates.
Keywords: Conditional distributions, modeling, categorical data, statistical scaling.

Introduction

In multivariate statistics several random variables are to be simultaneously investigated. One will
find connections between variables or the response of some variables on others. These variables
can be metric variables or categorical variables. One will explain the influence of the endogenous
variables on the response variables. If all variables are metric variables then often a regression
model will be used. If the response is metric, but the endogenous factors are categorical variables
then an analysis of variance can help. For categorical response variables a discriminant analysis
or logistic regression is used. In Agresti [1] and Everitt and Dunn [3] many methods for sta-
tistical analysis are described. We will concentrate on statistical scaling of categorical variables.
Mostly scaling is connected with proximities or distances, we consider a statistical approach as in
Läuter and Ramadan [4] or in Ramadan [5]. In this paper a scaling will base on the estimation
of parameters in conditional distributions. We will see which parameters in such families are
estimable and find estimates for those. The conditional parameters will be used for methods of
scaling of categorical data and can be used for the interpretation of the results of the analysis of
the data. Some other methods for statistical scaling bases on tests and lead to most separating
scales as it was considered by Ahrens and J. Läuter in [2] and by Ramadan in [5].
Generally we consider a blocked random variable (Z1, Z2) where the variable Z1 is the endogenous
variable and Z2 is the response. We are looking at the conditional variable Ũ := Z2 |Z1 = t and
we will find the influence of t in this variable. We admit for Z1 both metric and categorical
variables. If Z1 is a metric variable and t is known then often the regression

r(t) := E(Z2 |Z1 = t) (1)

is studied, nonparametric or parametric regression. If Z1 is a categorical variable then we will
find tools for representing the analyzed data. Here we consider the statistical scaling and find
points in metric spaces equivalent to the categorical values.
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1 Conditional Normal Distribution

We consider a (m1 +m2)-dimensional normally distributed random variable Z with

Z =

(
Z1

Z2

)
∼ Nm1+m2

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
. (2)

Here we have Z1, µ1 ∈ Rm1 , Z2, µ2 ∈ Rm2 and Σ11 is a m1×m1 matrix and the others correspond-
ingly. The variance matrix Σ = varZ should be nonsingular.Then the conditional distribution of
Z2 given Z1 = t is well known as

Z2 |Z1 = t ∼ Nm2

(
µ2 + Σ21Σ

−1
11 (t− µ1),Σ2·1

)
(3)

with Σ2·1 = Σ22−Σ21Σ
−1
11 Σ12. This distribution depends on the parameters µ1, µ2,Σ, t. Obviously

these parameters are not identifiable. Assuming for positive integers n1, ..., nL and values t1, ..., tL
we have for l = 1, ..., L variables Ul1, ..., Ulnl

with

Ulj ∼ Nm2

(
µ2 + Σ21Σ

−1
11 (tl − µ1),Σ2·1

)
, j = 1, ..., nl. (4)

All these variables should be independent, the sample sizes nl should be known. Then we see that
the parameters µ1, µ2,Σ determine the distribution of Z, but the parameters t1, ..., tL determine
the localizations where the firstm1-dimensional subvector of the Ulj are fixed. Therefore the whole
parameter (µ1, µ2,Σ, t1, ..., tL) consists of global distributional parameters, global for all variables,
and localized parameters. Although e.g. tl and µ1 influence the distribution of Ulj in the same
way their meaning is completely different. µ1 describes the expectation of the first subvector and
the tl describes the point where Z1 is fixed. We see immediately that the parameters

τl = µ2 + Σ21Σ
−1
11 (tl − µ1) (5)

are estimable but not any of the parameters µ1, µ2, t1, ..., tL separately. Moreover all the differences

δls := Σ21Σ
−1
11 (tl − ts) (6)

are estimable. This means that we can determine relations between the points where the first sub-
vectors are to be observed. In the special case m1 = 1 we can estimate the values t2− t1, ..., tL− t1
up to a factor and these estimations can be ordered on a line. For m2 = 1 we represent the
estimations of the real values Σ21Σ

−1
11 (t2 − t1), ...,Σ21Σ

−1
11 (tL − t1).

Theorem 1. Assuming (2) and let the variables {Ulj , j = 1, ..., nl ; l = 1 , ...,L.} be independent
and the variables {Ulj , j = 1, ..., nl} are identically distributed and it is known that Ulj has a
conditional distribution as in (3) and (4) for unknown tl . There is no connection between the tl ‘s.
Then the best unbiased estimate for δls = Σ21Σ

−1
11 (tl − ts) is given by

δ̂ls = Ūl · − Ūs· (7)
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for

Ūl · =
1

nl

nl∑
j=1

Ulj =
1

nl

Ul+ . (8)

The values ν = µ2 − Σ21Σ
−1
11 µ1 and t1, ..., tL are not estimable but all differences δls. From

this follows that we can choose in an arbitrary way the origin, i.e. an arbitrary t̂1, say t̂1 = 0 and
then all other Σ21Σ

−1
11 t̂2, ...,Σ21Σ

−1
11 t̂L are calculable.

We see that for normal distributions the localized parameters δls can be estimated from observa-
tions of the conditioned distributions. One can choose the origin by fixing the t̂1 = 0 and then
the other parameters Σ21Σ

−1
11 t̂l, l = 1, ..., L are determined. It is clear from (4) that the t1, ..., tL

cannot be estimated but relations between them. We remember that the values of the localized
parameters can be identified with the levels under which the observations are taken.
From the distribution it follows that Σ11 and Σ21 are not estimable. Therefore these parameters
have to be assumed known or it is sufficient to estimate the δls.

1.1 Estimation of parameters

If the conditions t1, ..., tL are functionally completely independent then the estimates for the δls are
given in Theorem 1. But there are important cases of different t1, ..., tL where in parts connections
exist between them. We assume that τ = (t′1, ..., t

′
L)′ varies in a p-dimensional subspace of

RLm1 , p < Lm1 and p is as small as possible. Then we know m1 × p matrices C1, ..., CL with

tl = Clβ, l = 1, ..., L, β ∈ Rp (9)

and we obtain
Ulj = ν + Σ21Σ

−1
11 tl + εlj = ν + Σ21Σ

−1
11 Cl β + εlj. (10)

With the Kronecker product A⊗B of matrices A,B and 1k the k-dimensional vector of ones, Ik
the k × k identity matrix and

En =



1n1 0 0 . . . 0

0 1n2 0 . . .
...

...
. . .

...

0 . . . 0 1nL

 , (11)

we get

U = (1n ⊗ Im2)ν + (En ⊗ Σ21Σ−1
11 )

 C1

...
CL

β + ε = X

(
ν
β

)
+ ε (12)

with U = (U ′
11, ..., U

′
LnL

)′, ε = (ε′11, ..., ε
′
LnL

)′ and

X =
(
1n ⊗ Im2

...(En ⊗ Σ21Σ
−1
11 )

 C1

...
CL

). (13)
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Then for a matrix F with m2 +p columns the best unbiased estimation for an estimable F (ν ′, β′)′

is

F

(
ν̂

β̂

)
= F

(
X ′(In ⊗ Σ−1

2·1)X
)+

X ′(In ⊗ Σ−1
2·1)u (14)

for a realization u from (12). As a consequence the optimal estimate for δls is

δ̂ls = Σ21Σ
−1
11 (Cl − Cs) β̂, l = 1, ..., L. (15)

Theorem 2. Assuming (2) and let the variables

Ulj , j = 1, ..., nl ; l = 1 , ...,L. (16)

be independently distributed. The variables Ulj , j = 1, ..., nl are identically distributed and it
is known that Ulj has a conditional distribution as in (3) and (4) for unknown tl . There exist

such m1× p matrices C1, ..., CL that (9) is fulfilled. Then δ̂ls from (15) is the maximum likelihood
estimator for δls.

1.1.1 Cross-classified designs

We consider a two-way cross-classified design. This means that we have observations as in Table
1. We consider the observations u(i,k)j as a realization of Ulj with (4) for tl = (s′1i, s

′
2k)

′. The

Table 1: Two-way table

Factor B
Factor A s21 s22 s23 · · · s2b

s11 u(11)j u(12)j u(13)j · · · u(1b)j

j = 1, ..., n11 j = 1, ..., n12 j = 1, ..., n13 · · · j = 1, ..., n1b

...
...

...
...

...
...

s1a u(a1)j u(a2)j u(a3)j · · · u(ab)j

j = 1, ..., na1 j = 1, ..., na2 j = 1, ..., na3 · · · j = 1, ..., nab

conditions for Z1 are the values

t1 = (s′11, s
′
21)

′, t2 = (s′11, s
′
22)

′, t3 = (s′11, s
′
23)

′, ..., tb = (s′11, s
′
2b)

′, (17)

tb+1 = (s′12, s
′
21)

′, ..., tL = (s′1a, s
′
2b)

′ (18)

with s1i ∈ Rm11 , s2k ∈ Rm12 ,m11 +m12 = m1 ≥ 2. This means we have a two-way classification,
altogether with L = ab categories and any value of the factor A (firstm11 components) is combined
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with any value of factor B (second m12 components). For such a design we have (9) for p =
am11 + bm12 < abm1 = Lm1. If we define

β = (s′11, s
′
12, ..., s

′
1a, s

′
21, ..., s

′
2b)

′ (19)

then we find Cl with (9). These are block matrices and especially we have, with 0(11) :=
0m11×m11 , 0(22) := 0m12×m12 , 0(12) := 0m11×m12 , 0(21) := 0m12×m11

C1 =

(
Im11 0(11) · · · 0(11) 0(12) · · · · · · 0(12)

0(21) · · · · · · 0(21) Im12 0(22) · · · 0(22)

)
. (20)

Here Im11 stands in the first column position, Im12 stands in the column position a+ 1. All other
matrices Cl are of the same structure, Im11 vary in the first row and the first a positions and Im12

vary in the second row and the positions a+1 till a+ b. Then we calculate the estimate β̂ in (14)
and the estimates δ̂ls from (15).
Summarizing in this standard model where the random variables are normally distributed and
the conditional variable will be observed at unknown points we see that the expectations of
the variables Z1 and Z2 are not estimable, the conditional points t1, ..., tL are not estimable,
the variance of Z1 and the correlation between Z1 and Z2 are not estimable. The contrasts
δls = Σ21Σ

−1
11 (Cl − Cs)β are estimable.

We cannot expect that in general distributional families the possibilities for estimated parameters
are completely better. We consider general continuous random variables in the next section, here
the principle will be repeated in an obvious way.

2 Continuous conditional distributions

Assuming that the m1 + m2-dimensional variable Z = (Z ′
1, Z

′
2)
′ has any continuous distribu-

tion. The one-dimensional marginal densities of the components of Z1 and Z2 are denoted by
f11, ..., f1m1 and f21, ..., f2m2 and the distribution functions by F1i and F2j respectively. The
dependence between Z1 and Z2 is described by a copula function C. We denote F1(ξ1) =(
F11(ξ11), ..., F1m1(ξ1m1)

)
and F2(ξ2) =

(
F21(ξ21), ..., F2m2(ξ2m2)

)
. Then the joint distribution

function of (Z1, Z2) is

F (ξ1, ξ2) = C
(
F1(ξ1), F2(ξ2)

)
. (21)

For any distribution F with the marginal distributions F1i, F2j such a copula function exists and
is uniquely determined. Assuming that the densities of F, F1i, F2j and of the copula C exist then
we have for the joint density f the representation

f(ξ1, ξ2) = c
(
F1(ξ1), F2(ξ2)

)
f11(ξ11) · ... · f1m1(ξ1m1) f21(ξ21) · ... · f2m2(ξ2m2). (22)

Consequently the density of Z2 |Z1 = t with t = (t(1), ..., t(m1))
′ is

fZ1=t(ξ2) = c
(
F1(t), F2(ξ2)

)
f11(t(1)) · ... · f1m1(t(m1)) f21(ξ21) · ... · f2m2(ξ2m2)/f

Z1(t). (23)
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Therefore the copula function determines the dependence of Z1 and Z2 and hence the copula
function is an essential part of the statistical model.
Now we assume that for positive integers n1, ..., nL and values t1, ..., tL and for all l = 1, ..., L
the variables Ul1, ..., Ulnl are identically distributed with the density fZ1=tl from (23). All these
variables should be independent, the sample sizes are known. We assume that the distribution
function F1 of Z1 depends on a parameter ϑ1 ∈ Rp1 , the F2 depends on ϑ2 ∈ Rp2 . Then the global
parameter for the distribution of the sample is ϑ = (ϑ1, ϑ2). We observe u = (u11, ..., uLnL) with
ulj = (ulj,1, ..., ulj,m2)

′. The likelihood function for the whole sample is with tl = (tl1, ..., tlm1)
′

L(ϑ, t1, ..., tL;u) =
L∏
l=1

nl∏
j=1

c
(
F1(tl;ϑ1), F2(ulj;ϑ2)

)
f11(tl1;ϑ1) · ...

... · f1m1(tlm1 ;ϑ1) f21(ulj,1, ϑ2) · ... · f2m2(ulj,m2 , ϑ2)/f
Z1(tl;ϑ1). (24)

Now we can define the maximum likelihood estimation of the parameters. Of course maximization
of the likelihood goes over the possible parameter set. If the t1, ..., tL are unrestricted then we
maximize L without additional conditions. If there are restrictions as in (9) Then we substitute
tl = Cl β and consider L as a function of ϑ, β. Then we proceed as in the preceding section.

2.1 Normal copula

Obviously the maximum likelihood estimation depends on the copula, i.e. it depends clearly on
the model which we have assumed. In the special case of a normal copula we will look at the
properties. Let Φ be the distribution of N(0, 1) and ΦR be the distribution function of Nm(0, R)
where the variance matrix R is at the same time a correlation matrix. Then the normal copula
has the form

CN
R (u1, ..., um) = ΦR(Φ−1(u1), ...,Φ−1(um)) (25)

=
1

(2π)m/2|R|1/2

∫ Φ−1(u1)

−∞
dots

∫ Φ−1(um)

−∞
exp(−1

2
ξ′R−1ξ) dξ (26)

Denoting the copula density of CN
R by cNR then the conditional density in (23) has the form

fZ1=t(ξ2) = cNR

(
F1(t;ϑ1), F2(ξ2;ϑ2)

)
f11(t(1);ϑ1) · ... · f1m1(t(m1);ϑ1) · ...

... · f21(ξ21, ϑ2) · ... · f2m2(ξ2m2 , ϑ2)/f
Z1(t;ϑ1). (27)

The copula density has the form

cNR (u1, ..., um) =
1

|R|1/2
exp

(
− 1

2
[QR(u)− Φ−1(u1)

2 − ...− Φ−1(um)2]
)

(28)

with the quadratic form

QR(u) =
(
Φ−1(u1), ...,Φ

−1(um)
)
R−1

(
Φ−1(u1), ...,Φ

−1(um)
)′
. (29)
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Under m2 = 1 the correlation matrix R in a special standardized form is of interest. This is

R = R0 :=


ρ1

Im1

...
ρm1

ρ1 ρ2 · · · ρm1 1

 (30)

and we have

|R0| = 1−
m1∑
j=1

ρ2
j (31)

and R−1 can be calculated.

2.1.1 One-dimensional case

Consider the special case m = 2, i.e. Z1 and Z2 are one-dimensional. Then ΦR is the distribution
function of N2(0, R) with the variance matrix

R =

(
1 ρ
ρ 1

)
. (32)

and we obtain the copula density

cNR (u1, u2) =
1

(1− ρ2)1/2
exp

(
− 1

2(1−ρ2)
[Φ−1(u1)2 − 2ρΦ−1(u1)Φ−1(u2) + Φ−1(u2)2] +

+1
2(Φ−1(u1)2 + Φ−1(u2)2)

)
. (33)

3 Scaling of categorical data

Some technical or medical products, some behaviors or properties are described by categorical
data. The perception of the objects should be represented in a metric space in such a way that
distances are expressive. A geometric nearness should reflect a statistical proximity or similarity
of objects.
In a statistical background scaling bases on probabilities. Conditions should be interpreted as
near if observed probabilities under these conditions are near. A statistical model for categorical
data should describe the important observed properties. For instance, some levels of factors
and/or the response variables in models of analysis of variance are categorically. In the sense
of scaling one will find metric values for the levels (categories) and the methods for finding a
scaling base on statistical decisions. Here we will use the results from the preceding sections. The
idea of scaling includes the fact that levels which lead to almost the same or at least lying close
together probabilities should have similar scaling values. And if under some levels the observed
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probabilities are very different from those in other levels then the corresponding scaling values
should have a large distance. Most models for categorical data should have related properties
as the monotone likelihood ratio in one-parametric families or some ordering of the distributions
is possible. Hence very often the normal distribution will be taken in the model. But of course
other families are possible if there is a good motivation for another choice.

Definition 1. Given a blocked random variable (Z1, Z2). Let P be a statistical model for Z. Let L
be the number of categories which are described by t1, ..., tL as values of Z1. Assuming for positive
integers n1, ..., nL for each l there are identically distributed variables Ul1, ..., Ulnl with the density
fZ1=tl. All these variables for l = 1, ..., L should be independent. These variables Ul1, ..., Ulnl , l =
1, ..., L are to be observed and we denote these observations by u = (u11, ...u1n1 , u21, ..., uLnL). Any
estimation of t1, ..., tL in P is called a scale of the categories t1, ..., tL.

There is a variety of different scales, depending on the model and the principle of estimating.
We can apply the results from the preceding sections. If the observed data are assumed to be
realizations from normally distributed variables and we use the results from section 1 then the
model says that we observed realizations from Z2 | Z1 = t for different unknown t which are to
be estimated.

Example: We measure electrical resistances under different conditions. These conditions
are determined by two factors (temperatures, geometrical forms of the sticks). We have L = 8
categories. As a sake of modeling we choose Σ11 = I2,Σ21 = ρ(1, 1) and ρ = 0.5. Using an
appropriate shift translation we obtain the scales for the levels of both factors. The results have a
strong technological meaning.

Table 2: Resistances
Factor B

Factor A level 1 (s21) level 2 (s22) level 3 (s23) level 4 (s24)
level 1 (s11) 64.8 63.2 65.7 63.1 63.9 62.5 65.2 63.2

61.7 65.2 62.8 66.3 59.9 64.9 62.1 65.9

level 2 (s12) 60.2 58.9 64.5 62.9 61.9 60.5 62.5 62.1
58.3 60.6 60.1 66.0 59.2 60.1 60.1 62.6

factor A levels 1 2
scaled categories 0 2.60

Table 3: Scaled categories
factor B levels 1 2 3 4

scaled categories 0 2.562 0.287 1.60
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Abstract

Goodness-of-fit tests using kernel estimators for the density and the hazard rate are
proposed. The aim is to investigate these tests for data where censoring is present. A
third test statistic, the continuous analogue of the χ2-test statistic based on the counts of
uncensored observations, is considered. Resampling methods for the realization of the test
procedures are discussed.

Keywords: censoring; goodness of fit; kernel estimators; resampling

Introduction

We consider the problem of testing whether the distribution of life times of interest belongs to a
certain class of parametric distributions. Often in applications it occurs, that the observations are
subject to random right censoring. Thus, we will consider the problem of goodness-of-fit testing
under censoring.

Several proposals for test procedures based on chi-square statistics are investigated in [2],[4],
[5] and [1]. Here following up the idea proposed in [6] the method of kernel smoothing to estimate
the density and the hazard rate is applied to derive asymptotic α-tests of L2-type. Moreover, a
continuous analogue of the χ2-test based on the number of uncensored observations is considered.
The characterizing function is denoted by ξ.

The properly standardized test statistic converges in distribution to a normal distribution.
It will turn out, that this limit distribution does not always provide a good approximation of
the distribution of the test statistic. Thus, the application of resampling methods should be
discussed. In the case without censoring it is obvious how one should resample. In the case of
censored data it is not clear how one can generate the “hypothetical situation”. The unknown
distribution of the censoring variables can be considered as an unknown parameter – unfortunately
as an infinite dimensional parameter. Since this problem occurs also in other contexts some ideas
about resampling under censoring are discussed.

We start with some notation: Let Y1, . . . , Yn be a sequence of i.i.d. survival times with
absolutely continuous distribution function F . As often occurs in applications the Yi’s are subject
to random right censoring, i.e. the observations are

Ti = min(Yi, Ci) and ∆i = 1(Yi ≤ Ci)
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where C1, . . . , Cn are i.i.d. random censoring times which are independent of the Y - sequence.
The ∆i indicates whether Yi has been censored or not.

We wish to test whether F lies in a parametric class of functions, i.e.

H : F ∈ F = {F (·, θ) | θ ∈ Θ ⊆ Rk} versus K : F 6∈ F .

1 Nonparametric Estimators of the Density, the Hazard

Rate and of a function ξ

We assume that the underlying random variables (r.v.’s) are absolutely continuous with density
f . The hazard rate is defined by

λ(t) = lim
s↓0

1

s
P(t ≤ Yi < t+ s|Yi ≥ t) =

f(t)

1− F (t)
.

Since no parametric form of the alternative is assumed we will use a nonparametric es-
timators. To describe the estimation procedure we introduce the distribution function of the
observations Ti and the subdistribution function of the pairs (Ti,∆i = 1)

H(t) := P(Ti ≤ t) and HU(t) := P(Ti ≤ t,∆i = 1).

Since
1 − H(t) = (1 − G(t)) (1 − F (t))

and

HU(t) =

∫ t

0

(1−G(s−)) dF (s),

where G is the distribution function of the censoring times Ci, the cumulative hazard function

Λ(t) :=

∫ t

0

λ(s) ds

can be written for all t < τH with τH = inf{t : H(t) = 1} as

Λ(t) =

∫ t

0

dF (s)

1− F (s−)
=

∫ t

0

dHU(s)

1−H(s−)
.

Further, set ξ(t) = (1−G(t−))f(t). Now, for estimating Λ we replaceHU andH by their empirical
versions, that is by

ĤU
n (t) =

1

n

n∑
i=1

1(Ti ≤ t,∆i = 1) and Ĥn(t) =
1

n

n∑
i=1

1(Ti ≤ t).
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The resulting estimator

Λ̂n(t) =

∫ t

0

dĤU
n (s)

1− Ĥn(s−)
=

n∑
i=1

1(T[i] ≤ t) ∆(i)

n− i+ 1

is the Nelson–Aalen estimator of Λ. Here T[1] ≤ · · · ≤ T[n] are the ordered observations and
∆(i) = ∆j iff Tj = T[i].

From the relationship between integrated hazard function and survival function we obtain
the Kaplan–Meier estimator for the survival function

Ŝn(t) =
∏
s≤t

(1 − ∆Λ̂n(s)) =
∏
T[i]≤t
∆(i)=1

(
n− i

n− i+ 1

)
, F̂n(z) = 1− Ŝn(z).

As estimator of the derivative of and F and Λ we define the kernel smoothed versions of the
negative Kaplan–Meier estimator and of the Nelson–Aalen estimator, respectively:

f̂n(t) =
1

bn

∫
K

(
t− z

bn

)
dF̂n(z)

and

λ̂n(t) =
1

bn

∫
K

(
t− s

bn

)
dΛ̂n(s).

The function ξ is estimated by

ξ̂n(t) =
1

bn

∫
K

(
t− s

bn

)
dĤU

n (s).

Here K is a kernel function and {bn} is a sequence of bandwidths tending to zero with an
appropriate rate. For simplicity we will use the notation Kb(x) = K(x/b)/b and b = bn.

We can write these estimators in the following equivalent form:

f̂n(t) =
1

n

n∑
i=1

Kb(t− Ti) ∆i
1− F̂n(Ti−)

1− Ĥn(Ti−)
,

λ̂n(t) =
n∑
i=1

Kb(t− T[i]) ∆(i)

n− i+ 1

and

ξ̂n(t) =
1

n

n∑
i=1

Kb(t− Ti)∆i.
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2 Asymptotic Normality of the Weighted Integrated Squared

Error

As test statistics we will consider a properly weighted integrated squared distance between the
estimators proposed above and the smoothed versions of the corresponding hypothetical functions.
Define

f̃n(t) =

∫
Kb(t− s) dF (s), λ̃n(t) =

∫
Kb(t− s) dΛ(s)

and

ξ̃n(t) =

∫
Kb(t− s)(1− Ĥn(s−)) dΛ(s)

We consider

Qf
n =

∫ (
f̂n(t) − f̃n(t)

)2

a(t) dt, Qλ
n =

∫ (
λ̂n(t) − λ̃n(t)

)2

a(t) dt

and

Qξ
n =

∫ (
ξ̂n(t) − ξ̃n(t)

)2

a(t) dt,

where a is a continuous weight function vanishing for all t > τH . Further set κ1 =
∫
K(x)2 dx

and κ2 =
∫

(K ∗K)2(x) dx To formulate the desired limit theorem let us introduce the following
terms for j = f, λ, ξ

mj
n = (nbn)

−1 κ1

∫
vj(t) a(t) dt

and

σ2
j = 2κ2

∫
v2
j (t) a

2(t) dt.

The functions vj will be given later. Extending methods from [3] for deriving the limit distribution
of quadratic functionals of kernel estimators one can prove the following statements:

Theorem 1. Suppose that

(i) K is a continuous density function vanishing outside the interval [−L,L] for some L > 0.

(ii) f , λ and ξ, respectively, and H are Lipschitz continuous.

(iii) The function a is continuous and a(t) ≡ 0 for all t > TH .

(iv) bn → 0 and nb2n →∞.

Then for n→∞
nb1/2n

(
Qj
n − mj

n

) D−→ N(0, σ2
j ) j = f, λ, ξ
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with

vf (t) =
d
(
S(t)

∫ t
0

dΛ(s)
1−H(s)

)
dt

vλ(t) =
λ(t)

1−H(t)

vξ(t) = ξ(t) = (1−H(t−))λ(t)

Remark: In the case that there are no censored observations we have vf = vξ.

3 Formulation of the Test Procedures

Suppose that the underlying model is regular. Then the maximum likelihood estimator for the
parameter θ is

√
n-consistent. Thus, the limit statements formulated above remain true if the

parameter θ is substituted by its maximum likelihood estimator θ̂ (constructed in the hypothet-
ical model). Moreover, the unknown quantities in the standardizing terms can be replaced by
estimators:

v̂fn(t) =
d
(
S(t; θ̂)

∫ t
0

dΛ(s;θ̂)

1−Ĥn(s−)

)
dt

v̂λn(t) =
λ(t; θ̂)

1− Ĥn(t−)

v̂ξn(t) = (1− Ĥn(t−))λ(t; θ̂)

So finally we obtain as test procedures the following three rules for j = f, λ, ξ: The hy-
pothesis H is rejected, iff

Q̂j
n ≥

zασ̂jn

nb
1/2
n

+ m̂j
n

where

m̂j
n = (nbn)

−1 κ1

∫
v̂jn(t) a(t) dt, σ̂2

jn = 2κ2

∫
v̂j

2
n(t) a

2(t) dt

and zα is the (1− α)-quantile of the standard normal distribution.

Remark: The behavior of the power of these three test procedures are considered in the
talk.
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4 Resampling Methods

For a good approximation of the distribution of the test statistics by the limit distribution the
sample size and the behavior of the smoothing parameter is essential. Roughly speaking, two lim-
iting processes are important: Pointwise the estimators are asymptotically normally distributed,
and the integral over the squared differences behaves like a sum of chi-squared variables. To
ensure their asymptotical independence the bandwidth has to converge to zero fast enough. To
overcome insufficient accuracy of approximation resampling methods can be applied. For data
without censoring one can apply parametric bootstrap: One estimates the unknown parameter by
the original data and generates samples of from the hypothetical distribution with the estimated
parameter. Note, this parameter is finite-dimensional. Then the computation of the test statis-
tics for these samples provide empirical quantiles or an empirical p-value. The situation becomes
more complicated in the case of censoring. If the censoring distribution G is known then there
is no additional problem to generate the hypothetical situation. The same is true, if G is known
up to a finite-dimensional parameter. However, in general G is an unknown infinite-dimensional
parameter. Let us discuss two proposals for this case: For simplicity of presentation we consider
now the simple hypothesis, that is we check

H : F = F0 versus K : F 6= F0.

Both proposals are based on estimators for the unknown distribution G. The first estimate
includes the hypothesis H. Estimate G by

1−G∗
1(t) =

1− Ĥn(t)

1− F0(t)
.

In the second we do not take into account H, and we estimate

1−G∗
2(t) =

1− Ĥn(t)

1− F̂n(t)
.

In other words, here the estimator for G is the Kaplan–Meier estimator. The resampling
procedures are now defined as follows:

1. For r = 1, . . . , R generate observations

Y ∗
ri according to F0

C∗
ri according to G∗

1 (or G∗
2)

T ∗
ri = min(Y ∗

ri, C
∗
ri), ∆∗

ri = 1(Y ∗
ri ≤ C∗

ri)

2. Compute for each r = 1, . . . , R the statistics

Qf
rn, Qλ

rn, Qξ
rn
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3. The empirical p-values are given by

pj =
#{Qj

rn ≥ Qj
n}

R
j = f, λ, ξ

where Qj
n is the test statistic based on the original data.
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Abstract

In the development of Bayesian model specification for inference and prediction we focus
on the conditional distributions p(θ|B) and p(D|θ,B), with data D and background assump-
tions B, and consider calibration (an assessment of how often we get the right answers) as
an important integral step of the model development. We compare several predictive model-
choice criteria and present related calibration results. In particular, we have implemented
a simulation study to compare predictive model-choice criteria LSCV , a log-score based on
cross-validation, LSFS , a full-sample log score, with deviance information criterion, DIC.
We show that for several classes of models DIC and LSCV are (strongly) negatively cor-
related; that LSFS has better small-sample model discrimination performance than either
DIC, or LSCV ; we further demonstrate that when validating the model-choice results, a
standard use of posterior predictive tail-area for hypothesis testing can be poorly calibrated
and present a method for its proper calibration.

Keywords: log-score, deviance information criterion, posterior predictive tail areas,
hypothesis testing.

Introduction

Bayesian approach to modeling comprises inference, prediction and decision-making and considers
three main objects: θ, a model parameter vector; D, an information (data) source about θ; and B,
a set of propositions summarizing background assumptions about of θ and D, for example, that
θ > 0 if θ represents the mean remission time for a specified set of patients with a given disease;
or that the data set arose as the result of a randomized controlled trial with the specified design).
From the results of Cox (1946) and Ramsey (1926) each of these three basic Bayesian statistical
activities is governed concptually by a single equation and requires a series of specification tasks:

• (inference) p(θ|D,B) = c p(θ|B) p(D|θ,B), where c > 0, and p(θ|D,B) posterior distribution,
quantifies the information about θ, both internal and external to D;

• (prediction) p(D∗|D,B) =
∫

Θ
p(D∗|θ,B) p(θ|D,B) dθ, where D∗ is future data;

• (decision) The optimal action is given by a∗ = argmaxa∈AE(θ|D,B)U(a, θ).
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In problems of realistic complexity it is uncertain how to specify p(D|θ,B). In our view, a
leading principle governing this specification should be calibration, which consists of checking how
often one obtains the right answers. For example, a statement such as “p(a < θ < b|D,B) = 0.9”
should be verifiably correct about 90% of the time. To address the uncertainty in specifying a
model, p(D|θ,B), we search for an ensemble, M, of such specifications in a well calibrated manner,
carefully avoiding a double use of data (to specify priors on model space and again to update this
prior when carrying out inference and prediction). In the paper we present calibration results
related to the following basic questions in Bayesian model specification, “Q1: Is model Mj better
than Mk?” and “Q2: Is model Mj good enough?” These questions are not complete without a
clear reference to the purpose of the models. However, once the purpose is made explicit, the
inferential task transforms into a decision problem, best solved by maximizing expectation of
utility (MEU) specific for the model’s purpose.

A standard way to answer question Q1 is to use Bayes factors and related criteria, for
example (for reasons of space we comment on this very briefly). A well known problem with
Bayes factors is a possibly extreme sensitivity to the way diffuse priors are specified on the
model parameters, see e.g. Bernardo & Smith (1994). The consequence of this instability is that
the evidence in favor of one model over the other may be made arbitrarily large, based on a
range of plausible parameter values, even regardless of the data set. Motivated in part by this
well known problem, we focus on stable model-choice criteria based on the posterior predictive
distribution (of the future data, D∗, given the observed sample, D), which has a sound basis as
a utility for model comparison and is entirely stable relative to the specification of diffuse priors:
p(D∗|D,Mj,B) = E(ηj |D,Mj ,B)p(D

∗|ηj,Mj,B) .

We argue that the quality of model prediction is also a solid basis for a useful generic utility in
model comparison and hence we focus on working with posterior predictive distributions. In order
to compare a predictive distribution with the actual data point, y∗, we use two log-score criteria,
LSCV , based on cross validation and defined as nLSCV (Mj|y,B) =

∑n
i=1 log p(yi|y−i,Mj,B), and

LSFS, the full-sample log-score defined as nLSFS(Mj|y,B) =
∑n

i=1 log p(yi|y,Mj,B), and which
uses all data in the sample only once (see, for example, Gelfand & Dey (1994) and Laud & Ibrahim
(1995). Considering how to address the question Q1, we contrast deviance information criterion,
DIC with the log-score rules, LSCV and LSFS.

The plan of the paper is as follows: In Sections 1 and 2 we present aspects of some answers to
questionQ1 whereas Section 3 addresses a calibration issue arising fromQ2. Specifically, in Section
1, we consider how to obtain answers to Q1, explore similarities and differences between DIC
and LSCV in Gaussian and Poisson models, and show results on the small-sample performance of
DIC, LSCV and LSFS in discriminating between nested models. In Section 3 we show that the
posterior predictive tail areas (Gelman et al. (1996)), a standard method for answering “could
model Mj have generated the data?” (a question related to Q2) can be poorly calibrated, and we
document an approach to calibrating the answer.
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1 LSCV and DIC

In order to show the relationship between LSCV and DIC as model-comparison criteria let us
consider a simple parametric model, M0, for continuous outcomes, where: (yi|µ,B)

IID∼ N(µ, s2)
and (µ|B) ∼ N(a, b2).

With (s2, a, b2) known and a diffuse prior on µ (large b2), the posterior for µ is: p(µ|y,B)
.
=

N(ȳ, s2/n) , where ȳ is the sample mean of y = (y1, . . . , yn). The predictive distribution for the
next observation is then p(yn+1|y,B)

.
= N(ȳ, s2/(1 + 1/n)) . Similarly, p(yi|y−i,B)

.
= N(ȳ−i, s

2
n) ,

where ȳ−i is the sample mean with observation i omitted and s2
n = s2 (1 + 1/(n− 1)), so that

LSCV (M0|y,B)
.
= c1 − c2

∑n
i=1(yi − ȳ−i)

2 for some constants c1 and c2 with c2 > 0.
With a bit of algebra it can be shown that LSCV (M0|y,B)

.
= c1− c2

∑n
i=1(yi− ȳ)2, (c2 > 0),

meaning that for M0 with a diffuse prior the LSCV is almost perfectly negatively correlated with
the sample variance.

In model M0 the deviance is D(µ) = −2 ln l(µ|y,B) = c0 + c3
∑n

i=1(yi−µ)2 for some c3 > 0.
Given a parametric model p(y|θ), Spiegelhalter et al. (2002) define the deviance information
criterion (DIC) as: DIC(M |y,B) = D(θ̄) + 2 p̂D, where pD is the effective number of model
parameters, and θ̄ is the posterior mean of θ, so that models with low DIC values are to be
preferred over those with higher values. When pD is difficult to read directly from the model
(e.g., in complex hierarchical settings with random effects), it can be estimated from standard
MCMC output as p̂D = D(θ)−D(θ̄), where D(θ) is the posterior mean of the deviance and D(θ̄)
is the deviance evaluated at the posterior mean of θ.

Model M0 has just one parameter (pD = 1), a diffuse prior for which implies θ̄
.
= ȳ, so that

we get DIC(M0|y,B)
.
= c0 + c3

∑n
j=1(yj − ȳ)2 + 2 concluding that

−DIC(M0|y,B)
.
= c1 + c2LSCV (M0|y,B) (1)

for c2 > 0. In other words, in this simple setting, choosing a model by maximizing LSCV and by
minimizing DIC are approximately equivalent behaviors. This argument readily generalizes to
any situation in which the predictive distribution is approximately Gaussian.

As a second example of the relationship between LSCV and DIC we consider two models
for count data a fixed-effects Poisson (FEP), model M1 where (yi|λ,B)

IID∼ Poisson(λ) and (λ|B) ∼
p(λ|B), and random-effects Poisson (REP), model M2:

(yi|λi,B)
indep∼ Poisson(λi)

log(λi) = β0 + ei
(β0, σ

2|B) ∼ p(β0, σ
2|B)

(ei|σ2,B)
IID∼ N(0, σ2).

(2)

where i = 1, ..., n. M1 is of course a special case of M2 with
(
σ2 = 0, λ = eβ0

)
; the likelihood in

M2 is a Lognormal mixture of Poissons.
We conducted a partial-factorial simulation study with factors {n = 18, 32, 42, 56, 100},

{β0 = 0.0, 1.0, 2.0}, and {σ2 = 0.0, 0.5, 1.0, 1.5, 2.0} in which {(data-generating mechanism,
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assumed model)} = {(M1,M1), (M1,M2), (M2,M1), (M2,M2)}; in each cell of this grid we used
100 simulation replications. Here we summarize only a small part of the results of this simulation
(see Krnjajić (2005) for additional details).

When both the data-generating model and the assumed model were M1 (the fixed-effects
Poisson), LSCV and DIC are almost perfectly negatively correlated (graph not shown); By con-
trast, the Figure 1 shows that when the data-generating and assumed models were M2 (the
random-effects Poisson), LSCV and DIC are less strongly negatively correlated, although the
correlation increases with n (graph not shown).

Figure 1: DIC versus LSCV with n = 56; the data-generating and assumed models were both M2

(random-effects Poisson).
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Table 1: Percentages of correct model choice and mean absolute difference in LSCV between M1

and M2 when the right model is M2, for n = 32.

% Correct Decision Mean Absolute Difference in LSCV
β0 β0

σ2 0 1 σ2 0 1
0.10 31 47 0.10 0.001 0.002
0.25 49 85 0.25 0.002 0.013
0.50 76 95 0.50 0.017 0.221
1.00 97 100 1.00 0.237 4.07
1.50 98 100 1.50 1.44 17.4
2.00 100 100 2.00 12.8 63.9

2 Model-comparison criteria and small data samples

In addition to LSCV , which requires n model fitting exercises, our interest was drawn to another
version of the log-score idea in which no cross-validation is employed. Instead, in the one-sample
situation, for instance, it suffices to compute only a single predictive distribution p( · |y,Mj) for
future data, for each model Mj under consideration and based on the entire data set y. Thus, we
define the full-sample log score nLSFS(Mj|y,B) =

∑n
i=1 log p(yi|y,Mj,B) (cf. Laud & Ibrahim

(1995)). Remark. This appears to use the data twice, but (a) all LSFS is actually doing is
evaluating the posterior predictive distribution for the next data value at the observed data, and
(b) when n is even moderate in size, any effect this may induce is small. The calculation of LSFS,
as opposed to Bayes factors, is entirely stable and does not have any difficulties related to the
way diffuse priors may be specified.

Here we examine three model-choice rules: {maximize LSCV , maximize LSFS, minimize
DIC}. and consider two models M1 and M2 to choose between. Our objective is to find out how
accurately do these rules discriminate between M1 and M2?

As an extension of the previous simulation study, we generated data from the random-
effects Poisson model M2 (equation (2)) and computed LSCV , LSFS, and DIC for models M1

(the fixed-effects Poisson, FEP) and M2 (the random-effects Poisson, REP) in the full-factorial
grid {n = 32, 42, 56, 100}, {β0 = 0.0, 1.0}, {σ2 = 0.1, 0.25, 0.5, 1.0, 1.5, 2.0}, with 1000 simulation
replications in each cell, and we monitored the percentages of correct choice for each model
specification method (in this simulation M2 is always correct).

Table 1 gives examples of the results of this simulation, using LSCV for illustration. Even
with a sample size of only 32, LSCV makes the right model choice more than 90% of the time
when σ2 > 0.5 for β0 = 1 and when σ2 > 1.0 for β0 = 0 (these are parameter ranges that
lead to large enough amounts of extra-Poisson variability that random-effects models would be
contemplated). The right part of the table shows that even rather small differences in LSCV
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can separate correct and incorrect model choice, which begs the question “When a difference
on the log score scale is big enough?” (we return to this point in Section 3). Based on model
discrimination results for LSCV , LSFS, and DIC we created a series of performance graphs (not
shown) and observed (expectedly) that increasing σ2 makes it easier for all three methods to
conclude that random effects model (the nesting model) is needed to accommodate the Poisson
over-dispersion. Interestingly, in this simulation environment LSFS was more accurate, with small
samples of data, at identifying the correct model than LSCV or DIC; for this reason, we focus
on LSFS in what follows.

3 Calibration of posterior predictive tail areas

Section 2 shows that full-sample log scores can stably and reliably decide between two models by
choosing one with higher LSFS (or LSCV ) value. However, this still leaves open model specification
question Q2: Is M1 good enough?

In our view, a full judgment of adequacy requires real-world input about the purpose of the
model, so it does not seem possible to propose generic methodology to answer Q2. Instead, the
somewhat related question “Q

′
2: Could model Mj have generated the data?” can be answered in a

general way by simulating from Mj many times, developing a distribution of (e.g.) LSFS values,
and seeing how unusual the actual data set’s log score is in this distribution.

This is related to the posterior predictive model-checking method of Gelman et al. (1996).
However, this kind of simulation needs to be done carefully (see Draper (1996)), or the result will
be poor calibration; indeed, Bayarri & Berger (2000) and Robins et al. (2000) have demonstrated
that the procedure in Gelman et al. (1996) may be (sharply) conservative. Using a modification
of an idea suggested by Robins et al., we have developed a method for accurately calibrating the
log score scale.

The inputs to our procedure are: a data set and a model (which may be parametric or
non-parametric). For simplicity, consider a one-sample data set, D, of counts and suppose the

goal is to quantify whether this data set could have come from the model (yi|λ,B)
IID∼ Poisson(λ),

and (λ|B) ∼ diffuse (call it model (∗)). Now, consider the following procedure:

Step 1: Calculate LSFS for data set D and call it the actual log score (ALS). Obtain the

posterior for λ given y based on data set D; call this the actual posterior. Step 2:

for ( i in 1:m1 ) {

Let lambda[ i ] be a draw from the actual posterior.

Sample n data points from model (*) above, using lambda = lambda[ i ].

Compute the full-sample log-score, LS.FS[ i ], for this data set.

}

The output of this loop is a vector of log scores; call this V.LS. Locate the ALS in the distribution
of LSFS values by computing the percentage of LSFS values in V.LS that are no greater than
ALS; call this percentage the unadjusted actual tail area (suppose, e.g., that this comes out 0.22).
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So far this is similar to Gelman et al. with LSFS as the discrepancy function. We know
from our own simulations (summarized below) and the literature such as Bayarri & Berger (2000),
Robins et al. (2000) that this tail area (a P -value for a composite null hypothesis, e.g., Poisson(λ)
with λ unspecified) is conservative, i.e., with the 0.22 example above an adjusted version of it that
is well calibrated would be smaller (and might be much smaller, e.g., 0.02). We have modified and
implemented one of the ways suggested by Robins et al. for improving calibration, and we have
shown that it does indeed work even in rather small-sample situations, although implementing
the basic idea can be computationally intensive. Step 3:

for ( j in 1:m2 ){

Let lambda* be a draw from the actual posterior.

Generate a data set of size n from the model (*) above,

using lambda = lambda*; call this the simulated data set.

Repeat Steps 1 and 2 above on this simulated data set.

}

The result will be a vector of unadjusted tail areas; call this V.P. Compute the percentage of tail
areas in V.P that are no greater than the unadjusted actual tail area; this is the adjusted actual
tail area.

The claim is that the 3–step procedure above is well-calibrated: if the sampling part of model
(∗) really did generate the observed data, the distribution of adjusted actual tail areas would be
approximately uniform, since X ∼ FX implies FX(X) ∼ U(0, 1). This claim of calibration can be
verified by building a further loop around steps 1–3 as follows:

Choose a lambda value of interest; call it lambda.sim.

for ( k in 1:m3 ) {

Generate a data set of size n from the model (*) above,

using lambda = lambda.sim; call this the validation data set.

Repeat Steps 1-3 on the validation data set.

}

The result here is a vector, V.TA, of adjusted tail areas. We have verified (via simulation, per-
formed on a cluster of 100 Linux-based CPUs) in several settings that the distribution of values
in V.TA is (very) close to U(0, 1) indeed.

Figure 2 summarizes a set of histograms of the uncalibrated actual tail areas from one-
sample Poisson model, indicating that in many cases the tail areas (p-values) are far from the
target (uniform) distribution.

Consider, for example, the case (n = 100, λ = 0.14) in the fourth row and first column of
the Figure 2: if the uncalibrated tail area came out 0.35 in this situation, it would be natural to
conclude that the data could very well have come from the Poisson model, but this part of Figure
2 demonstrates clearly that in fact an uncalibrated tail area of 0.35 with (n = 100, λ = 0.14) is
highly unusual under the Poisson model. Our procedure solves the calibration problem by asking
“How often would one get 0.35 or less for an uncalibrated tail area in this situation?”, and it is
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Figure 2: Poisson model: uncalibrated tail-area values.

evident from Figure 2 that the answer is not very often (in fact, only about 0.035 of the time, i.e.,
in this case the calibrated version of the uncalibrated Gelman et al. tail area is 10 times smaller).

Figure 2 shows also that the calibration of the unadjusted approach improves in the one-
sample Poisson setting, for increasing λ (even for small n), but in case of the Gaussian model with
both µ and σ2 unknown, the unadjusted approach remains poorly calibrated across the entire sub-
set {−1 ≤ µ ≤ +1}×{0.1 ≤ σ2 ≤ 10} of parameter space we examined, and things actually seem
to get worse as n increases (not shown). However, the adjusted results, for the Gaussian model,
are nearly perfectly calibrated, having distributions close to U(0, 1) for all examind parameter
values and sample sizes, (again, not shown). Note that for the reason of limited space here we
could show only a small fraction of results and graphs.
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Conclusions

We have argued that calibration (checking how often one obtains the right answer) is an important
principle that that arises naturally in good Bayesian modeling; the question “Q1: Is model Mj

better than Mk?” is central to the process of well-calibrated Bayesian model specification; and it
is not well formed unless the purpose of the model is considered. Once the the purpose of the
model is explicitly stated, the task of Bayesian model specification turns into a decision problem
of maximizing expected utility (MEU), with a purpose-specific utility function (which may be
computationally intensive).

LSFS appears as a useful improvement upon DIC, with three advantages: LSFS may well
have better small-sample model discrimination behavior (as in the simulation of Section 3.1); LSFS
is insensitive to model parameterization; and LSFS can be used both in Bayesian nonparametric
and parametric settings; To decide when to stop looking for a better model, the question “Q

′
2:

Could model Mj have generated the data?” can be answered in a well-calibrated manner, using
LSFS as a model choice criterion, as shown in the last section.
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Abstract

A new mathematical model — Markov chain of conditional order — is proposed for
statistical analysis of discrete time series with “long memory”. Statistical estimators for
parameters of this model are constructed and their properties are analyzed. A statistical
test for the values of parameters is proposed. Results of computer experiments are presented.
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Introduction

Markov chain [3] is a well known model to analyze data sequences in many applications. It is used
to solve problems of statistical data analysis in signal processing [7], information protection [4],
genetics [9], and other fields. Fitting of an adequate mathematical model is an important step in
data analysis.

The Markov chain of the order s, s ≥ 1, is a widely used model in analysis of discrete time
series. Unfortunately, the number of parameters of this universal model increases exponentially
when the order s grows. One needs to have the data set of huge size to estimate this model. Thus
development and analysis of high-order Markov chain models with a small number of parameters
is an actual problem. Give some examples of such models: Markov chain of the order s with r
partial connections [5], Raftery model [8], the variable length Markov chain [1], and the Markov
chain of conditional order that is proposed and analyzed in this paper.

1 Mathematical Model

Introduce the following notation: N is the set of natural numbers, 2 ≤ N <∞; A = {0, 1, . . . , N−
1} is the state space of N elements; Jnm = (jm, . . . , jn) ∈ An−m+1, n ≥ m is the multiindex;
xt ∈ A, t ∈ N, is a homogeneous Markov chain of the order s (2 ≤ s < ∞) defined at some
probability space (Ω, F,P); P = (pJs+1

1
) is the (s+ 1)-dimensional one-step transition probability

matrix, pJs+1
1

= P{xt+s = js+1|xt+s−1 = js, . . . , xt = j1},∀t ∈ N; B∗ ∈ {1, 2, . . . , s − 1}, K =

NB∗ − 1 are natural numbers; Q(1), . . . , Q(M) are M (1 ≤ M ≤ K + 1) different stochastic
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matrices of the order N : Q(m) = (q
(m)
i,j ), 0 ≤ q

(m)
i,j ≤ 1,

∑
j∈A

q
(m)
i,j ≡ 1, i, j ∈ A, 1 ≤ m ≤ M ;

< Jnm >=
n∑

k=m

Nk−1jk ∈ {0, 1, . . . , Nn−m+1}, 1 ≤ m ≤ n ≤ s is the numeric representation of the

multiindex Jnm; δJnm,Inm =
n∏

k=m

δjk,ik is the Kronecker symbol for multiindices Jnm, I
n
m.

Define the Markov chain xt ∈ A of conditional order if its one-step transition probabilities
have the following form:

pJs+1
1

=
K∑
k=0

δ<Jss−B∗+1>,k
· q(mk)

jbk ,js+1
, (1)

where 1 ≤ mk ≤ M , 1 ≤ bk ≤ s− B∗, 0 ≤ k ≤ K, min
0≤k≤K

bk = 1. The sequence of elements

Jss−B∗+1, that determines conditions in the formula (1), is called the base memory fragment (BMF)
of the random sequence. We can see that the state of the model xt at time t doesn’t depend on
all previous states, but depends only on B∗ + 1 states (jbk , J

s
s−B∗+1); the value of BMF Jss−B∗+1

determines not only the state jbk , but it also determines the transition matrix. The transition
matrix P = (pJs+1

1
) is defined by D = 2(NB∗ + 1) +MN(N − 1) independent parameters.

Note that if B∗ = s − 1, b0 = . . . = bK = 1, we have fully connected Markov chain of the
order s; similarly if b0 = . . . = bK = s − B∗, we have fully connected Markov chain of the order
B∗ + 1. If M = K + 1, then all the parameters {mk} are different and each value k of BMF has
its own transition matrix Q(k).

2 Estimators and Their Properties

At first, let us give ergodicity conditions for the Markov chain of conditional order
Theorem 1. Markov chain of conditional order is ergodic if and only if there is a natural

number m ∈ N, s ≤ m <∞ such that the inequality holds:

min
Js1 ,J

s+m
1+m∈As

∑
Jms+1∈Am−s

m∏
i=1

K∑
k=0

δ<Ji+s−1
i+s−B∗>,k

· q(mk)
jbk+i−1,ji+s

> 0.

In the sequel, we will consider ergodic Markov chains; denote its stationary probability
distribution by πJs1 = P{xt+s−1 = js, . . . , xt = j1}, Js1 ∈ As,∀t ∈ N. The stationary probability
distribution Π = (π<Js1>) can be found by solving the system of linear algebraic equations [6]:
P̄ ′Π = Π,

∑
Js1∈As

πJs1 = 1; here P̄ = (p̄<Is1>,<Js1>) is the one-step transition probability matrix for the

s-dimensional Markov chain of the first order X(t) = (xt, xt+1, . . . , xt+s−1), t ∈ N, with extended
state space, Is1 , J

s
1 ∈ As, p̄<Is1>,<Js1> = δIs2 ,J

s−1
1
pIs1 ,js .

Construct the maximum likelihood estimators (MLE) of the matrices Q(1), . . . , Q(M) using
an observed realization Xn

1 of length n. We need the following notation:
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n− = n− s, 1 ≤ l ≤ s, 0 ≤ l0 ≤ s− l; As+1(J l1) = {Is+1
1 ∈ As+1 : I l1 = J l1},

A1+l0+l(jl00 , J
l
1) = {I1+l0+l

1 ∈ A1+l0+l : i1 = j0, I
1+l0+l
2+l0

= J l1};

Aj = {Is+1
1 ∈ As+1 : i1 = j0, I

s+1
l+2 = JB∗+1

1 },

νJs+1
1

(n) =
n−∑
t=1

δXt+s
t ,Js+1

1
, νJ l1(n) =

∑
Is+1
1 ∈As+1(J l1)

νIs+1
1

(n),

ν
(l0)

j0,J l1
(n) =

∑
I
1+l0+l
1 ∈A1+l0+l(j

l0
0 ,J

l
1)

ν
I
1+l0+l
1

(n), ν̄Js+1
1

(n) = 1/
√
n−(νJs+1

1
(n)− n−πJs+1

1
),

ν̄l
JB∗+1
0

(n) = 1/
√
n−(νl

JB∗+1
0

(n)− n−πl
JB∗+1
0

);

q̄JB∗+1
0

=
√
n−(q̂JB∗+1

0
− qJB∗+1

0
); πl

JB∗+1
0

= P{xt = j0, X
t+l+B∗+1
t+l+1 = JB∗+1

1 };

ENs is the identity matrix of the order N s; P ∗ = lim
n→∞

P̄ n is the limit matrix; Z = (ENs −
P̄ + P ∗)−1 = (zIs1 ,Js1 ), I

s
1 , J

s
1 ∈ As.

Lemma 1. The n-dimensional probability distribution (n > s) for the Markov chain of
conditional order has the following form:

P{x1 = j1, . . . , xn = jn} = π0
Js1

n−1∏
t=s

K∑
k=0

δ<Jtt−B∗+1>,k
q
(mk)
t−s+bk,jt+1

, j1, . . . , jn ∈ A,

where π0
Js1

= P{x1 = j1, . . . , xs = js}, Js1 ∈ As, is the starting probability distribution of the

Markov chain (1).
Corollary. The likelihood function for the Markov chain of conditional order has the

following form:

ln(X
n
1 , {Q(i)}, B∗, {bk}) = ln π0

Js1
+

∑
u,v∈A,w∈AB∗

K∑
k=0

δ<w>,kν
(lk)
u,wv(n) ln q

(mk)
u,v ,

where lk = s− bk +B∗.
Theorem 2. If true values of B∗, {bk}, and {mk = k} are known, then the MLE for the

one-step transition probabilities q
(mk)
u,v , u, v ∈ A are

q̂(mk)
u,v =

∑
w∈AB∗

δ<w>,k
ν

(lk)
u,wv(n)

ν
(lk)
u,w (n)

, if ν(lk)
u,w (n) > 0,

1/N, if ν(lk)
u,w (n) = 0.

(2)
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Remark. If some parameters {mk}, k = 0, 1, . . . , K, are equal, i.e. one transition matrix
corresponds to different base memory fragments, then the MLE have the following form:

q̂(mk)
u,v =

∑
w∈Mmk

ν
(bk)
u,wv(n)∑

w∈Mmk

ν
(bk)
u,w (n)

, if
∑

w∈Mmk

ν(bk)
u,w (n) > 0,

1/N, if
∑

w∈Mmk

ν(bk)
u,w (n) = 0,

where Mi = {w ∈ AB∗ : m<w> = i}, i = 1, . . . ,M ,
M⋃
i=1

Mi = AB∗ .

Theorem 3. If the true values of B∗, {mk} are known, then the MLE of {bk} are

b̂k = arg max
1≤b≤s−B∗

∑
i,j∈A

νs−b−B∗i,wj (n) ln(q̂
(mk)
i,wj ), k = 1, 2 . . . , K. (3)

Estimators of the order of the Markov chain s and the length of BMF B∗ are constructed
by minimization of the Bayesian informational functional [2]:

(ŝ, B̂∗) = arg min
2≤s≤S̄,1≤B≤B̄∗

BIC(s, B), (4)

BIC(s, B) = −(
∑

u,v∈A,w∈AB

K∑
k=0

δ<w>,kν
(s−b̂k−B)
u,wv (n) ln q̂(mk)

u,v ) + 2NB log n,

where S̄ ≥ 2, 1 ≤ B̄∗ ≤ S̄ − 1 are maximal admissible values of the parameters s and B∗
respectively; estimators Q̂(i), i = 1, . . . ,M and b̂k, k = 0, . . . , K, can be found using (2) and (3)
respectively.

Now consider asymptotic properties of the constructed estimators (2).
Theorem 4. If the Markov chain of conditional order is stationary, then (2) gives consistent

estimators at n→∞:

q̂(m)
u,v

P−→ q(m)
u,v , 1 ≤ m ≤M.

Lemma 2. If the Markov chain of conditional order {xt ∈ A, t ∈ N}, is stationary, then
at n → ∞ the random variables {ν̄l

JB∗+1
0

(n) : JB∗+1
0 ∈ AB∗+2} are jointly asymptotically normal

with zero asymptotic means and asymptotic covariances:

cov{ν̄l
JB∗+1
0

(n), ν̄l
′

IB∗+1
0

(n)} = δJB∗+1
0 ,IB∗+1

0
πl
JB∗+1
0

+

+qJB∗+1
0

qIB∗+1
0

(
h(JB∗+1

0 , IB∗0 ) + h(IB∗+1
0 , JB∗0 )

)
− 3πl

JB∗+1
0

πl‘
IB∗+1
0

,

where h(JB∗+1
0 , IB∗0 ) =

∑
Es+1

1 ∈Aj

∑
F s+1

1 ∈Ai

πEs1zEs+1
2 ,F s1

.
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Theorem 5. If the Markov chain of conditional order {xt ∈ A, t ∈ N}, is stationary, then
at n→∞ the random variables {q̄JB∗+1

0
: JB∗+1

0 ∈ AB∗+2} are jointly asymptotically normal with

zero asymptotic means and asymptotic covariances:

cov{q̄JB∗+1
0

, q̄IB∗+1
0

} = δJB∗0 ,IB∗0
qJB∗+1

0

δjB∗+1,iB∗+1
− qJB∗0 iB∗+1

πJB∗0

.

3 Hypothesis Testing

The problem of a deviation detection by the observed time series {xt} from “purely random”
sequence appears usually in construction and reliability evaluation of the information security
systems [4]. Construct now a statistical test for the hypothesesH0 = {xt ∈ A is a “purely random”

sequence: q
(m)
i,j = 1/N, ∀i, j ∈ A, m = 1, 2, . . . ,M} and H1 = {xt ∈ A is the Markov chain of

conditional order with one-step transition probabilities q
(m)
i,j = q

(m)
i,j (n) = 1

N
(1 +

η
(m)
i,j (n)
√
n

) > 0,

η
(m)
i,j (n) → η

(m)
i,j at n→∞,

∑
j∈A

η
(m)
i,j = 0,

M∑
m=1

∑
i,j∈A

|η(m)
i,j | > 0}.

Define the following statistic:

ξ
(l0)

j0,J l1
(n) =

ν
(l0)

j0,J
l
1

(n)−n/N l+1

√
n/N l+1

,

ρ(n) =
∑

w∈B∗,u,v∈A

K∑
k=0

δ<w>,k(ξ
(lk)
u,wv)2 − 1

N

∑
w∈B∗,u∈A

(∑
v∈A

K∑
k=0

δ<w>,kξ
(lk)
u,wv

)2

.

Theorem 6. If the hypothesis H0 is true, then at n → ∞ the probability distribution of
the statistic ρ(n) converges to the standard χ2- distribution with U = NB∗+1(N − 1) degrees of
freedom.

Using this theorem we can construct the statistical test:

decide in favour

{
H0 : ρ(n) ≤ ∆,

H1 : ρ(n) > ∆,

where ∆ = G−1
U (1−α) is the (1−α)-quantile of the standard χ2- distribution with U degrees

of freedom, α ∈ (0, 1) is the given significance level.

4 Numerical Results

Evaluate performance of the proposed statistical procedures by computer experiments.
Example 1 (s, B∗ are known). A = {0, 1}, N = 2, s = 4, M = 2, B∗ = 2, b0 = b1 =

2, b2 = b3 = 1, m0 = m2 = 1, m1 = m3 = 2,
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Q(1) =

(
0.18 0.82
0.41 0.59

)
, Q(2) =

(
0.77 0.23
0.09 0.91

)
.

Numerical experiments were conducted by the following scheme. The Markov chain of
conditional order was simulated using the developed computer program. Then estimates Q̂1 and
Q̂2 of matrices Q(1) and Q(2) were calculated using the formula (2). After that the estimate of the

variance v̂un =
2∑

k=1

1∑
i,j=0

(q̂
(k)
ij − q

(k)
ij )2 was calculated, where n is the length of the u-th realization of

the Markov chain; n = 500, 750, 1000, . . . , 10000; u = 1, 2, . . . , U . Estimates {v̂un} were calculated
for each n and for U = 1000 independent replications. The total mean square error for the

estimators (2) v̂n = 1
U

U∑
u=1

v̂un was obtained; its dependence on n is plotted in Figure 1.

Figure 1: Mean square error

Similarly we evaluate performance for the estimators (3). In order to do this we calculate

frequency of the true decision ε = 1
U

U∑
u=1

εu, εu = δb̂,b, b = (b0, . . . , bK). The results are given in

Table 1.

Table 1: Performance of the estimators (3)

n 500 1000 1500 2000 2500 3000 3500 4000 ≥ 4500
ε 0.322 0.695 0.896 0.936 0.982 0.986 0.992 0.995 1.000

We can see from Table 1, that the probability of the true decision tends to one fast enough
when the length of the observed time series grows.
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Example 2 (s, B∗ are unknown). The Markov chain of conditional order was simulated
using the developed computer program. The length of the chain n = 50000. Other parameters
were as in the Example 1, S̄ = 8, B̄∗ = 4.

The values of s, B and the corresponding values of BIC(s, B) are given in Table 2. By (4)
we find ŝ = 4, B̂∗ = 2.

Table 2: Performance of the estimators (3)

(s, B) BIC(s, B) (s, B) BIC(s, B)
(2, 1) 31371 (6, 2) 22852
(3, 1) 30116 (6, 3) 22929
(3, 2) 28535 (6, 4) 23093
(4, 1) 27347 (7, 1) 27347
(4, 2) 22852 (7, 2) 22852
(4, 3) 22934 (7, 3) 22928
(5, 1) 27347 (7, 4) 23092
(5, 2) 22852 (8, 1) 27347
(5, 3) 22929 (8, 2) 22852
(5, 4) 23097 (8, 3) 22928
(6, 1) 27347 (8, 4) 23089

We can see from Table 2 that BIC(s, B) reaches the minimum if B̂∗ = 2 and ŝ = 4, 5, . . . , 8.
The true order of the chain is equal to ŝ = 4; the following pairs (s, B): (4, 2), (5, 2), (6, 2), (7,
2), (8, 2) are equivalent. Then according to (3) we find b̂ = (b̂0, . . . , b̂K):

b̂k = arg max
1≤b≤ŝ−B̂∗

∑
i,j∈A

ν ŝ−b−B̂∗i,wj (n) ln(q̂
(mk)
i,wj ), k = 1, 2 . . . , K,

b = (2, 2, 1, 1).
Finally, we find the estimators for the transition matrices (each value of BMF has its own

matrix):

Q̂(1) =

(
0.181 0.819
0.400 0.600

)
, Q̂(2) =

(
0.772 0.228
0.088 0.912

)
,

Q̂(3) =

(
0.183 0.817
0.402 0.598

)
, Q̂(4) =

(
0.774 0.226
0.089 0.911

)
.

5 Conclusion

In this paper we present a new model of the high-order Markov chain with a small number of
parameters called the Markov chain of conditional order. Probabilistic and statistical properties
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of the model are analyzed. Ergodicity conditions are found, Maximum likelihood estimators of
parameters are constructed and their properties are investigated. Statistical test for the devi-
ation detection of the observed time series from the “purely random” sequence is constructed.
Numerical experiments illustrate the theoretical results.

References

[1] Buhlmann P., Wyner A. (1999). Variable Length Markov Chains. The Annals of Statistics.
Vol. 27, N 2, pp. 480-513.

[2] Csiszar, I. Consistency of the BIC order estimator. (1999). Electronic research announcements
of the American mathematical society. Vol. 5, pp. 123-127.

[3] Kemeny J., Snell J. (1990). Finite Markov Chains. Princeton NJ: D. Van Nostrand Company.

[4] Kharin Yu. S., Bernik V. I., Matveev G. V., Agievich S. V. (2003). Mathematical and com-
puter foundations of cryptology. Novoe znanie, Minsk.

[5] Kharin Yu. S., Piatlitski A. I. (2007). Markov Chain with Partial Connections MC(s, r) and
statistical conclusions of its parameters. Discrete mathematics, Vol. 19, N 2, pp. 109-130.

[6] Kharin Yu. S., Zhuk E. E. (2004). Mathematical and applied statistics. BSU, Minsk.

[7] Li Y., Dong Y., Zhang H., Zhao H., Shi H., Zhao X. (2010). Spectrum Usage Prediction Based
on High-order Markov Model for Cognitive Radio Networks. 2010 10th IEEE International
Conference on Computer and Information Technology (CIT 2010), pp. 2784-2788.

[8] Raftery A. E. (1985). A Model for High-Order Markov Chains. J. Royal Statistical Society,
Vol. B-47, N 3, pp. 528-539.

[9] Waterman M. S. (1999). Mathematical Methods for DNA Sequences. Chapman and
Hall/CRC, Boca Raton.

150



Applied Methods of Statistical Analysis. Simulations and Statistical Inference

Comparing Predictive Accuracy

Eva Ferreira1, Winfried Stute2

1Univ. del Pais Vasco, Departamento de Economia Aplicada III, Bilbao, Spain
2Univ. of Giessen, Mathematical Institute, Giessen, Germany

e-mail: 1eva.ferreira@ehu.es,2Winfried.Stute@math.uni-giessen.de

Abstract

In this work we provide new tests for the difference in predictive accuracy of two prog-
nostic factors X1 and X2 on a common output Y . Given a set of independent replicates of
(X1, X2, Y ), we split this sample into a learning part for estimating the unknown regression
functions, and a validation part for which the residuals need to be computed. We show that
the null distributions of our test statistics may be approximated by a normal. In simulations,
the power is promising already for small to moderate sample sizes.

Keywords: Predictive accuracy; residuals; nonparametric test, data split.

Introduction

Suppose that Y is an unknown variable of interest. For example, Y could measure the future
status of a company. Rather than Y , what might be available already now, is a vector X1 of
covariates which may be helpful to predict the value of Y . In a regression context we decompose
Y into a term depending only on X1 and a noise variable ε1 orthogonal to X1, i.e.,

Y = m1(X1) + ε1 such that E(ε1|X1) = 0 a.s.

The function m1 is the regression function of Y w.r.t. X1. When Y is unknown, m1(X1) is the
best predictor based on X1, i.e., among all functions ϕ(X1) of X1, m1(X1) is the one minimizing
the expected squared prediction error. Unfortunately, in a practical situation, m1 is unknown and
needs to be estimated from a learning sample (X11, Y1), . . . , (X1T , YT ) of independent replicates
of (X1, Y ). Denote with m̂1 any of such estimators, and let

e1 := Y − m̂1(X1)

be the associated residual. The availability of such data may be limited by the sampling costs for
the covariate X1. Therefore it makes sense to also take into account an alternative covariate X2.
Denote with

Y = m2(X2) + ε2 such that E(ε2|X2) = 0 a.s.

the corresponding decomposition. While m1(X1) and m2(X2) are optimal within their classes, it
remains open which of m1(X1) and m2(X2) outperforms the other.

It is the purpose of this paper to provide some methodology for comparing the predictive
accuracy of two prognostic factors X1 and X2 w.r.t. a common dependent variable Y . The
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quality of the fit is measured through g(ε1) and g(ε2), where g is a weight function chosen by
the statistician. We already mentioned the quadratic loss associated with g(u) = u2. In Robust
Statistics, a popular weight is g(u) = |u| leading to the mean absolute deviations |ε1| and |ε2|.
Another possibility would be

g(u) = u21{|u|>δ}.

When one applies this g to e1 and e2, one neglects deviations which fall below the threshold δ.

Our statistical analysis will be based on a learning (or estimation) sample (X1t, X2t, Yt), 1 ≤
t ≤ T , of independent replicates of (X1, X2, Y ). The covariates X1t and X2t can be quite different.
They may coincide in some of their coordinates but not in others. Their dimensions d1 and d2

may also differ. Later we shall in detail discuss the case when X1 is a subvector of X2 so that
d1 < d2. The learning sample will be used to estimate the unknown regression functions m1 and
m2 through m̂1 and m̂2, say. In a parametric framework, m1 and m2 are of the type

m1(x1) = m1(x1, β) and m2(x2) = m2(x2, γ).

In such a situation we have to estimate β and γ by the Least Squares Estimator or robust
alternatives β̂ and γ̂. For m̂1 and m̂2 we then take the plug-in estimators

m̂1(x1) = m1(x1, β̂) and m̂2(x2) = m2(x2, γ̂).

In a nonparametric framework one may take for m̂1 and m̂2 any nonparametric smoother. See
Stone (1977) for general conditions on such smoothers to obtain universal consistency. Spiegelman
and Sacks (1980) is a relevant reference for the consistency of the Nadaraya-Watson estimator.

Now, after having obtained m̂1 and m̂2, the associated residuals are computed for a valida-
tion sample (X1t, X2t, Yt), T + 1 ≤ t ≤ T + n, being independent of the first:

eit = Yt − m̂i(Xit), T + 1 ≤ t ≤ T + n, i = 1, 2.

For a given weight function g, a comparison of the predictive accuracy will now be based on

d̄ = n−1

T+n∑
t=T+1

[g(e1t)− g(e2t)].

Typically, a large value of d̄ indicates that X1 has less predictive accuracy than X2. A test for

H0 : Eg(ε1) = Eg(ε2)

versus

H1 : Eg(ε1) > Eg(ε2) (1)
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rejects H0 in favor of H1 when d̄ exceeds a critical value. In general, the null distribution is very
complicated. A quantity which is much easier to handle is one which is obtained after replacing
the residuals by the true errors:

d̄1 = n−1

T+n∑
t=T+1

[g(ε1t)− g(ε2t)].

Under H0, this is a sum of centered independent identically distributed summands to which the
Central Limit Theorem applies. In our main results we show that

n1/2d̄ = n1/2d̄1 + oP(1) as n→∞ (2)

under appropriate conditions so that by Slutsky’s theorem the distribution of n1/2d̄ can in fact
be approximated by a normal. Before we come to the main results, some further comments are
in order.

Remark 1. Suppose that all components of X1 are also included in X2. For g(u) = u2 we then
have

Eε2
1 − Eε2

2 = E[Y −m1(X1)]
2 − E[Y −m2(X2)]

2

= Em2
1(X1)− Em2

2(X2)− 2E[Y m1(X1)] + 2E[Y m2(X2)]

= Em2
2(X2)− Em2

1(X1) = E[m2(X2)−m1(X1)]
2 = c ≥ 0,

where the second but last equality follows from the facts that m1(X1) and m2(X2) are conditional
expectations of Y w.r.t. X1 and X2. The last equality utilizes that X1 is a subvector of X2. In
most situations c will be strictly positive so that (1) holds true and no extra test is necessary. In
such a situation one may be interested to know whether the inclusion of more covariables would
increase the predictive accuracy by an amount of at least c0. In other words we want to test

H0 : Eg(ε1) = Eg(ε2) + c0

versus
H1 : Eg(ε1) > Eg(ε2) + c0.

Our approach also applies here. Just replace d̄ by d̄− c0.

Of course there may be situations where the augmented X1 will not improve the predictive
accuracy at all. Consider, e.g., the two linear models

Y = X ′
1β + ε1 and Y = X ′

1γ + U ′
2δ + ε2. (3)

Hence X2 = (X ′
1, U

′
2)
′. In this case two situations are possible. If δ = 0, then ε1 = ε2 whence

c = 0. In other words, the augmentation of X1 has no effect on the predictive accuracy. In
general, we have

c = E[X ′
1(γ − β) + U ′

2δ]
2.
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If, e.g., X1 and U2 are centered and uncorrelated, then

c = E[X ′
1(γ − β)]2 + E[U ′

2δ]
2

so that the overall difference may be attributed to the variability contained in U2 weighted by δ
and a (possibly reduced) variability contained in X1.

Remark 2. Since the test statistic d̄ depends on estimated residuals, a crucial role in our setup
will be played by m̂1 and m̂2. For the replacement of the e’s by the ε’s the following error bounds
on m̂i −mi will be needed:

E
{
[m̂i(Xi,T+1)−mi(Xi,T+1)]

2} = O(T−βi) (4)

i = 1, 2. Generally the constant βi depends on whether we are in a parametric or nonparametric
framework. In the parametric case we typically can estimate unknown parameters at the rate T−1/2

so that under smoothness of the model the bound (4) holds with βi = 1. In the nonparametric
framework the quality of the estimators deteriorates as the dimension of X1 and X2 gets large, a
consequence of the so-called curse of dimensionality. E.g., for the Nadaraya-Watson estimator,
Spiegelman and Sacks (1980) showed that (4) holds true with

βi =
2

2 + di
.

Here again di is the dimension of Xi, i = 1, 2.

Remark 3. Since (2) is concerned with standardized variables, the estimation error encountered
in (4) has to become negligible compared with the sampling variances of the validation part. This
may be achieved if the sample size of the learning sample, T , is large enough compared with n,
the size of the validation sample.

Remark 4. Another issue is the choice of the weight function g. More or less this is up to the
applicant of the statistical methodology. If one prefers to downweight large residuals, the absolute
deviation function (or a robust variant) might be appropriate. Statistical inference is then based on
the Mean Absolute Deviation (MAD), a popular means for goodness-of-fit in Robust Regression.
If large deviations are to be upweighted large powers of e are in order. Note, however, that such
a choice also requires higher moments for the errors ε. Therefore, in this paper, we shall focus
only on g’s which increase at most as fast as g(u) = u2. In particular, g′ and g′′ (if they exist)
are assumed to be Lipschitz and bounded, respectively. While Taylor expansion is an appropriate
tool in the smooth case, g’s with possible discontinuities need to be studied separately.

Remark 5. Prediction accuracy in regression has been often discussed in the context of model
selection. See Efron (2004) for a discussion and review. For a given (nested) family of models
one adds a penalty for the complexity of the model to the residual sum of squares. The resulting
objective function is then minimized for a data set at hands. In our approach no penalty is con-
sidered and the regression need not be parametrically specified. Rather we study the unconditional
distribution of the relevant quantity d̄.
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Remark 6. Concerning prediction, Granger and Newbold
(1978) were pioneers in designing formal tests. Their procedure was based on the correlation
of some combination of the residuals. Since then other authors extended their work into various
directions. A simple but often applied test is due to Diebold and Mariano (1995). They compare
two fully specified parameter-free models and compare the known errors. Typically, however, the
assumed models are more complex to the effect, that the true errors are unknown and parameters
need to be estimated. This changes the distributional character of the DM-test and the distribution
presented in their work is not applicable.

Hence it is not surprising that Clark and West (2004) found some bias in the DM-test
when applied to residuals. In the context of classical goodness-of-fit tests based on the empirical
distribution function, this is known at least since Durbin (1973). For the corresponding discussion
in regression, see Stute (1997). To circumvent these problems one may, as in the present paper,
split the whole sample of size T + n into a learning sample of size T and a validation sample of
size n.

1 Main Results

Let (X1t, X2t, Yt), 1 ≤ t ≤ T + n, be a sample of independent random vectors with the same
distribution as (X1, X2, Y ), and let g be a given weight function. Recall d̄ and d̄1.

Theorem 1. Assume that g is differentiable such that g′ is Lipschitz of order one, and let m̂1

and m̂2 be such that (4) is satisfied for i = 1, 2. Set β = min(β1, β2). Then, if n = o(T β), as n
and T tend to infinity,

n1/2d̄ = n1/2d̄1 + oP(1). (5)

Furthermore, if g is twice continuously differentiable with

E[g′(εi)|Xi] = 0 a.s. for i = 1, 2 (6)

then the assertion (5) holds true under the weaker condition n = o(T 2β).

Note that (6) is satisfied for g(u) = u2.

While Theorem 2.1 covers the case of a differentiable g, in the next Theorem we consider
the important special cases g1(u) = |u| and g2(u) = u21{|u|>δ}.

Theorem 2. The expansion (5) holds true

• for g1 whenever n = o(T β)

• for g2 whenever n lnn = o(T β/2) and

the distribution function of |ε| is differentiable at δ.
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A careful check of the proof for g2 shows that one may extend Theorem 2.1 to functions g
with finitely many jumps but which are twice continuously differentiable in between. Details are
omitted.

Our conditions on n and T show that g(u) = u2 requires the smallest T . This is due to the
fact that with this g the orthogonality of εi and mi(Xi) can be effectively used. On the other
hand, discontinuities of g require a larger T and some smoothness of the distribution function of
|ε| in order to cope with the jump of g at δ.

Corollary 1. Under the conditions of Theorem 2.1 or 2.2, we have

n1/2d̄

σ̂d̄
→ N (0, 1) in distribution.

Here σ̂2
d̄

is a consistent estimator of the variance of g(ε1)− g(ε2).

For example, we could take for σ̂2
d̄

the sample variance of the g(e1t)−g(e2t), T+1 ≤ t ≤ T+n.

We have done several simulation results designed to support our theoretical findings with
promising results.
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Abstract

Problems of testing two simple hypotheses about the distribution of a random variable
by the results of independent observations are considered. The main goal is finding critical
values of SPRT, 2-SPRT and generalized optimal sequential Ayvazyan's test for testing
hypotheses about normal and logistic distributions where probabilities of the first and second
type errors have some specified values. It is shown that the use of the obtained critical
values minimizes the average sample number as compared to the use of known theoretical
approximate critical values.

Keywords: SPRT; 2-SPRT; generalized optimal sequential test; average sample num-
ber.

Introduction

The problem of testing hypotheses

H0 : f(x) = f0(x) vs. H1 : f(x) = f1(x)

of the random variable X based on the results of independent observations has various applications
such as quality and reliability control, statistical regulation of technological processes, distinction
of a signal against hindrances, etc. A common way of solving it is by the use of sequential testing.
Methods of sequential analysis are characterized by a random moment of stopping observations.
This moment depends on the values of data being observed. An advantage of sequential testing
was shown by A. Wald [6] while solving the problem of testing two simple hypotheses. He proved
that the average sample number of sequential testing methods is smaller than the sample number
of any other method with the same probabilities of the errors of the first and second type where the
sample number is fixed in advance. Wald formulated the sequential probability ratio test (SPRT)
that became the most optimal one in the class of sequential testing methods. Later modifications
of SPRT appeared, e.g., 2-SPRT formulated by Lorden [5], which is used now in different types of
test problems [3], Li at al. [4], Bilias [2], and generalized optimal sequential Ayvazyan's test [1].
Similar to SPRT these modifications were developed for testing two simple hypotheses with the
use of approximate critical values. We have a goal to define exact critical values for these tests,
where probabilities of the first and second type errors are preset, by computer simulation. We
consider testing the following hypotheses:
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H0 : f(x) = f0(x) = 1√
2π

exp {− (x−θ)2
2

}

H1 : f(x) = f1(x) = π√
3
exp {− (πx)√

3
}/[1 + exp {− (πx)√

3
}]2,

where θ is unknown parameter of normal distribution.

1 Sequential scheme of testing

Let us consider sequential probability ratio test schemes for two simple hypotheses. After a
regular observation the statistics of sequential test are calculated according to formula (1) in the
case of the SPRT and Ayvazyan's test and according to formula (2) for the 2-SPRT:

λ(n) =
n∑
i=1

ln
f1(xi)

f0(xi)
. (1)

λ
(n)
0 =

n∑
i=1

ln
f2(xi)

f0(xi)
, λ

(n)
1 =

n∑
i=1

ln
f1(xi)

f2(xi)
, (2)

where f2 = νf0 + (1− ν)f1. An auxiliary parameter ν is defined by the condition of the Kulbak-
Leybler's distances equality:∫

[f2(x)− f0(x)]ln
f2(x)
f0(x)

dx =
∫

[f2(x)− f1(x)]ln
f2(x)
f1(x)

dx

Regions of acceptance the hypotheses H0 or H1 are defined by formulas (3)-(5) for the SPRT, the
2-SPRT and the Ayvazyan's test correspondently:

ΛH0
n = {λ : λ(n) ≤ c0}, ΛH1

n = {λ : λ(n) ≥ c1} (3)

ΛH0
n = {λ0 : λ

(n)
0 ≤ c0}, ΛH1

n = {λ1 : λ
(n)
1 ≥ c1}, (4)

where c0 ≈ ln ( β
1−α), c1 ≈ ln (1−β

α
)

ΛH0
n = {λ : λ(n) ≤ c0(1−

n

n∗
)}, ΛH1

n = {λ : λ(n) ≥ c1(1−
n

n∗
)}, (5)

where c0 ≈ −2 ln ( 1
β
), c1 ≈ 2 ln ( 1

α
) and n∗ is a maximum number of observations within the

Ayvazyan's test, which depends on the first and second type errors α, β:

n∗ = f0(x) = 8
ρ(H0,H1)

ln 1
min(α,β)

Figures (1)-(3) show the test process graphically.
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Figure 1: Procedure of acceptance the hypothesis H0 by SPRT

Figure 2: Procedure of acceptance the hypothesis H0 by 2-SPRT

Figure 3: Procedure of acceptance the hypothesis H0 by generalized optimal sequential
Ayvazyan's test

1.1 Modification of the likelihood ratio statistics for randomly cen-
sored data

Let T be a continuous random variable with the distribution function F(t) determined on the
interval [0,∞). The reliability function is defined as
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R(t) = p{T > t} =
∞∫
t

f(u)du = 1− F (t)

Let us introduce the notation:

qi(x) =

{
fi(x), x - censored observation

1− Fi(x), x - uncensored observation,

where fi(x) is a density function of the random variable ξ when the hypothesis Hi is true,
i=0,1, and Fi(x) is a distribution function. Then the sequential test statistic is defined as

λ(n) =
∑n

i=1 ln
q1(xi)
q0(xi)

,

where the summand contains either a ratio of the likelihood function for the uncensored
points, or a ratio of reliability functions for censored points (depending on the xi meaning, if it
is the retirement or the failure).

1.2 Problem of the sequential tests exact critical boundaries calcula-
tion

If we need to calculate the exact boundaries C0, C1, we must calculate the probability of the first
and second type errors:

1− α = P{H0|H0} =
∑∞

i=1 P{λi < C0

⋂i−1
j=1 λj ∈ [C0, C1]|H0}

1− β = P{H1|H1} =
∑∞

i=1 P{λi < C1

⋂i−1
j=1 λj ∈ [C0, C1]|H1},

but this is a difficult mathematical task because λi depends on λj if i > j. Another possible
way of solving this problem is by computer simulation.

2 Reduction the ASN of sequential tests by finding their

exact critical boundaries

This section contains the description of Monte Carlo method computer simulation process and
the obtained results, namely the exact critical boundaries and the average sample numbers of the
sequential tests being considered.
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2.1 The sequential tests exact critical boundaries calculation

The algorithm of finding critical values includes 3 steps.

1. Trying all values c0 ∈ [c0, 0], c1 ∈ [0, c1] from the modeling area with a small
step δ, we simulate dependences α(c0, c1), β(c0, c1).

2. We build lines of an equal level for selected values of probabilities of the first and second
type errors α = 0.05, 0.1, 0.15 and β = 0.05, 0.1, 0.15.

3. We obtain the required critical values (c0, c1) for the selected probabilities of the first and
second type errors from the points where the lines α(c0, c1) = αi and β(c0, c1) = βi intersect.

2.2 Finding the exact critical boundaries for testing a simple hypothe-
sis about normal distribution vs. simple hypothesis about logistic
distribution

Before applying the algorithm described above, we find the modeling area by carrying out prelim-
inary simulation on an obviously wider area with a big step and a small number of experiments.
Then we carry out our algorithm containing simulation of 16600 experiments by the Monte Carlo
method where probabilities of the first and second type errors are preset. As a result we obtain
the functions α(c0, c1) and β(c0, c1) lines of an equal level (see Figures 4-7) and the required
critical values (see Tables 1-3) from the intersections of these lines.

Figure 4: Lines of an equal level for testing two simple hypotheses about normal vs. logistic
distribution by the SPRT
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Figure 5: Lines of an equal level for testing two simple hypotheses about normal vs. logistic
distribution by the 2-SPRT

Figure 6: Lines of an equal level for testing a simple hypotheses about normal vs. logistic
distribution by the Ayvazyan's test when min(α, β) = 0.05

Table 1: Exact critical values for testing a simple hypothesis about normal distribution vs. a
simple hypothesis about logistic distribution by the SPRT

α| β 0.15 0.1 0.05 0.01
0.15 -1.67, 1.42 -2.07, 1.47 -2.74, 1.52 -4.33, 1.56
0.1 -1.72, 1.81 -2.12, 1.86 -2.80, 1.91 -4.39, 1.95
0.05 -1.78, 2.48 -2.18, 2.54 -2.85, 2.59 -4.45, 2.63
0.01 -1.82, 4.11 -2.22, 4.17 -2.89, 4.23 -4.48, 4.26
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Figure 7: Lines of an equal level for testing a simple hypotheses about normal vs. logistic
distribution by the Ayvazyan's test when min(α, β) = 0.1(left Figure), min(α, β) = 0.15 (right

Figure)

Table 2: Exact critical values for testing a simple hypothesis about normal distribution vs. a
simple hypothesis about logistic distribution by the 2-SPRT

α| β 0.15 0.1 0.05
0.15 -0.54, 0.55 -0.67, 0.56 -0.89, 0.56
0.1 -0.55, 0.69 -0.68, 0.68 -0.89, 0.7
0.05 -0.56, 0.91 -0.68, 0.91 -0.89, 0.92

Table 3: Exact critical values for testing a simple hypothesis about normal distribution vs. a
simple hypothesis about logistic distribution by the Ayvazyan's test

α| β 0.15 0.1 0.05
0.15 -3.99, 3.57 -2.77, 3.29 -2.17, 3.12
0.1 -3.88, 2.36 -2.91, 2.37 -2.15, 2.21
0.05 -3.66, 1.78 -2.72, 1.79 -2.1, 1.74

2.3 Comparison of the sequential tests by an average sample number
(ASN)

There have been made an ASN comparison of testing a simple hypothesis about normal distribu-
tion vs. a simple hypothesis about logistic distribution by different sequential schemes under the
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assumption that the hypothesis H0 is true. Tables 4 demonstrate the percent reduction in the
ASN in the cases of exact and approximate critical boundaries. On the Figure 8 there is a chart
of the gain in the ASN using the exact boundaries instead of the approximate with the first and
second type errors set to 0.1.

Table 4: Reduction the ASN for SPRT, 2-SPRT and Ayvazyan's test

α| β 0.15 0.1 0.05
SPRT 2-SPRT Ayv. SPRT 2-SPRT Ayv. SPRT 2-SPRT Ayv.

0.15 11% 11% 47% 10% 12% 40% 10% 11% 27%
0.1 9% 8% 48% 9% 8% 42% 8% 9% 28%
0.05 7% 7% 58% 6% 6% 49% 6% 6% 34%

Figure 8: The gain in the ASN of sequential tests with the exact boundaries
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Conclusions

We have found the exact critical boundaries of the SPRT, the 2-SPRT and the generalized optimal
sequential Ayvazyan's test where probabilities of the first and second type errors have the specified
values. The use of the exact critical boundaries decreases average sample number of the SPRT by
8-15%, average sample number of the 2-SPRT by 9-20% as compared to the use of approximate
critical boundaries. In the case of the Ayvazyan's test up to twice ASN reduction is achieved.
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Abstract

In this paper we propose a Chi-squared type test based on the Rao-Robson-Nikulin
statistic under random censoring for the inverse Gaussian family.
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Introduction

In Reliability and survival analysis, we often encounter incomplete observations, and in this situ-
ation the usual methods are no longer valid. Several goodness-of-fit tests have been suggested by
the statistician in the case of randomly right censored data. Habib and Thomas (1986) developed
a Pearson-type Chi-squared statistic based on the differences of Kaplan-Meier estimate ŜN(t)
and parametric maximum likelihood estimators of survival functions S(t, θ̂N). Akritas (1988)
proposed a Chi-squared statistic based on the idea of comparing the observed and expected num-
ber of failures in each class. Hjort (1990) developed a Chi-squared type statistic to test the
validity of the parametric model for life history data based on the cumulative hazard process.
Kim (1993) also proposed the Chi-squared goodness-of-fit test based on the product limit esti-
mator. Solev and Nikulin (1999) constructed a type test Chi-square for double censored data.
Finally Bagdonavičius and Nikulin (2011) gave several examples for distributions frequently used
in reliability.

1 The Family of the Inverse Gaussian Distributions

Over a century the family of inverse Gaussian (IG) distributions had attracted the attention of
many researchers in several fields [Seshadri (1993), Seshadri (1999), Chhikara and Folks (1989)],
notably in reliability, survival analysis, actuarial science, histomorphometry, electrical networks,
hydrology, management, demography, accelerated life testing, meteorology, mental health, physi-
ology, economics and cardiology. In Reliability and survival analysis , the distributions that have
a unimodal or ∩− shape hazard function are not too much, they include: log-normal, log-logistic,
power generalized Weibull [Bagdonavičius et Nikulin (2002)], exponentiated Weibull [Mudhold-
kar and Srivastava (1993)] and IG distributions. The IG distribution offers certain advantages
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over these distributions, because for these four distributions the hazard rate increases from 0 to
its maximum value and then decreases to 0. For the IG distribution, the hazard rate increases
from 0 to its maximum value and then decreases asymptotically to a constant which implies that
the occurrence of a failure eventually becomes purely random and independent of past life. In
contrast, the other four distributions vanishing hazard rate implies that eventually almost no
possibility of failure remains, which is not reasonable for most real system [Gunes and all, 1996].

The IG family is mostly conveniently specified in terms of its density function,

f(x, θ) =

(
λ

2πx3

) 1
2

exp

{
−λ(x− µ)2

2µ2x

}
, x ≥ 0, θ = (µ, λ)T ∈ R1

+ × R1
+ ⊂ R2,

All the positive and negative moments of the IG distribution exist. The corresponding
survival function is

S(x, θ) = Φ

(
−
√
λ

x

(
x

µ
− 1

))
− exp

(
2λ

µ

)
Φ

(
−
√
λ

x

(
x

µ
+ 1

))
, θ = (µ, λ)T ,

where Φ(t) is the distribution function of the standard normal distribution.

The hazard rate function of IG distribution is

h(x, θ) =

(
λ

2πx3

) 1
2 exp{−λ(x−µ)2

2µ2x
}

Φ
(
−
√

λ
x

(
x
µ
− 1
))

− exp(2λ
µ

)Φ
(
−
√

λ
x

(
x
µ

+ 1
)) , θ = (µ, λ)T .

One can easily verify that this function is unimodal . This form is often applied in reliability
and survival analysis.

We can also easily demonstrate that

lim
x→∞

h(x, µ, λ) =
λ

2µ2
.

2 Goodness-of-fit test for the IG Family

Under the random censorship model, we assume that the failure times T1, T2, · · · , Tn are non-
negative and independent. The censoring variables C1, C2, · · · , Cn are also nonnegative, inde-
pendent and assumed to be random sample and independent of T1, T2, · · · , Tn. We observe only
Xi = min(Ti, Ci) and the indicator functions δi = 1{Ti≤Ci}.
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Consider the problem of testing the composite hypothesis H0 that the distribution of the
sample Ti belongs to the IG family.

Let S(t, θ), θ = (µ, λ)T is the survival function (or reliability function) of IG distribution,
f(t, θ) is the density function corresponding to S(t, θ), G(t) the unknown survival function of
consortship and g(t) the density function corresponding to G(t).

Denote by

Λ(t, θ) = −lnS(t, θ) =

∫ t

0

h(u, θ)du,

the cumulative hazard function.

The likelihood function is given by

L(θ) =
n∏
i=1

f δi(Xi, θ)S
1−δi(Xi, θ)G

δi(Xi)g
1−δi(Xi).

Under non-informative censoring mechanism, that means that the survival function G(t) and the
density function g(t) do not depend on the parameter θ, the expressions for the likelihood function
becomes

L(θ) =
n∏
i=1

f δi(Xi, θ)S
1−δi(Xi, θ).

For the IG distribution, the log-likelihood function [ Lemeshko et al. (2010)] is

`(θ) = `(µ, λ) =
n∑
i=1

δi

{
1

2
lnλ− 1

2
ln 2π − 3

2
lnXi − λ

(Xi − µ)2

2µ2Xi

}
+

n∑
i=1

(1− δi) ln

{
Φ (A(Xi))− exp(

2λ

µ
)Φ (B(Xi))

}
,

where

A(Xi) = A(Xi, µ, λ) = −
√

λ

Xi

(
Xi

µ
− 1

)
and B(Xi) = B(Xi, µ, λ) = −

√
λ

Xi

(
Xi

µ
+ 1

)
.

The score functions Ul(µ, λ), l = 1, 2 [ Lemeshko et al. (2010)] are

U1(µ, λ) =
∂`(µ, λ)

∂µ
=

λ

µ3

n∑
i=1

δi(Xi − µ)+
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1

µ2

n∑
i=1

(1− δi)

√
λXiϕ(A(Xi)) + exp(2λ

µ
)
(
2λΦ(B(Xi))−

√
λXiϕ(B(Xi))

)
S(Xi, µ, λ)

,

U2(µ, λ) =
∂`(µ, λ)

∂λ
=

n∑
i=1

δi

(
1

2λ
− (Xi − µ)2

2µ2Xi

)
+

n∑
i=1

(1− δi)

1
2λ
A(Xi)ϕ(A(Xi))− exp(2λ

µ
)
(

2
µ
Φ(B(Xi)) + 1

2λ
B(Xi)ϕ(B(Xi))

)
S(Xi, µ, λ)

,

where ϕ(t) is the density function of the standard normal distribution. To have the MLE θ̂
of θ one can solve the system formed by equalizing the score functions to zero.

It is easy to calculate the second partial derivatives ῭(θ) of the log-likelihood function.
The Fisher’s information matrix is

I(θ) = −Eθ ῭(θ),

where

῭(θ) =
n∑
i=1

δi
∂2

∂θ2
lnh(Xi, θ)−

n∑
i=1

∂2

∂θ2
Λ(Xi, θ).

Denote by τ the time for experiment, we suppose that all units fail or censored before τ .
Divide the interval [0, τ ] into k smaller intervals

Ij = (aj−1, aj], j = 1, · · · , k a0 = 0, ak = τ,

and let denote by

Uj =
∑

i:Xi∈Ij

δi,

Ej =
∑

i:Xi>aj−1

(
Λ(aj ∧Xi, θ̂)− Λ(aj−1, θ̂)

)
=

∑
i:Xi>aj−1

ln
S(aj−1, θ̂)

S(aj ∧Xi, θ̂)
=

∑
i:Xi>aj−1

ln
Φ
(
A(aj−1, µ̂, λ̂)

)
− e

2λ
µ Φ
(
B(aj−1, µ̂, λ̂)

)
Φ
(
A(aj ∧Xi, µ̂, λ̂)

)
− e

2λ
µ Φ
(
B(aj ∧Xi, µ̂, λ̂)

) ,
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where a ∧ b = min(a, b).

Following Bagdonavičius and Nikulin (2011), to test the hypothesis H0 we consider the
Chi-squared type statistic

Y 2
n = ZT V̂ −Z,

where
V̂ − = Â−1 + Â−1ĈT Ĝ−ĈÂ−1, Ĝ = î− ĈÂ−1ĈT .

As mentioned in Bagdonavičius and Nikulin (2011), V̂ − is the general inverse of the matrix V̂ .
But for inverse Gaussian distribution this matrix is not degenerate.

Z = (Z1, Z2, · · · , Zk)T , Zj =
1√
n

(Uj − Ej),

Â =


Â1 0 · · · 0

0 Â2 · · · 0
...

...
. . .

...

0 0 · · · Âk

 , Âj =
Uj
n
,

Ĉ =

(
Ĉ11 Ĉ12 · · · Ĉ1k

Ĉ21 Ĉ22 · · · Ĉ2k

)
, Ĉlj =

1

n

∑
i:Xi∈Ij

δi
∂

∂θj
lnh(Xi, θ̂),

for the IG distribution, the elements of the matrix Ĉ are

Ĉ1j =
λ̂

nµ̂3

∑
i:Xi∈Ij

δi(Xi − µ̂)−

√
λ̂

nµ̂2

∑
i:Xi∈Ij

δi

√
Xiϕ(A(Xi, µ̂, λ̂))

S(Xi, µ̂, λ̂)
−

e
2λ̂
µ̂

nµ̂2

∑
i:Xi∈Ij

δi
2λ̂Φ(B(Xi, µ̂, λ̂))−

√
λ̂Xiϕ(B(Xi, µ̂, λ̂))

S(Xi, µ̂, λ̂)
,

Ĉ2j =
1

2nλ̂

∑
i:Xi∈Ij

δi −
1

2nµ̂2

∑
i:Xi∈Ij

δi
(Xi − µ̂)2

Xi

−

1

2nλ̂

∑
i:Xi∈Ij

δi
A(Xi, µ̂, λ̂)ϕ(A(Xi, µ̂, λ̂))

S(Xi, µ̂, λ̂)
+
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e
2λ̂
µ̂

n

∑
i:Xi∈Ij

δi

2
µ̂
Φ(B(Xi, µ̂, λ̂)) + 1

2λ̂
B(Xi, µ̂, λ̂)ϕ(B(Xi, µ̂, λ̂))

S(Xi, µ̂, λ̂)
.

î =

(
î11 î12

î21 î22

)
, îll′ =

1

n

n∑
i=1

δi
∂ lnh(Xi, θ̂)

∂θl

∂ lnh(Xi, θ̂)

∂θl′
.

The partial derivatives of the function lnh with respect to µ and λ are

∂ lnh(µ, λ)

∂µ
=
λ(t− µ)

µ3
− 1

S(t, θ)

{√
λt

µ2
ϕ(A(t, µ, λ)) +

(
2λ

µ2
Φ(B(t, µ, λ))−

√
λt

µ2
ϕ(B(t, µ, λ))

)
exp(

2λ

µ
)

}
,

∂ lnh(µ, λ)

∂λ
=

1

2λ
− (t− µ)2

2µ2t
− 1

S(t, θ)

{
1

2λ
A(t, µ, λ)ϕ(A(t, µ, λ))−(

2

µ
Φ(B(t, µ, λ)) +

1

2λ
B(t, µ, λ)ϕ(B(t, µ, λ))

)
exp(

2λ

µ
)

}
.

The statistic Y 2
n can be written in the form

Y 2
n =

k∑
j=1

(Uj − ej)
2

Uj
+Q,

where
Q = W T Ĝ−1W, W = ĈÂ−1Z.

Under H0 the statistic Y 2
n possesses the Chi-squared distribution χ2

k with k degrees of free-
dom in the limit.

Choice of âj: Set
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7, 34, 42, 63, 64, 74*, 83, 84, 91, 108, 112, 129, 133, 133, 139, 140, 140, 146, 149, 154,
157, 160, 160, 165, 173, 176, 185*, 218, 225, 241, 248, 273, 277, 279*, 297, 319*, 405,

417, 420, 440, 523*, 523, 583, 594, 1101, 1116*, 1146, 1226*, 1349*, 1412*, 1417.

Tab. 1. Arm A data for the Head-and-Neck cancer.

bi = (n− i)Λ(X(i), θ̂) +
i∑
l=1

Λ(X(l), θ̂).

where X(i) is the ith element in the ordered statistics (X(1), · · · , X(n)).
If i is the smallest natural number verifying Ej ∈ [bi−1, bi], j = 1, · · · , k − 1 then:

(n− i+ 1)Λ(a, θ̂) +
i−1∑
l=1

Λ(X(l), θ̂) = Ej,

then

âj = Λ−1

(
[Ej −

i−1∑
l=1

Λ(X(l), θ̂)]/(n− i+ 1), θ̂

)
, âk = max(X(n), τ),

where Λ−1 is the inverse of the cumulative hazard function Λ.

Reanalysis of the Arm A data for the Head-and-Neck can-

cer study

The survival times (in days) for patients of Arm A of the Head-and-Neck cancer trial (table 1)
were first considered by Efron (1988) for 51 head-and-neck cancer patients. (*: censoring).

By transforming the data into months (1 month=30.438 days), Efron (1988) estimated the
hazard function for these data by showing that it is unimodal by using the standard logistic re-
gression techniques. Mudholkar et al. (1996) showed that the exponentiated Weibull distribution
provide an acceptable fit to these data. Nikulin and Haghighi (2004) showed by using the Akritas
test that the generalized Weibull distribution gives also a good fit for these data.

For the IG distribution, the MLE’s θ̂ is

θ̂ = (µ̂, λ̂)T = (456.8747, 3.8889)T , log-vrais = −5.52968.

For a number of classes k = 5, the points âj are

â1 = 1.689404, â2 = 2.922234, â3 = 4.755015, â4 = 9.441967.

For a significance level α = 0.05, the critical value χ2
k = 11.07050. The observed value of

RRN statistic is Y 2
n = 9.823176 hence we accept the hypothesis H0. It means the IG distribution

gives also a good fit for these data.
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Abstract

Problems of testing statistical goodness-of-fit hypotheses for censored data are considered
in the paper. The application of the classical Kolmogorov, Cramer-von Mises-Smirnov and
Anderson-Darling tests for a complete sample obtained from original censored sample by
using randomization is proposed. By means of computer simulation methods we have inves-
tigated the test statistic distributions and the power of considered tests for close competing
hypotheses when testing simple and composite hypotheses.

Keywords: censored data, goodness-of-fit testing, Kolmogorov test, Cramer-von Mises-
Smirnov test, Anderson-Darling test, randomization.

Introduction

In the survival and reliability analysis lifetimes are typically right censored. A lot of papers
describing various approaches for testing goodness-of-fit for censored samples have been published
recently. In [1], [3] and [10] modifications of the classical Kolmogorov, Cramer-von Mises-Smirnov
and Anderson-Darling tests are given. But these modifications cannot be applied in the case of
randomly censored samples. The classical tests above can be modified by using the Kaplan-
Meier estimate instead of the empirical distribution function in the formulas of statistics (see, for
example, [4], [5], [9], [11]).

The limiting distributions of test statistics based on the Kaplan-Meier estimate are unknown,
because they considerably depend on the type of censoring and censoring degree [8]. In the case
of randomly censored samples the distributions of considering test statistics also depend on the
distribution of censoring times, which in turn is usually unknown in practice. It is necessary to
simulate statistic distribution for testing goodness-of-fit by using modified nonparametric tests.
The process of modeling statistic distribution requires time and computational costs and it is not
possible without special software. This is a significant disadvantage of the modified nonparametric
goodness-of-fit tests for censored samples.

A good possibility was shown in [7] to use the Smirnov transformation with randomization
for the correct application of classical goodness-of-fit tests for grouped and censored data in case
of testing a simple hypothesis. In this paper we develop this idea for testing simple and composite
hypotheses by randomly censored samples.
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1 Nonparametric Goodness-of-Fit Tests

In this paper we consider testing simple goodness-of-fit hypotheses H0 : F = F0 and composite
hypotheses which can be presented as H0 : F ∈ {F0(·; θ), θ ∈ Θ}.

One approach for testing these hypotheses by complete samples is the application of the
classical nonparametric tests: Kolmogorov, Cramer-von Mises-Smirnov and Anderson-Darling
tests. The Kolmogorov test statistic

Dn = sup
−∞<t<∞

|Fn(t)− F0(t; θ)| ,

where Fn(t) is the empirical distribution function and n is the sample size. In testing hypotheses,
the statistic is usually used with Bolshev’s correction [2] of the form

SK =
6nDn + 1

6
√
n

, (1)

where Dn = max (D+
n , D

−
n ), D+

n = max
1≤i≤n

{
i
n
− F0 (ti; θ)

}
, D−

n = max
1≤i≤n

{
F0 (ti; θ)− i−1

n

}
.

The Cramer-von Mises-Smirnov test statistic

Sω =

∞∫
−∞

(Fn(t)− F0(t; θ))
2 dF0(t; θ) (2)

can be calculated by the following formula

Sω =
1

12n
+

n∑
i=1

{
F0 (ti; θ)−

2i− 1

2n

}2

.

The Anderson-Darling test statistic

SΩ =

∞∫
−∞

(Fn(t)− F0(t; θ))
2 dF0(t; θ)

F0(t; θ)(1− F0(t; θ))
(3)

can be calculated as follows

SΩ = −n− 2
n∑
i=1

{
2i− 1

2n
lnF0 (ti; θ) +

(
1− 2i− 1

2n

)
ln (1− F0 (ti; θ))

}
.

Let us denote the distribution of a test statistic under hypothesisH0 asG(S |H0 ). In the case
of testing simple hypotheses the distributions G(S |H0 ) of considering statistics do not depend on
the hypothetical distribution, in the limit statistic SK belongs to the Kolmogorov distribution,
SΩ and Sω belong to the a1 and the a2 distributions, respectively [2]. For composite hypotheses
nonparametric test statistic distributions G(S |H0 ) are affected by a number of factors: the
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form of tested lifetime distribution F0(t; θ), the type and the number of estimated parameters,
the method of parameter estimation and other factors. Approximations of limiting statistic
distributions for testing various composite hypotheses when using maximum likelihood estimates
of unknown parameters have been proposed in [6]. In this paper we denote these approximations
as G̃ (S).

2 Censored Sample Transformation to Complete One by

Using Randomization

In reliability or survival studies the observed data are usually presented as (X1, δ1), . . . , (Xn, δn),
Xi = min(Ti, Ci) is the observation value, Ti is an observed lifetime and Ci is a censoring time.
The identifier δi = 1 if Xi = Ti and δi = 0 if Xi = Ci. Let lifetime T and censoring time C
be independent random variables from the distribution functions F (t) and FC(t), respectively.
All lifetimes and censoring times are assumed mutually independent. Then censoring is called
independent random censoring.

We propose transforming the original censored sample to a complete sample by using ran-
domization. Randomization makes it possible to use the classical Kolmogorov, Cramer-von Mises-
Smirnov and Anderson-Darling tests for censored samples.

First, let us consider the simple hypothesis. That is, F0 is completely known. For each
censored random variable, that is for Xi with δi = 0 a value T̂i is generated by T̂i = F−1

0 (ξi), where
ξi ∼ U [F0(Ci), 1]. The corresponding values of censored observations in the original sample are
replaced by generated values. Hereby, we obtained a transformed complete sample X̂1, X̂2, . . . , X̂n,
in which X̂i = Xi if i-th observation is complete (δi = 1) and X̂i = T̂i if one is censored (δi = 0).

2.1 Testing Simple Hypotheses

In the case of testing simple hypotheses by nonparametric goodness-of-fit tests based on trans-
formed samples the known parameter values θ are used in randomization. The values X̂i in
transformed sample are distributed as follows
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P (X̂i ≤ t) = P (X̂i ≤ t|Ti ≤ Ci)P (Ti ≤ Ci) + P (X̂i ≤ t|Ti > Ci)P (Ti > Ci) =

= P (Ti ≤ t|Ti ≤ Ci)P (Ti ≤ Ci) + P (T̂i ≤ t|Ti > Ci)P (Ti > Ci) =

= P (Ti ≤ t, Ti ≤ Ci) + P (T̂i ≤ t, Ti > Ci) =

=

∫
P (x ≤ t, x ≤ Ci)dF (x) +

∫
P (T̂i ≤ t, Ti > c|Ci = c)dFC(c) =

=

∫ t

0

(1− FC(x−))dF (x) +

∫
P (ξi ≤ F (t), Ti > c|Ci = c)dFC(c) =

=

∫ t

0

(1− FC(x−))dF (x) +

∫
P (ξi ≤ F (t)|Ti > c,Ci = c)P (Ti > c|Ci = c)dFC(c) =

=

∫ t

0

(1− FC(x−))dF (x) +

∫ t

0

F (t)− F (c)

1− F (c)
(1− F (c))dFC(c) =

=

∫ t

0

(1− FC(x−))dF (x) +

∫ t

0

(F (t)− F (c))dFC(c) = F (t).

Therefore, under the simple null hypothesis the distribution the completed sample is F0.
So, the algorithm of testing simple hypotheses can be written as follows:

1. Specify the significance level α;

2. Transform the original censored sample (X1, δ1), . . . , (Xn, δn) to complete sample
X̂1, X̂2, . . . , X̂n by using randomization;

3. Calculate the test statistic S∗ ((1), (2) or (3)) by the obtained sample and the theoretical
distribution F0;

4. Compute the p-value: p = 1−G(S∗|H0);

5. The hypothesis H0 is rejected if obtained p-value is less then α.

2.2 Testing Composite Hypotheses

In the case of testing composite hypotheses maximum likelihood estimates θ̂ obtained by the
original censored sample are used in the randomization. We define

T̂i = F−1(ξi, θ̂) with ξi ∼ U
[
F (Ci; θ̂), 1

]
.

Hereupon, the distribution of simulated values X̂i can differ from the “true” distribution of Xi.
After replacing censored observations (Xi = Ci, δi = 0) by generated observations with values
T̂i it is necessary to estimate unknown parameters θ again. The algorithm of testing composite
hypotheses by using randomization can be written as follows
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1. Specify the significance level α;

2. Calculate the maximum likelihood estimates θ̂ by the original sample (X1, δ1), . . . , (Xn, δn);

3. Transform the sample (X1, δ1), . . . , (Xn, δn) to complete sample X̂1, X̂2, . . . , X̂n by using
randomization;

4. Calculate the maximum likelihood estimates θ̃ by the transformed sample X̂1, X̂2, . . . , X̂n;

5. Calculate the test statistic S∗ ((1), (2) or (3)) by the obtained sample and the theoretical
distribution F0(·; θ̃);

6. Compute the p-value: p = 1−G(S∗|H0);

7. The hypothesis H0 is rejected if obtained p-value is less then α.

Transformation may lead to deviations of statistic distributions from limiting distributions.
It is necessary to investigate test statistic distributions G(S |H0 ) obtained by using transformed
samples.

3 Simulation Results

We simulate empirical statistic distributions of Kolmogorov, Cramer-von Mises-Smirnov and
Anderson-Darling tests when testing simple and composite goodness-of-fit hypotheses for var-
ious sample sizes and distributions of censoring times FC (t).

3.1 Testing Simple Hypotheses

By computer simulation methods we have shown that test statistic distributions based on the
transformed samples when testing simple hypotheses do not depend on the distribution FC(t) and
coincide with the corresponding limiting distribution (for example, the Kolmogorov distribution
for Kolmogorov’s test statistic).

Figure 1 illustrates the empirical distribution of the Kolmogorov test statistic obtained
by completed samples of the size n = 300, when testing the simple hypothesis H0: Weibull

distribution F0 (x; θ) = 1 − exp

(
−
(
x−θ1
θ2

)θ3)
with parameter values θ1 = 0, θ2 = 2, θ3 = 2,

and the Kolmogorov distribution. Completed samples were obtained from censored samples
in which censoring times are distributed from the Weibull distribution with parameter values
θ1 = 0, θ2 = 1.87, θ3 = 3.74. These values of parameters were taken so that the censoring degree
would be approximately equal to 50%. The number of simulated samples is N = 10000.

As you can see from Figure 1 the empirical distribution of the Kolmogorov statistic by
completed samples practically coincide with the Kolmogorov distribution. Similar results were
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Figure 1: Kolmogorov’s statistic distribution

obtained for the Cramer-von Mises-Smirnov and Anderson-Darling tests. This fact confirms the
result given in Section 2.1 that under H0 the distribution of completed samples is F0.

Let us compare the power of goodness-of-fit tests by using randomization for different dis-
tributions of censoring times FC(t) at the example of the following pair of close simple competing
hypotheses.

H0: Weibull distribution F0 (x; θ) = 1− exp

(
−
(
x−θ1
θ2

)θ3)
with parameter values

θ1 = 0, θ2 = 2, θ3 = 2;

H1: gamma-distribution F0 (x; θ) = 1
Γ(θ3)

Γ
(
x−θ1
θ2
, θ3

)
with parameter values

θ1 = 0, θ2 = 0.5577, θ3 = 3.1215.
In Table 1 there are the estimates of the power for considered goodness-of-fit tests applied

to samples, which were obtained by randomization from censored samples with FC(t) from

• Beta I distribution (the corresponding rows are denoted as “B”),

• Weibull distribution (the corresponding rows are denoted as “W”).

The significance level α = 0.1, the sample size n = 200.
As it is seen from the table if the censoring degree is not large (≤ 40%) there are no signif-

icant losses in the power of nonparametric goodness-of-fit tests by completed samples comparing
with the power of tests by originally uncensored samples. When testing simple hypotheses the
distribution of censoring times does not influence the power of tests in study.

3.2 Testing Composite Hypotheses

Figure 2 illustrates the dependence of Kolmogorov’s statistic distributions on the censoring dis-
tribution FC(t) in case of testing composite hypotheses. There are two empirical distributions
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Table 1: Test Power for Simple Hypotheses

Censoring Degree 0% 10% 20% 30% 40% 50% 60% 70% 80%
Kolmogorov B 0.35 0.33 0.30 0.29 0.28 0.25 0.21 0.16 0.15

Test W 0.33 0.33 0.33 0.31 0.27 0.21 0.17 0.12
Cramer-von B 0.35 0.34 0.32 0.28 0.28 0.28 0.25 0.21 0.19

Mises-Smirnov Test W 0.34 0.33 0.33 0.32 0.28 0.22 0.17 0.12
Anderson-Darling B 0.35 0.34 0.33 0.29 0.30 0.29 0.23 0.21 0.19

Test W 0.32 0.32 0.32 0.32 0.27 0.22 0.18 0.12

of the statistic obtained by N = 10000 completed samples of the size n = 300. In the first case
original censored samples had the Weibull distribution of censoring times and in the second one
FC(t) is the Beta I distribution. The censoring degree is about 50%.

Figure 2: Kolmogorov’s statistic distribution for various censoring distributions

As it is seen from the figure, the empirical test statistic distribution in the case of Weibull
censoring distribution deviates from the approximation of limiting distribution G̃(SK) (gamma-
distribution with parameters θ1 = 0.2598, θ2 = 0.0563, θ3 = 6.6012, see [6]) more than the
statistic distribution of the same test in the case of Beta I censoring distribution. The difference
between these two cases is the following. For the distribution of lifetimes F (t) from the Weibull
distribution with parameters θ1 = 0, θ2 = 2, θ3 = 2: if the censoring distribution is the Beta I
distribution, then censored observation values are “uniformly distributed” in a variational series.
If FC(t) is the Weibull distribution then the censored observation values are focused at the
end of variational series, and in this case statistic distributions of classical tests applied for
completed samples can be far from the G̃(SK). Thus, the closeness of statistic distributions using
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randomization to the corresponding approximation strongly depends on the location of censored
observations in the variational series of the original sample.

In Figure 3 there are the empirical distributions of Kolmogorov’s statistic obtained by
samples which completed from censored samples with various censoring degrees. The size of
original samples is n = 300. The number of simulated samples is N = 10000.

Figure 3: Kolmogorov’s statistic distribution for various censoring degrees

It may be noticed that statistic distributions depend on censoring degrees. When the cen-
soring degree is less than 30%, statistic distributions practically coincide with approximation of
the limiting distribution G̃(SK) obtained by testing composite hypotheses for complete samples
[6]. When the censoring degree increases, statistic distributions are on the left side from approxi-
mation. A similar dependence of statistic distributions is observed for Cramer-von Mises-Smirnov
and Anderson-Darling tests by using the randomization.

Let us compare the power of goodness-of-fit tests by using randomization for different dis-
tributions of censoring times FC(t) at the example of the following pair of close competing hy-
potheses - H0: Weibull distribution and H1: gamma-distribution.

In Table 2 there are the estimates of the power for considered goodness-of-fit tests applied
to transformed samples from censored samples with FC(t) from Beta I distribution (“B”) and
Weibull distribution (“W”). The significance level α = 0.1, the sample size n = 200.

As it is seen from Table 2 when testing the composite hypothesis the power of considered
tests is influenced by the distribution of censoring times FC(t): in the case when censored ob-
servations are “uniformly distributed” in a variational series the tests power is larger than when
censored observations are located at the end of the empirical distributions of an original censored
sample.

Comparing results presented in Tables 1 and 2 it may be noticed that the losses in the
power (in comparison with the test power for originally uncensored samples) of nonparametric
goodness-of-fit tests by completed samples for composite hypothesis are larger than in the case
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Table 2: Test Power for Composite Hypotheses

Censoring Degree 0% 10% 20% 30% 40% 50% 60% 70% 80%
Kolmogorov B 0.42 0.37 0.33 0.28 0.24 0.20 0.16 0.13 0.10

Test W 0.33 0.27 0.21 0.17 0.14 0.10 0.09 0.08
Cramer-von B 0.53 0.45 0.39 0.32 0.28 0.22 0.17 0.13 0.10

Mises-Smirnov Test W 0.39 0.31 0.24 0.18 0.14 0.10 0.09 0.08
Anderson-Darling B 0.59 0.49 0.44 0.35 0.29 0.23 0.18 0.13 0.10

Test W 0.41 0.32 0.24 0.18 0.13 0.10 0.09 0.08

of testing simple hypothesis.

Conclusions

• When testing simple goodness-of-fit hypotheses the Kolmogorov, Cramer-von Mises-Smirnov
and Anderson-Darling test statistic distributions, obtained by transformed samples, agree
with the limiting Kolmogorov, a1 and a2 distributions, respectively.

• When testing composite goodness-of-fit hypotheses the statistic distributions practically do
not differ from corresponding approximations of the limiting distributions, if the censoring
degree is small (< 30%).

• If the censoring degree is small there are no significant losses in the power of nonparametric
goodness-of-fit tests by using randomization comparing with the power tests by complete
samples.

So, the method of testing goodness-of-fit for censored samples by using randomization,
unlike most others ways for testing goodness-of-fit for censored samples, does not require large
computational costs. For the reason stated above, if the censoring degree is not large (< 30%)
the application of classical Kolmogorov, Cramer-von Mises-Smirnov and Anderson-Darling tests
by transformed samples is the easy and effective solution of testing goodness-of-fit for censored
samples.
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Abstract

In tasks of modern biology the quantity of features often on orders exceeds quantity
of objects. For the decision of such tasks the method Data Mining based on use the new
measure of similarity between objects in the form of Function of Rival Similarity (FRiS) is
offered. On this basis the methods of a quantitative estimation of compactness of patterns,
of a construction decision rules and of feature selection are developed. High efficiency of
methods is illustrated by results of the decision of nine tasks of recognition of diseases on
microarray dataset.

Keywords: feature selection, FRiS-function, compactness.

Introduction

In a modern stream of Data Mining tasks often there are tasks, in which the quantity of attributes
N on orders exceeds quantity of objects M . It is especially characteristic for biological and
biomedical research, using the information about the expression levels of genes. If N is equal
tens thousand, and the quantity of relevant attributes needed to be selected n - to several tens,
its exact decision connected with search of all combinations from N on n, is impossible. For
this reason there are tens of algorithms which for polynomial time provide the decisions to some
extent close to optimum. The big variety of these algorithms generates a task of a choice of the
best algorithm of the feature selection.

The first stage of elimination of weak methods can be made by the frequency of their use
in scientific publications. This approach is described in work [6]. Its authors have taken the
trouble selection of most often used methods and have lead huge work on their comparative
test. The list of applicants includes 10 following methods: significance analysis of microarrays,
analysis of variance (ANOVA), empirical Bayes t-statistic, template matching, maxT, between
group analysis, area under the receiver operating characteristic (ROC) curve, the Welch t-statistic,
fold change and rank products.

These methods were applied to 9 different two class microarray datasets. These datasets in-
clude the well-known publicly available colon [1], lymphoma [10] and leukemia datasets [3, 5]. For
recognition a four decision rules were used: support vector machines (SVM) [12], between group
analysis (BGA) [4], naive Bayes classification (NBC) [9], and k-nearest neighbours (kNN) [7].
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Each feature selection method was applied to training datasets and the most highly ranked
genes were selected to generate gene lists of length between 2 and 100 genes. The ability of
these gene lists to form successful classifiers was evaluated. To limit sampling bias during cross-
validation (CV) a 50% sample data were randomly split into two equal groups 10 times. The
first group was used as a training dataset for feature selection and classifier training.In training
and test cross-validation, all four classification methods were applied. The prediction success of
each model was assessed using the blind test dataset, which were not used for feature selection
of gene lists or training of classifiers. Quality of the decision of each task was estimated by two
characteristics: the percentage accuracy scores and the RCI scores [11].

We used the results of article [6] for estimation the quality of our algorithm of the feature
selection FRiS-GRAD in a combination with decision rule FRiS-Stolp.

In sections 2 and 3 we shall describe FRiS and its use for construction of a decision rule and
for estimation of the informativeness of attributes. In section 4 the feature selection algorithm is
presented. In section 5 the decision of 9 tasks by these methods are described.

1 Function of Rival Similarity

Usually the distance and the similarity in a metric space are considered as absolute categories.
Actually, if used standard units are known (meters, micrometers, etc) then the distance is mea-
sured in absolute scale. Nevertheless, the similarity measure used in pattern recognition cannot
be measured in such way. When recognizing membership of the object z to one of two patterns A
or B it is important to know the distance to the pattern A as well as the distance to the compet-
itive pattern B and to compare these distances with each other. It is means that similarity is not
an absolute but relative category in terms of pattern recognition. answer the question ”how
much is an object z similar to an object a?”, we need to know the answer to another question:
”in comparison with what?”

All statistical recognition algorithms consider the competition between classes. In terms
of the method of ”k nearest neighbors” (kNN), a new object z is recognized as an object of the
pattern A if the distance r(z, A) to this pattern is less than the distance r(z, B) to the nearest
competitive pattern B. Similarity in this algorithm is estimated in scale of order.

We propose to use the following form of the Function of Rival Similarity (FRiS) of an object
z with an object a in competition with an object b [13]:

F (z, a|b) = [R(z, b)−R(z, a)]/[R(z, a) +R(z, b)]

The measure of rival similarity has values in the range of −1 and 1. If R(z, a) = R(z, b),
then F (z, b|a) = 0.
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2 Compactness and informativeness

Practically all recognition algorithms are based on the application of the compactness hypothesis
[2]. Patterns are called simple or compact if the boundaries between them are ”not very uncon-
ventional”. We would like to obtain quantitative measure of compactness, and its value should
be directly concerned with an expected reliability of recognition.

Each i-th object, i = 1, 2, . . . ,MA brings contribution Fi to compactness of the pattern A.
This contribution depends on similarity to it the other objects of the pattern A, and differences
from it the objects of the competing pattern B. The value Fi is defined as follows.

Step 1. For an arbitrary object j, j 6= i, of the pattern A we find the distance R(j, i) = r1 to
the object i and the distance R(j, b) = r2 to the nearest object b of the pattern B (see Figure 1).
Then we find the value of the similarity according to these distances: F (j, i|b) = (r2−r1)/(r1+r2).
The value F (j, i|b) should be added to the counter C1

i .
Step 2. Step 1 is repeated for all objects of the pattern A. Resulting value of the counter

C1
i represents the sum of similarities of the all objects of A with object i. If we divide this sum

by MA, and we obtain the estimate F 1
i of ”defensive” capability of object i: F 1

i = C1
i /MA.

Figure 1: The definition of contribution Fi.

Step 3. Now we need to check the tolerance F 2
i of the object i relative to the objects of

the pattern B. For this purpose we estimate the similarity of all objects q, q = 1, . . . ,MB, of the
pattern B with the object i in competition with the object s, the nearest neighbor of the object
q, and add this value to the counter C2

i .
Step 4. Step 3 is repeated for all objects of the pattern B. Then we obtain the estimate F 2

i

of tolerance of the object i relative to the objects of the patter B: F 2
i = C2

i /MB.
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Step 5. The contribution Fi of the object i to the compactness of the pattern A is Fi =
(F 1

i + F 2
i )/2.

Step 6. Repeating Steps 1-5 we obtain the estimates of the contribution for all objects of
the pattern A. Summing Fi and dividing their sum by MA, we obtain the mean value GA, which
characterizes the compactness of the pattern A:

GA = (1/MA)

MA∑
i=1

Fi.

Step 7. The same way we obtain values GB of the pattern B.
This way we can estimate the compactness Gj, j = 1, . . . , K for all K patterns in the given

feature space and, therefore, informativeness of this space can be obtained by using geometrical
averaging of estimates of Gj.

G = K

√√√√ K∏
j=1

Gj.

The value of compactness increases with the increasing of the density of objects within
patterns and the distance between patterns. The measure suggested by Fisher for estimating
informativeness of features has the same property. It is rather natural to use the compactness as
criterion of informativeness of the feature space. Experiments with this criterion demonstrated
its great advantage over the widely used minimum error criterion when some test dataset is
recognized in a mode Cross-Validation.

3 Algorithm FRiS-GRAD

To select most informative attribute subsystem we use main ideas of basic greedy approaches
(forward and backward searches) [8]. Forward selection, which is used in the algorithm Addition
(Ad), tries to increase attribute subsystem quality as much as possible for each inclusion of
attributes, and backward elimination, which is used in the algorithm Deletion (Del), tries to
achieve this for each deletion of attributes. In the algorithm AdDel the next combination of these
two approaches is used: at first, n1 informative attributes are selected by method Ad. Then n2

worst of them (n2 < n1) are eliminated by method Del. Such consecution of actions (Ad and Del)
repeats until the quality of selected attributes is maximum. On first steps while the number of
attributes increases the quality increases too. But at some moment when all informative attributes
have already taken in the selected subsystem, the quality becomes decreasing. Inflection on the
curve of the quality allows specifying the optimum number of attributes. This is very important
property of the algorithm AdDel.

In the algorithm GRAD [14] we add and eliminate ”granules” (sets consisting of several
attributes) instead of single attributes. To find the best subsystem of attributes the algorithm
FRiS-GRAD uses procedure of directed search, offered in the algorithm AdDel. On each step

190



Applied Methods of Statistical Analysis. Simulations and Statistical Inference

some variant of attribute subsystem is formed and then the algorithm FRIS-Compactness is run
to estimate the informativeness of this variant. As a result the algorithm FRiS-GRAD [13]
selects the most informative attribute subspace, which dimension is determined automatically.
For this subspace the algorithm FRiS-Stolp constructs the rule for classifying of new objects in
this subspace.

4 The solution of the nine medical tasks

From many variants of the decision of the nine tasks listing in introduction, for comparison a
variant was chosen in which the training set was done on a randomly chosen 50% of the objects.
In the control, the other 50% were shown. We have found that ten repetitions of the decision of
each task are not enough for a steady estimate of the results. We did a 30-fold recurrence of the
random division of the sample between training and control. The quantity of selected attributes n
was not set in advance, as our method defines the optimal value for n automatically. For different
tasks, subsets of informative attributes in range from 10 up to 25 have been chosen. For this
reason for comparison of our method with 10 methods the results, received in [6] with use of 20
best attributes were used.

Each of the nine tasks in [6] was solved by the ten methods for feature selection in a com-
bination with four types of decision rules. We chose the best (record results) from them, and our
results were compared with these results. The results of our experiments are presented in Table
1.

Table 1: Results of experiments

Tasks ALL Leuk Prost DLBCL Colon ALL4 Myel ALL3 ALL2
N 12625 7129 12625 7129 2000 12625 12625 12625 12625

m1/m2 95/33 47/25 50/53 58/19 22/40 26/67 36/137 65/35 24/91
Record 90.00 95.85 90.19 93.00 88.6 82.06 79.4 59.58 78.23

0.823 0.678 0.565 0.518 0.402 0.278 0.062 0.031 0.02
FRiS 90.00 90.00 93.13 89.79 89.52 83.87 81.50 73.82 80.75

0.823 0.704 0.647 0.342 0.466 0.225 0.047 0.112 0.01
Rating 1 1 1 4 1 1 1 1 1

Here N is the quantity of attributes in the initial dataset, m1 and m2 are the numbers of
objects in the first and second classes, respectively. In the line ’Records’ the best of all results
from [6] are presented, and in the line ’FRiS’ the results received by a FRiS-method are presented.
The first subrow reflects the percentage accuracy scores, the second, the RCI scores [11]. The
place of FRiS-GRAD among the competitors according to their accuracy is specified in the line
’Rating’. Average value of accuracy of the ’Record’ algorithms over nine tasks is 85.21, for the
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FRiS-GRAD algorithm is 88, 04. Average value of RCI score of the ’Record’ algorithms is 0.3752,
for the FRiS-GRAD algorithm is 0, 3751.

For the given tasks, for each method it is possible to choose the best result in combination
with all four decision rules. By these results it is possible to define the order of the methods. By
combining the ranks of a method in each of the nine tasks, one obtains the general rating of that
method in this competition: the lower the sum of the ranks, the higher the rating. The results of
this calculation are shown in Table 2.

Table 2: Ratings of methods

Feature selection method Rating
Fold change 47

Between group analysis 43
Analysis of variance (ANOVA) 43

Significance analysis of microarrays 42
Rank products 42

Welch t-statistic 39
Template matching 38

Area under the ROC curve 37
AmaxT 37

Empirical Bayes t-statistic 32
FRiS-GRAD 12

For each of the four decision rules used in combination with ten methods of feature selection
we find out the best results (the accuracy in percentages) on all nine tasks. Taking in consideration
the results received by method FRiS-GRAD as well, on each task we define a place (rank) occupied
by each of the five methods. For the first place we add the penalty 1, for last, i.e., the fifth place,
the penalty 5. As a result it is possible to obtain ratings of five decision rules (see Table 3):

Table 3: Ratings of methods

Decision rules Rating
Between group analysis (BGA) 35
K-nearest neighbours (kNN) 32

Naive bayes classification (NBC) 25
Support vector machines (SVM) 19

FRiS-GRAD 12
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From these results it is seen that the method of feature selection and the decision rules
construction based on FRiS-function has high competitive qualities.

The computing time of the algorithm is equal to O((N + n3/6)M3) , where N is the initial
number of attributes, n << N is the number of attributes of which granules are composed, and
M is the number of objects of the training sample. The computing time depends only slightly on
the initial number of attributes N and increases rapidly with an increasing number of training
objects M . In the considered tasks, M was insignificant and for constructing of a decision rules
and 30 cycles of CV the computer Pentium has spent on a task ”Colon” 40 seconds and on a task
”Myeloma” 10 minutes.

5 Conclusions

The advantage of FRiS-approach in comparison to ten methods and four decision rules can be
explained by the several reasons.

1. All 10 methods consider the attributes to be independent. To select such informative
combinations of attributes, it is necessary to analyse not separate attributes, but their combi-
nations, which demands the decision of difficult combinatory problem. Unlike FRiS-GRAD, the
methods presented in [6] are not oriented to solve such kind problem.

2. As for almost all methods of recognition, these ten methods for estimation of the infor-
mativeness of attributes use the quantity of the errors received in the process of Cross-Validation
(CV). In Section 3 it was noted, that the criterion of informativeness, based on CV, is essentially
inferior to a criterion such as that of FRiS-Compactness.

The main reason for the specified advantages consists in the transition from an absolute
measure of similarity to the relative measure considering a competitive situation in immediate
proximity to objects which with the similarity is to be estimated. Transition from absolutism to
relativism allows of improving essentially all algorithms of data mining.
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Abstract

The paper discusses the problem of parametric and non-parametric stochastic approxima-
tions according to the experimental information. In this respect the identification problem
in a “wide” sense and working sample generation from the initial training one are consid-
ered. Some modifications of the known non-parametric estimations of the regression curve
according to the observations are introduced; their use in adaptive identification and control
problems in conditions of non-parametric uncertainty is analyzed. The results of numerical
study are presented.

Introduction

The identification problem is one of the most important in the control theory and other fields
united by a capacious term – cybernetics. The main attention is paid to the identification problem
in a “wide” sense along with a well-developed identification theory in a “narrow” sense. Earlier
[1, 2] discrete-continuous processes and identification ways of stochastic systems were described.
They are closely connected with the existed a priory information.

Moreover we are interested first of all in identification in conditions of non-parametric un-
certainty as well as in a case when a priori information about the investigated process corresponds
simultaneously to the either non-parametric [3] or parametric processes.

1 Levels of a priory information

The availability of this or that volume of a priori information about the investigated process
determines a mathematical statement of the identification and control problems and in its turn
it assumes the approach to the problem solution. Let’s give the types of a priori information and
corresponding control systems:

• Systems with parametric uncertainty. The parametric level of a prior information assumes
a parametric structure of the model and some characteristics of random noise. Zero math-
ematical expectation and bounded dispersion are typical for them. To estimate parameters
different iterated probability procedures are usually used. In these conditions the problem
of identification in narrow sense [3] is solved as in all previous cases;
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• Systems with non-parametric uncertainty. Non-parametric level of a prior information
doesn’t assume the model existence but it needs some information of the qualitative char-
acter about the process, e.g. uniqueness or a lack of uniqueness of its characteristics,
linearity for dynamic processes or the character of its non-linearity. To solve the identifica-
tion problem at this level of a priori information (identification in a wide sense) methods of
non-parametric statistics are used;

• Systems with parametric or non-parametric uncertainty. The identification problems of mul-
tiply connected systems in conditions when quantity of the initial information doesn’t cor-
respond to any type mentioned above. For example, one can derive parametric correlations
for the particular features of the multiply connected process on the basis of physicochemical
regularities, energy, mass conservation law, balance correlation etc., but not for others. So,
we have the situation when the identification and control problem is stated in conditions of
either parametric or non-parametric a priori information.

2 Statement of the problem

Having passed a standard scheme illustrating the identification problem we shall give a general
one. In fig. 1 the following designations are taken: x(t) – vector output variable of the process,

Figure 1: General scheme of the multivariate stochastic process

u(t) – vector control influence, µ(t) – vector input variable of the process, controlled, but not
controlling, ξ(t) – vector stochastic influence, t – continuous time, Hµ, Hu, HE, Hω – relation
channels, corresponding to different variables included control means, devices to measure the
observed variables, µt, ut, xt – denote a measure µ(t),u(t),x(t) at discrete time. ωi(t) : i =
1, 2, ..., k – variables of the process controlled as well according to the object length.

196



Applied Methods of Statistical Analysis. Simulations and Statistical Inference

Let’s pay attention to the significant difference of output variables z(t), q(t) and x(t) pre-
sented in fig. 1. The output variable x(t) is controlled by time intervals ∆t, q(t) are controlled by
essentially larger time intervals ∆T , z by T (T >> ∆T >> ∆t). From a practical point of view
variable control z(t) often is of the most importance for the investigated process. For example
output variables x(t) are controlled with various inductive, capacitate and other data units, q(t)
on the basis of laboratory analysis, and z(t) – as a result of prolonged chemical analysis, physical
and mechanical testing and so on. It stipulates a great difference the control discreteness of out-
put variables x(t) nd z(t). The peculiarity is the measured output object variables will be known
only in certain time intervals. It explains delay in measurements of the output object variables
x(t), q(t) and z(t), ∆t, ∆T and T – discreteness the changes occur.

In this case output variables depend on input variables in the following way:

E(t) = (u(t− τ), µ(t− τ), ξ(t), t), (1)

where τ – delay at different process channels, but we do not give any indexes due to the simplicity.
The detailed enough analysis of the similar process was carried out in [1, 2]. The concrete

identification problems will be given below pay attention to the differences in each examined
case. It is evident from fig. 1 that output object variables x(t), q(t), z(t) of the object depend
on input u(t), µ(t), ξ(t). The received ω(t) present additional information about the investigated
process passing. This information is purposeful to be used at the model building. So identification
problem is to build models that can be done generally as follows:

x̂(t) = Â(u(t− τ), µ(t− τ), ω(t− τ)), (2)

q̂(t) = Â(u(t− τ), µ(t− τ), ω(t− τ), x̂(t)), (3)

ẑ(t) = Â(u(t− τ), µ(t− τ), ω(t− τ), x̂(t), q̂(t)). (4)

The variety of identification problems could be stipulated by different volume of a priori informa-
tion, types of processes, and delay in the object and connection channel.

3 H -models of non-inertia objects

Let’s make the following assumption: an object presented in fig. 1, a non-inertia one, ω(t) =
(ω

′
(t), ..., ωk(t)), q(t), z(t) are absent with their measure channels. In this case the object is

described by dependency
E(t) = (u(t), µ(t), ξ(t), t). (5)

The example demonstrated a model of such an object with delay is as follows:

x̂(t) = Â(u(t− τ), µ(t− τ), α), (6)

where Â a chosen function class, α – a parameter vector, τ – delay. Delay in different connection
channels will be surely different, but we shall not mark it in formulas not to make them too
complex with indexes. Let’s note that all the delays in different connection channels are known.
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Let’s consider one more process that occurs in practice [7]. The essence of the process is
that it has a tube form due to the practically always known stochastic dependency. Let u ∈ R1,
µ ∈ R1, x ∈ R1 (see fig. 2). The intervals of changes (u, µ, x) ∈ R3 are always known from
practical point of view. Without losing generality let’s point out in R3 a unit cube. The really
proceeding process belongs to the subfield ΩH(u, µ, x) ⊂ Ω(u, µ, x), which is always unknown.
So, u ∈ [0; 1], µ ∈ [0; 1], x ∈ [0; 1] and a triad is (u, µ, x) ∈ ΩH(u, µ, x). It is clear that not every

Figure 2: Process proceeding in a tube

of a triad (u, µ, x), get while the experiment or estimated in a real process will belong to the
unit cube Ω(u, µ, x). It is necessary to note that in the identification theory domains Ω(u, µ, x),
Ω(u, µ), Ω(u), Ω(µ), Ω(x) are always known, and a domain ΩH(u, µ, x) is always unknown. In
the case of stochastic independency of input variables of the process, ΩH(u, µ, x) coincide with
Ω(u, µ, x), i.e. ΩH(u, µ, x) = Ω(u, µ, x). If an object is dynamic, the variables of the phase space
are stochastically dependent for sure. It of course leaves its mark on the peculiarity of such
processes modeling. We will take them further.

A parametric model of the static process is presented in fig. 1 and it could be done as follows
[5]:

x̂(u, µ) = F (u, µ, α), (7)
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where F (·) – a function, α – a parameter vector, e.g.

x̂(u, µ) =
N∑
i=1

αiϕi(u, µ), (8)

where ϕi, i = 1, N – a system of linearly independent functions (u, µ) ∈ Ω(u, µ), (u, µ, x) ∈
Ω(u, µ, x). In the case of stochastic dependency a vector component u ∈ Rk, µ ∈ Rn the investi-
gated process has a “tube” structure [7]. Then a parametric model must be taken as follows:

x̂(u, µ) = F (u, µ, α)I(u, µ), (9)

where I(u, µ) an indicator, such that

I(u, µ) =

{
1, if (u, µ) ∈ ΩH(u, µ);

0, if (u, µ) /∈ ΩH(u, µ).

It’s evident that if ΩH(u, µ) = Ω(u, µ), then a model (9) coincides with a generally excepted one
(7) or with (8). As the estimation of the indicator function I(u, µ) statistics [7] could be taken.

I(u, µ) =

 1, if
∑s

i=1

∏n
j=1 Φ

(
uj−uij
cs

)∏m
j=1 Φ

(
µi−µij
cs

)
> 0;

0, if
∑s

i=1

∏n
j=1 Φ

(
uj−uij
cs

)∏m
j=1 Φ

(
µi−µij
cs

)
≤ 0.

(10)

where bell-shaped functions Φ (·) and a smooth parameter cs satisfy convergence conditions [6]
u ∈ Rn, µ ∈ Rm, x ∈ Ω (x) ⊂ Rl.

4 KH -models of free-inertia objects

Here we will take the same assumptions as before.

xi(u(t), µ(t)) = Fi(u(t− τ), µ(t− τ)), i = 1, l1 (11)

or more generally,
fi(u

〈i〉(t− τ), µ〈i〉(t− τ), x〈i〉(t)) = 0, i = 1, l2, (12)

Here F (·) and f(·) – unknown functions corresponding to this or that class, an index 〈i〉 shows
that vectors u, µ, x are compound in this case. It means that u〈i〉, µ〈i〉, x〈i〉, i = 1, l combined
from different component sets of the corresponding vectors u = (u1, ..., un), µ = (µ1, ..., µm),
x = (x1, ..., xe), i.e. u〈1〉, for example differs also from u〈2〉. In particular we can have the
following: u〈1〉 = (u1, u3, u4, u7, and u〈2〉 = (u2, u3, u5, u8, u9). We could say the same about
vectors µ ∈ Ω(x) ⊂ Re and further analogues designations.

Let the investigated processes have a “tube” structure, then a model (11) will be as follows:

x̂i(u(t), µ(t)) = F̂i(u(t− τ), µ(t− τ))Is(u(t− τ), µ(t− τ)), (13)
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where an indicator Is(·)

Is(u(t− τ), µ(t− τ)) = Is(u(t− τ), µ(t− τ), ~us, ~µs) (14)

is so that

Is (u (t− τ) , µ (t− τ)) =

{
1, if (u (t− τ) , µ (t− τ)) ∈ Ωs (u, µ) ;

0, if (u (t− τ) , µ (t− τ)) /∈ Ωs (u, µ) .
(15)

The model of the process (12) will be the following

f̂i
(
u〈i〉 (t− τ) , µ〈i〉 (t− τ) , x〈i〉 (t)

)
I is
(
u〈i〉 (t− τ) , µ〈i〉 (t− τ)

)
= 0, i = 1, l, (16)

where an indicator Is(·) is

Is
(
u〈i〉 (t− τ) , µ〈i〉 (t− τ) , x〈i〉 (t− τ)

)
=

{
1, if (u, µ, x) ∈ Ωs (u, µ, x) ;

0, if (u, µ, x) ∈ Ωs (u, µ, x) .
(17)

Models of the class (13) – (17) we shall name KH -models of free-inertia objects with a
delay as they differ fundamentally from the generally excepted models [4, 5] not only because
they describe “tube” structure processes, but by a priory information existence about different
channels of multivariate object of both parametric and non-parametric type. The model of the
similar object could be presented in more details by the following way:{

f̂i
(
u〈i〉 (t− τ) , µ〈i〉 (t− τ) , x〈i〉 (t) , α

)
I is = 0, i = 1, k;

Ŝi

(
u〈i〉 (t− τ) , µ〈i〉 (t− τ) , x〈i〉 (t) , ~u

〈i〉
s , ~µ

〈i〉
s , ~x

〈i〉
s , α

)
I is = 0, i = k + 1, l1,

(18)

where α – a parameter vector, ~u
〈i〉
s , ~µ

〈i〉
s , ~x

〈i〉
s – time vectors, I is, i = 1, k – an indicator (15), Ŝi,

i = k + 1, l1 – corresponding non-parametric statistics [6].
The equation system (18) is a model of multivariate multilinked free-inertia object which

belongs to K-models class which differs fundamentally from known ones [4, 5]. Their difference is
that according to some channels of the multivariate process, its parametric structure is known to
within parameters α. The second group of equations (18) Ŝi, i = k + 1, l1 corresponds to the level
of non-parametric uncertainty. In this case we can have a priori information only of the qualitative
character about the investigated object and use stochastic approximation of non-parametric type.

The estimation of parameters α in k-equations (18) can be reduced to the identification
problem in a “narrow” sense. The estimation of the second group of equations Ŝi, i = k + 1, l in
(18) can be realized by non-parametric methods [6]. If the system of equations (18) is disinte-
grated, i.e. in the case with the described process (11) we can easily forecast x(t+ τ) by known
values u(t)and µ(t). In the opposite case we must solve the system (otherwise, K-model) relative
to the vector x ∈ Ω(x) ⊂ Re.

In the case we have one root of the system (18) in Ω (x) a method stated in [6] can be used.
Generally speaking, this problem needs special study.
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5 K -models of dynamic objects

We’ll take further the problem of the dynamic process model building presented in fig. 1. Let’s
note that ∆T and T exceed considerably a time constant of the object about all the rest channels.
Without losing generality we could consider that the control of variables u(t), µ(t), ω(t), x(t) is
realized by the time interval ∆t << ∆T << T . Hence the process about channels q(t) and z(t)
belongs to the class of free-inertia with delay, and about channels ω(t) and x(t) can be referred
to the dynamic class as their control is realized through the interval ∆t that is considerably less
than a time constant of the object about corresponding channels. In this case, a general enough
K -model can be taken as follows.

f̂i

(
u〈i〉 (t− τ) , µ〈i〉 (t− τ) , ω〈i〉 (t− τ) , x〈i〉 (t) , dx

〈i〉(t)
dt

, d
2x〈i〉(t)
dt2

, ..., α
)

= 0,

i = 1, k;

f̂i
(
u〈i〉 (t− τ) , µ〈i〉 (t− τ) , ω〈i〉 (t− τ) , x〈i〉 (t) , q〈i〉 (t) , z〈i〉 (t) , β

)
I is = 0,

i = k + 1, l1;

Ŝi

(
u〈i〉 (t− τ) , µ〈i〉 (t− τ) , ω〈i〉 (t− τ) , x〈i〉 (t) , q〈i〉 (t) , z〈i〉 (t) ,W

〈i〉
s

)
= 0,

i = l1 + 1, l2, l2 > l1 > l,

(19)

where the first system of equations (19) is found on the basis of known fundamental laws corre-
sponding to the investigated process to within parameters α. The second system of equations of
the object is found on the basis of existed a priori information to within vector parameters β. The
third group of equations (19) is unknown to within parameters, but class functions characterizing
interconnection “input-output” and intermediate variables is determined on the basis of a priori
information. The appearing designation W

〈i〉
s is a unity of all i-th variable observations of s –

volume, i.e.

W 〈i〉
s =

(−→
u〈i〉s ,

−→
µ〈i〉s ,

−→
ω〈i〉s ,

−→
x〈i〉s ,

−→
q〈i〉s ,

−→
z〈i〉s

)
, i = l1 + 1, l2.

The estimation of vector component values of output variables x(t), q(t), z(t) can be found in
the result of equation system (19) solving at fixed variables u(t), µ(t), ω(t). K -models differ very
much from generally excepted ones first of all because they take into account in interconnections all
existed variables and connections among them in the situation when their discreteness of control
differs very much. The levels of a priori information about different cannels of the investigated
process are different. So K -models present an integral synthesis describing the investigated process
or a system of interconnected objects in their variety.

6 Control of variables, measurements

Here we shall underline the problem’s importance of “input-output” variables measurement of
the investigated object, process. Earlier [2, 3] it was mentioned that differing control means even
for one and the same processes lead to different identification problems formulation. The main we
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must point out in this problem is that a dynamic object sometimes has to be regarded as statistic
with delay due to the prolong control procedure (measurement, control) of some variables. It
exceed significantly a time constant of the object.

Undoubtedly at modeling and control by discrete-continuous processes it is expedient to
use signals or analogue ones but it needs a thorough analysis not only of the concrete object but
control methods and techniques of all the available variables and a priori information that can
correspond simultaneously to different levels of a priori information about different measurement
cannels of multivariate object system of variables. These or those variables, parameters, type of
the measurement and control, a priori information and also some “freedom” when any assumption
inevitable at mathematical statement of the problem that can finally lead to negative circum-
stances. All these questions are often missed while modeling problem study from theoretical point
of view [4, 5]. It is impossible to solve applied problems of the concrete processes models building
otherwise “truth doesn’t suffer if somebody ignores it” (I.F. Shiller). It is appropriate to pay
special attention of the investigator to the identification problem of the real process formulation
at the very initial level: “it is much more difficult to find problem than to find a solution. For the
first one it is necessary to have imagination, and for the second one - knowledge” (D.D. Bernal).

Let’s point out more important feature that accompanies a lot of variables measurement.
It is a non-representative sample for control. The problem is that the measurement (analysis)
results of these or those variables are given for the whole set of product (articles). In this
connection a dozens of grams of the product are taken, but a result is conferred to multi-ton set
of goods. We should pay attention the analysis itself is carried out with high accuracy, chemical,
physicochemical, physico-mechanical and so on. One more problem is of great importance: where
and how must we take samples? In some branches it is regulated by GOST, in others some
recommendations are adopted. In a word, this problem is very serious and needs a thorough
analysis in each concrete case. Inaccuracies at this level lead to “rough” models of the process,
and hence to unsatisfactory control systems. We shall not discuss here the problem of destroying
control. It is an additional, independent problem that needs special study.

7 Mathematical problem statement of modeling and con-

trol

There is a quite evident fact about different a priori information of the investigated process
existence [2]. As its consequence is different mathematical problem statement from the point of
view about mathematical strictness. The disparity of our assumptions about the investigated
object to the object itself is one of the most important “stumbling-blocks”. After traditional
phrase “Let a process...” some assumptions, hypothesis with remote relation to the reality follow.
It is difficult to imagine a process, object, features whose features were unchangeable or they are
changing according to the known law in time. We mean the processes described in [1], methods
and technologies of the object’s variables measurements that were of a great interest for the theory
of automatic control. Their main features are in the lack of a priori information, random factors
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influence, unknown features, lack and imperfection of variable control means, non-representative
sample for measurements and so on. We have to change the ignorance to our regret speaking
“Let...”. It is clear that if our assumptions are quite nearby to the reality, then, in the result we
can count on the success solving this or that problem. In another case a failure is inevitably. In
reality on the basis of numerous processes and objects are fundamental laws of physical, chemical,
electric, mechanical events; they could be described with a high level of accuracy. Correspondently
special models and control systems of high quality could be built for them.

If assumptions are too “rough”, there exist two ways to solve problem. The first way is
to complete our “ignorance” about a process when a problem statement is done accurately from
mathematical point of view. The second way is to develop a mathematical approach to adequate
level of a priori information we have really.

Thereupon we’d like to remind you some know facts from R. Kalman’s paper [8]. Let’s quote
some extracts from this paper: “... classical (Kholmogorov’s) probabilistic approach can’t operate
in real problems with uncertain information. To model uncertainty by probabilistic method it
is necessary to have excessively much information unextracted from available data of numerous
practical problems.” and more:

L.S. Pontryagin: “Mathematicians don’t believe in probability”.

A.N. Kholmogorov: “...something is wrong with statistics”.

A bit different axiomatics of probabilistic theory is sated in [9].

In future we will model and control real including organizational processes described in [1]
because reality and practice need it. In particular we could refer a lot of economical processes to
organizational ones. As far back as in the middle of the previous century G. von Neumann and
O. Morgenstern wrote about applying mathematics in economics [10]: “First of all let’s be aware
that there is no universal system in economic theory and it hardly be formulated in the nearest
future. The reason is that economics is a very complex science...”. And further “Often arguments
against applying mathematics in economics include only references to subjective elements and
psychological factors and so on...”. “It is important to realize that economists can’t expect easier
fate than scientists of other fields have”.

A century has passed but mathematics hasn’t appeared for economics as well as modeling
and operation process control though we’ve some steps in this direction: smooth sets theory,
decision making theory, system analysis and theory of systems etc.

8 Avalanche processes

During the recent decade the interest to the processes step-wise changing at smooth influence from
the outside has increased substantially. Hence a new division of mathematics with an intrigue
name catastrophe theory has appeared. Though the source of this theory goes back to the XVII
century, but the first information about the catastrophe theory appeared in 1970 in professor
R. Tom works. The basic role in foundation and development of the catastrophe theory had the
preceding investigations of A. Poincare and A.A. Andronov.
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Nowadays it is a powerful mathematical technique with a wide sphere of use in natural
science and technique. In a remarkable book of V.I. Arnold [12] together with fundamentals
of catastrophe theory for a reader who is not a mathematician some facts about the years of
perestroika started at the end of 1980s in our country are given.

Let’s go back to the scheme presented in fig. 1. A numerical experiment when a process
is under the influence of smoothly changing variables u(t) = (u1(t), u2(t)), µ(t) = (µ1(t), µ2(t)),
ξ(t) = (ξ1(t), ξ2(t)) was carried out. The results of the experiment are given in figures above.

Figure 3

Figure 4

Their analysis shows that with a smooth changing of u(t), µ(t) and ξ(t) the response of the
system (input variable value) x(t) is smoothly changing as well. But in some time the formation
of avalanche process of increasing x(t) that is transferring into a catastrophe. In other words
the loss of stability occurs and – “explosion”. Such types of processes have been a subject of
investigation for many years in physics, technique.

These processes are of a great interest in organizational systems. They are systems in society
– social, economic and other spheres.
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Figure 5

Figure 6

Figure 7
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Figure 8

Figure 9

Figure 10
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These processes study might lead to forecasting an incipient “inside an avalanche” and as
a consequence, we have counteraction to the latest control methods, feedback and taking into
account reality. K -models, KH -models and their system formations are of the most perspective.

9 Control system by the discrete-uninterrupted process

The control system by the discrete-uninterrupted object is presented generally in the underlying
figure [11].

Figure 11

The following designations are accepted: x∗s – a control input, mixing with the noise h∗s
through the channel H∗ enters the regulator as y∗s ; the output of the object xs coming through
the channel H and mixing with the noise hs enters ys the regulator as us; the control effect us
coming through the channel G, and mixing with the noise disturbance gs enters to the object
which is under the effect of ξs as vs.

In the theory of dual control [11] and in the theory of adaptive systems [5] one supposes
mathematical description of the object with the exactness to within the parameters vector. In
most cases it is not enough to have only a priori information to choose the control of the inves-
tigated process well-grounded. That’s why we should conduct a number of experiments on the
object (often long and expensive) to solve the identification problem qualitatively from practical
point of view. The more detailed analysis of a priori information levels is given in [4].

10 Non-parametric dual control

In conditions of non-parametric uncertainty [6] the equation of the process with the exactness
to within the parameters vector is unknown but we know object’s features of the qualitative
character, e.g. characteristics uniqueness or a lack of uniqueness for non-inertia processes; linearity
or a type of non-linearity for dynamic processes. If a type of the equation describing a process
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is unknown then the known parametric methods of the control theory can’t be applied for the
identification and control problems solution.

Let the process is described by the equation:

x(t) = A < u(t) > (20)

where A – an unknown operator, describing the process. If there exists an operator inverse to ,
i.e. −1, AA−1 = I – a single operator, then

u(t) = u∗(t) = A−1 < x∗(t) > (21)

Having defined a path x∗(t), let’s find an ideal value u∗(t) from (21). So (21) could be
referred to the category of ideal regulators. Further we’ll call it u-regulator to distinguish it from
already known regulators. But the problem is in impossibility to build it in most cases; moreover
the operator A is unknown. The attempt to solve this problem b at least partially by introduction
control systems of correcting chains, compensating links etc. was undertaken. In some technical
systems it led to the success.

In 50s years of the previous century academician V.S. Kulebakin offered and developed
substantially a method of K(D)-images. It led to the theory of automatically regulated and
controlled systems invariance. But in that case it is necessary to have high exactness of the
investigated processes description by differential equations. If this kind of equation estimating
the investigated process is unknown, classical methods of control theory can’t be applied.

We take a particular case. Let an object is described by a linear differential equation of the
unknown order, e.g. n, n – unknown. In this case at zero initial conditions x(t) is:

x(t) =

∫ t

0

h(t− τ)u(τ)dτ (22)

where h(t− τ) – a weight function of the system, which is a derivative of the transient function
k(t), i.e. h(t) = k′(t). It is known that the inverse operator (22) is an operator:

u(t) =

∫ t

0

v(t− τ)x(τ)dτ (23)

where v(t) – a weight function of the object in the direction “input-output” and v(t) = w′(t),
where w(t) – a transient function of the system in the same direction. In this case A is presented
by the operator (22), and −1 – by the expression (23). Hence, the problem is in finding a weight
function h(t). One of the possible ways for this problem solution is to solve the Wiener-Hopf
equation. The second way is in taking a transient characteristic on a real object with a further
estimation of its weight function according to the measurement results {xi = ki, ti, i = 1, s}.

The non-parametric model is as follows:

xs(t) =

∫ t

0

hs(t− τ,~ks,~ts)u(τ)dτ (24)
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where ~ks, ~ts – time vectors ~ks = (k1, . . . , ks), ~ts = (t1, . . . , ts), and hs(·) is:

hs(t) =
1

sAs

s∑
i=1

kiH
′
(
t− ti
As

)
(25)

H(·) – bell-shaped (kernel) functions, cs - a spreading parameter, satisfying conditions of conver-
gence.

It is not possible to “take off” a weight function v(t) in the direction “input-output” as
well as a transient function w(t) on the object. It was offered to take off a transient function
“backwards” on the model. Apparently it was done for the first time in [6]. So, from the
correlation:

xs(t) = 1(t) =

∫ t

0

hs(t− τ,~ks,~ts)u(τ)dτ (26)

where 1(t) – Heaviside function; it is possible to receive samples {uj, tj, j = 1, s}. Then the
non-parametric control algorithm by a linear dynamic system is as follows:

u∗s(t) =

∫ t

0

(
1

scs

s∑
j=1

wjH
′
(
t− τ − ti

cs

))
x∗(τ)dτ (27)

It’s evident a sample number while taking transient characteristics on a real object and a
model couldn’t be coincided.

As operators A and A−1 according to the real data will be estimated not exactly, the control
system could be represented as follows: In figure 12: CU – control unit, A−1

s – non-parametric

Figure 12

estimation of the reverse operator of the object, u∗s – output (estimation A−1, the noise disturbance
hxt operates in the channel of the feedback. Non-parametric algorithm of dual control is as follows:

us+1,t = u∗s,t + ∆us+1,t (28)

Here u∗s,t is determined according to the formula (27), and ∆us+1,t = ε(x∗t − xt, s) – search
steps. So, in u∗s,t “the information” about the object and in ∆us+1,t – “studied” search steps are
concentrated. That is the essence of the algorithm (28) dualism.
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Let’s clarify it as an example the non-inertia object x = f(u). For its estimation we’ll take
non-parametric estimation of the regression function according to the observations {xi, ui, i = 1, s}
[4].

xs(u) =
s∑
i=1

xiΦ

(
u− ui
cs

)/ s∑
i=1

Φ

(
u− ui
cs

)
, (29)

where a bell-shaped functions Φ(·) and a spreading parameter cs satisfy some convergence con-
ditions [4]. In this case u = f−1(x) will be the analogue of the expression (27), and u∗s from (28)
will be equal to:

u∗s,t =
s∑
i=1

uiΦ

(
x∗s+1 − xi

cs

)/ s∑
i=1

Φ

(
x∗s+1 − xi

cs

)
(30)

Let’s analyze the dualism feature of the algorithm (28). At the initial control stage the
second summand ∆us+1,t of the formula (28) is of the most importance. It is the case of active
information storage in the system of dual control. It begins with the first observation of input
and output variables of the object. During the training process (the information storage) the first
summand, i.e. us+1,t begins to play an increasing role the control influence formation u∗s,t.

11 Numerical experiments

We shall represent below certain results of calculations illustrating particular results while inves-
tigating dynamic and non-inertia objects.

The first experiment illustrates “taking” of the weight functions of the linear dynamic sys-
tem. The following figure shows a weight function received by solving differential equation of
the type when a delta-function is accepted. Here we will represent weight functions for different
analogues of delta-functions.

Weight functions received with various d-shaped step-functions of the following type as
numerical investigations have shown are practically coincided:

δ1(t) =

{
∆t−1, ∆t ∈ [0; 0.1]
0, ∆t /∈ [0; 0.1]

δ2(t) =

{
∆t−1, ∆t ∈ [0; 0.01]
0, ∆t /∈ [0; 0.01]

As you can see, a weight function received analytically as well as weight functions received
under effect on the object of considerably different d-shaped functions are practically coincided.
It leads to the conclusion that in practice at the experiment about weight functions observation
it is possible to give considerably different d-shaped controlled effects to he object’s input. The
connection (correlation) of two elements – “a dynamic object (process) – a differential equation”
are of a great importance here.

The results of the linear dynamic object control are shown in figures 13 in the conditions
that x∗t – is a random variable, generated uniformly by distributed random numerals.

The experiment was conducted according to the following plan: at first the transient char-
acteristics were taken; the operator A was estimated according to the formula (26) by these
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Figure 13

characteristics. The inverse operator A−1 was evaluated according to the formula (27). The fig-
ure illustrates that good quality of control though in such an “exotic” case. Any known regulator
can’t manage to solve this problem.

12 About the non-parametric systems theory

The terms “non-parametric identification”, “non-parametric methods of data processing” are met
in monographs about identification, but non-parametric identification algorithms are not sited.
Usually non-parametric identification of linear dynamic processes is related to searching weight
or transient functions of the system in the result of integral Fredholm equations of the 1st kind
solving, in particular Wiener-Hopf equations.

We were speaking above about the models and u-regulators that are free of choice with the
with the exactness to within the parameters vectors of the models of the investigated process
or a parametric structure of the control units, as well as we were speaking about parametric
structure of other process characteristics, e.g. correlative functions, spectral density and etc. So
we are speaking about identification and control in conditions of non-parametric uncertainty [3].
It is conceived that the least level of the a priori information of the investigated object when the
solution of a large number of cybernetics problems adequate to real processes is possible. Also
let’s note that the first investigations about non-parametric control by non-inertia objects belongs
to the beginning of 70s of the previous century. One may consider the theory of non-parametric
systems covers different cybernetics problems oriented to the non-parametric level of the a priori
information.

Conclusion

The stated above information covers some identification and control problems at the level of
parametric and non-parametric a priori information. In contrast to the well-developed parametric
theory, the non-parametric one is oriented at the less level of the a priori information about the
investigated objects and processes. The special attention is paid for the systems of dual control
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of the Bayes type, an adaptive dual control and a non-parametric dual control. Some non-
parametric models and algorithms of dual control and particular results of numerical calculations
of the illustrative character are given.
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Abstract

In many applications, the regression function restoration from observational data with
random errors is directly related to the identification problem. In this regard, the case
where by the ”input-output” variables supervision of an object are significant errors such as
”crude error” and the reducing the dimension of the input variables vector problem is most
attractive. This report focuses on the these issues analysis.

Introduction

During the stochastic objects identification we are often faced with the need to restore the various
characteristics of the regression variables from observations with random errors. When given
a parametric of regression functions form, the problem reduces to estimating the parameters.
This class of problems relates to the identification problem in a ”narrow” sense of [1, 2]. If a
priori information about the process is insufficient to determine a parametric process model, the
identification problem is formulated in the ”broad” sense [1] and reduces to the nonparametric
estimation of the characteristics regression [3]. Below we consider the problem of extracting the
essential variables in the problem identification and the case where by the object ”input-output”
supervision may occur errors such as ”misses”.

1 The classical scheme of the identification problem

Give a general process scheme adopted in the modeling and identification theory.
The following designations are accepted: - unknown object operator, E(t) - output variable

vector, u(t) - vector control action, µ(t) - input unguided vector, but controlled variable, ξ(t) -
vector random effects, (t) – continuous time, ut, µt, xt - means the measurement u(t), µ(t), x(t)
in discrete time t. Control variables (x, u, µ) by a time interval ∆t, ie ui, µi, xi i = 1, s - sample
measuring process variables, s - sample size, hu, hµ, hx- with an icon at the top – the process
variables random noise measurement.

Object shown in Figure 1, described by an unknown operator A, ie,

x(t) = A(u(t− τ), µ(t− τ), ξ(t), t) (1)
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Figure 1: A classical identification problem scheme

where τ - retardation, characterized by various means, let accept the designation uniform for all
channels that characterize the process under study by the simplicity reasons. The identification
problem is to estimate (1) with available a priori information about the process and measurements
with random errors u(t− τ), µ(t− τ), x(t).

The theory of identification in the ”narrow” sense is currently dominated by the variety of
discrete-continuous processes simulation . Its content consists in the fact that the first stage is
somehow determined by the operators A parametric class, for example,

x̃α(t− τ) = Aα(u(t− τ), µ(t− τ), t, α), (2)

and the second stage, the parameters α estimation based on the available sample
{
xt, ut, µt, t = 1, s

}
.

In this case the identification problem solving success depends on how ”successful” the operator
(2) is designated.

A ”broad” sense identification, implies the parametric class phase selection absence of (1),
unless, of course, this is not sufficient a prioriinformation. Operator to define a class of operators
(1) on the basis of qualitative character information is often much easier, for example, the linearity
of the process or the type of nonlinearity, etc. The identification problem consists in estimating
this statement based on a sample

{
xt, ut, µt, t = 1, s

}
in the form of

x̃S(t− τ) = AS(u(t− τ), µ(t− τ), t, ~xS, ~uS, ~µS), (3)

where ~xS, ~uS, ~µS - time vectors, ~xS = (x1, x2, .., xs), ~uS = (u1, u2, .., us), ~µS = (µ1, µ2, .., µs). The
presence of one or another of a priori information about the studied process, in essence, defines
the identification problem mathematical formulation, and this, in turn, determines the approach
to its solution. Let us dwell on the characteristics a prior information two types:

- a parametric indeterminacy level. A priori information parametric level requires a para-
metric model structure and some random noise characteristics, usually because they are zero
mean and bounded variance. For example, to multiply the individual characteristics of the pro-
cess on the basis of physical and chemical laws, energy, mass conservation, relations balance and
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others can be derived parametric relations, but not for others. For estimating the parameters
most commonly used variety of iterative probabilistic procedures [1, 2]. Under these conditions,
we solve the identification problem in the ”narrow” sense;

- non-parametric indeterminacy level. A priori information nonparametric level does not
imply the model existence , but requires some information about the qualitative nature of the
process [4], for example, the uniqueness or ambiguity of its characteristics, the linearity for the
dynamicprocesses or the nature of its nonlinearity. To solve the identification problems at this
level, a priori information (identification of a ”broad” sense) nonparametric statistics methods
[3].

2 The essential variables search in the reconstructing a

regression function from the observations problem

Let the process under study by one of the channels is described by the regression characteristic
form x = f(u1, ..., un), where the probability density p(x) > 0 ∀x ∈ Ω(x) and p(y) the un-
known. Then, for the restoration f(u1, ..., un) = M {x|u} of a statistically independent sample s
of observations (u1, x1), (u2, x2), ..., (us, xs), where ui = (ui1, ..., u

i
n). To approximate the unknown

function in conditions indeterminacy are often used nonparametric regression, nonparametric
estimator has the form [3]:

xs(u1, ..., un) =

∑s
i=1 xi

∏n
j=1 Φ(c−1

sj (uj − uij))∑s
i=1

∏n
j=1 Φ(c−1

sj (uj − uij))
, (4)

where Φ(zj) - a bell-shaped function(the ”kernel” ) that has some convergence properties [4],

zj =
uj−uij
csj

, j = 1, s, cs – fuzziness factor satisfying: cs > 0, s = 1,2,. . . , lim
s→∞

cs = 0, lim
s→∞

scns = ∞.

In the sequel for simplicity we omit the designation of retardation. Essential in the evaluation
of (4) is that with each component of the vector u = (u1, u2, .., un) component of the vector
cs = (cs1, ..., csn) is placed.

Parameter csj is adjusted based on the minimum mean-square criterion in a moving the
exam mode:

W (Asj) = s−1

s∑
i=1

(x(ui)− xs(ui, csj))
2−→
csj

min . (5)

Before solving the problem (5), hold the centering and standardization of components of
the vector u = (u1, u2, .., un) on the observations basis ~us = (u1, u2, .., us). As a solving result

the problem (5) will be found the components
_
c s, where j = 1, 2, ..., n. Having the vector

_
c s

components numerical values, we form a inequalities chain. Suppose that in the private case, it
looks like this:

_
c s2 <

_
c s3 <

_
c s1 < ... <

_
c sn <

_
c s4 < ... <

_
c s5, (6)
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where the numbers are marked with the components
_
c s. In this case, the following

Rule: the least impact on the value of x(u1, ..., un) providing the vector u, component which

corresponds to the most important components of the parameter vector blur
_
c s = (

_
c s1, ...,

_
c sn)

optimal estimate.
In particular, by analyzing the inequalities chain (6), we can conclude that the least impact

on the value x(u1, ..., un) of providing component u5.
Example. Let the solution of the optimization problem (5) (n = 5)were found parameter

estimates blur:
_
c s1 = 0.05,

_
c s2 = 0.01,

_
c s3 = 0.9,

_
c s4 = 0.4,

_
c s5 = 0.3. Form the inequalities

chain:

_
c s2 <

_
c s1 <

_
c s5 <

_
c s4 <

_
c s3.

Variable is excluded from the regression estimates, as the corresponding parameter
_
c s3

score has the greatest value. Provided that the absence u3 does not increase the approximation
error (this issue is solved researcher).

Numerical studies
1. Consider the case x depends on one variable vector u, but researchers do not know and

uses another vector u component, thus seeking dependence as a function of two variables x =
f (u1, u2). As a result, the observations sample is presented in the form:

{
xi, u

i
1, u

i
2, i = 1, s

}
, u1 ∈

[0; 3], u2 ∈ [0; 3]. Sample size s = 500. Noise is 5% of the corresponding variables measurement
result. The true yield of the object described by the equation x (u1) = u2

1. Effect u2 on the
yield of the object is absent. Nevertheless, the dependence x = f (u1, u2) is sought in the form of
ratings:

xs(u1, u2) =

∑s
i=1 xiΦ(c−1

s1 (u1 − ui1))Φ(c−1
s2 (u2 − ui2))∑s

i=1 Φ(c−1
s1 (u1 − ui1))Φ(c−1

s2 (u2 − ui2))
. (7)

where Φ(zj) =

{
1− |zj|, |zj| ≤ 1,

0, |zj| ≥ 1,

Estimate the fuzziness
_
c s1 and

_
c s2 parameters are determined by solving problem (5)

minimize the mean-square criterion in a moving the exam mode:

W (As1, As2) = s−1

s∑
i=1

(x(ui)− xs(ui, cs1, As2))
2 −→
cs1,As2

min . (8)

Using the above rule, we conclude that the components u, namely u2, no effect on the value
x = f (u1, u2), that x is not dependent on u2. We illustrate this fact in the following figure. In
accordance with the above rule variable u2 is excluded from the regression estimates. Fig. 2
shows the object true output and its evaluation, built in depending on one variable u1.

Fig. 2 and the following figures show the evaluation object function and the true out-

put, depending on the iterations number. Standard error is calculated as follow δ2(
_
A s1 ,

_
c s2) =

1
s

∑s
i=1(xi − xs(u

i
1, u

i
2))

2. In the present case δ2 = δ2(
_
A s1 ,

_
c s2) = 0, 00232.
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Figure 2

Construct the estimate (7) x (u) on two variables: the essential - u1 and irrelevant - u2. At

the same time
_
c s1 = 0.06,

_
c s2 = 0.6. Fig. 3 shows the object true output and its evaluation,

built based on two variables; the essential - u1 and irrelevant - u2.

Figure 3

Standard error in this case his increased now δ2 = 0, 0086. Components u2 effect on an
assessment x (u1, u2) in this case is negative.

2. Consider the following example. Suppose thatx depends on two components of the
vector u, however, one component influence, namely u2, the object slightly output. As a result,
the observations sample is presented in the form:

{
xi, u

i
1, u

i
2, i = 1, s

}
, u1 ∈ [0; 3], u2 ∈ [0; 3].

Sample size s = 500. Noise is 5% of the measurement result of the corresponding variables.
The true yield of the object described by the equation x (u1, u2) = u2

1 + 0.1u2. Dependence
x = f (u1, u2) is sought in the form of (7).
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Estimate the parameters of fuzziness
_
c s1 and

_
c s2 (5) are determined by solving the min-

imizing the mean square criterion problem (5) in the moving the exam mode. As a result, its

solutions have been found estimates
_
c s1 = 0.06,

_
c s2 = 0.6.

Using the above rule, we conclude that the components u, namely u2, has a significant
impact on the values x = f (u1, u2), that is x weakly dependent on u2. In accordance with the
above rule variable u2 is excluded from the regression estimates. We illustrate this fact in the
following figure. Fig. 4 shows the true output of the object and its score, constructed according
to one variable u1.

Figure 4

Standard error was δ2 = 0, 01.

Construct the estimate (7) x on two variables: the essential - u1 and irrelevant - u2. Fig. 5
shows the object true output and its score, constructed based on two variables u1 u2.

Figure 5
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Standard error was 0.01.

3. Consider the case x depends on four vector u components, however, the influence of one
component, namely u4, the object output is slightly. As a result, the sample of observations is
presented in the form:

{
xi, u

i
1, u

i
2, u

i
3, u

i
4, i = 1, s

}
, u1 ∈ [0; 3], u2 ∈ [0; 3],u3 ∈ [0, 3],u4 ∈ [0; 3]. The

volume of samples s = 500. Noise is 5% of the corresponding variables measurement result. The
true yield of the object described by the equation x (u1, u2, u3, u4) = 0.4u2

1 +0.3u3
2 +0.2u4

3 +0.1u4.
Dependence x = f (u1, u2, u3, u4) is sought in the form of ratings:

xs(u1, u2, u3, u4) =

∑s
i=1 xiΦ(c−1

s1 (u1 − ui1))Φ(c−1
s2 (u2 − ui2))Φ(c−1

s3 (u3 − ui3))Φ(c−1
s4 (u4 − ui4))∑s

i=1 Φ(c−1
s1 (u1 − ui1))Φ(c−1

s2 (u2 − ui2))Φ(c−1
s3 (u3 − ui3))Φ(c−1

s4 (u4 − ui4))
. (9)

Estimate the parameters of blurring
_
c s1,

_
c s2,

_
c s3,

_
c s4 are determined by solving the

minimizing the mean square criterion problem (5) in the moving the exam mode. As a result,

its solutions have been found following the parameter estimates blur:
_
c s1 = 1,

_
c s2 = 0.4,

_
c s3 = 0.2,

_
c s4 = 4.1.

Using the above rule, we conclude that the components u, namely u4, has a significant
impact on the values x = f (u1, u2, u3, u4), that is x weakly dependent on u4. In accordance with
the above rule variable u4 is excluded from the regression estimates. We illustrate this fact in the
following figure. Fig. 6 shows the of the object true output and its score, constructed according
to three variables u1, u2, u3.

Figure 6

Standard error is δ2 = 0, 353.

Construct estimation (9) x for the four variables u1, u2, u3, u4. Fig. 7 shows the true output
of the object and its score, constructed according to the variables u1, u2, u3, u4.

Standard error was 0,361.
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Figure 7

3 The regression functions robust estimation from

observations with emission

When restoring a stochastic dependence on observations with errors random variables x (u) and
u errors, related unknown regression dependent x̃ = M {x|u}, on the result of observations
(u1, x1), (u2, x2), ..., (us, xs), which ui = (ui1, ..., u

i
k), faced with a situation where the dependence

in the nonparametric estimates class is a priori unknown. In this case, the assessment can be
used nonparametric estimation for Nadaraya-Watson [3] of the form (4).

In practice, one often encounters a situation where the sample dimensions are present emis-
sions. Then use the nonparametric estimate (4) may lead to unsatisfactory results.

A solution to this problem, we propose the following method, which consists of two phases:

1. With the help of (4) recovering the regression at any point uj, where j = 1, k, as a result
we obtain x1j. Smearing parameter cs defined as in (5).

2. The second stage x (u) is estimated in accordance with the statistics:

x2s (u1, ..., us) =

∑s
i=1 xi

∏k
j=1 Φ

(
c−1
s

(
uj − uij

))
Φ
(
c−1
s

(
x1j − xij

))∑s
i=1

∏k
j=1 Φ

(
c−1
s

(
uj − uij

))
Φ
(
c−1
s

(
x1j − xij

)) . (10)

The above assessment is final, ie, a regression curve according nonparametric estimation to
data containing outliers.

Numerical studies

Need to recover an unknown dependence x (u) on the available sample of observations
(u1, x1), (u2, x2), ..., (us, xs), where ui = (ui1, ..., u

i
k).

We introduce the coefficient a for the two emissions are calculated by the formula a = b
s
,

where b - number of observations between two consecutive ejections. This is necessary only in
the experimental conditions, when working with real data in this factor is not necessary. Thus,
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on this factor can be judged on the relative emissions position. The more a, the farther apart are
outliers. 0 < a < 1.

In the numerical experiment was made: s=100, u ∈ [0; 26], x ∈ [−0, 986; 1, 061],a = 0.6.
Fig. 8 shows a sample (u1, x1), (u2, x2), ..., (us, xs).

Figure 8

Restore the regression function estimate from observations of different ways:xs(u) - a non-
parametric estimation for Nadaraya-Watson (1), the iterative formula for calculating the robust
estimation x3s(u) is [7]:

x3l+1
s (u) =

n∑
i=1

( ∣∣xi − x3ls(u)
∣∣−1

Φ (c−1
s (u− ui))∑n

j=1 |xi − x3ls(u)|
−1 Φ (c−1

s (u− ui))

)
xi, l = 0, 1, 2, .... (11)

Figure 9

Assessment ends iterative correction when:
∣∣x3l+1

s (u)− x3ls(u)
∣∣ ≤ ε, accepted: ε = 0, 01,

and x2s(u) the proposed robust estimation (10). The results are shown in Fig. 9.
Standard error is calculated as follows: δ2(xs (u)) = 1

s

∑
zsi=1(xi − xs(u))

2. In this case,
δ2 (xs (u)) = 1, 6, δ2 (x2s (u)) = 0, 2, δ2 (x3s (u)) = 0, 8. a = 0 (Fig. 10)

δ2 (xs (u)) = 5, 7, δ2 (x2s (u)) = 0, 98, δ2 (x3s (u)) = 2, 6.

Consider the case with the six releases. a1,2 = 0., a2,3 = 0.29, a3,4 = 0, a = 0.6, a4,5 = 0.39,
a5,6 = 0. Fig. 12 shows a sample (ui, xi).
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Figure 10

Figure 11

Figure 12
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Figure 13

Standard error for x2s(u) – 0.25, for xs(u) – 9.947, for x3s(u) – 3.2
We consider the multidimensional version: xj ∈ [0; 30]. Inputs - 5.

Table 1

Sample size Coefficient of accumulation Interference Error for (1) Error for (2)
100 0,63 5% 1.31 0.087
500 0,55 5% 0.585 0.022
100 0,02 5% 0.722 0.373
500 0,03 5% 0.723 0.023
100 0,63 10% 1.724 0.415
500 0,55 10% 0.731 0.252
100 0,02 10% 1.315 0.908
500 0,03 10% 0.95 0.264
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Abstract

Some discrete-continuous processes identification and modeling tasks are considered. The
new non-parametric estimations of probabilities distribution density function and regression
curve according to observations are set, and also the convergence theorems. The new modifi-
cations of H-models are applied during the modeling of thermal process of oil decomposition.
Key words: modeling, identification, non-parametric estimations of regression function, non-
parametric estimations of probabilities distribution density functions, convergence theorems,
linear models, H-models.

Introduction

The problem of modeling and identification is one of cybernetics central problems. The main
role during mathematical assertion of identification task belongs to information a priori [1] of
researched process. Further we shall consider in a short form the levels of parametric and non-
parametric uncertainty. In this work we shall draw a special attention at a situation, when
the components of input variables vector are statistically dependent. The researched process
runs in a space subregion of “input-output” variables, which have “tubular” structure [2]. The
“tubular” structure was found during modeling of thermal processes of one-class During modeling
of discrete-continuous processes according to real data we often face with some features, which
appear in an observations sample selection of “input-output” variables. That is because of the
following features:

1. variables meanings concentration in some subregions of measuring space;

2. emtinesses - absence of variables meanings in some sections of measuring interval;

3. rarefaction - presence of several meanings of measuring variables in some subregions.

The conditions 1,2,3 we shall call the A-conditions. As a matter of fact these features drove to
necessity of construction of the new modifications of non-parametric estimations of probabilities
distribution density and regression curve.

The content of identification in “narrow” meaning [3] (level of parametric uncertainty)
supposes model parametric structure presence and some characteristics of random noises. It is
simple for them to have a zero-mathematical expectation and bounded variance. In order to
estimate the parameters the various iterative probabilistic procedures are used most often.
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If the level of a priori information is non-parametric it is supposed that the model’s para-
metric structure is absent, but in this way we need to know some qualitative information about
the process, for example, certainty, or uncertainty of it’s characteristics, linearity for dynamic
processes or character of it’s nonlinearity. For solution the identification task at this level of a
priori information (identification in “broad” sense) the methods of non-parametric statistics may
be used [4].

1 Parametric identification. H-models

Identification in “narrow” meaning supposes that one is to choose the class of models up to param-
eters accuracy with posterior parameters estimation with new object’s “input-output” measured
data coming.

Figure 1

Parametric identification methods are developed good enough. Though, let us pay our
attention at one feature, that have an important meaning for a practitioner during parameters
estimation. For more simplification let us consider a static system with two inputs u = (u1, u2)and
one output x. More than that, let us take as an example the simplest model like x̂ = au1 + bu2 .
If we have a sample of “input-output” measurements with random noise

{
xi, u

i
1, u

i
2, i = 1, s

}
it is

easy to estimate parameters a and b. Let us consider such a case without community perturbation
that u1 ∈ [0, 1], u2 ∈ [0, 1], x ∈ [0, 1], but the input variables are stochastically dependent, as we
can see at the picture 1. Here Ω(u) - variables u1 and u2 presence area, ΩH(u)- real process
behaviour area. It is clear that in a cube with side length 1, the area ΩH(x, u) will have “tubular”
structure, as we can see at picture 2.

It is clear from picture 2, that ΩH(u) ⊂ Ω(u), ΩH(u,E) ⊂ Ω(u,E). The areas Ω(u),
Ω(x, u) are always known (in our case it is a cube with side length 1), and the areas ΩH(u),
ΩH(x, u)are never known. During the process x = (u1, u2) building this fact is to be taken into
account. Because of measurement mistakes or random facts, which influence to the process, and
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Figure 2

also during process research at model x̃α(u) = Aα(u, α), where α = (a, b) the meanings u /∈ ΩH(u)
may be defined (or selected). In this case estimation (forecast) x may be a value, which cannot
be realized physically, i.e. E∈̄Ω(E).

The parametric model of multi-dimensional statistic process may be taken in a view:

x̃(u1, ..., un) = f(u1, ..., un, α0, ..., αn), (1)

where x ∈ Ω(x) ⊂ R1, u ∈ Rn, α0, ..., αb – model parameters, which may be estimated with
a help of sample we have out of s statistically independent observations of (n + 1)-dimensional
random value (u,x ) - {(x1, u1), (x2, u2), ..., (xs, us)}, f – model’s chosen parametric structure with
accuracy up to parameters vector.

When the dependence of vectorsu1, ..., un from each other is stochastic, the researched pro-
cess has “tubular” structure, which is similar to one at picture 2, and the model (1) transforms
to non-parametric H-model like:

x̃H(u1, ..., un) = f(u1, ..., un, α0, ..., αn)θ
H(u1, ..., un), (2)

where θH(u1, ..., un) – H-indicator. For example it may be defined like [2]:

θHs (u1, ..., un) = sgn

s∑
i=1

n∏
j=1

Φ

(
uj − uji
Cs

)
, (3)

where Φ(·) – is a bell-like function, Cs – a parameter of blurriness [2]. As a bell-like function, for
example, we can use the function

Φ

(
u− ui
Cs

)
=

{
1, if |u− ui| ≤ Cs
0, if |u− ui| > Cs

(4)
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2 Non-parametric estimations of probabilities distribu-

tion density function

During identification of discrete-continuous processes we can build a mathematical model based
upon non-parametric estimations of regression function according to observations. Let A - are the
features which take place during variables monitoring, then appears a necessity of some correction
of non-parametric estimations of probability distribution density and, as a consequence of that,
non-parametric estimations of regression function.

Let (u, x) – is a random value with meanings in area Ω(u, x) ⊂ Rn+1, and p(u, x) > 0
– is a distribution density of (n + 1)-dimensional random value (u, x), it is unknown. Let
(u1, x1), (u2, x2), ..., (us, xs) – is a sample of s statistically independent observations of (n + 1)-
dimensional random value (u, x) ∈ Ω(u, x).

During approximation of unknown function according to observations as a probability den-
sity non-parametric estimation p(u) > 0 ∀u ∈ Ω(u) usually the statistics [6,7] is taken:

ps(u1, ..., u?) =
1

sCn
s

s∑
i=1

n∏
j=1

Φ

(
uj − uji
Cs

)
, (5)

where the function which is integrated with square Φ (·) and parameter Cs such, that they satisfy
convergence conditions [4]:

0 < Φ

(
uj − uji

!s

)
<∞, lim

s→∞

1

Cs
Φ

(
uj − uji
Cs

)
= δ(uj − uji),

1

Cs

∫
Ω(u)

Φ

(
uj − uji
Cs

)
du = 1,

1

Cs

∫
Ω(u)

uΦ

(
uj − uji
Cs

)
dΩ(u) = ui, (6)

Cs > 0, s = 1, 2, . . . , lim
s→∞

Cs = 0, lim
s→∞

sCn
s = ∞.

When in a sample of “input-output” conditions observations there are some emptynesses,
rarefactions and concentrations the new probability distribution density non-parametric estima-
tion function is proposed:

p̄s(u1, ..., u?) =
1

sCn
s

s∑
i=1

n∏
j=1

Φ1

(
uj − uji
Cs

)
Φ2

(
uj − uji
Cs

)
, (7)

where integrated with square and even relatively to ui functions Φ1 (·) and Φ2 (·), and parameter
Cs are such that they satisfy the convergence conditions (6) and:

0 < Φ1

(
uj − uji
Cs

)
Φ2

(
uj − uji
Cs

)
<∞, lim

s→∞

1

Cs
Φ1

(
uj − uji
Cs

)
Φ2

(
uj − uji
Cs

)
= δ(uj − uji),
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1

Cs

∫
Ω(u)

Φ1

(
uj − uji
Cs

)
Φ2

(
uj − uji
Cs

)
du = 1, (8)

1

Cs

∫
Ω(u)

uΦ1

(
uj − uji
Cs

)
Φ2

(
uj − uji
Cs

)
dΩ(u) = ui,

and also the probability distribution density function estimation is:

p̃s(u1, ..., un) =
1

sCn
s

s∑
i=1

n∏
j=1

(
Φ1

(
uj − uji
Cs

)
+ Φ2

(
uj − uji
Cs

))
, (9)

where integrated with square and even relatively to ui functions Φ1 (·) and Φ2 (·), and parameter
Cs are such, that they satisfy to convergence conditions:

0 < Φ1

(
uj − uji
Cs

)
+ Φ2

(
uj − uji
Cs

)
<∞, Φ1

(
uj − uji
Cs

)
<∞, Φ2

(
uj − uji
Cs

)
<∞,

lim
s→∞

1

Cs

(
Φ1

(
uj − uji
Cs

)
+ Φ2

(
uj − uji
Cs

))
= δ(uj − uji), 0 ≤

1

Cs

∫
Ω(u)

Φ1

(
uj − uji
Cs

)
du ≤ 1,

1

Cs

∫
Ω(u)

(
Φ1

(
uj − uji
Cs

)
+ Φ2

(
uj − uji
Cs

))
du = 1, 0 ≤ 1

Cs

∫
Ω(u)

Φ2

(
uj − uji
Cs

)
du ≤ 1,

lim
s→∞

1

Cs
Φ1

(
uj − uji
Cs

)
= δ(uj − uji), lim

s→∞

1

Cs
Φ2

(
uj − uji
Cs

)
= δ(uj − uji), (10)

Cs > 0, s = 1, 2, . . . , lim
s→∞

Cs = 0, lim
s→∞

sCn
s = ∞.

For proposed probability distribution density function estimation p̄s(u1, ..., un) (7) the the-
orem takes place:

Theorem 1. Let p(u)is a twice differentiable, and functions Φ1(·), Φ2(·) and blurriness
parameter Cs satisfies to convergence conditions (6) and (8), then:

lim
s→∞

M{(p(u)− p̄s(u1, ..., un))
2} = 0,∀u ∈ Ω(u).

The proof of theorem 1 is based upon following lemma.
Lemma 1.1. Non-parametric estimation of probability distribution density p̄s(u1, ..., u?)

in conditions of theorem 1 is asymptotically unbiased i.e.:

lim
s→∞

M {p̄s(u1, ..., u?)} = p(u).

More detailed proofs of theorem 1 and lemma 1.1 for non-parametric estimation of proba-
bility distribution density function p̄s(u) (7) in a case Ω(u, x) ⊂ R2 are considered in [8].

For proposed estimation of probability distribution density function p̃s(u1, ..., un) (9) a the-
orem takes place:
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Theorem 2. Let p(u) is twice differentiable, and the functions Φ1(·), Φ2(·)and blurriness
parameter Cs satisfy convergence conditions (10), then:

lim
s→∞

M{(p(u)− p̃s(u1, ..., un))
2} = 0,∀u ∈ Ω(u).

Proof of theorem 1 is based upon following lemma.
Lemma 2.1. Non-parametric estimation of probability distribution density p̃s(u1, ..., un)

in conditions of theorem 2 is asymptotically unbiased, i.e.:

lim
s→∞

M {p̃s(u1, ..., un)} = p(u).

More detailed proofs of theorem 2 and lemma 2.1 for non-parametric estimation of proba-
bility distribution density function p̃s(u) (9) in case Ω(u, x) ⊂ R2 are considered in [9].

2.1 Non-parametric estimations of regression function according to
observations

Non-parametric estimation of regression x by u, p(u) > 0 with probability one looks like:

xs(u1, ..., un) =
s∑
i=1

xi

n∏
j=1

Φ

(
uj − uji
Cs

)/ n∏
j=1

Φ

(
uj − uji
Cs

)
. (11)

If (u, x) – is a random value with meanings in space Ω(u, x) ⊂ R2, and p(u) > 0 – is a two-
dimensional random value distribution density (u, x), and (u1, x1), (u2, x2), ..., (us, xs) – is a sample
of s statistically independent observations of two-dimensional random value (u, x) ∈ Ω(u, x), then
non-parametric estimation of regression looks like:

xs(u) =
s∑
i=1

xiΦ

(
u− ui
Cs

)/
Φ

(
u− ui
Cs

)
. (12)

If there are some absences, rarefactions and condensations in sample of “input-output”
observations it is proposed to use non-parametric estimations of regression curve like:

x̄s(u) =

∑s
i=1 xiΦ1

(
u−ui
Cs

)
Φ2

(
u−ui
Cs

)
∑s

i=1 Φ1

(
u−ui
Cs

)
Φ2

(
u−ui
Cs

) , (13)

and

x̃s(u) =

∑s
i=1 xi

(
Φ1

(
u−ui
Cs

)
+ Φ2

(
u−ui
Cs

))
∑s

i=1

(
Φ1

(
u−ui
Cs

)
+ Φ2

(
u−ui
Cs

)) . (14)

When Ω(u, x) ⊂ Rn+1, the new non-parametric estimations of regression function estimation
(13) and (14) look like:

229



Nonparametric Methods

x̄s(u1, ..., un) =

∑s
i=1 xi

∏n
j=1 Φ1

(
uj−uji
Cs

)
Φ2

(
uj−uji
Cs

)
∑s

i=1

∏n
j=1 Φ1

(
uj−uji
Cs

)
Φ2

(
uj−uji
Cs

) , (15)

where integrated with square and even relatively to ui functions Φ1 (·) and Φ2 (·), and blurriness
parameter Cs are such, that they satisfy convergence conditions (6) and (8),

x̃s(u1, ..., un) =

∑s
i=1 xi

∏n
j=1

(
Φ1

(
uj−uji
Cs

)
+ Φ2

(
uj−uji
Cs

))
∑s

i=1

∏n
j=1

(
Φ1

(
uj−uji
Cs

)
+ Φ2

(
uj−uji
Cs

)) , (16)

where integrated with square and even relatively to ui functions Φ1 (·) and Φ2 (·), and blurriness
parameter Cs are such, that they satisfy convergence conditions (10).

The functions Φ1(·) and Φ2(·), for example, look like:

Φ1(
z

Cs
) =

{
1; if z < Cs

0; if z > Cs
,Φ2(

z

Cs
) =


1; if Cs/2 < z ≤ Cs

1/2; if z ≤ Cs/2
0; if z > Cs

, (17)

here z = |u− ui|.
The new non-parametric estimations of regression curve (13) and (14), and also (15) and (16)

are more steady to rarefaction, cavities and data missing in space of “input-output” meanings,
than estimations (11) and (12), and in these conditions (13), (14), (15) and (16) in such conditions
allows to approximate the required process more detailed, the results of numerical modeling are
in [9].

For proposed non-parametric estimation of regression function x̄s(u1, ..., un) (15) the follow-
ing theorem takes place:

Theorem 3. Let x(u) is twice differentiable and with probability one p(u) > 0, ∀u ∈ Ω(u),
and functions $1(·), $2(·) and blurriness parameter Cs satisfy convergence conditions (6) and (8),
then:

lim
s→∞

M{(x(u)− x̄s(u1, ..., un))
2} = 0,∀u ∈ Ω(u).

The proof of theorem 3 is based upon the following lemma.
Lemma 3.1. Non-parametric regression estimation x̄s(u) in conditions of theorem 3 is

asymptotically unbiased, i.e.:

lim
s→∞

M {x̄s(u1, ..., un)} = x(u1, ..., un).

Such proofs of theorem 3 and lemma 3.1 for non-parametric estimation of regression function
x̄s(u) (15) in case Ω(u, x) ⊂ R2 are considered in [8].

For proposed non-parametric estimation of regression function x̃s(u1, ..., un) (16) the follow-
ing theorem takes place:
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Theorem 4. Let x(u) is twice differentiable and with probability one p(u) > 0, ∀u ∈ Ω(u),
and the functions Φ1(·), Φ2(·) and the blurriness parameter Cs satisfy the convergence conditions
(10), then:

lim
s→∞

M{(x(u)− x̃s(u1, ..., un))
2} = 0,∀u ∈ Ω(u).

The proof of theorem 4 is based upon following lemma.
Lemma 4.1. Non-parametric regression estimation x̃s(u) in conditions of theorem 4 is

asymptotically unbiased, i.e.:

lim
s→∞

M {x̃s(u1, ..., un)} = x(u1, ..., un).

Similar proofs of theorem 4 and lemma 4.1 for non-parametric regression function estimation
x̃s(u) (16) in case Ω(u, x) ⊂ R2are considered in [9].

In order to define the mistake of gained non-parametric models the quadratic optimality
criteria is used:

w(cs) =
1

s

s∑
j=1

(xj − xs(uj, cs))
2 → min

cs
, (18)

where i 6= j.
Such criteria allows to estimate the closeness degree among true object’s “input-output”

measurements and model (estimation) of that object.

3 Oil decomposition process

3.1 Common data

In cooking practice usually vegetable oil is used for example sunflower oil, olive oil, hemp oil and
other oils. Heating process lasts for a long time (1-3 hours) and with a high temperature (180-200
degrees celsius). During long heating of oil, there are some chemical processes in it. As a result of
these processes some heavy and hard-soluble substances appear and accumulate in the oil. Most
of these decomposition products are carcinogens and are dangerous for human health.

Data of Juravleva L.N. “Vegetable oils oxidizing research during long lasting heating and
development the ways to stabilize oil. [10] “Russian science-research oil institute” were used in
the work.

During experiment the oil was warmed up to 180
◦

in a deep-fat fryer “Minutka” in an
interval of 2-50 hours with tests in every 2 hours (in present work the interval was limited to
16 hours, because concentration of carcinogenic substances becomes dangerous for human health
till this time). The equipment used: chromatograph “Kristall 2000M” with capillary column
“Varian” CPF 420 with length 100 m with inner diameter 0,25 mm.

Here is a short characteristic of factors, which define the process:
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1. Oil, technological space, fat – environment, which is being heated and in which the food is
cooking.

2. Free fat acids, (u1) – are the “easy to take” energy source, satisfies body energetic needs.
Accumulates in fat tissues.

3. Hydro peroxide, (u2) – chemically changed lipids or fat acids. The first products of fat
autoxidation. They have no smell or taste.

4. Secondary decomposition products, (u3) – carbonyl combinations, less-molecular acids,
ethers, spirits etc. They say that every secondary oxidizing products appear as a result
of some hydro peroxides transformations. Cherish one part of secondary products appears
during hydro peroxides decomposition, and another part as a result of following reactions.
They have unpleasant smell and taste.

5. Polymers, (u4) – inorganic and organic, amorphous and crystal substances, which are gained
by multiple atom-groups repeating.

6. Refraction coefficient (refraction index), (u5) – equals to ratio between the falling ray angle
sinus and refraction angle sinus. Characterizes oils purity, degree of their oxidation. It
grows when there are some non-limited fat acids.

7. Density changing, (u6) – relative density of vegetable oil may be defined as ratio between
some defined volume mass and similar mass of distilled water during 20

◦
or with a help of

aerometer.

8. Peroxide number, (u7) – witnesses about relative content of peroxide fat acids in researched
fat.

9. Anizidine number, (u8) – number, which defines content of secondary oxidizing products in
oil (aldehydes).

The variable meanings belong to following intervals: u1 ∈ [4; 16], u2 ∈ [0, 1; 0, 2], u3 ∈
[15; 360], u4 ∈ [0, 05; 0, 4], u5 ∈ [1, 4; 1, 5], u6 ∈ [0, 9; 0, 95], u7 ∈ [3; 8], u8 ∈ [8; 356]. Sample of
“input-output” variables looks like

{
u1i, u2i, u3i, u4i, u5i, u6i, u7i, u8i, i = 1, 9

}
.

3.2 Experimental researches

In order to research connection among the variables the correlation matrix was calculated accord-
ing to data [10].

The correlation coefficients meanings among variables are quite high, so, variables u1, ..., u8

depend linearly among each other. As parametric models of oil thermal decomposition process
the following equations were used:
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Table 1: Correlation matrix

u1 u2 u3 u4 u5 u6 u7 u8

t 0.94 0.98 0.89 0.94 0.91 0.87 0.96 0.96
u1 1 0.93 0.83 0.96 0.87 0.87 0.95 0.84
u2 0.93 1 0.84 0.96 0.9 0.84 0.97 0.94
u3 0.83 0.84 1 0.74 0.89 0.87 0.79 0.94
u4 0.96 0.96 0.74 1 0.86 0.8 0.99 0.84
u5 0.87 0.9 0.89 0.86 1 0.89 0.92 0.92
u6 0.87 0.84 0.87 0.8 0.89 1 0.82 0.86
u7 0.95 0.97 0.79 0.99 0.92 0.82 1 0.89
u8 0.84 0.94 0.94 0.84 0.92 0.86 0.89 1

ũ1 = α0 + α2u2 + α3u3 + α4u4 + α5u5 + α6u6 + α7u7 + α8u8

ũ2 = β0 + β1u1 + β3u3 + β4u4 + β5u5 + β6u6 + β7u7 + β8u8

ũ3 = γ0 + γ1u1 + γ2u2 + γ4u4 + γ5u5 + γ6u6 + γ7u7 + γ8u8

ũ4 = η0 + η1u1 + η2u2 + η3u3 + η5u5 + η6u6 + η7u7 + η8u8

ũ5 = κ0 + κ1u1 + κ2u2 + κ3u3 + κ4u4 + κ6u6 + κ7u7 + κ8u8

ũ6 = λ0 + λ1u1 + λ2u2 + λ3u3 + λ4u4 + λ5u5 + λ7u7 + λ8u8

ũ7 = µ0 + µ1u1 + µ2u2 + µ3u3 + µ4u4 + µ5u5 + µ6u6 + µ8u8

ũ8 = ρ0 + ρ1u1 + ρ2u2 + ρ3u3 + ρ4u4 + ρ5u5 + ρ6u6 + ρ7u7

. (19)

In order to estimate models parameters (equations coefficients of (19)) the least square
method was used. Let’s present obtained parametric models in matrix view:

U = A×B, (20)

where: U =



ũ1

ũ2

ũ3

ũ4

ũ5

ũ6

ũ7

ũ8


, B =



1 1 1 1 1 1 1 1
u2 u1 u1 u1 u1 u1 u1 u1

u3 u3 u2 u2 u2 u2 u2 u2

u4 u4 u4 u3 u3 u3 u3 u3

u5 u5 u5 u5 u4 u4 u4 u4

u6 u6 u6 u6 u6 u5 u5 u5

u7 u7 u7 u7 u7 u7 u6 u6

u8 u8 u8 u8 u8 u8 u8 u7


,
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A =



−47, 2 −2, 4 0, 03 32, 5 14, 2 30, 9 0, 08 0, 03
0, 7 10 · 10−4 −8 · 10−6 −0, 12 −0, 22 −0, 39 0, 04 −9 · 10−6

2 · 103 26, 1 −62, 9 −815, 21 −378 −1 · 103 −4, 7 1, 08
−0, 4 2 · 10−4 1, 12 3 · 10−4 −0, 46 0, 93 0, 08 −89 · 10−4

0, 7 7 · 10−3 −0, 05 −2 · 10−4 −0, 43 0, 82 0, 02 1 · 10−4

−1, 2 0, 02 −2, 41 −1 · 10−3 −0, 37 1, 45 −1 · 10−5 2 · 10−3

−6 9 · 10−3 4, 03 −6 · 10−4 7, 92 5, 43 −2 · 10−3 3 · 10−3

−1 · 103 −15, 2 800, 7 0, 63 237, 8 152, 7 1 · 103 14, 71


.

These dependencies have cognitive meaning and may be used in further research. It is
necessary to match that some variables are more essential during mathematical models building,
and some are less essential (it is defined by model parameters).

Let’s consider a parametric structure at an example of ũ1 more detailed:

ũ1 = −47, 2− 2, 4u2 + 0, 03u3 + 32, 5u4 + 14, 2u5 + 30, 9u6 + 0, 08u7 + 0, 03u8, (21)

where ũ1 ∈ Ω(U1) ⊂ R8, U1 = {u2, u3, u4, u5, u6, u7, u8}.
Mean-square mistake w was calculated as a square taken from (18). w1 = 0, 417.

Analogous models were built also for vectors u2, u3, u4, u5, u6, u7, u8.

In model ũ1 (21) we shall place u2 = 0, 1, u3 = 15, u4 = 0, 05, u5 = 1, 4, u6 = 0, 9,
u7 = 3, u8 = 8 from acceptable intervals variables definition, and we gain ũ1 = 4. Current value
corresponds to acceptable borders of u1 definition.

Now we shall place u2 = 0, 2, u3 = 360, u4 = 0, 4, u5 = 1, 5, u6 = 0, 9, u7 = 3, u8 = 8 in
(21) from acceptable intervals variables definition. We shall gain ũ1 = 26. Such value runs out
the acceptable borders of u1definition, the maximum of u1 is 16. Analogous results are gained for
vectors u2, u3, u4, u5, u6, u7, u8. Therefore, we can conclude about “tubular” process character.

3.3 H-models

As far as completed researches show, that process has “tubular” character, so the parametric
models are not enough and there is need to use H-models. In order to build H-models, each
gained parametric model was supplemented with appropriate H-indicator. H-models may be
presented in matrix view like:

UH = (A×B)×ΘH , (22)
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where: UH =



ũH1
ũH2
ũH3
ũH4
ũH5
ũH6
ũH7
ũH8


, ΘH =



θHs1(u2, ..., u8)
θHs2(u1, u3, u4, ..., u8)
θHs3(u1, u2, u4, ..., u8)
θHs4(u1, ..., u3, u5, ..., u8)
θHs5(u1, ..., u4, u6, u7, u8)
θHs6(u1, ..., u5, u7, u8)
θHs7(u1, ..., u6, u8)
θHs8(u1, ..., u7)


,

the matrix ΘH elements are being calculated according to (3).

H-model in details at an example of ũ1 is further:

ũ1 = (−47, 2− 2, 4u2 + 0, 03u3 + 32, 5u4 + 14, 2u5+

+30, 9u6 + 0, 08u7 − 0, 03u8)θs1(u2, ..., u8), (23)

where: ũ1 ∈ Ω(U1) ⊂ Ω(U1) ⊂ R8.

If we place in ũ1 (23) the u2 = 0, 2, u3 = 360, u4 = 0, 4, u5 = 1, 5, u6 = 0, 9, u7 = 3, u8 = 8,
we shall gain ũ1 = 0, or in current case ũ1 ∈ (Ω(U1)− Ω(U1)), where the process doesn’t exist.

So, the process “tubular” structure for the current case is considered.

Non-parametric H-models for u2, u3, u4, u5, u6, u7, u8 were built by analogous way.

Conclusion

The new non-parametric estimations of regression function according to observations are consid-
ered. They work with presented gaps, condensations and rarefactions in sample of “input-output”
observations and gain more accurate results, than usually used regression estimations, and also
convergence theorems. Presented practical example of H-models shows existing of H-processes in
practice. “Tubular” process researched quite slight and it needs to be much more deep researching.
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Abstract

The central limit theorem is proved for nonparametric estimator of distribution function
F (x). It is shown that the given estimation approaches for convolution of F (x) and kernel
Kh(x) is better. The direct way of estimation of the distribution function F (x) based on
consistent estimate of characteristic function if offered.

Keywords: distribution function kernel estimator, asymptotic normality, integrated
square error, summarized square error, convolution.

Introduction

The threshold model of a dose-effect dependence when the casual dose is entered into bioobject is
considered and the alternative answer W is observed. The model basis is made by the assumption
that there is latent quantity X— the threshold dose which is the biggest dose at which it is not
observed effect in experiment. The quantity W = I {U > X} is the event indicator {U > X}.
The biological essence of the above-stated consists in the following. We will assume that it is a
question of poison which gets to bioobject (all poison and all medicine, only doses divide them).
For example, at biotest of water speech usually goes about Ceriodaphnia which are sensitive to
pollution of water by substances and which for them are poison. For each poison theoretically
there is a minimum dose which causes their destruction in test object. To estimate this dose for
each bio-object it is labour-consuming enough. If the bioobject in experiment has survived, it
has received a dose, obviously smaller the minimum lethal dose. For each bioobject this dose will
be variously that is defined individual sensitivity of individuals of a biological kind to a tested
preparation. However in homogeneous mass quantity X will be a random variable with unknown
distribution function F (x) = P {X < x}. Such model is considered in [1].

Main results

Let {(Xi, Ui) , 1 ≤ i ≤ n} be stationary sequence of independent pairs random variables (X,U),
where U has unknown distribution function G(u) and density g(u) > 0 on R1. Sample U (n) =
{(Ui,Wi), 1 ≤ i ≤ n} is observed.
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In works [1], [4] problems of estimation and test of goodness of fit H0 : F (x) = F0(x) against
alternative H1 : F (x) 6= F0(x) were respectively considered. The following relation was used to
estimate F (x)

F̃n(x) =
n∑
i=1

WiK

(
x− Ui
h

)/ n∑
i=1

K

(
x− Ui
h

)
,

where K(x) ≥ 0 denote symmetric kernel and h is bandwidth converging to 0 with increasing
sample size n. It has been shown that if h = n−1/5 then

n2/5
(
F̃n(x)− F (x)

)
D−−−→

n→∞
N
(
a(x), σ2

0(x)
)
,

a(x) =
f ′(x)g(x) + 2g′(x)f(x)

g(x)
, σ2

0 =
F (x)(1− F (x)) ‖ K ‖2

g(x)
, ‖ K ‖2=

∫
K2(x)dx

At concrete realisation of criteria and estimations on sample U (n) of finite volume it has appeared
that we receive an estimation which is closer not to function F (x), and to function F ∗Kh(x), where
F ∗ Kh denote convolution of function F (x) with function Kh(x) and Kh(x) = h−1 ∗ K(xh−1).
Convolution F ∗Kh(x) differs from function F (x), especially this difference is appreciable on tails
of distribution F (x). So, for example, if F (x) = 1 − e−x, x > 0 (exponential distribution) and
Kh(x) = 1/(2h),−h < x < h then F ∗ Kh(x) = (x + h + 1 − e−(x+h))/(2h) if −h < x < h and
F ∗Kh(x) = 1− e−x shh/h if x > h. Thus, if initial distribution F (x) exponential with support
on an interval (0,∞) then distribution F ∗Kh(x) has support on an interval (−h,∞) and is not

exponential. Thus n2/5
(
F̃n(x)− F ∗Kh(x)

)
D−−−→

n→∞
N (0, σ2

0(x)).

Hence, at finite samples it is necessary for us to test a hypothesis concerning not of function
F0(x), and a hypothesis concerning function F0 ∗Kh(x). For this purpose we can use either the

integrated square error In =
∫ (

F̂n(x)− F0 ∗Kh(x)
)2

ω(x)dx or the summarized square error

Sn,m =
∑m

j=1

(
F̂n(xj)− F0 ∗Kh(xj)

)2

ω(xj).

It is shown that asymptotic distributions of these statistics are normal. As to estimation of
function of distribution F (x) we offer following procedure. Let ϕK(t) be a characteristic function
of density K(x), and ϕ̂(t) be consistent estimation of characteristic function constructed on F̂n(x).
As an estimation of distribution function at finite n the following function is offered

F̂n(β)− F̂n(α) = lim
T→∞

1

2π

∫ T

−T

e−itα − e−itβ

it

ϕ̂(t)

ϕK(t/h)
dt

For example, the Epanechnikov’s kernel K(x) = (3/4)(1 − x2) has characteristic function
ϕK(t) = (3 sin t − t cos t)/t3, and for a kosinus-kernel K(x) = (π/4) cos (πx/2) we have ϕK(t) =
π2 cos t/ (π2 − 4t2) . Both kernels have the support on [−1, 1].

Under the assumptions of regularity these estimations F̂n(x) are asymptotically normal.
That is

n2/5
(
F̂n(x)− E

(
F̂n(x)

))
σn(x)

D−−−→
n→∞

N (0, 1) , σ2
n = D

(
F̂n(x)

)
.
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Abstract
A class of semi-recursive kernel plug-in algorithms of identification and forecasting is

considered. The main parts of the asymptotic mean square errors (AMSE) of the estimates
are found. The algorithms of identification and forecasting are applied to investigate the
dependence of Russian Federation’s Industrial Production Index on the dollar exchange rate,
direct investment, and export for the period from September 1994 till March 2004.

Keywords: identification, forecasting, kernel recursive estimator, mean square conver-
gence.

Introduction

Numerous statistical problems of identification and prediction is connected to estimation of certain
characteristics of the following expressions:

J(x) = H
(
{ai(x)}, i = 1, s

)
= H (a(x)) . (1)

Here x ∈ Rm, H(·) : Rms → R1 is a given function,

a(x) = (a1(x), . . . , as(x)) , ai(x) =

∫
gi(y)f(x, y)dy, i = 1, s,

where g1, . . . , gs are the known Borel functions,

∫
≡
∫
R1

, f(·, ·) is an unknown probability density

function (p.d.f.) for the observed random vector Z = (X, Y ) ∈ Rm+1.

If gi(y) ≡ 1, then ai(x) =

∫
f(x, y)dy = p (x), where p (·) is the marginal p.d.f. of the

random variable X, and f(y|x) = f(x, y)/p (x) is the conditional p.d.f.
Here are the well known examples of such functions:
— the conditional initial moments

µm(x) =

∫
ymf(y|x)dy, H(a1, a2) =

a1

a2

, m ≥ 1,

g1(y) = ym, g2(y) = 1; µ1(x) = r(x) is the regression line;
— the conditional central moments

Vm(x) =

∫
(y − r(x))mf(y|x)dy, g1(y) = y, g2(y) = y2, . . . , gm(y) = ym, gm+1(y) = 1;

V2(x) = D(x) is the conditional variance or volatility function.
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1 Problem statement

Take the following expression as an estimate of the functional a(x) at a point x:

an(x) =
1

n

n∑
i=1

g(Yi)

hmi
K

(
x−Xi

hi

)
. (2)

Here Zi = (Xi, Yi), i = 1, n, is the (m + 1)-dimensional random sample from p.d.f. f(·, ·),
(hi) is a sequence of positive bandwidths tending to 0 as i → ∞, the kernel K(u) =

m∏
i=1

K(ui) is

a m-dimensional multiplicative function which does not need to possess the properties of p.d.f.,
g(y) = (g1(y), . . . , gs(y)) .

Note that (2) can be computed recursively by

an(x) = an−1(x)−
1

n

[
an−1(x)−

g(Yn)

hmn
K

(
x−Xn

hn

)]
. (3)

This property is particularly useful when the sample size is large since (3) can be easily updated
with each additional observation.

The recursive kernel estimate of p (x) (the case when m = 1, s = 1, g(y) = 1, H(a1) = a1)
was introduced by Wolverton and Wagner in [1] and apparently independently by Yamato [2],
and has been thoroughly examined in [3].

For estimation of (1) we use the plug-in estimate

J n(x) = H (an(x)) . (4)

2 Mean square error

Denote: sup
x

= sup
x∈Rm

, Tj =

∫
ujK(u)du, j = 1, 2, . . . .

Definition 1. A function H(·) : Rs → R1 belongs to the class Nν(t) (H(·) ∈ Nν(t)) if it
is continuously differentiable up to the order ν at the point t ∈ Rs. A function H(·) ∈ Nν(R) if
it is continuously differentiable up to the order ν for any z ∈ Rs.

Definition 2. A Borel function K(·) ∈ A, if

∫
|K(u)| du <∞, and

∫
K(u) du = 1.

Definition 3. A Borel function K(·) ∈ Aν , if K(·) ∈ A, Tj = 0, j = 1, . . . , ν − 1, Tν 6= 0,∫
|uνK(u)|du <∞, and K(u) = K(−u).

Definition 4. A sequence (hn) ∈ H(m) if

(hn + 1/(nhmn )) ↓ 0,
1

n

n∑
i=1

hλi = Sλh
λ
n + o(hλn),
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where λ is a real number, Sλ is a constant independent on n.
Definition 5. Let tn, X1, . . . , Xn are vectors, and tn = tn(X1, . . . , Xn). A sequence of

functions {H(tn)} belongs to the class M(γ) if for any possible values X1, . . . , Xn the sequence
{|H(tn)|} is dominated by a sequence of numbers (C0d

γ
n) , (dn) ↑ ∞ as n → ∞, 0 ≤ γ < ∞, C0

is a constant.
Put for t, p = 1, . . . , s; j = 1, . . . ,m : a = (a1, . . . , as) = a(x); Ht = ∂H(a)/∂at; an =

(a1n, . . . , asn); as+(x) =

∫
|gs(y)|f(x, y)dy; at, p(x) =

∫
gt (y)gp (y) f(x, y) dy;

a1+
t, p(x) =

∫
|gt (y)gp (y)| f(x, y) dy; L =

∫
K2(u) du; ωiν(x) =

Tν
ν!

m∑
l=1

∂ νai(x)

∂xνl
.

Theorem 1 (the AMSE of the estimate J n(x)). If for t, p = 1, s :
1) a kernel K(·) ∈ Aν , sup

x
|K(x)| <∞; 2) a sequence (hn) ∈ H(m);

3) functions at, p (·) ∈ N0(R), sup
x
a1+
t, p (x) <∞, sup

x
a1+
t (x) <∞, sup

x
a4+
t (x) <∞;

4) a t(·) ∈ Nν(R), sup
x
| a t(x)| <∞, sup

x

∣∣∣∣∣ ∂ νa
(rj)
t (x)

∂xl∂xt . . . ∂xq

∣∣∣∣∣ <∞, l, t, . . . , q = 1,m;

5) H(·) ∈ N2(a); 6) {H(an)} ∈ M(γ), 0 ≤ γ ≤ 1/4.
Then the AMSE of the estimate J n(x) as n→∞

u2(J n(x)) =
s∑

t, p=1

m∑
j, k=1

HtHp

[
S−mL

mat, p (x)

nhmn
+ S2

ν ωtν(x)ωp ν(x)h
2ν
n

]
+O

([
1

nhmn
+ h2ν

n

] 3
2

)
.

The proof is given in [4].

3 Nonparametric semi-recursive identification of the pro-

duction function

Apply the results to estimate the macroeconomic production function.
Let r(x), x = (x1, x2, x3) ∈ R3 be the regression model of the three-factor production

function, a(x) = (a1(x), a2(x)), a1(x) =

∫
yf(x, y)dy, a2(x) =

∫
f(x, y)dy = p (x). Here x1 > 0

is the capital input, x2 > 0 is the labor input, x3 > 0 is the nature input, y > 0 is a product, and
f(x, y) > 0 only if x1 > 0, x2 > 0, x3 > 0, y > 0. Then

rn(x) =
n∑
i=1

Yi
h3
i

K

(
x−Xi

hi

)/ n∑
i=1

1

h3
i

K

(
x−Xi

hi

)
=
a1n(x)

p n(x)
. (5)

Estimate (5) is called semi-recursive because it can be updated sequentially by adding extra
terms to both the numerator and denominator when new observations became available [5], [6].
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Let the kernel K(u) = K(u1)K(u2)K(u3), K(·) ∈ Aν , sup
u∈R1

|K(u)| <∞, and (hn) ∈ H(3).

To find the AMSE of the estimate rn(x), we use Theorem 1. In view of 3) and 4) conditions of
this theorem functions ai(z), i = 1, 2, and their derivatives are continuously differentiable up

to the order ν for any z ∈ R3, and the function

∫
y4f(x, y)dy is bounded on R3. If p (x) > 0,

then condition 5) is fulfilled. It seems impossible to find a majorizing sequence (dn) (condition 6)
of Theorem 1), since the denominator in (5) may be equal to zero. In some cases we can find a
majorizing sequence according to Definition 5 with γ = 0 under ν = 2 if, for example, K(·) ≥ 0,
and Y <∞ [7]. For ν > 2 we can use the following piecewise smooth approximation r̃n(x) [8]:

r̃n(x) =
rn(x)

(1 + δn, ν | rn(x)| τ )ρ
,

where τ > 0, ρ > 0, ρτ ≥ 1, δn, ν = O
(
h2ν
n + 1/(nh3

n)
)
, (δn, ν) ↓ 0 as n→∞.

In this case it is enough to take even τ ≥ 4, and as n→∞ (see [8])

u2(r̃n(x)) =
2∑

i, p=1

HiHp

(
S−3

LBi, p

nh3
n

+ S2
ν ωiν(x)ωpν (x)h2ν

n

)
+O

([
1

nh3
n

+ h2ν
n

]3/2
)
,

where H1 = 1/p (x), H2 = −r(x)/p2 (x); B1,1 =

∫
y2f(x, y)dy, B2, 2 = p (x); B1, 2 = B2,1 =∫

yf(x, y)dy, ω1ν(x) =
Tν
ν!

(
∂ νa1(x)

∂xν1
+
∂ νa1(x)

∂xν2
+
∂ νa1(x)

∂xν3

)
,

ω2ν(x) =
Tν
ν!

(
∂ νp (x)

∂xν1
+
∂ νp (x)

∂xν2
+
∂ νp (x)

∂xν3

)
.

4 Nonparametric semi-recursive dynamic models

Generalize the above results, given for independent observations (random samples), to time series.

4.1 Identification

In [9] an autoregressive heteroscedastic model satisfying geometric ergodicity conditions is con-
sidered. The approach allows us to estimate dynamic production functions with lagged values of
the output.

Suppose that a sequence (Yt)t=...,−1,0,1,2,... is generated by a nonlinear homoscedastic ARX
process of order (m, s)

Yt = Ψ(Yt−i1 , . . . , Yt−im , Xt) + ξt = Ψ(Ut) + ξt, (6)

where Xt = (X1t, . . . , Xst) are exogenous variables, Ut = (Yt−i1 , . . . , Yt−im , Xt), 1 ≤ i1 < i2 <
... < im is the known subsequence of natural numbers, (ξt) is a sequence of independent identically
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distributed (with density positive on R1) random variables with zero mean, finite variance, zero
third, and finite fourth moments, Ψ(·) is an unknown non-periodic function bounded on compacts.
Assume that the process is strictly stationary.

Criteria for geometric ergodicity of a nonlinear heteroscedastic autoregression and ARX
models which in turn imply α-mixing have been given by many authors (see, for example, [10]–
[12]).

Let Y1, . . . , Yn be observations generated by process (6). The conditional expectation Ψ(x, z) =
Ψ(u) = E(Yt|Ut = u) = E(Yt|u), (x, z) = u ∈ Rm+s we estimate by the statistic, which is a semi-
recursive counterpart of the Nadaraya–Watson estimate [13], [14] (similarly to (5)):

Ψn,m+s (u) =
n∑
t=2

Yt
hm+s
t

K

(
u− Ut
ht

)/ n∑
t=2

1

hm+s
t

K

(
u− Ut
ht

)
. (7)

Since the observations are dependent, investigation of the estimates properties becomes
much harder. For example, the main part of the Nadaraya-Watson estimate’s AMSE for strongly
mixing (s.m.) sequences was found only in 1999 [15].

According to [9], if the observed sequence satisfies the s.m. condition with a s.m. coefficient
α(τ) such that ∫ ∞

0

τ 2[α(τ)]
δ

2+δ dτ <∞ (8)

for some 0 < δ < 2, then Theorem 1 holds. Note that a s.m. coefficient with the geometric rate
satisfies condition (8).

We will examine the dependence of Russian Federation’s Industrial Production Index (IPI) Y
on the dollar exchange rate X1, import X2, and direct investment X3 for the period from Septem-
ber 1994 till March 2004. The data are available from: http://www.gks.ru and http://sophist.hse.ru/.
Apply (7) under

Ut = (Yt−1, X1t, X2t, X3t, X3(t−1)). (9)

The identification results one can be seen in Fig. 1.

Figure 1: Identification
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The kernel K(u) used is the Gaussian kernel and the bandwidths hjt = 1.1σ̂jt
−1/9, where

σ̂j, j = 1, 2, 3, 4, 5 are the corresponding sample mean square deviations, the constant 1.1 is
chosen subjectively. To compare nonparametric algorithms (7) and the least-squares estimators,
we has calculated the relative errors An and relative average annual errors A(t), t = 1994, . . . , 2004
for both the approaches:

An =
1

n

n∑
i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣ , A(t) =
1

12

12∑
i=1

∣∣∣∣∣Yi(t)− Ŷi(t)

Yi(t)

∣∣∣∣∣ ,
where Yi is the true value of the IPI and Ŷi is its estimator. The results of such a comparison are
given in Fig. 2.

Figure 2: Identification relative errors A(t)

The result of 1998 can be explained by 1998 Russian financial crisis (”Ruble crisis”) in
August 1998.

4.2 Forecasting

To predict the IPI Y, we will apply (7) under

Ut = (Yt−1, X1(t−1), X2(t−1), X3(t−1), X3(t−2)). (10)

The structure of data (10) provides the following forecast for Yn :

Ŷn = Ψn, 5 (Yn−1, X1(n−1), X2(n−1), X3(n−1), X3(n−2)) =
n−1∑
t=2

Yt
Kt

Ht

/
n−1∑
t=2

Kt

Ht

, (11)

where Ht =
5∏
j=1

hjt, and the five-dimensional kernel Kt is defined by the formula

Kt = K

(
Yn−1 − Yt−1

h1t

) 3∏
j=1

K

(
Xj(n−1) −Xj(t−1)

h(j+1)t

)
K

(
X3(n−2) −X3(t−2)

h5t

)
.
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Figure 3: Forecasting

Statistic (11) may be interpreted as the predicted value based on the past information.

To find the AMSE of the estimate Ψn, 5 (u) we use Theorem 2 [9].

The relative error of the forecast (REF)An obtained with Ψn, 5 (·) is 5%.Here the bandwidths
hjt = 0.9σ̂jt

−1/9, where σ̂j, j = 1, 2, 3, 4, 5. In Table 1 the REFs for each year from 1995 are given.

Figure 4: Forecasting relative errors A(t)

Table 1: Relative errors An

Parametric Nonparametric
Identification 0.0414 0.0448
Forecasting 0.045 0.05
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Nonparametrical Estimation of Survival Functions

by Censored Data
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Incomplete observations occur in survival analysis, especially in clinical trials and engineer-
ing when we partially observe death in biological organisms or failure in mechanical systems.

From statistical literature one can learn that incomplete observations arise in two ways:
by censoring and truncation. Note that truncation is sampling an incomplete population, while
censoring occurs when we are able to sample the complete population, but the individual values
of observations below and/or above given values are not specified. Therefore censoring should
not be confused with truncation. In this work we deal only with right censoring model which is
easily described from methodological point of view.

Let X1, X2, ... be a sequence of independent and identically distributed random variables
(i.i.d.r.v.-s) (the lifetimes) with common distribution function(d.f.) F . Let Xj be censored on
the right by Yj, so that observations available for us at the n-th stage consist of the sample
S(n) = {(Zj, δj), 1 ≤ j ≤ n}, where Zj = min(Xj, Yj) and δj = I(Xj ≤ Yj) with I(A) meaning
the indicator of the event A. Suppose that Yj are again i.i.d.r.v.-s, the so-called censoring times
with common d.f. G, independent of lifetimes Xj.

The main problem consist of nonparametrically estimating F with nuisance G based on
censored sample S(n), where r.v.-s of interest Xj-s observed only when δj=1. Kaplan and Meier
(1958) were the first to suggest the product-limit (PL) estimator F PL

n defined as

F PL
n (t) =


1−

∏
{j:Z(j)≤t}

[
1− δ(j)

n−j+1

]
, t ≤ Z(n),

1, t > Z(n), δ(n) = 1,
undefined, t > Z(n), δ(n) = 0,

where Z(1) ≤ ... ≤ Z(n) are the order statistics of Zj and δ(1), ..., δ(n) are the corresponding δj. In
statistical literature there are different versions of this estimator. However, those do not coincide
if the largest Zj is a censoring time. Gill (1980) redefined the F PL

n setting F PL
n (t) = F PL

n (Z(n))
when t > Z(n). Further, we use the Gill’s modification of PL-estimator. At present there is an
enormous literature on properties of the PL-estimator (see, for example [3]-[9]) and most of work
on estimating incomplete observation are concentrated on PL-estimator. However F PL

n is not
unique estimator of F .

The second, closely related with the F PL
n , nonparametrical estimator of F is the exponential

hazard estimator

FE
n (t) = 1− exp

{
−

n∑
j=1

δ(j)I(Z(j) ≤ t)

n− j + 1

}
,−∞ < t <∞.

249



Nonparametric Methods

FE
n plays an important role in investigating the limiting properties of the estimator F PL

n .
Abdushukurov (1998,1999) proposed another estimator for F of power type:

Fn(t) = 1− (1−Hn(t))
Rn(t) =


0, t < Z(1),
1− (n−j

n
)Rn(t), Z(j) ≤ t < Z(j+1), 1 ≤ j ≤ n− 1,

1, t ≥ Z(n),

where

Hn(t) =
1

n

n∑
j=1

I(Zj ≤ t)

is empirical estimator of d.f. H(t) = P (Zj ≤ t) = 1− (1− F (t))(1−G(t)) and

Rn(t) =
−log(1− FE

n (t))∑n
j=1

I(Z(j)≤t)
n−j+1

.

As we see, estimator Fn is defined on whole line. Let

an(t) =
n∑
j=1

I(Z(j) ≤ t)

(n− j)(n− j + 1)
.

Note that sup{an(t), t ≤ T} ≤ [n(1−Hn(T ))]−1 = O( 1
n
) with probability 1, where T < Z(n).

Following inequalities show that all three estimators are closely related (Abdushukurov [1-
5]): For t < Z(n) with probability 1
(I) 0 < −log(1− F PL

n (t)) + log(1− FE
n (t)) < an(t);

(II) 0 ≤ F PL
n (t)− FE

n (t) < 1
2
an(t);

(III) 0 < −log(1− Fn(t)) + log(1− FE
n (t)) < an(t);

(IV) | − log(1− F PL
n (t)) + log(1− Fn(t))| < an(t);

(V) |F PL
n (t)− Fn(t)| < an(t);

(VI) |FE
n (t)− Fn(t)| < an(t).

Thus one can expect the stochastic equivalences of these estimators in the sense of their
weak convergence to the same Gaussian process (Abdushukurov (1998)). Let d.f.-s F and G
be continuous and T < TH = inf{t : H(t) = 1}. Then one can define the sequence of Wiener
processes {Wn(x), 0 ≤ x <∞}∞n=1 such that when n→∞

sup
t≤T

|n
1
2 (F ∗

n(t)− F (t))− (1− F (t))Wn(d(t))|
a.s.
= O(n−1/2 log n),

where F ∗
n stands for one of estimators F PL

n , FE
n , Fn and

d(t) =

∫ t

−∞
[(1− F )2(1−G)]−1dF.
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Here we state the convergence result in the form of strong approximation by the sequence of
appropriate copies of limiting Gaussian process, with optimal rate. As consequence from here we
obtain that n

1
2 (F ∗

n − F ) converges weakly in the Skorochod’s space D(−∞, T ] to the mean-zero
Gaussian process with covariance function σ(t; s) = (1 − F (t))(1 − F (s))d(min(t, s)), t, s ≤ T .
Thus we see that all three estimators are equivalent in the asymptotic sense. But as we see in
[3-5] the estimator Fn has some peculiarities and even a better properties than F PL

n and FE
n do

for all n ≥ 1. Let’s consider the following exponential representation for any right continuous d.f.
(Gill (1980)):

1− F (t) = exp
{
−
∫ t

−∞

dF (u)

1− F (u−)

}∏
s≤t

(1−∆Λ(s)),

where ∆Λ(s) = (F (s) − F (s−))/(1 − F (s−)) and F (s−) = limu↑sF (u). Then we see that
F PL
n is a natural estimator for

∏
s≤t(1 − ∆Λ(s)), that is a discrete d.f.. On the other side,

FE
n and Fn are a natural estimators for continuous d.f. F (t) = 1− exp

{
−
∫ t
−∞(1− F )−1dF

}
=

1−(1−H(t))R(t), where R(t) = −log(1−F (t))/[−log(1−H(t))] - relative risk function. Obviously,
the relative risk estimators Fn(t) and Gn(t) = 1 − (1 − Hn(t))

1−Rn(t) of F (t) and G(t) satisfy
the empirical analogy of equality (1 − F (t))(1 − G(t)) = 1 − H(t), −∞ < t < ∞, that is
(1− Fn(t))(1−Gn(t)) = 1−Hn(t), −∞ < t <∞. But for exponential hazard estimators FE

n (t)
and GE

n (t) = 1− exp{−
∑n

j=1(1− δ(j))I(Z(j) ≤ t)/(n− j + 1)} of F (t) and G(t), we have

(1− FE
n (t))(1−GE

n (t)) = exp
{
−

n∑
j=1

I(Z(j) ≤ t)

n− j + 1

}
6= 1−Hn(t).

Moreover, for t ≥ Z(n), Fn(t) = 1, but FE
n (t) < 1. Therefore Fn is a correct estimator of continuous

d.f. F than F PL
n and FE

n . In picture below we demonstrate plots of estimators 1− Fn, 1− F PL
n

and 1 − FE
n of survival function 1 − F using well-known Channing House data of size n=97(see

[3-5]). Here, thin-solid line stands for 1−FE
n , medium-one for 1−F PL

n and thick-solid line stands
for 1−Fn. In monographies [3-5] of author one can find several extensions of estimators Fn, F

PL
n

and FE
n with full asymptotical results theory (weak convergence, law of itherated logarithm type

strong consistency, weak and strong approximation, empirical Bayes approach ...) in competing
risks models with random censorship from the right and both sides.
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[7] Csörgő, S. (1996). Universal Gaussian Approximations under Random Censorship, Ann.
Statist., 24, N.6, pp. 2744-2778.

[8] Gill, R.D. (1980). Censoring and Stochastic Integrals, Mathematical Centre Tracts, 124.
Amsterdam.

[9] Gill, R.D. (1994). Glivenko-Cantelli for Kaplan-Meier. Math. Meth. of Statist., 3, N.1, pp.
76-87.

[10] Kaplan, E.L., Meier, P. (1958). Nonparametric estimation from Incomplete observations.
J.Amer.Statist.Assoc., 58, pp. 457-481.

252



Applied Methods of Statistical Analysis. Simulations and Statistical Inference

Estimation of Density from Indirect Observation

V.Solev
St.Petersburg Department of Steklov Mathematical Institute RAS

St.Petersburg, Russia
e-mail: solev@pdmi.ras.ru

Abstract

In this paper we consider an observational scheme, as data are interval censored. We sug-
gest a simple nonparametric estimator f̂n for unknown density f and under some appropriate
condition prove the consistency of this estimator.

Introduction

Let τ be a random partition of real line, that is such countable collection of intervals:

τ = {[aj, bj), j ∈ Z} (1)

that

R =
⋃
j∈Z

[aj, bj), and [aj, bj) ∩ [ai, bi) = ∅, as i 6= j. (2)

For simplicity we assume that

0 ∈ [a0, b0), and aj+1 = bj.

For a point x we denote by [L(x), R(x)) the interval of the partition τ such that

x ∈ [L(x), R(x)) .

Let X be the random variable with density f . Denote by ∆(X) = [L(X), R(X)) the interval
of the partition τ which contains X. We assume that X and τ are independent. Suppose that
instead of X we observe the interval ∆(X). The main goal in this paper is to construct an

estimator f̂n for unknown density f of the distribution of X from indirect observations.
Namely, let ∆1(X), . . . ,∆n(X) be independent copy of random interval ∆(X). We need to

construct an estimator f̂n on observations ∆1(X), . . . ,∆n(X). Here

∆j(X) = [Lj(X), Rj(X)) .

This problem vas investigated by Turnbull, B. W. (1976) and many other authors. In our
paper we use approaches which were proposed in Huber-Carol, C. and Vonta, F. (2004), and
Huber-Carol, C., Solev, V., and Vonta, F. (2006).
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1 The density of random vector [L(x), R(x))

We assume that the distribution of random vector (aj, bj) has density pj(u, v). Clearly,

pj(u, v) = pj(u, v)1I(u,∞)(v),

where 1IA(x) is the indicator function of the set A. Since

P {x ∈ [aj, bj)} =

∫∫
u<v

1I[u,v)(x) pj(u, v) dudv,

then ∫∫
u<v

∑
j∈Z

{
1I[u,v)(x) pj(u, v)

}
dudv = 1.

Therefore almost everywhere ∑
j∈Z

{
1I[u,v)(x) pj(u, v)

}
<∞. (3)

Let ψ(u, v) be a nonnegative function. Let us calculate the value Eψ (L(x), R(x)). We have

Eψ (L(x), R(x)) = E

[∑
j∈Z

ψ (aj, bj)1I[aj ,bj)(x)

]
=
∑
j∈Z

Eψ (aj, bj)1I[aj ,bj)(x).

It is clear, that

Eψ (aj, bj)1I[aj ,bj)(x) =

∫∫
u<v

ψ(u, v)1I[u,v)(x) pk(u, v) dudv.

Therefore,

Eψ (L(x), R(x)) =

∫∫
u<v

ψ(u, v)

{∑
j∈Z

pj(u, v)1I[u,v)(x)

}
dudv. (4)

So, since (see (3)) for fixed x and almost for all u ≤ x < v the value∑
j∈Z

pj(u, v) <∞, (5)

then we obtain, that the random vector [L(x), R(x)) has density

px(u, v) =
∑
j∈Z

{
pj(u, v)1I[u,v)(x)

}
(6)

It is evident, that
px(u, v) = p(u, v)1I[u,v)(x),

where the function p(u, v) does not depend on x. The function p(u, v) is called the basic density
of the partition τ .
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2 The density of random vector [L(X), R(X))

Now suppose that random variable X and partition τ are independent. Let F (x) be the distri-
bution function of X and f(x) be the density function. For a nonnegative function ψ(u, v) let us
calculate the value Eψ (L(X), R(X)). Since X and τ are independent we have

Eψ (L(X), R(X)) =

∫
{E [ψ (L(x), R(x))]} f(x) dx.

Since

E [ψ (L(x), R(x))] =

∫∫
u<v

ψ (u, v) p(u, v)1I[u,v)(x) dudv,

and ∫
1I[u,v)(x) f(x) dx = F (v)− F (u),

we obtain

Eψ (L(X), R(X)) =

∫∫
u<v

ψ (u, v) p(u, v) (F (v)− F (u)) dudv. (7)

So, for the density k(u, v) of random vector [L(X), R(X)) we have the relation

k(u, v) = p(u, v) (F (v)− F (u)) = p∗(u, v)
F (v)− F (u)

v − u
, (8)

where

p∗(u, v) = p(u, v)(v − u). (9)

3 The estimating of density

Let X,X1, . . . , Xn, . . . independent identically distributed random variables with common density
f , and τ, τ1, . . . , τn, . . . independent among themselves and independent onX1, . . . , Xn, . . . random
partitions with common basic density p(u, v). Suppose that random variables X1, . . . , Xn, . . . are
inaccessible to observation. Instead of them we observe random vectors Wj = (Lj(Xj), Rj(Xj)).
Here we denote by [Lj(x), Rj(x)) the interval of the partition τj which contains x. The problem
consists in estimating of unknown function f(x) on observations W1, . . . ,Wn, as the basic density
p(u, v) is known.

For a point x and ε > 0 denote

A(x; ε) = {x− ε ≤ L(X) ≤ x ≤ R(X) < x+ ε} . (10)
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Clearly,

P {A(x; ε)} =

∫∫
x−ε≤u≤x≤v≤x+ε

p∗(u, v)
F (v)− F (u)

v − u
du dv,

and for small ε and smooth f

P {A(x; ε)} ≈ f(x)

∫∫
x−ε≤u≤x≤v≤x+ε

p∗(u, v) du dv.

It suggests to use as the estimator f̂n(x) for value f(x) the ratio

f̂n(x) =
Pn {A(x; ε)}
µ(x; ε)

, (11)

where Pn {A(x; ε)} is the empirical version of Pn {A(x; ε)},

Pn {A(x; ε)} =
1

n
] {j : x− ε ≤ Lj(Xj) ≤ x ≤ Rj(Xj) < x+ ε} , (12)

and

µ(x; ε) =

∫∫
x−ε≤u≤x≤v≤x+ε

p∗(u, v) du dv. (13)

Here ] {A} denotes the number of element of A.
By Hoeffding inequality for y > 0

P {|Pn {A(x; ε)} − P {A(x; ε)}| > y} ≤ 2e−2ny2 . (14)

Now we assume that function f satisfy to the condition

|f(x)− f(y)| ≤ C|x− y|. (15)

Denote

fε(x) =
1

µ(x; ε)

∫∫
x−ε≤u≤x≤v≤x+ε

p∗(u, v)
F (v)− F (u)

v − u
du dv. (16)

Here we suppose that for all x and ε > 0

µ(x; ε) > 0. (17)

Lemma 1. Under the conditions (15), and (17)

|fε(x)− f(x)| ≤ 2Cε. (18)
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Proof. At the beginning we shall estimate the value∣∣∣∣F (v)− F (u)

v − u
− f(x)

∣∣∣∣ ,
as u ≤ x < v. It is clear, that∣∣∣∣F (v)− F (u)

v − u
− f(x)

∣∣∣∣ ≤ 1

v − u

v∫
u

|f(y)− f(x)| dy.

Hence, by (15) we obtain∣∣∣∣F (v)− F (u)

v − u
− f(x)

∣∣∣∣ ≤ C

v − u

v∫
u

|y − x| dy ≤ C(v − u).

Therefore,

|fε(x)− f(x)| ≤ 1

µ(x; ε)

∫∫
x−ε≤u≤x≤v≤x+ε

p∗(u, v)

∣∣∣∣F (v)− F (u)

v − u
− f(x)

∣∣∣∣ du dv ≤
C

µ(x; ε)

∫∫
x−ε≤u≤x≤v≤x+ε

p∗(u, v) (v − u) du dv ≤ 2Cε.

So, we obtain (18).�

It can be observed that

fε(x) = Ef̂n(x) =
Pn {A(x; ε)}
µ(x; ε)

.

Thus, in accordance with (14)

P
{∣∣∣f̂n(x)− fε(x)

∣∣∣ > y
}
≤ 2e−2ny2µ2(x;ε). (19)

The inequality (19) suggests us to choose ε = εn by this way:

εn → 0, and
√
nµ(x; εn) →∞, as n→∞. (20)

Theorem 1. Suppose that value εn satisfy to the conditions (20). Then under conditions (15),
and (17)

E
∣∣∣f̂n(x)− f(x)

∣∣∣→ 0, as n→∞. (21)
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Proof. At the beginning we shall prove that

E
∣∣∣f̂n(x)− fε(x)

∣∣∣→ 0, as n→∞.

Together with lemma 1 this implies (21). It is known that

E
∣∣∣f̂n(x)− fε(x)

∣∣∣ =

∞∫
0

P
{∣∣∣f̂n(x)− fε(x)

∣∣∣ > y
}
dy.

The change of variable

2
√
n yµ(x; ε) = s

in last integral gives

E
∣∣∣f̂n(x)− fε(x)

∣∣∣ =
1

2
√
nµ(x; ε)

∞∫
0

P
{∣∣∣f̂n(x)− fε(x)

∣∣∣ > s/2
√
nµ(x; ε)

}
ds. (22)

From the inequality (19) we deduce

∞∫
0

P
{∣∣∣f̂n(x)− fε(x)

∣∣∣ > s/2
√
nµ(x; ε)

}
ds ≤ 2

∞∫
0

e−s
2/2 ds =

√
2π.

Together with (22) this implies

E
∣∣∣f̂n(x)− fε(x)

∣∣∣ ≤ √
2π

2
√
nµ(x; ε)

Since √
nµ(x; εn) →∞, as n→∞,

we obtain

E
∣∣∣f̂n(x)− fε(x)

∣∣∣→ 0, as n→∞.
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Abstract

This paper is dealt with a brief statement of a basis of the theory of optimal planning
of seismic networks. Some concepts of such a planning of seismic networks are given. Some
specific formulations of problems of planning of seismic networks are presented.

Keywords:optimal planning, seismic networks, hypocenters of earthquakes.

Introduction

A source of the primarily observed seismic data in seismology is an observation system (OS),
i.e., a network of spatially distributed seismic stations equipped with instruments for recording
seismic waves.

The basic OS parameters in seismology are as follows [1,2]: a). the number of seismic
stations, the geometric configuration of a network, and individual station sites; b). the frequency
responses of the recording instruments, their dynamic range and amplification.

Definition: We shall call a given number of seismic stations deployed at fixed sites a
seismograph network (SN).

Seismograph networks are usually divided into several categories by their spatial dimensions:
local networks ranging in size from a few hundred meters to a few tens of kilometers; zonal
networks, from a few tens to a few hundreds of kilometers; regional networks, from a few hundreds
to a few thousands of kilometers; global networks, which are deployed all over the world or a large
part of it.

For the purpose of economy the number of stations in a network should be kept to a minimum
without affecting the quality of records; this naturally calls for an optimum network design.

The modem worldwide tendency to optimize seismic networks is to minimize errors in deter-
mining basic kinematic hypocenter parameters. The mathematical planning of experiment uses
methods of mathematical statistics and optimization techniques [3-5].

The problem of designing a SN has arisen from the parameter estimation problem Hypocen-
ters of earthquakes, setting and methods of solution by which one reduce here briefly.

1 The hypocenter location problem

The basic data for this problem are the coordinates of existing seismic stations and those of
possible sites for the new stations to be added to the network, the velocity structure of the
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region under study, and the positions of the seismic-prone zones which are to be studied using
the network in question. This information related to arrival times of the waves excited by an
earthquake, is obtained by means of nonlinear equations of condition [5-7]:

~T = ~η(X, ~θ) + ~ε, (1)

where ~T = (T1, T2, . . . , TN)T is the arrival time vector, ~η(X, ~θ) is the N -dimensional vector of
theoretical arrival times or the regression function, ~ε = (ε1, . . . , εN)T is the vector of residuals,
~θ = (ϕ, λ, h, t)T is the vector of estimated parameters, X = (~x1, ~x2, . . . , ~xn) is the matrix of
stations’ coordinates, N is the number of recorded arrival times, n is the number of stations.

The estimation of ~θ is treated by the regression analysis: the solutions are the least squares
(LS) estimates

~θ = arg min
~θ∈Ω

Q(~θ), Q(~θ) =
N∑
i=1

σ−2
i

(
Ti − η(~xi, ~θ)

)2
. (2)

The functional Q(~θ) has usually been minimized in seismology since Geiger’s times using
the iterative Gauss-Newton method with regularization based on a linear fit to the regression
function around the point ~θk:

J(X, ~θk)∆~θk + ~η(X, ~θk)− ~T + ~ε = 0, (3)

where

J(X, ~θ) =

(
∂η(~xi, ~θ)

∂θ1

,
∂η(~xi, ~θ)

∂θ2

, . . . ,
∂η(~xi, ~θ)

∂θm

)
, i = 1, 2, . . . , n. (4)

Multiplying both parts of the linearized equations (3), by JT (X, ~θk) from the left, one
obtains the following normal equations is:

(JT (X, ~θk)J(X, ~θk) + α2I)∆~θk = JT (X, ~θk)~y(X, ~θk), (5)

where α - parameters of regularization, I - unique matrix, ~y(X, ~θ) = (~T − η(X, ~θ))T .

The estimates of ~θ are found by iteration (~θ = limk→∞ ~θk):

~θk+1 = ~θk +
[
JT (X, ~θk)J(X, ~θk)

]−1

JT (X, ~θk)~y(X, ~θk), k = 0, 1, 2, . . . , (6)

where the starting fit ~θ0 should be chosen as close to the true values.
Another approach to solving (1)-(4) is to abstain from using normal equations, but solve

the iterative process for (3) directly at each step. The most popular recent method to do this
is singular value decomposition (SVD) or the generalized inversion [8, 9]. The computational
scheme of the Gauss–Newton singular value decomposition is to decompose (4) into a product of
three matrices at each step of the iterative process:

J(X, ~θk) = UkΣkV
T
k , (7)
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where Uk is an orthogonal n×n matrix, Vk is an orthogonal m×m matrix, Σk is a diagonal n×m
matrix having the structure Σk =

(
Sk
0

)
, where Sk = diag(ρ1 , ρ2 , . . . , ρm) is a diagonal matrix of

singular values arranged in nonincreasing order ρi ≥ ρi+1.

The method also provides a so-called singular value analysis, which consists in the elimina-
tion of zero singular values and the respective columns in U and V . The iterative process then
becomes

~θk+1 = ~θk + VkS
−1
k
~dk, k = 0, 1, 2, . . . , (8)

where ~dk is a vector which consists of the first m components of UT
k ~y(X,

~θk).

It can be shown that, at each step of the iterative process (11), the vector ∆~θk = VkS
−1
k
~dk

minimizes not only the functional Q(~θ), in which the vector ~η(X, ~θ) has been replaced by its linear
part as given by (4), but also the norm of the parameter vector, which ensures the uniqueness of
the solution. The advantage of this process, as compared with (6), (9), is that one easily obtains
as a side result not only the covariance matrix of the parameter space but also the matrix of the
data space [13].

2 The necessity of planning SN

To sum up, using any of the above methods based on the Jacoby matrix (4) of the linearized
equations of condition (3), (4), one can estimate earthquake hypocenter parameters and the
associated uncertainties. The solution of this problem is discussed, for example, in [6, 10]. However
good the iterative techniques (9), (11) for hypocenter location may be, they are unsatisfactory for
a poorly conditioned matrix (4). The regularization techniques recommended for such cases often
fail to give the desired effect in practice. The cause of matrix (4) being poorly conditioned lies
in poor observational arrangements, namely, in poor network geometries with respect to seismic
source zones. The necessary conclusion is that observations should be planned beforehand; that is,
network geometries should be chosen so that matrix (4) should be as well conditioned as possible
to improve in parameter estimation. The design of seismograph networks is thus to remove the
cause why matrix (4) is poorly conditioned, rather than trying to mend the matters by using
various regularizations.

It is now generally recognized in the theory of experimental design that well-advised pre-
liminary planning is required for costly experiments (e.g., explosions) or experiments that cannot
be reproduced (e.g., natural phenomena such as earthquakes).

All this shows once more that observational arrangements should be planned beforehand.
This also concerns seismic networks.

3 A concept of plan, and network design

Definition: A design of an optimum seismic network is defined here as a network having a fixed
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constant list of wave types recorded at each site. For example,

ξn = {~x1, ~x2, . . . , ~xn; ~P , ~S}. (9)

Definition: The SN design problem is to find an optimum design that satisfies one of the criteria
of optimal planning [4].

4 Optimal design criteria.

The quality of a design is determined by applying certain criteria to it. These can be classified
into statistical and nonstatistical criteria. There three statistical criteria (A-, D-, and E-) of an
optimum design and one more nonstatistical C-criterion of an optimum design. They are used in
seismology [3],[5],[7],[11],[13-15].

The criterion was formulated by Burmin [3] who elaborated Marchuk’s ideas [12] as to
the need for experimental design, provided the matrix of the normal equations has the highest
condition number possible. We used this criterion in planning many seismic networks [5],[15].

The above criteria are related in one way or another to the matrix of the linearized equations
of condition J(ξ, ~θ) (4). It would then be reasonable to carry out a theoretical search for designs
that minimize a given function Ψ of matrix (4). As has been mentioned above, this optimization
problem is the problem of optimal planning of seismic networks, the results of its solution being
optimum designs (optimum seismic networks), and the function Ψ being the optimality criterion.

5 Specific formulations of seismic network design prob-

lems

The design of seismic networks in many seismological problems can be stated in either of the
following formulations [5]: a). A region has a network of k > m, where m is the number of
unknown hypocenter parameters. It is required to select an optimum subnetwork of k1 < k
stations for recording the earthquakes occurring in a given source zone (or zones). b). A region
has a network of k ≥ m stations,equipment being available (expected or planned) for k2 stations
more. There are l > k2 sites in the region chosen from geological and geographical considerations
for the deployment of this equipment. It is required to supplement the existing network in an
optimum manner to have k+k2 stations for recording the earthquakes occurring in a given source
zone (zones). c). A region has no seismic network. It is required to plan (design) an optimum
network consisting of a fixed number k ≥ m of stations for recording the earthquakes occurring
in a fixed source zone (zones). The new network can be designed both using the sites that have
been chosen beforehand from geological and geographical considerations and the sites that cover
the region uniformly.

Each of the above problems divides in its turn into several subproblems, depending on what
set of parameters is planned to be determined using the future network.
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6 Analysis of seismic networks

An important constituent of SN design is a network analysis intended to characterize in quanti-
tative terms the performance of a seismograph network in hypocenter location in given regions,
to plot contour maps of confidence intervals for earthquake hypocenter parameters and find cor-
relations between them based on the elements of the covariance matrix of the parameter space,
and plot similar contour maps of the elements of the covariance matrix of the data space charac-
terizing an excess or deficit of the information provided by the network. To sum up, SN analysis
can provide conclusions on hypocenter location capability for earthquakes occurring in different
source zones and on the importance of an individual stations in the network, these parameters
being then used to compare different networks.

7 Planning seismic networks in the Kemerovo region

The objective of this research is planning of zonal network of seismic stations (NSS) which could
provide the solution to the following tasks [15]: 1). Seismic monitoring of a section of intensive
man-caused impacts actions (on an example of the city of Kemerovo and adjoining territories)
at a “weak seismicity” level, i.e., under the condition of the lower limit of representativeness of
seismic events not exceeding 4-5 energy classes. 2). Recognition of records of industrial explosions
and earthquakes. 3). Estimation of a depth of the focus of seismic events independent of their
nature.

The problem of planning is currently actual due to the seismic activation near to the towns
of Osinniki (2005) and Polysaevo (2007). With a well-planned zonal network of observation, it
would be possible to trace the previous history of the seismic activity, to calculate more reliably
its nature, and to assess until very recently consequences at various scenarios of its development.

With allowance for the fact that Kuznetsk Basin according to the current maps of seismic
zoning is attributed to 7-8-magnitude territories by the level of seismic activity, it is impossible to
exclude a possibility of natural tectonic activity, along with the man-caused factors. With network
capable of fixing even minor changes in seismic conditions, it is possible to exceed the detection,
say, of foreshocks activity followed by a strong seismic event. In the case of a man-caused activity,
it is apparently possible to correct the factors which have caused it in due time.

In this paper, the current regional sub-net, consisting of 7 stations, is optimally supple-
mented with the planned NSSs containing 15, 20, 25, 30, 35, 40, 45 stations. Seismic stations
of the existing network are installed in Salair, Kemerovo, Mezhdurechensk, Berchikul, Tashtagol,
Eltsovka, and Verkh-Baza (they are marked with black triangles in Figure 1).

Optimal addition is achieved within 44 stations in predetermined built-up areas (they are
marked with grey triangles in Figures). A-optimum additions of 7 existing regional stations to
15, 20, 25, 30, 35, 40, 45 stations are received. For each of the received networks its detailed
analysis consisting in build-up of maps of isolines of energy representation, confidential radius of
an error of epicentres and a confidential interval of an error on depth is carried out. Averages of
the termed quantities on all observed area and the selected hypocentral zone for each received
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Figure 1: The level of confidence radius at the epicenter on all observed area.
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network are computed also. All it allows to select for realization a subnet of certain number of
the stations, corresponding to available material possibilities. The value of 0.05 s for the accuracy
of recording arrival times and the value of 0.1 km/s for an error of speed of seismic waves velocity
were chosen for all the planned stations.

Figure 1 shows the level of confidence radius at the epicenter for networks of 7, 15, 35, and
51 stations. From these figures it is seen that its mean in the zone sharply decreases and is equal
to 3.6, 1.7, 1, and 0.8 km, respectively.

The above-mentioned characteristics of the regional network and of all the planned networks
a change of characteristics in the number of network stations is demonstrated with the diagrams
shown in Figure 2.

Figure 2: A change of characteristics in the number of network stations.

Analyzing Figures 1-2 , it is possible to make a conclusion that all the planned networks
in all their parameters essentially surpass the regional network. Beginning with a network of 35
stations, their characteristics can provide a solution of the tasks stated.
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Abstract

In this article we describe and experimentally investigate a method to construct fore-
casting algorithms for stationary and ergodic processes based on universal measures (or the
so-called universal data compressors). By the example of predicting the sunspot numbers
and some other solar characteristics we show that the precision of thus obtained predictions
is higher than for known methods.

Keywords: time series, nonparametric methods, universal measure, universal coding,
solar activity, sea level, cross-rates.

Introduction

The problem of forecasting is important for many applications. In this paper we develop and ex-
perimentally investigate an efficiency of prediction methods which are based on so-called universal
measures (or universal data compressors).

By definition, universal codes, or universal methods of lossless data compression, are in-
tended to “compress” texts, i.e. encode them in such a way that the length of an encoded text is
shorter than the length of the initial one (and, of course, the original text can be recovered from
the encoded one). It is important that the text statistics is unknown beforehand, that is why such
codes are called universal. In fact, universal codes implicitly estimate unknown characteristics of
the processes and use them for data compression. The universal codes for stationary and ergodic
sources with finite alphabets have been known since 1980’s; see [4].

It is clear that universal codes can be considered as a tool of mathematical statistics and
it is natural to try to apply them for solving traditional problems of this science (like hypothesis
testing, parameter estimation, etc.) First it was recognized in 1980’s (see [3] and [5] ) and
nowadays it is shown that the universal codes can be efficiently used for hypothesis testing,
parameter estimation and prediction of time series with finite and real-valued alphabets; see [6],
[7]. However, there are only preliminary results which concern practical applications of prediction
methods to real data, see [8]. These results were rather aimed to illustrate the possibility of such
applications than give information about the precision of the methods.

∗Research was supported by Russian Foundation for Basic Research (grant № 09-07-00005.) and federal target
scientific-technical programme (governmental contract no. 02.740.11.0396)
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The goal of this work is the construction, implementation and experimental estimation of
the methods of prediction suggested, which are based on universal codes and deeply connected
with them so-called universal measures. To this aim, we have considered several types of time-
series data: the indices of solar activity (SA), water level, and cross-rate of certain currency.
It is clear that such processes are of great theoretical and practical importance. For example,
nowadays the statistical connections between climate and SA are widely investigated.

The obtained experimental results show that the forecasting methods based on universal
codes possess a high precision.

The outline of the paper is as follows. The next part contains necessary definitions and
some information about universal codes and measures. The part three is devoted to prediction
of real time series and the part four is a short conclusion.

1 Method and its implementation

1.1 Description of the method

Here we will describe the forecasting method studied, and also provide required theoretical infor-
mation. It will be convenient at first to describe briefly the prediction problem. We consider a
stationary and ergodic source which generates sequences x1x2... of elements (letters) from some
set (alphabet) A, which is either finite or real-valued. It is supposed that the probability distri-
bution (or distribution of limiting probabilities) P (x1 = ai1 , x2 = ai2 , ..., xt = ait) (or the density
p(x1, x2, ..., xt)) is unknown. Let the source generate a message x1, ...xt−1xt , xi ∈ A for all i, and
the next letter needs to be predicted.

Now let us describe the forecasting method. In what follows we give a definitions of universal
code and universal measure and describe the connection between them.

Roughly speaking, a code maps words from the set At, t ≥ 1, into the set of words over
alphabet {0, 1}. By definition, a code U is universal (for the set of stationary ergodic sources), if
for any stationary and ergodic source P the following equalities are valid:

lim
t→∞

|U(x1...xt)|/t = H(P ),

with probability 1, and
lim
t→∞

|EP (U(x1...xt)|)/t = H(P ),

where |v| is the length of the word v, EP (f) is the mean of f with respect to P , H(P ) is the
Shannon entropy of P , i.e.

H(P ) = lim
t→∞

− t−1
∑
u∈At

P (u) log(P (u)).

A universal code is called optimal if it encodes a sequence of letters generated by a finite-alphabet
source in such a way that the length of the encoded sequence is asymptotically minimal.
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By definition a measure µ is universal if for any stationary and ergodic source P the following
equalities are valid:

lim
t→∞

t−1(logP (x1...xt)− (log µ(x1...xt))) = 0,

with probability 1, and

lim
t→∞

t−1
∑
u∈At

P (u) log(P (u)/µ(u))) = 0.

(Here and below log x = log2 x.) These equations show that, in a certain sense, the measure µ
is an estimate of (unknown) measure P . That is why the universal measures can be used for
estimation of process characteristics and prediction.

The following statement shows that any universal code determines a universal measure.

Theorem 1. Let U be a universal code and

µU(w) = 2−|U(w)|/
∑
u∈A|w|

µU(u).

Then µU is a universal measure.

(The simple proof of this theorem can be found in [9]. So, we can see that, in a certain
sense, the measure µU is a consistent (nonparametric) estimate of the (unknown) measure P .

Now we a going to describe the universal measure R which will be used as a basis for
forecasting in this paper. For this purpose we first describe the Krichevsky measure Km, which
is universal for the set of Markov sources of memory, or connectivity, m, m ≤ 0, if m = 0, the
source is i.i.d. In a certain sense this measure is optimal for this set (see for details [2], [9].) By
definition,

Km (x1...xt) =


1
|A|t , if t ≤ m;

1
|A|m

(
(|A|/2)
(1/2)|A|

)|A|m∏
υ∈Am

∏
a∈A ((vx(υa)+1/2))

((v̄x(υ)+|A|/2))
, if t > m,

(1)

where x = x1...xt, νx(v) is the count of word v , occurring in the sequence x1...x|v|, x2...x|v|+1, ...,
xt−|v|+1... xt, ν̄x(v) =

∑
a∈A νx(va), Γ() is the gamma function.

We also define a probability distribution {ω = ω1, ω2, ...} on integers {1, 2, ...} by

ω1 = 1− 1/ log 3, ... , ωi = 1/ log(i+ 1)− 1/ log(i+ 2), ... , (2)

i = 1, 2, ... . (In what follows we will use this distribution, but the theorem described below is true
for any distribution with nonzero probabilities.)

The measure R is defined as follows

R(x1...xt) =
∞∑
i=0

ωi+1Ki(x1...xt) . (3)

271



Application of Statistical Methods

It is important to note that the measure R is a universal measure for the class of all stationary
and ergodic processes with a finite alphabet; [4]. Hence, R can be used as a consistent estimator
of probabilities.

Let us describe the scheme of the forecasting method based on the measure R for the
sequences generated by the sources of different types.

1.2 Finite-alphabet case

As we mentioned above the measure R can be applied for prediction. More precisely we may use
R for defining the following conditional probability as:

R(a|x1...xt) = R(x1...xta)/R(x1...xt) ,

a ∈ A. In the finite-alphabet case the scheme of the prediction algorithm is quite simple. Let
x1...xt be a given sequence. For each a ∈ A we construct the sequence x1...xta and compute the
value R(a|x1...xt) . Having the set of such conditional probabilities we use them as estimations
of the unknown probabilities P (a|x1...xt), a ∈ A.

1.3 Real-valued case

Let (Ω, F, P ) be a probability space and let X1, X2, ... be a stochastic process with each Xt taking
values in a standard Borel space. Suppose that the joint distribution Pn for (X1, X2, ..., Xn)
has a probability density function p(x1x2...xn) with respect to the Lebesgue measure L. (A more
general case is considered in [7]. In particular, it is shown that any universal measure can be used
instead of R.) Let Πn, n ≥ 1 , be an increasing sequence of finite partitions Ω that asymptotically
generates the Borel sigma-field F , and let x[k] denote the element of Πk that contains the point
x. For integers s and n we define the following approximation of the density:

ps(x1, ..., xn) = P (x
[s]
1 , ..., x

[s]
n )/L(x

[s]
1 , ..., x

[s]
n ) .

Now we define the corresponding density r as follows:

r(x1...xt) =
∞∑
s=1

ωsR(x
[s]
1 , ..., x

[s]
t )/L(x

[s]
1 , ..., x

[s]
t )) (4)

It is shown in [7] that the density r(x1...xt) estimates the unknown density p(x1, ..., xt), and the
conditional density

r(a|x1...xt) = r(x1...xta)/r(x1...xt) (5)

is a reasonable estimation of p(a|x1...xt).
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1.4 Implementation of the method

Consider next some aspects of the implementation of the investigated method. Suppose there is
a certain source which generates values from some real-valued interval [A;B] and we have time
series x1...xt generated by this source. The next value xt+1 needs to be predicted. For the purpose
of simplicity we will consider computations based on r.

Step 1. Calculate r(x1...xt) using (4). We will describe this step in more details. Divide
the interval [A;B] into two equal partitions, called bins, and transform x1...xt into a sequence
of symbols each of which is equal to the index of the bin, that contains the appropriate point
xi. (I.e. if 0 and 1 are the bins indexes, we will then obtain from x1...xt the sequence consisting
only of these symbols). Then calculate the first item of the sum from the formula (4). As the
value of L we take a product of lengths of all bins containing xi , and the measure R is computed
for the sequence obtained as a result of transforming x1...xt for the current quantization. After
that again we divide each of the existing bins (there are two) into two equal bins (there will be
four) and for this new quantization do analogous operations to compute the second term from the
right-hand side of the equation (4). Go on in this way until getting the quantization for which
each of the distinct time series values (including those added at the next step) belongs to distinct
bins. Summing all terms, obtain r(x1...xt) from (4). It should me mentioned that at this step
any other algorithm for achieving the increasing sequence of finite partitions of [A;B] may be
applied.

Step 2. Consider the set P consisting of points A,A+h, A+ 2h, ..., B , where h is a certain
small constant. (In this paper h = 0.01 was used.) For each element a of this set we construct the
sequence x1...xta and compute the value r(x1...xta) similarly. Here we use the quantization that is
the same as for previous step. Then by formula (5) for each element from the set P calculate the
estimations of the appropriate conditional probabilities and find the corresponding prediction. In
this paper the forecast value was considered to be equal to the element from P with the biggest
estimate of conditional probability. But any other adequate approach may be used.

2 Experimental results

In this section the results of experimental estimation of the method, described in the previous
section, are given. The computations in this section can be divided into the two independent
parts. In the first part we considered only the forecasting method, while in the second part some
preprocessing was used.

2.1 Simple time series forecasting

As the target here we chose the time series consisting of the following indices: monthly and
smoothed monthly means of sunspot numbers, absolute daily and monthly solar flux values. All
datasets used in the experiments of this subsection, can be found at the National Geophysical
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Data Center (NGDC) Internet site in the “Space Weather & Solar Events” section [10] . In this
subsection one-step ahead forecasting was considered.

The content of each experiment can be described as follows. Given t successive values of
certain time series, we tried to forecast its (t + 1)th element. For each length of the time series
related to a certain process there were 25 experiments on independent datasets. After doing
all appropriate computations, the precision estimation was made by considering the differences
between the forecast and actual values. The results of the experimental computations of this
stage are given in Table 1 below. The first column contains the name of the investigated time
series, the second gives the range of its values. The rest of the columns contain the mean absolute
error (MAE), obtained when using the corresponding length of the time series. The “n/d” (“no
data”) text means that no calculations were carried out, because there was no data. For example,
the information in the third row of the table indicates that for the time series on absolute daily
solar flux the MAE corresponding to the calculations based on the 4000 known values, is 1.45.
All time series values belong to the range [50; 300].

Table 1: Experimental results for SA prediction

Time series Range 500 700 1000 1200 2000 3000 4000
Monthly sunspot
number means

[0; 256] 6,54 2,56 9,58 15,85 21,7 19,63 n/d

Smoothed monthly
sunspot number
means

[0;210] 1,5 1,1 1,99 0,77 3,36 2,56 n/d

Absolute daily so-
lar flux

[50;300] 1,17 1,17 2,71 5,52 8,35 1,72 1,45

Absolute monthly
solar flux

[580;2540] 211,29 45,88 n/d n/d n/d n/d n/d

2.2 Forecasting with preprocessing of time series.

It is known that statistical methods of forecasting are often used with the prior transformation
of input data. The combination of this approach and the investigated method may improve
the precision of prediction. In this subsection experimental estimation of the application of the
forecasting method based on the measure R together with the preparatory differentiation of the
time series was accomplished. Having such forecast value we can easily add it to the last known
elements of time series and obtain the desired prediction.

One-step ahead forecasts comparison. Here as the target of research time series, consisting
of the 15-minute sea level indices, were considered. All datasets used in the experiments of this
item, can be found at the British Oceanographic Data Centre (BODC) Internet site in the “UK
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Tide Gauge Network” section [11]. The web interface of the site allows any registered user to
download data file with the history of 15-minute sea level indices for the certain gauge from some
location. In this file for each timestamp for the certain period of time the appropriate actual and
residual values are given. The latter are calculated from the observed sea level values minus the
predicted sea level values. According to the provided by BODC support information predicted
tide values are produced at the National Oceanography Centre’s (NOC), using their harmonic
tidal analysis. This is based on the TIRA tidal analysis programs following the Doodson method.
We considered the data related to the Bubbler tide gauge from Dover and captured in 2005
year, because all values for that period are available and there are no missed or interpolated
points there. Again the one-step ahead forecasting was decided here. Furthermore, the scheme
of the calculations was the same, but each estimation series contained 30 experiments. After the
accomplishing of all appropriate computations, the precision estimation was made by considering
the differences between corresponding forecast and actual values. As we mentioned above the
history contains residuals for every element of time series. So, in the purpose of the objectivity
for each MAE of NOC software we took into account residuals corresponding only to the values
predicted by investigated method. The results of the investigation are situated in Table 2.

Table 2: Forecasting results 15-minutes sea level indices

Forecast 500 1000 2000 5000
R 0.034 0.038 0.0396 0.037
NOC 0.207 0.2133 0.09883 0.0779

The second row contains MAE for R measure based method and the appropriate input data.
The third row includes MAE for computations produced at the NOC. So it is seen from the table
that for the forecast using the described method and the time series of size 5000 the MAE is 0.037
for 30 experiments. And if we consider the given by NOC residuals for each of that 30 predicted
by the investigated method values we will obtain 0.0779.

Comparison with the simplest method The simplest test to explore a new forecasting method
is a comparison with so-called inertial prediction, where the last actual value is supposed to be
the next forecast value. Here we will accomplish this kind of comparison, regarding the FOREX
cross-rates daily currency of Great Britain pound to Euro. We used data for cross-rates from Jan-
uary 2001, 03 to January 2011, 17. The dataset used in this investigation item was taken from
FXHISTORICALDATA.COM [1]. Again we considered the one-step ahead forecasting. Each
estimation series contained 10 experiments. After the accomplishing of all appropriate compu-
tations, the precision estimation was made by considering the differences between corresponding
forecast and actual values. The comparison results are summarized in Table 3.

Table has the following structure. The second and the third rows contain the MAE for
forecasting method based on R measure and inertial prediction respectively when using the ap-
propriate length of input data. As a whole we may say that the forecasting method based on the
universal measure R showed the better than the inertial prediction results.
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Table 3: Comparison with the inertial method for GBP/EUR cross-rate

Foracast 500 1000
R 0.0019 0.00089
Inertial 0.0025 0.0010

Conclusions

In this article the implementation and experimental estimation of forecasting method, based on
the universal measure R were considered. Analysis of the investigation outcomes has shown the
quite high precision of the obtained results. Good results were also achieved in the combine
with preparatory transformation of time series. We found parameters for which the consistent
superiority of the considered method in comparison with UK NOC prediction was detected in the
one-step ahead forecasting. As a result we may conclude that universal codes are believed to be
the effective tool for the forecasting methods construction in practical application.
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Abstract

This paper presents a survey of text steganography methods used for hiding secret infor-
mation inside some covertext. Widely known hiding techniques (such as translation based
steganography, text generating and syntactic embedding) and detection are considered. It
is shown that statistical analysis has an important role in text steganalysis.

Keywords: Steganography, steganalysis, linguistic stegosystem, statistical attacks.

Introduction

Steganography is the art and science of writing hidden messages in such a way that no one, apart
from the sender and intended recipient, suspects the existence of the message. In steganography,
it is very important to find a good covertext suitable for embedding hidden messages. This paper
provides a basic introduction to steganography and steganalysis, with a particular focus on text
steganography. Information hiding techniques are discussed, providing motivation for moving
toward text steganography and steganalysis.We will show some of the problems inherent in text
steganography as well as issues with existing solutions.

1 Steganography

In 1984, Gustavus Simmons illustrated what is now widely known as the prisoners’ problem: Let
us consider Fig1. two accomplices in a crime, Alice and Bob, are arrested in separate cells. They
want to coordinate an escape plan, but their only means of communication is by way of messages
conveyed for them by Wendy the warden. Should Alice and Bob try to exchange messages that
are not completely open to Wendy, or ones that seem suspicious to her, they will be put into a high
security prison. Alice and Bob will have to deceive the warden by finding a way of communicating
secretly in the exchanges. It can be done such way: Alice gets any text (covertext) which does
not arise the warden suspicion and embeds (using steganographic method) secret message into it.
Then she sends the covertext with message to Bob. This covertext is available to both Warden
and Bob, but it contains different information to Wendy than to Bob.

Many types of covertexts are based on data having redundancy, such as video, audio, or
image files. In this article we’ll discuss one of the areas of steganography, which uses text files as
a covertext. A file with covertext is called container.
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Figure 1: Basic steganography protocol

2 Information hiding methods

Existing methods of embedding secret messages in the text data could be divided into three
groups:

1. Syntactic methods The early methods of text information hiding are based on the
physical formatting of text. One of such methods, for example, proposed in [1], uses the
extra space between words. One space means that the transmitted information bit is “0”,
and two spaces mean “1”. This technique is widely used in HTML files (web pages) because
space presence does not affect on the web page appearance.The disadvantage of this method
is easy detectability, extra spaces are not used in text. It is possible to use special characters
instead of spaces wich do not appear in commonly used text editors.

Another method proposed in [1] uses a syntax error when writing words such as:
“This is the end”
“This iz the end”
The second version has a misprint. The presence of errors in certain words (in particular
”is”) means that the transmitted information bit is “0”, and errors absence means that bit
is “1” . Thus, there is a transfer of information in the text. This method is not easily
detectable, because some errors may occur in the message.

2. Semantic methods This group includes Tyrannosaurus Lex(T-Lex), published in [2],
which uses the replacement words in the sentence on their synonyms, for example:

Message embeded by synonym selection. Sentence “Tobolsk is a decent little town” contains
message - “01”. This method requires a large synonyms dictionary. The below examples
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excellent city
(0) decent (0)metropolis

Tobolsk is a little
(1) fine (1) town

illustrate two shortcomings of the T-Lex system. First, it sometimes replaces words with
synonyms that do not agree with correct English usage, as seen in the phrase “soon subse-
quently dispatched”. Second, T-Lex also substitutes synonyms that do not agree with the
genre and the author style of the given text.

An invitation to dinner was soon afterwards dispatched
An invitation to dinner was soon subsequently dispatched

. . . and make it still better, and say nothing of the bad belongs to you alone.

. . . and make it still better, and say nada of the bad belongs to you alone.

It is clear that the word “nada” does not belong to Jane Austen’s style. Furthermore, the
string “say nada” of is not part of typical English usage.

There is another approach, proposed in [3], of generating sentence level paraphrases for
information hiding. Example:
The caller identified the bomber as Yussef Attala, 20, from the Balata refugee camp near
Nablus.
The caller named the bomber as 20-year old Yussef Attala from the Balata refugee camp
near Nablus.
This method has a high degree of secrecy.

3. Linguistically-driven generation methods

Let’s consider the method proposed in [4], using a context-free grammar to generate a
natural like text.

Grammar Rules:
S → ABC
A→ She(0) | He(1)
B → likes(0) | hates(1)
C → milk(0) | apples(1)

This approach produces stegotext that looks similar to the real structure of the original
text. It is used a set of grammatical rules to generate stegotext and the choice of each word
determines how secret message bits are encoded. The quality of the resulting stegotext
directly depends on the quality of the grammar. Today’s most popular stegosystems are
Nicetext [5], Texto [6] and Markov-Chain-Based [7], because they have high ratio of the
input message size to the generated text size. Also, resulting stegotext looking like natural
text but it should be noted that, as usually, such text is meaningless.
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The next one approach was proposed at [8]. The key idea is to hide information in a noise
than occurs invariably in natural languages transformation. When translation a non-trivial
text between a pair of natural languages, there are typically many possible translations.
Selecting one of these translations can be used to encode information. For example:

“Джек нанес краску на стену” can be translated as:
“Jack spayed paint on the wall”, or “Jack sprayed the wall with paint”.

3 Steganalysis methods

There converse problem of steganography is steganalysis. Its goal is to identify suspected con-
tainer, determine whether or not they have embedded message in it, and, if possible, recover that
message. Statistical attacks are commonly used for stegotext detection. For example, widely
known support vector machines (SVMs) [9] are a set of related supervised learning methods that
analyze data and recognize patterns, used for classification. There are two types of errors uses
for evaluating the steganalysis methods reliability:
False Positive errors occur when the method mistakenly flags an natural text as stegotext.
False Negative errors occur when the method mistakenly flags stegotext as natural text.

The most easily detectable methods are syntactic because they could be detected by simple
analyzer. Presence of double spaces in text might cause suspicion. It was noted earlier that
methods of natural-like text generation have one disadvantage — resulting text is meaningless.
It requires a human intervention to determine the meaningfulness of the text. However, it is
not always possible, because of the large volume of messages transmitted in the network. It is
necessary to create automated methods for steganalysis. Nowadays, there are a large number of
different steganalysis methods.Let us consider in more detail the following method. A method
using semantic shortcomings of methods published in [10]. When you replace the words on their
synonyms can break semantic rules, for example:

“What time is it ?” Word “time” could be replaced as “period” or “duration”that do not
agree with correct English usage. False positive ratio is 38.6%. False negative - 15.1%. Low
reliability level makes it difficult to the practical application of this method. In addition, it is
requires a lot of time working, and a large database of language rules. Method, proposed in [11],
uses word frequency and its variance in the analyzed text. Obtained data and The Support Vector
Machine (SVM) used for identify stegotext Nicetext, Texto or Markov-Chain-Based presence when
container size more than 5Kb. Sum of errors less than 7.05%.

The most effective steganalysis for Nicetext stegosystem proposed in [12]. In virtue of the
concepts in area of information theory, the method uses an information entropy-like statistical
variable of words in detected text segment together with its variance as two classification features
for SVM. The method was centered on detection for small size text segments estimated in the
hundreds in words. The experimental accuracy of the method on classification of generated text
and normal text exceeds 99% when text size is larger than 400 bytes. Even for sentences, the
experimental accuracy exceeds 85%.
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New method of statistical analysis was suggested in [13]. The compression used for stegotext
detection. It is known that an embedding message breaks statistical structure of the container,
increasing its entropy. Consequently, the full container will compress worse than empty. Let us
consider the example:

A and B are empty and full containers, respectively.

Table 1: Container size before and after compression

container before compr. after compr.
A 500 320
B 500 300

Add content of suspected container C into A and B. Compare added content sizes before
and after compression.

Table 2: Content size of C

container before compr. after compr.
C 50 45
C 50 20

It could be asserted that container C is statistically depend with B, which ensures good
compression. This principle used in attack on Texto. Accuracy of detection exceeds 99.98% when
text size is larger than 400 bytes.

The next one [14], statistical method used for attack on stegotext Nicetext, Texto, and
Markov-Chain-Based. The average length of words, frequency of spaces, letter distribution of the
words, first letter of word distribution used as features in SVM classificator. Detection accuracy
exceeds 84.42% for text segments larger than 500 bytes.

Table 3: The effectiveness of existing steganalysis methods

stegosystem 400 bytes 1 Kb 5 Kb
Nicetext 99.61% 99.61% 99.61%
Texto 99.98% 99.98% 99.98%
MCB 84.42% 87.61% 99.46%

Analysis of translation-based steganography was published in [15]. This method has im-
proved on a previously proposed linguistic steganalysis method based on word distribution which
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is targeted for the detection of linguistic steganography like nicetext and texto. The newmethod
aims to detect the application of TBS and uses none of the related information about TBS, its
only used resource is a word frequency dictionary obtained from a large corpus, or a so called
natural frequency dictionary, so it is totally blind. It is known, that stegotext consist less high
frequency word then in natural text or translated text. This Method needs to know the machine
translator set and covertext language. The experimental results show that the method accuracy
is 87.7% when container size - 20 Kb.

The most effective method was proposed in [16]. It is used two features (words frequency
and variance of the words distances as sentences structures) for SVM classification.

Let us consider distances of words in “What is a web browser?”.

Table 4: Word distances

what web browser
what 0 1 2
web 1 0 1

browser 2 1 0

It should be noted than the sentences structures of stegotext looks more “noisy” than natural
text. The total detection accuracy are 97.65%, 98.88% and 99.69% respectively when the text
size is 10Kb, 15Kb and 20 Kb.

Conclusion

This paper presents a background on the major algorithms of text steganography and steganalysis.
It is shown that overwhelming majority of effective steganalysis methods are based on statistical
analysis. Most existing embedding methods could be detected with high probability.
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Abstract

This work covers an experimental research of statistical methods in cryptoanalysis on the
example of the block cipher RC6. The given gradient attack is based on the statistical test
“book stack”, developed by B.Ya. Ryabko. The attack’s circuit allows to reduce considerably
a labour of input private key finding. The earlier known variants of attacks based on the test
of hi-square made the big complexity. In the given work the efficiency researches of gradient
attacks are conducted, the limits of its modern practical and theoretical applicability are
shown (up to 9 rounds of cipher RC6), the mathematical dependences between effectively
cracked rounds and quantity of demanded computing resources are received. Also in this
operation the trial and error method of optimal parameters for the test is given, and also
their influence on attack is shown; the time estimation of an attack and its dependence
on test and size parameters of cipher text is researched; theoretical requirements for the
computational capabilities necessary for realization of attack are shown.

Introduction

Block ciphers are widely applicated in systems of transmission and information storage. Many
experts are engaged in research of their theoretical and practical stability to any attacks. both
new ciphers, and new attacks to them are permanently being developed. We will mark that those
attacks which allow to find a key in time less than a method of direct exhaustive search of a
private key are of interest.

Cipher RC6 - one of the challengers for the rank of AES, the competition carried out in
2001. There are a lot of operations devoted to the analysis of this cipher. The majority of them
used results of the attack offered in [1], and are applicable to cipher RC6, but in some cut form, in
other words, without operation of so-called “bleaching” (“post-whitening” and “pre-whitening”).
These attacks are grounded on research of statistical properties of cipher RC6. For example, the
result according to which the output sequence of cipher RC6 can be distinguished from casual
sequence in the presence of suitable quantity selected cipher text (for r-th round is received it
is necessary 28r+10 text), has been obtained. Thus, the complexity for 4th round will already be
considerable - 274 that makes the attack almost impossible.

In the given work a new attack which allows to find a private key for 5th round is offered,

thus time complexity is equal 246, and generally: T (R) = 28·[ 9r−2
7 ]. The attack is grounded on the

research of statistical properties of cipher RC6 with the assistance of the test “a pile of books”
developed by B.Ya. Ryabko, which, according to many researches, is the best statistical test by
the current moment.
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In the given work the set of experimental data is resulted, and also efficiency of gradient
statistical attack with an example of cipher RC6 is shown.

1 The description of gradient statistical attack

The described method belongs to the class of attacks with a selected ciphered text (chosen ci-
phertexts attack). At implementation of this attack a cryptography analyst can submit any text
on an input of the cipher, parse the received ciphered message, then, knowing the results of this
analysis, to submit the new message etc. The aim of the attack is to find a (confidential) key,
and thus it is supposed that cryptography analyst knows all characteristics of the cipher, except
this key.

For the whole class modern block ciphers an initial private key K will be transformed to
so-called keys of rounds K1, K2, ..., Kr which are used sequentially for enciphering at the different
stages named as rounds. Schematically for such class of ciphers it is possible to present the
process of enciphering as sequence of stages of enciphering in which all process is divided into
some stages - rounds, thus at each following round there is an enciphering of the block received
at the previous round.

x1 = E(x0, K1), x2 = E(x1, K2), ..., xr = E(xr−1, Kr),

where x0 - an initial bulk which is necessary for ciphering, E - operation (function)of enciphering
on i-th round, Ki - a key used on i-th round, xi - a bulk, being “output“ of i-th round and “input“
(i+1)-th. In different ciphers this procedure is carried out differently, and it depends not only
on the cipher, but also from values of block lengths and a key and number of rounds r which for
many ciphers are parametres. For example, for cipher RC6 the block length can accept values 32,
64 or 128 bits, quantity of rounds can be any integer, and the key length should be multiple 8 and
can accept any value, since 8 bits. Deciphering is spent under the circuit, return to enciphering:

xr−1 = D(xr, Kr), xr−2 = D(xr−1, Kr−1), ..., x0 = D(x1, K1),

where the same keys of rounds, and operation D - inverse function to E are used.
For our task on an input of ciphers blocks αi, which length is in binary notation equal to a

block length of the data of the cipher of the data moved. Blocks move in sequences α1, α2, αm,
i.e. blocks of a following sort: 00 . . . 001, 00. 0010, 000. 0011 (1”).

Let’s enter concept “randomness measures” a data series. We will accept there is set se-
quence α then statistical test Γ(α) is applicable to it and will take the value, return to Γ(α). This
numerical value and we will name as “a randomness measure” sequences α.

One of the main requirements to modern block to ciphers consists that what data series on
an input would not move to the cipher, on an output the sequence which measure of randomness
aspires to infinity or very big should be received. Almost realized requirement consists that the
sequence on an output would admit casual any statistical test (1’).
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If on a cipher input to submit the data of sort (1) (that is essential, with lengths of everyone
α1 equal to a block size) the probability will detect on an output sequence with deviations from
”randomness” considerably above since ”randomness” of this sequence very low and simultane-
ously coincidence with a block size reduces ”miscibility” of sequents and gives less tangled on
an output of the cipher sequence. As a result of experiments described in [1] it has been shown
that the measure of randomness of the sequence received on an output after i-th round in any
by the block the cipher, increases with growth of number of rounds that completely corresponds
to the requirement (1’). During too time, during time deciphering a randomness measure (or, in
abbreviated form, ”randomness”) sequences decreases.

Let’s short describe the circuit gradient attacks. Let there is any i-th round of the cipher:
sequence of bats x1, x2, ..., xm on an input of operation of deciphering of a round i and the same
sequence on an output of the decipherer of a round i: y1, y2, ..., ym. Then it is possible to present
the deciphering circuit in sort: ym = D(xm, Ki), ym−1 = D(xm−1, Ki), ..., y1 = D(x1, Ki). We
estimate a measure of randomness of sequence further: y1, y2, ..., ym. At deciphering with a correct
key it should decrease strongly whereas deciphering with a wrong key to similarly enciphering, i.e.
it on the contrary increases a measure of randomness of sequence. As a result, Γ(y1, y2, ..., ym) <
Γ(x1, x2, ..., xm) the key of round Ki is picked up correctly, differently - it is wrong. The sense
of attack is reduced to finding of such key Kiwhich will minimize Γ(y1, y2, ..., ym). Theoretically
for this purpose it is necessary to sort out all 2|Ki| variants, but recognizing that a correct key
gives essentially smaller â value (y1, y2, ..., ym), it is possible to try keys before finding of it of
”an essential minimum”.

Efficiency of the given attack in comparison with exhaustive search of initial key K consists
that we can find separately keys of each round. As a rule, the size of keys in rounds is constant and
equal in all rounds, thus, it usually much less on length, than the initial key K. Using the above
described circuit, we can try keys Ki that gives the quantity of operations equal

∑m
i=1mi · 2|Ki|

(1”). At the equal sizes round keys, it is possible to define the upper estimation, as r ·mmax ·2|K0|,
where K0 - the size round a key. Quantity of operations at exhaustive search equally 2|K|. Thus,
gradient attack is effective at performance of a following condition:

∑m
i=1mi · 2|Ki|−|K| < 1 (2) or,

in the nearest approach: r ·mmax · 2|K0|−|K| < 1 (2’). The formula (2’) can be copied in a short
form: log2(m) + |K0| < |K| (2”).

Thus, if there is a statistical test which effectively finds deviations from randomness on
(r− 1) a round, at recommended r rounds the key of such cipher can be found essentially faster,
than a method of direct exhaustive search. It is the main idea “gradient statistical attack”.

As the statistical test the test “a pile of books”, described in [4] has been taken. As this
test has proved, as one of the most effective tests for check of cryptography generators (see [4]).
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2 Research and optimization of the statistical test “a pile

of books” in gradient to attack in application to cipher

RC6

As the statistical test the test “a pile of books” has been taken. The given test has three key
parametres on which efficiency of its application depends: a word length quantity of degree of
freedoms and the size of each part (in case of 1 degree of freedom - the top size). All researches
were spent on the test with 1 degree of freedom, and the remained two parametres varied. Test
parametres we will designate, as to steam (u,w), where u - a test word length in bits, and w -
the top size in bits (i.e. log2(W ), where W - the actual size of a top (quantity of units)).

During operation stability of cipher RC6 in relation to gradient to attack has been checked
up. 128-bit mode RC6 with an 128-bit key. Cipher RC6 is arranged in such a manner that it
ciphers 128-bit number in two stages. At first the first 32 bits are ciphered by means of the
first key of the so-called semiround, then following 32 bits, using other key of the semiround,
the remained 64 bits on the given round do not vary (they are ciphered on a following round).
Outgoing it, it is possible to spend attack not on all round, and on each semiround separately.

In table 1 results of testing of the cipher c by the help of ”a pile of books” are resulted. 100
tests with 100 various casually picked up keys have been spent.

Table 1

Round Sample size Test parametres > Q0.95 < Q0.05 E(Xi2)
3 218 (24, 10) 100 0 6.05 ∗ 107

4 218 (24, 10) 100 0 14775.6
5 218 (32, 22) 16 14 1.72

It is shown that deviations from randomness in 16 % of cases can be fixed on 5 round. It
means that gradient attack can effectively be applied on 6-th round of the cipher at the size of
sampling 218. But it is possible to tell of 100 % about efficiency of application of attack to all
only in case of 5 rounds since on 5 round fixing of deviations from randomness occurs only in 16
% of cases, and average Xi2 value aloud is less quantile than a degree of belief 0.95. As under
tests for a round 5 it is well visible that 14 % of keys give values Xi2 less quantile a degree of
belief 0.05 that speaks about high level of randomness of output sequence. It is actually possible
to assume that there is a certain class of ”weak” keys to which the given attack can effectively be
applied on 6 rounds, and there are ”strong” keys for which attack is effective only on 5 rounds.

Research of dependence of efficiency of considered attack from the size of sampling and from
test parametres has been conducted. Results of research are presented in the following table.

From the given table it is visible that on each separate file of the set size there is a optimal
set of parametres. This set essentially depends on a file size. The more the size, the there
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Table 2

No the test Round Sample size Test parametres > Q0.95 E(Xi2)
1 4 214 (8, 7) 50 133.4
2 4 214 (8, 6) 50 210.9
3 4 214 (16, 15) 100 1265.0
4 4 214 (16, 10) 100 18484.9
5 4 218 (8, 7) 100 1653.5
6 4 218 (8, 6) 78 1204.7
7 4 218 (16, 15) 100 21142.5
8 4 218 (16, 8) 100 118515.0
9 4 218 (24, 20) 65 170.4
10 4 218 (24, 10) 100 14775.7
11 4 218 (32, 24) 70 36.3
12 4 218 (32, 16) 11 1.02
13 4 222 (16, 8) 100 123552
14 4 222 (24, 10) 100 83179.5
15 4 222 (32, 18) 11 1.68
16 4 222 (32, 24) 68 51.2
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should be a word length in the test more. From above the word length is limited by a condition
of applicability of criterion Xi2 : S · 2w−u ≥ 5 (S - the sampling size in blocks), but even at
performance of this condition, but at too great value w the test yields bad results. In the same
way and at too small value w or too small word length (u) the test badly recognizes randomness
of sequence. Proceeding from the presented data, the optimal word length w is equal on the

average: wopt = 8 ·
[

log2(L)
8

]
(3), where L - length of entry sequence bits (L = 2b ·S). In the table

fat optimal parametres for each of the sequence sizes are selected. The optimal size of a top varies
and precisely it is impossible to define it, but on the average the optimum w is, how u

2
± 10%

(3 ’). Besides, the task of selection of pair optimal parametres for the test is very essential that
is brightly visible on an example of 14 and 15 tests, and as 8 and 12 tests. At optimally and
correctly picked up under the concrete size of sampling (not exceeding 222) parametres of the test
cipher RC6 can be cracked to 5-6 rounds, and at incorrectly picked up parametres this number
decreases to 3-4 rounds, and in certain cases even more low.

Let’s consider dependence of time of the analysis of sampling on its size and test parametres.
In the following table the data for 4 rounds of the test and casually selected 100 keys is cited.

Table 3

No the test Sample size Test parametres E(Xi2) Time
1 214 (16, 8) 11752.6 0.14 s
2 218 (16, 8) 191344.2 1.6 s
3 222 (16, 8) 1364622.9 24.5 s
4 220 (24, 23) 693.4 7.2 s
5 220 (24, 16) 6008.0 5.7 s
6 220 (24, 12) 24056.4 5.1 s

In table 3 the linear dependence of the size of sampling from time of the analysis of a
file the test is well visible strictly. Besides, given results say that with growth of the size of
sampling E(Xi2) value at what it grows grows the same as also time, is linear from a file size
that is essential. Thus, it is possible to make the supposition about possibility of rise of number
of rounds cracked by the given statistical test (number of rounds in which the test recognises
deviations from randomness) with growth of the size of files. It is quite clear that with growth of
the size of files as the optimal size of a word that demands additional and essential expenditure
of memory will grow also. Tests 4-6 in table 3 confirm idea of optimal size of a top, as the radical
square of size of all alphabet of the test: in case of a top equal on size to the radical square from
u, value E(Xi2) in 34.7 times is more. Besides, the less top, the occurs the sampling analysis
faster. Accordingly, except correct selection of parametres of the test, for cipher breaking it is
required to define also the optimal size of sampling which is necessary for breaking of the set
quantity of rounds as at too big sampling time of the analysis of sampling, and accordingly, and
each selected key, becomes too big.
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In work [2] research of the given attack in a 64-bit mode of cipher RC6 has been conducted.
The received results are presented in table 4.

Table 4

Round Number of tests Q0.99 Sample size
3 100 100 29

4 100 100 29

5 100 100 218

6 20 16 229

From the resulted data it is well visible that in this mode quantity of rounds in which the
statistical test “the pile of books” reveals deviations from randomness on the average above on
1, i.e. in 64-bit variant RC6 number of cracked rounds equally 6-7. Thus, it becomes clear that
efficiency of attack essentially depends on a block size in the cipher: the it is more, the attack is
less effective.

3 Practical implementation and an efficiency estimation

gradient statistical attack

Till now operation of cipher RC6 got to consideration on samplings in length to 222. From table 2
it is obviously visible that the test overall performance, and accordingly, and all attack essentially
depends on a sample size: at a sample size 210 the number of cracked rounds equally already 4
(for the 4-th round Q0.95 is 25). Proceeding from it, it is possible to make the supposition that
for rise of number of cracked rounds on 1, it is necessary to increase sampling in 28 times (4).
Nevertheless, there is a lawful question: whether it is possible to crack gradient statistical attack
128-bit cipher RC6 for more, than 5-6, number of rounds? The answer to this point in question
contains in researches of American standards institute NIST. With application of less effective,
than “a pile of books” statistical tests, they have obtained the following data, concerning breaking
RC6 with the help gradient statistical attack.

Information given tables 5 can be interpreted as follows. The number of cracked rounds of
128-bit cipher RC6 on the house computer makes 5-6. Generally, it is possible to crack all cipher,
i.e. all 20 rounds, but for this purpose is required at present technical inaccessible memory size.
In spite of the fact that in the research which results are presented in table 5, the statistical test,
on the metrics conceding to “a pile of books”, nevertheless proceeding from the data received
on “a pile of books” took part, it is possible to draw output that on high rounds a difference
with standard statistical tests not so essential. Nevertheless, for the exact answer to this point
in question it is required to conduct research of considered attack on a supercomputer then to
compare results to other tests.
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Table 5

Round Key size Sample size Memory expenditure
12 128 294 242

14 128 2118 2112

14 192 2110 242

14 256 2108 274

15 256 2119 2138

Let’s answer now a question: what quantity of rounds can be cracked at the present stage
of development of computer facilities, and also, what interpolational dependence of number of
rounds on requirements for memory if to consider, what given tables 5 correspond to the test “a
pile of books”?

Let’s name the cipher with n rounds effectively cracked gradient statistical attack if with
application of this attack the quantity of operations on cipher breaking is essential less exhaustive
search, i.e. if to it a condition (2), (2’) or (2”).

As rounds of cipher RC6 can be divided into semirounds realizing on it considered attack,
it is possible to try keys for each of semirounds separately. In a 128-bit variant of cipher RC6
each key of a semiround has length of 32 bits, i.e. for selection of a key to a round r it is required
at worst mr · 232 operations, where mr - the size of the sampling submitted on an input of the
decipherer of r th round. Proceeding from the supposition (4) and as table 5 data, it is possible to
draw output that the sample size at which the statistical test “the pile of books” can successfully

be applied at implementation gradient attacks, is really equal ≈ 28·[ 9R−80
7 ] (5). Number R thus

can be potentially any. From here it is easy to make an estimation for number of operations:

T (R) = 28·[ 9R−30
7 ] ·232 = 28·[ 9R−2

7 ]. It is necessary to notice that the above-stated estimation is fair
only for breaking of the most high round of the cipher whereas attack should be applied on each
round, since the senior to the low. Nevertheless, this estimation can be applied and to all attack,
and not just for a high round. We will explain why. Proceeding from the formula (1”) it is visible
that the number of operations linearly depends on the sampling size mi. Simultaneously, from the
formula (5) follows that on each following - more low - a round the sample size for breaking will
decrease in ' 210 time. Thus, already - following - a member of the sum of a number in (1”) in
1000 times is less than second, i.e. its contribution to the sum is too small. Memory expenditure
will be equal in bytes 2u+log2(w) = w · 2u (5’), where (u,w) - test parametres. Such estimation
of memory has proved to be true experimentally and is exact. From (3), (3 ’) and (5) follows

that wopt(R) = 8 ·
[

9R−30
7

]
and from (5) it is received: Π(R) = 8 ·

[
9R−30

7

]
· 24·[ 9R−80

7 ]. Under these
formulas and as to the data of tables 5 and 2 we will make following table 6.
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Table 6

Rounds Quantity of operations Expenditure memories (RAM) Expenditure memories (ROM)
5 246 219 220

7 268 225 228

9 287 235 244

12 2126 252 298

14 2142 266 2114

15 2151 270 2123

20 2204 270 2176

Conclusions

The results can be interpreted as follows. At computational capabilities accessible by the current
moment gradient statistical attack with test application “the pile of books” can be applied to
9-raundovomu to cipher RC6, for this purpose it is required: 32 Gb of the RAM, 32 Tb of ROM,
and also 287 exhaustive search operations. Whereas in case of attack by exhaustive search it is
required 2128 operations. Since 13 rounds to apply gradient statistical attack it makes sense only
in case of usage of 192-/256-bit keys is follows from (2 ”). For 19-20 rounds - only in case of 256-bit
keys. Also it is possible to interpret these results in another way: at a 128-bit key and accessible
resources of 32 Gb of the RAM, 32 Tb of ROM, quantity effectively cracked gradient attack of
rounds equally 10 (87+32=119 <128). At a 192-bit key the number of effectively cracked rounds
increases to 12 (87 + 32*3 = 183 <192). And in case of a 256-bit key this number is equal 14
(87 + 5*32 = 247 <256).

In the perspective, it is supposed to hold this statistical attack on the other block ciphers:
AES, 3DES, GOST 28147-89.
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Abstract

Concepts of the ”linear” and ”non-linear” random signals, as phisical information car-
riers, and their mathematical models in the form of random variables, vectors, the contin-
uous in time processes and the discrete series are considered. Concepts are coordined with
methods of defining and characteristics of static and dynamic signals models. The examples
underlining unfitness or small suitability of the ”linear” characteristics in a non-linear reality
are resulted; characteristics and models, suitable for non-linear situations and also examples
of their application for identification of non-linear systems and estimation of communication
parameters of multidimentional distributions of random vectors, processes, series.

1 Introduction. Problem statement

The theory of probabilistic models of real processes and objects, i.e. models, represented as the
form of random variables, vectors, scalar and vector functions with one (random processes, time
series – RP) or several (fields) arguments, is well enough theoretically developed. However their
application in the majority of theoretical and practical implementation used us one-dimensional
or bivariate distributions of probabilities, linear, rarely non-linear, correlation and regression
analysis, static (for values and vectors) and linear correlation-spectral dynamic (for processes,
fields) analyses. However rapid development and propagation of signal and data collection and
processing tools leads to necessity of use non-linear description of real processes and objects since
linear approximation of description is not effective.

The goul of the present report is reviewing of non-linear probabilistic models of signals as
information carriers about real processes and objects.

2 Probabilistic models decription

2.1 Initial definitions and designations

To concretize approaches stated in paper, we consider only static and ”dynamic” probabilis-
tic models, random vectors X = (X1, X2, ..., Xn) as an example of the static model /the first
model/ and stationary processes X(t) = (X1(t), X2(t), ..., Xn(t)) as an example of the dynamic
model (the second). For abridgement let be X i = X(ti) or Xi = Xi(ti), i = 1, n. Let
F (x1, ..., xn; t1, ..., tn) and W (x1, ..., xn; t1, ..., tn) probabilistic function and absolutery relative
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density distribution, M {f [Xi(ti), Xj(tj);Xk(tk) = xk]}, i, j, k = 1, n, i, j 6= k, the operator of
mathematical expectation (average) f [Xi(ti), Xj(tj)] at Xk(tk) = xk, supposing, certainly, that
it exists and has finite quantities.

2.2 Methods of the random processes description

Definition of non-linear random processes as signals models, it is necessary to connect methods
of their mathematical description, representation. Let’s review the most popular. Two methods
based on the main and selective probability spaces, are general-purpose, suitable for random
variables, vectors and processes. For random variables and vectors this method means the defining
through distribution laws, for example, F (·) or W (·). The concept of ”nonlinearity” in this case
is similar to what will be considered for the defining of random processes (RP) through family of
finitedimensional distributions (see the third method of the defining for RP). The second method
of the defining for the random processes is connected with probabability measures on set of
process trajectory (implementations, sample functions). Linearity or nonlinearity of RP is thus
defined by linearity or nonlinearity (in some sense) of process trajectory characteristics or average
characteristics. This method is not widely used. Therefore we won’t consider it in detail.

In practice the third method – the defining of RP by means of family of finite dimensional
distributions, i.e. a set of distributions F (x, t), F (x1, x2; t1, t2),..., F (x1, . . . , xn; t1, . . . , tn) for
different n = 1,2,3, . . . and t1, t2, ..., tn ∈ (−∞,∞) [1] is most often used. We will consider it in
detail.

Besides the explicit RP defining by means of a probability measure their representation in
the form of the mathematical description of output signals of some given dynamic system with
in advance known, simply described input signals often is used. It is the description in the form
of systems of the integro-differential or finite-difference equations, when RP is their decision. For
example, random processes as autoregression or moving average. Linearity or nonlinearity of RP
thus is a consequence of linearity or nonlinearitigs in the standard sense of equations system and
therefore doesn’t need special reviewing.

The same can be said about other two types of random processes – canonical and not
canonical [1, 3]. As soon as in practice their modeling representation is implemented through the
same characteristics, as for the models defined by finitedimensional distributions, we will consider
terms the ”linear” or ”non-linear” model first, start, stage only obtained by the characteristics
received through distribution laws.

3 Static non-linear probability models

The idea of probability models of real processes and objects is connected to the description with
not separate specific quantities of random values, vectors and functions, but with mass behavior of
quantities in the same conditions. Therefore ”linearity” or ”nonlinearity” model concepts should
be considered through the characteristics reflecting this mass character in any sense: on the
average, quantiles, in particular on median, in mean-square, on them interquantiles. We consider
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in the present paper only by linearity or nonlinearity of model at averages level. We say, that
model is linear, if its regression functions, for example, mX(y; τ) = M {X(t)/X(t+ τ) = y} or
mX(y; τ) = M {X(t)/Y (t+ τ) = y}, are linear functions with respect to all arguments. We will
consider otherwise its non-linear.

It is clear that for random variables and vectors, which development in time, and, hence,
its dynamic, is not considered, it is logical to suppose all models as static models. But it’s not
wright for random processes X(t). For them, it is possible, to consider static of processes, i.e.
their characteristics for the fixed moments of time t1, t2, ..., tn, as well as dynamics, i.e. behavior
of characteristics with changing t1, t2, ..., tn and their arrangement among themselves.

Since for stationary processes

F (x1, . . . , xn; t, t+ τ1, . . . , t+ τn−1) = F (x1, . . . , xn; τ1, . . . , τn−1),

characteristics of stationary RP are independence from t. They depend only from τ1, ..., τn−1

relative positioning of of time moments t, t+ τ1, ..., t+ τn−1, and the static description is similar
to the description of a random vector X1 = X1(t), X2 = X2(t + τ1), ..., Xn = Xn(t + τn−1) with
one stipulation connected with not each regression function of a random vector can be regression
function of random process, especially autoregression function [1].

Necessary and sufficient conditions at which functions of a regression of two random variables
or random processes samples will be linear, are presented in [1, 4]. In many sources examples of
bidimentional distributions with nonlinear regression are presented. In [2] there are examples of
three discrete and 45 absolutely continuous bidimensional and 9 multidimentional distributions,
from which only small part has the linear regressions, are resulted. From sets of bidimensional
and multidimentional distributions a particular to be interested such, which distribution densities
can be presented in the form of expansions in orthogonal series (rows) on system of the functions,
which weight coincide with onedimensional distribution densities [1, 2, 4], and also noncentral
distributions generalizing them [2]. Among them well-known distributions which examples are
discussed in the report.

For random vectors it is repeatedly shown, that in case of non-linear regression the applica-
tion of traditional Pearson correlation coefficients as numerical index of presence, direction and
closeness (tightness) parameters of communication of random variables can mislead (see exam-
ples in [1]). Many new closeness parameters (indexes of communication) for non-linear regression
were offered (see, for example, [2]). There are among them correlation relations, concorrelation
coefficients [1, 2] and others, the part from which is resulted in the report.

4 Dynamic non-linear probability models

Now we will consider bi- and multidimensional models reflecting of random processes dynamics
of development, i.e. its parameters and characteristics dependence on samples arrangements
τ1, ..., τn−1 . We will name such RP and, hence, random signals described by them, non-linear, if
regression functions of process samples X(t), X(t+ τ) (at τ 6= 0) or (at X(t), Y (t+ τ) any τ)
are non-linear.
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Table 1: Table

W (x, y) RXY (τ) χXY (τ)
Is the
model
lineary?

1. Gaussian (normal) N(a1, a2;λ1, λ2;ψ)[
2πλ1λ2

√
1−ψ2

]−1
×

× exp

{
− 1

2(1−ψ2)
×

×(z2−2ψzu+u2)};

z=(x−a1)/λ1,u=(y−a2)/λ2;

|x|,|y|,|a|<∞; λ>0; |ψ|≤1.

λ1λ2ψ(τ)
6
π

arcsin[ψ(τ)
2 ]≈

≈ψ(τ)=ρXY (τ)
yes

2. =-distribution = (a1, a2;λ1, λ2;α1, α2; β;ψ)
α1α2[λ1λ2Γ(β)ψβ−1(1−ψ2)]

−1
×

×z[α1(β+1)−2]/2u[α2(β+1)−2]/2×

× exp
{
− 1

1−ψ2 (zα1+uα2 )
}
×

×Iβ−1

(
2ψ z

α1
2 u

α2
2

1−ψ2

)
;

z,u≥0, i.e.x≥a1, y≥a2, |a1|,a2|<∞;

ψ=ψ(τ); 0≤|ψ|≤1;α1,α2,β>0;

Γ(·) – is a gamma-function;

Iβ(·) – is a Bessel function

λ1λ2Γ
(
β+ 1

α1

)
×

×Γ
(
β+ 1

α2

)
Γ−2(β)×

×
[
(1−ψ2)

β+ 1
α1

+ 1
α2 ×

×F
(
β+ 1

α1
;

β+ 1
α2

;β,ψ2
)
−1
]
;

F (α,β;γ;x)– giper-

geometrical function

3ψ2(τ)
4−ψ2(τ)

yes at
α1 = 1,
α2 = 1,
non at
α1 6= 1,
α2 6= 1

Particular cases of =-distribution are: Nakagamy (α1 = α2 = 2); Maxwell (α1 =
α2 = 2; β = 3/2); Rayleigh (α1 = α2 = 2; β = 1); Waybull (β = 1); exponential
(α1 = α2 = 1; β = 1); gamma (α1 = α2 = 1)

3. Pearson I πI (a1, a2;λ1, λ2;α, β;ψ)
Γ(α+β)(1+z)α−1(1−z)β−1×

×(1+u)α−1(1−u)β−1×

×[λ1λ2Γ(α)Γ(β)22(α+β−1)]
−1
×

×
∑∞
n=0 AnP

(α,β)
n (z)×

×P (α,β)
n (u)ψn(n+α+β−1) ,

An=
(2n+α+β−1)Γ(n+α+β−1)

Γ(n+α)Γ(n+β)n!

αβλ1λ2ψα+β(τ)

(α+β+1)(α+β)2
ψ2 (τ) yes

4. Arcsin A (a, λ;ψ) ; X(t) = a+ λ sin (νt+ Ξ), Ξ – uniform on (0, 2π)(
2π
√
λ2−(x−a)2

)−1
×

×[δ{y−a−λ cos[ντ+arccos(x−a)]}+

δ{y−a−λ cos[vτ−arccos(x−a)]}]

|x−a|≤λ;|y−a|≤λ; ψ=cos(υτ);

δ(·)– delta-function

λ2

2
cos (ντ)

96π−4×

×
∞∑
n=0

cos[(2n+1)ντ ]

(2n+1)4
≈

≈cos(ντ)

yes
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Usually for the closeness characteristic of these counting’s are used auto

RXX(τ) = M
{ ◦
X(t)

◦
X(t+ τ)

}
,
◦
X(t) = X(t)−mX , (1)

and cross
RXY (τ) = M

{ ◦
X(t)

◦
Y (t+ τ)

}
(2)

correlation functions (CF), received through them normalized CF (NCF)

ρXX(τ) = RXX(τ)/RXX(0), ρXY (τ) = RXY (τ)
/√

RXX(0)RY Y (0), (3)

and as well as spectral power densities (SPD) SXX(υ) = F {RXX(τ);ϕ(jυτ)} and SXY (υ) =
F {RXY (τ);ϕ(jυτ)}, where F( · ) – continuous (then υ = ω ∈ (−∞,∞)) or discrete (then
υ ∈ (−π/2, π/2)) Fourier transform on base ϕ(jυτ), more often exponential, when ϕ(jυτ) =
exp{jυτ}, j =

√
−1.

As soon as CF R(τ) is correlation moment and NCF ρ(τ) – correlation coefficient, for their
small suitability as connected characteristics of direction presence and closeness on average for
non-linearly connected X(t), X(t+ τ) or X(t), Y (t+ τ) at different τ , all stated earlier is valid
closeness. The elementary examples, confirming it for the monotonous one-to-one transformations
Y (t) = f [X(t)], are presented in [2] and in the picture.

As SPD S(υ) derive from by linear transformations from CF, it is followed from stated above
that traditional spectral analysis can be not effective, even to mislead researchers, for non-linear
RP. Therefore in the report various variants of the description of correlation-spectral analysis
analogs of considered type non-linear random processes are given. These are expansion method
for Voltaire rows (series), dispersition, concorrelation, wavelet analyses, the methods, connected
with selection and separate research of the linear and non-linear components of systems, etc.

Explicitly the method concorrelation and conspectral analyses [1, 2] is described in detail:
its bases, a singularity, merits and demerits. Examples of correlation and concorrelation functions
for many typical bidimensional distributions are resulted and their merits and demerits for the
decision of application-oriented tasks are presented.

As an example in the adduced table of bivariate distributions dependences formulas of CF
and concorrelational functions (CCF) from connection parameters of distributions are given.

Concorrelational functions (CCF) KXY (τ) is defined as [1, 2]:

KXY (τ) = M { (FX [X(t)]−M {FX [X(t)] }) (FY [Y (t+ τ)]−M {FY [Y (t+ τ)] }) } , (4)

half-concorrelation (HCCF) HFXY (τ) and HXFY (τ)

HXFY (τ) = M { (X(t)−M {X(t)} ) (FY [Y (t+ τ)]−M {FY [Y (t)] } ) } , (5)

HFXY (τ) = M { (FX [X(t)]−M {FX [X(t)] } ) (Y (t+ τ)−M {Y (t)} ) } . (6)

Normalized CCF (NCCF) are analoques of NCF ρXY (τ). For example,

χXY (τ) = KXY (τ)
/√

KXX(0)KY Y (0). (7)

299



Application of Statistical Methods

Figure 1: Permissible values ranges characteristic curves for correlation coefficient ρ of
bidimensional SL and SU -Johnson distributions: a) – dependence of ρ from connection

parameter ψ; b) – dependence of ρmax = ρ(ψ = 1) and ρmin = ρ(ψ = −1) form parameters β1, β2

of values (variables) X1 and X2 distributions
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Direct continuous or discrete exponential Fourier transform F{·}of CCF and HCCF are con-
spectral (CCD) CXY (υ) or half-conspectral ”capacity” density (HCCD) ΠFXY (υ) and ΠXFY (υ).

Let’s give an example wonderful two properties of CCF and, hence, CCD. The first: CCF
and CCD are for all random processes and series exist while CF and SCD are exist only for those
ones, which have the finite moments of 1st and 2nd orders.

The second relate invariancy of CCF and CCD to noninertional transformations of signals.
If U(t) = f [X(t)] and V (t) = g[Y (t)], wheref(·)andg(·) are determined monotone one-to-one
functions,

KUV (τ) = εfεgKXY (τ), (8)

CUV (υ) = εfεgCXY (υ), (9)

εf = sign [df(x)/dx] . (10)

5 Practical examples

Examples of practical tasks decision using various methods of non-linear random process repre-
sentation are resulted in the report. These are examples on identification of non-linear systems,
in particular Hammerschtein-Wiener (linear dynamic – non-linear static – linear dynamic links),
estimations of correlation parameters of real processes dynamic, etc.

6 Conclusion

Initial approaches to representation and application of random signal non-linear models are stated.
In summary priority problems, which should be resolved for wide application of non-linear prob-
ability models, are formulated.

References

[1] Gubarev, V.V. Algorithms of spectral analysis of random signals. Novosibirsk: NSTU, 2005.
– 660 p.

[2] Gubarev, V.V. Probability models. – Novosibirsk: NETI, 1992. – 421 p.

[3] Sinitzin, I.N., Sinitzin, V.I., Korepanov, E.R. and athers. Automatica and telemehanika, 2011.
– No. 2. – P. 183–194.

[4] Deutsch, Ralph. Nonlinear transformations of random processes. N.J.: Prentice-Hall, Inc.,
1962. – 189 p.

301



Part VI

Robust Methods of Statistical Analysis



Applied Methods of Statistical Analysis. Simulations and Statistical Inference

Robust Estimation of Qualitative Response

Regression Models

Alexander A. Kalinin, Daniil V. Lisitsin
Novosibirsk State Technical University

Novosibirsk, Russian Federation
e-mail: kalinin.a.letters@gmail.com

Abstract

Qualitative response regression models such as logistic regression are typically estimated
by the maximum likelihood method. To improve its robustness, two special cases of the M -
estimation based approach for quantitative continuous random variables were extended to
the variant of qualitative and mixed variables modeling. Expressions of the score functions
for polytomous regression models were derived. In according to results of the research some
conclusions and practical recommendations were given.

Keywords: qualitative response, Bayesian dot contamination, polytomous regression,
robust estimation, influence function

Introduction

The classical statistic procedures are based on a number of assumptions which can’t be
fulfilled in practice. Under such conditions a lot of widespread statistic procedures lose their
positive qualities. For instance, the procedures, which rest on the maximum likelihood method.
But this problem can be solved by using robust estimators. The general robust theory is developed
in Huber [7] and Hampel, Ronchetti, Rousseeuw, and Stahel [6]. Recent work describing robust
statistics in detail is Maronna et al. [10]. Generally robustness theory has been developed for the
quantitative continuous random variables modeling. Qualitative and mixed variables modeling
are paid much less attention. Several authors have studied the logistic regression model in terms
of the robustness properties of the maximum likelihood estimation (MLE) and it’s modifications.
The maximum likelihood estimator attains the minimum asymptotic variance under the model
and then it is optimal, but it is very sensitive to atypical data. Observations with extreme
covariates, in particular, have a large influence on the estimator, and if they are accompanied by
misclassified responses, the resulting estimates can be seriously biased. Pregibon (see [11]) made
the earliest systematic attempts to fix this problem; he proposed methods to unmask influential
observations and robust estimators for the logistic model. Later robust proposals in this area
include Carroll and Pederson [2], Bianco and Yohai [1], Croux and Haesbroeck [4], and Gervini
[5]. Typically, in these works binary regression models are considered. Many approaches for
binary choice estimators development were introduced as alternatives to the maximum likelihood
estimators, but they often are of semi-heuristic nature. Also note, that the numeric character
of a binary variable is assumed in many papers. Recent examples include Victoria-Feser [13],
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Čśampležek [3], and Kotlyarova and Zinde-Walsh [8]. All these estimators differ greatly in terms
of outlier resistance and efficiency under the model.

The one of the most perspective approaches was suggested by Shurygin in [7] (see also
[9]). Shurygin’s approach based on Bayesian dot contamination of model distribution allows to
get the estimators possessing a high robustness and efficiency. Originally the estimators within
Shurygin’s approach were formed only for continuous random variables models. However the
theory developed in [12, 9] can be easily extended to the cases of scalar qualitative or count and
vector mixed response models, where the latter consists of qualitative polytomous and quantitative
responses. Qualitative polytomous (multinomial) response can be nominal or ordinal. In the latter
case, one uses cumulative link model, continuation ratio model, stereotype model, and others. So,
the purpose of this study is to develop a general theory of robust estimation for regression models
with polytomous response and its application to the case of the nominal response.

1 Model Specification

Assume that discrete random variable Z has a fixed number of acceptable values {1, 2, ..., J}.
Distribution of Zt under observation t is set of model probabilities

P {Zt = j|xt, α} = πj (xt, α) , t = 1, ..., N,

where xt is a vector of covariates, α is a vector of parameters.
M -estimation α̂ of vector of parameters α is obtained by solving equations system

N∑
t=1

Ψ(Zt, xt, α̂) = 0, (1)

where Ψ(Zt, xt, α̂) is a vector score function satisfying further condition for all t

J∑
j=1

πj(xt, α)Ψ(j, xt, α) = 0. (2)

2 Robust Estimation

One of the major indicators of estimator’s robustness is an influence function which in the
case under some regularity conditions takes the form

IF (Z, x, α) = M−1Ψ(Z, x, α), (3)

where

M =
N∑
t=1

J∑
j=1

Ψ(j, xt, α)
∂

∂αT
πj(xt, α).
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In the Bayesian dot contamination model the distribution of Zt is defined by the set of
probabilities

P {Zt = j|xt, α, Z∗
t } = (1− ε)πj (xt, α) + εδjZ∗t ,

where Z∗
t is discrete random variable with fixed number of acceptable values {1, 2, ..., J} and

distribution P {Z∗
t = j|xt, α, Z∗

t } = sj(xt, α), ε is contamination level (0 < ε < 0.5), δ is Kronecker
delta.

Indicator of estimation badness in Bayesian dot contamination model can be written as
functional

Ut(Ψ) =
N∑
t=1

J∑
j=1

IF (j, xt, α)IF T (j, xt, α)sj(xt, α). (4)

Corresponding optimum score function in Bayesian dot contamination model is of the form
represented

Ψ(Z, x, α) = C

[
∂

∂α
ln πZ(x, α) + β

]
πZ(x, α)

sZ(x, α)
=

= C
J∑
j=1

∂

∂α
ln πj(x, α)

[
δjZ −

π2
j (x, α)/sj(x, α)∑J

l=1 π
2
l (x, α)/sl(x, α)

]
πZ(x, α)

sZ(x, α)
, (5)

where C is nonsingular matrix, vector β = β(x, α) provides fulfillment of the condition (2).

2.1 Generalized Radical Estimator

Generalized radical estimation (GRE) corresponds to the case:

sj(x, α) = [πj(x, α)]1−λ /∆(x, α, λ),

where λ is estimator parameter (λ ≥ 0), value of ∆(xt, α, λ) either equals
J∑
l=1

[πl(xt, α)]1−λ (used

for satisfying probabilities normalizing condition) or is identity, if that condition is not used. Note
that the case of λ = 0 matches maximum likelihood estimation.

For modeling dependence of nominal response from covariates polytomous logistic regression
is often used. Corresponding probabilities are of the form

πj(xt, α) = exp [Φ(xt)αj)]

{
1 +

J−1∑
k=1

exp [Φ(xt)αk]

}−1

, (6)

where Φ(xt) is a vector of regressors, αj is a subvector of α (subvectors αj, j = 1, 2, ..., J − 1, are
not intersected), αJ is a null vector.
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Generalized radical estimation of subvector αj in polytomous logistic regression model is
defined by the score function

Ψj(Zt, xt, α) =

δjZt −
[πj(xt, α)]1+λ

J∑
l=1

[πj(xt, α)]1+λ

 [πZt(xt, α)]λ∆(xt, α, λ)ΦT (xt). (7)

2.2 Conditionally Optimal Estimator

In the set of robust estimators also can be used estimation with the optimum score function
in Bayesian dot contamination model given by

Ψ(Z, x, α) = C

[
∂

∂α
ln πZ(x, α) + β

]
1

1 +
k2

πZ(x, α)

,

where k2 is estimator parameter and C, β are the same as in (5).
To obtain conditionally optimal estimator, assume that distribution of Z∗

t is given by

sj(xt, α) = πj(xt, α) + k2.

Hence, taking into account (6) the score function for conditional optimal estimation in
polytomous logistic regression model is of the folowing form

Ψj(Zt, xt, α) =

δjZt −
π2
j (xt, α)

πj(xt, α) + k2

J∑
l=1

π2
l (xt, α)

πl(xt, α) + k2


1

1 +
k2

πZt(xt, α)

ΦT (xt). (8)

3 Experimental Research

In practice, there may be several solutions of equation system (1). Thus some methods
of selection solutions are should to be used. Also it is necessary during solving to distinguish
between consistent and inconsistent solutions and leave the latter out.

As a check of working capacity of proposed approaches was performed experimental re-
search of generalized radical estimation of polytomous logistic regression model with nominal
response having three levels. Maximum likelihood and robust estimators were compared un-
der following values of estimators’ parameters and model’s parameters α. Vector of regres-
sors is of the form [1, x, x2]. True values of model’s parameters are α1 = [−8, 2, 1] and α2 =
[−5, 4, 1]. The number of observations is 1000, the values of x are uniformly distributed on
[−10, 10]. The response has contaminated distribution with level ε = 0.05. Contamination
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also has uniform distribution. And the parameter of the generalized radical estimator has the
value λ = 1 (this case is equivalent to conditionally optimal estimator with parameter k2 =
∞) The results of MLE are α̂1 = [−3.45433123701182, 0.149008965849041, 0.214074248534943]
and α̂2 = [−1.3719459314693, 0.907693561128312, 0.149007714343864]. And corresponding re-
sults of GRE are α̂1 = [−11.8998482654318,−1.09199066567912, 0.432142103840774] and α̂2 =
[−7.95057570361495, 7.29031267939047, 1.15240358346135].

Figure 1 provide us MLE-estimated probabilities dependence on the covariates. True prob-
abilities are presented by black lines and estimated probabilities by grey. Solid lines correspond
to the value of the response j = 1, dashed lines to the value j = 3 and dash-dot lines to the value
j = 2.

Figure 1: Probabilities estimated by MLE

Figure 2 provide us GRE-estimated probabilities dependence on the covariates. Designations
for this figure are the same as for Figure 1.

As the results of the study, robust estimate is less affected by contamination than the
MLE estimate. Although robust estimation of parameters quite substantially differ from the
true values, dependences of the estimated probabilities are close enough to the true. Hence it is
obvious that generalized radical estimator shows more accurate results of probabilities estimation
than maximum likelihood estimator.

Conclusions

Due to the results of the research we conclude that:

• the proposed robust method is effective when level of contamination is not too high;

• it is often necessary to use more robust estimator for obtaining good results;
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Figure 2: Probabilities estimated by GRE

• high quality of estimation requires a great number of observations;

• whereas methods of estimation are sensitive to initial point it is essential to develop special
techniques for obtaining good initial approximation.
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Abstract

Problems of optimal statistical forecasting are considered for autoregressive time series
observed under distortions generated by interval censoring. If the model parameters are
unknown, then the maximum likelihood estimators are found and the ”plug-in” forecasting
statistic can be constructed. Numerical results are given.

Keywords: Autoregression, censoring, log-likelihood function, mean-square risk.

Introduction

Autoregressive model of order p (AR(p)) is widely used to describe stochastic processes in many
fields, such as economy, finance, meteorology, medicine [1]. The case of ”complete data” for this
model, where all observations are exactly known, is well studied. In practice, however, time series
are usually observed under different distortions [2].

In this paper we consider distortions generated by interval censoring, that are often in
engineering, economics, business, etc [3]. Censoring means that exact values of some observations
are unknown and it is only known that they belong to certain given intervals. Interval censoring
appears in real data because of detection limits of measuring devices, high costs of measurement,
disorders of equipment, etc[3].

In statistical literature there is a lot of publications devoted to analysis of censored random
samples, especially in the reliability theory and medicine studies. In papers of Li and Zhang[4]
and Gomez et al.[5] regression data model is considered under censored response [4] or explana-
tory [5] variables; ML- and M-estimators for the regression parameters are proposed. There are
significantly less results devoted to censored time series. In paper of Park et al.[3] the censored au-
toregressive time series is considered and imputation method for estimation of model parameters
is proposed.

In this paper we construct the optimal forecasting statistic and propose an approach to
estimate model parameters based on a special approximation of the log-likelihood function [7, 8].
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1 Mathematical model of censored AR(p)

Consider the AR(p) time series model [1]

xt =

p∑
i=1

θixt−i + ut, t ∈ Z, (1)

where θ1, . . . , θp are unknown coefficients of the autoregression; all roots of the characteristic
polynomial zp −

∑p
i=1 θiz

p−i are inside the unit circle; {ut} are i.i.d. normal random variables,
E{ut} = 0, D{ut} = σ2 < +∞.

Instead of the true values x1, . . . , xT we observe only random events:

A∗
t = {xt ∈ At} , t ∈ {1, . . . , T}, (2)

where {Ai} are some known Borel sets, T is the length of the observation process. In this paper
we consider two possible cases: 1) At = {xt} is a singleton, then the value of the t-th observation
xt is known; 2) At = [at, bt) is an interval, where at and bt (at < bt) are known functions, then the
observation xt is censored.

A forecasting statistic for the future value x̂T+1 is a number function of the observed events:

x̂T+1 = f (A∗
1, A

∗
2, . . . , A

∗
T ) . (3)

The conditional risk
r∗ = E

{
(x̂T+1 − xT+1)

2 |A∗
1, A

∗
2, . . . , A

∗
T

}
(4)

is the conditional mean-square error of forecasting under events {A∗
i }
T
i=1.

The censored time series (1), (2) can be represented as a sequence of fragments with fully
observed data and fragments with fully censored data. Let τi be the length of the i-th fragment
of censored data and t∗i be the initial time moment of this fragment, i ∈ {1, . . . ,M}, M be the
number of the censored fragments.

2 Optimal forecasting under known model parameters

At first consider the situation where all model parameters are known. Construct optimal fore-
casting statistic (3) which has the minimal conditional risk (4).

Theorem 1. The optimal one-step forecasting statistic minimizing the conditional risk (4) for
the time series (1), (2) is

x̂T+1 = E {xT+1 |A∗
T , . . . A

∗
1} ; (5)

the minimal risk of forecasting

r∗ = D {xT+1 |A∗
T , . . . A

∗
1} .
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Let us analyze more difficult case where the last q (1 ≤ q ≤ T − p) observations be censored
and other observations be exactly known. Introduce the notation:

P t2
t1 = [at1 , bt1)× [at1+1, bt1+1)× . . .× [at2 , bt2) ∈ Rt2−t1+1, t1 ≤ t2;

ϕ(x) = 1√
2π
e−x

2/2, Φ(x) =
x∫

−∞
ϕ(t)dt −

the standard normal probability density function and the standard normal distribution function;

Ψ(x, y,m, s, u, v) = uϕ((x−m)/s)−vϕ((y−m)/s)
Φ((y−m)/s)−Φ((x−m)/s)

.

Theorem 2. Let values x1, . . . , xT−q and events A∗
T−q+1, . . . A

∗
T be observed. Then the optimal

forecasting statistic is:

x̂T+1 =

∫
PTT−q+1

p∑
i=1

θixT−i+1p (xT , . . . xT−q+1 |xT−q, . . . x1 ) dxT−q+1 . . . dxT∫
PTT−q+1

p (xT , . . . xT−q+1 |xT−q, . . . x1 ) dxT−q+1 . . . dxT
. (6)

Corollary 1. If aT → bT , . . . , aT−q+1 → bT−q+1, then the optimal forecasting statistic and its risk
are

x̂T+1 =
p∑
i=1

θixT−i+1, r∗ = σ2.

In Corollary 1 we consider the asymptotic case of ”complete data”: xT = aT = bT , . . . , xT−q+1 =
aT−q+1 = bT−q+1. The results indicated in Corollary 1 coincide with the well known results for
this case [1].

Let us consider the AR(1) time series. In this case it was proved that the optimal forecasting
statistic depends only on the last observed value of the time series and all random events preceding
this value. If all T observations are censored, the following result is proved.

Theorem 3. For the AR(1) model (1) if the events A∗
1, . . . , A

∗
T are observed (q = T ), then the

optimal forecasting statistic is:

x̂T+1 = θ1

∫
PT1

xT p(xT ,...x1)dx1...dxT∫
PT1

p(xT ,...x1)dx1...dxT
.

Corollary 2. For the AR(1) model (1) if aT → −∞, . . . , aT−q+1 → −∞, bT → +∞, . . . , bT−q+1 →
+∞, then the optimal forecasting statistic and its risk are

x̂T+1 = θq+1
1 xT−q, r∗ = σ2

q∑
i=0

θ2i.

312



Applied Methods of Statistical Analysis. Simulations and Statistical Inference

Conditions of Corollary 2 mean that at the time moments T, . . . , T − q+ 1 the observations
xT , . . . , xT−q+1 ”become” missing. The results indicated in Corollary 2 coincide with the known
results for this case [2].

Consider the case q = 1. In this case the optimal forecasting statistic can be calculated in
explicit form.

Theorem 4. For the AR(1) model (1) if the value xT−1 and the random event A∗
T are observed,

then the optimal forecasting statistic and its conditional risk are

x̂T+1 = θ2
1xT−1 + θσΨ(aT , bT , θxT−1, σ, 1, 1), (7)

r∗ = (1 + θ2)σ2 − (θσΨ(aT , bT , θxT−1, σ, 1, 1))2 +

+θ2σΨ (aT , bT , θxT−1, σ, aT − θxT−1, bT − θxT−1) .

Corollary 3. Let the assumptions of Theorem 4 take place and τT = bT − aT → 0. Then the
asymptotic expansion for the conditional risk is

r∗ = σ2 + θ2
1
τ2
T

12
− θ2

1τ
4
T

3a2
T−6aT θ1xT−1+3θ21x

2
T−1+2σ2

720σ4 + o(τ 4
T ).

It is known [1] that for the case of ”complete data” the risk of the optimal one-step fore-
casting statistic is r0 = σ2. To evaluate the sensitivity of the risk of one-step forecasting to the
length τT = bT − aT of the censoring interval [aT , bT ) we will use the risk sensitivity coefficient
[2]:

χ = (r∗ − r0)/r0. (8)

Corollary 4. For the forecasting statistic (7) the risk sensitivity coefficient (8) has the following
approximation:

χ ≈ θ21
12σ2 τ

2
T .

3 ML-estimators of the model by censored data

Usually in practice the model parameters are unknown. In this case at first we will estimate
parameters of the model (1), and then we will construct the ”plug-in” forecasting statistic [2]
using optimal forecasting statistics constructed in section 2. The ”plug-in” forecasting statistic
can be constructed from optimal forecasting statistic by replacing exact values of parameters by
their ML-estimators.

To simplify our results we consider here only the case of AR(1) model. However, all our
results of this section can be generalized for the case of p > 1.

Introduce the notation: δi,j is the Kronecker symbol;

Iν(a, b,m, s) =

b∫
a

(t−m)ν
1

s
ϕ

(
t−m

s

)
dt, ν ∈ N ∪ {0}, y,m, s ∈ R; (9)
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ν(l; k, i1, . . . , ik) =
∑k

j=1

(
δl,ij + δl,ij+1

)
, l, k, i1, . . . , ik ∈ N;

d(l;A, θ, σ) =

{
σ, l ∈ A;

σ√
1+θ2

, l /∈ A, l ∈ N, A ⊂ N, θ, σ ∈ R;

l∗(t1, t2|θ, σ) =
t2∑

t=t1+1

ln 1
σ
ϕ
(
xt−θxt−1

σ

)
, 0 < t1 < t2 ≤ T ;

F1(t
∗, τ |θ, σ) = 1

σ
ϕ

xt∗+τ−θτ+1xt∗−1

σ

√
1−θ2τ+2

1−θ2

 (1 + θ2)−
τ
2

(
+∞∑
k=1

θk

k!
×

×
τ−1∑

i1,...,ik=1

τ∏
l=1

Iν(l;k,i1,...,ik) (at∗+l−1, bt∗+l−1, µ̄l, d(l; ∅, θ, σ)) +

+
τ∏
l=1

I0 (at∗+l−1, bt∗+l−1, µ̄l, d(l; ∅, θ, σ))

)
, (10)

µ̄l = θlxt∗−1 + θτ−l 1−θ2l
1−θ2τ+2 (xt∗+τ − θτ+1xt∗−1);

F2(t
∗, τ |θ, σ) =

√
1−θ2
σ

ϕ
(
xt∗+τ

√
1−θ2

σ

)
(1 + θ2)

1−τ
2 ×

(
+∞∑
k=1

θk

k!
×

×
τ−1∑

i1,...,ik=1

τ∏
l=1

Iν(l;k,i1,...,ik)
(
at∗+l−1, bt∗+l−1, θ

τ−l+1xt∗+τ , d(l; {1}, θ, σ)
)

+
τ∏
l=1

I0
(
at∗+l−1, bt∗+l−1, θ

τ−l+1xt∗+τ , d(l; {1}, θ, σ)
))

; (11)

F3(t
∗, τ |θ, σ) = (1 + θ2)

1−τ
2 ×

×

(
τ−1∏
l=1

I0
(
at∗+l−1, bt∗+l−1, θ

lxt∗−1, d(l; {τ}, θ, σ)
)
+ (12)

+
+∞∑
k=1

θk

k!

τ−1∑
i1,...,ik=1

τ∏
l=1

Iν(l;k,i1,...,ik)
(
at∗+l−1, bt∗+l−1, θ

lxt∗−1, d(l; {τ}, θ, σ)
))

.

Note that (9) are calculated [6]. Also note that the functions (10) – (12) cannot be explicitly
calculated in practice, because they are represented as infinite functional series; we use a finite
number (kmax) of terms to approximate these functions.
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Theorem 5. For the interval censored AR(1) model (1), (2) with M > 1 censored fragments the
log-likelihood function is

l(θ1, σ) = δt∗1,1 lnF2(t
∗
1, τ1|θ1, σ) + (1− δt∗1,1)

(
lnϕ

(
x1

√
1−θ21
σ

)
+

+ ln

√
1−θ21
σ

+ l∗(1, t∗1 − 1|θ1, σ) + lnF1(t
∗
1, τ1|θ1, σ)

)
+

+
M−1∑
i=2

(
l∗(t∗i−1 + τi−1, t

∗
i − 1|θ1, σ) + lnF1(t

∗
i , τi|θ1, σ)

)
+ (13)

+l∗(t∗M−1 + τM−1, t
∗
M − 1|θ1, σ) + δt∗M+τM ,T lnF3(t

∗
M , τM |θ1, σ)+

+(1− δt∗M+τM ,T ) (lnF1(t
∗
M , τM |θ1, σ) + l∗(t∗M + τM , T |θ1, σ)) .

Maximum likelihood estimator (MLE) of (θ1, σ) is the solution of the maximization problem:

(θ̂1, σ̂) = arg max
θ1,σ

l(θ1, σ). (14)

4 Numerical results

At first, computer experiments are performed for the case of the AR(1) model and q = 1 to
compare the optimal forecasting statistic and some statistics used in practice:

x̂′T+1 = θ1E {xT+1 |A∗
T } , (15)

x̂′′T+1 = θ1
aT + bT

2
. (16)

For simulations the following values of parameters are used: θ = 0.8, σ2 = 1, T = 100 ,
τT = bT − aT ∈ {0, 0.5, . . . , 15}. The last observation of the time series is replaced by the random
censoring interval [aT , bT ): the length of the interval [aT , xT ) is ατ and the length of the interval
[xT , bT ) is (1 − α)τ , where α is the standard uniformly distributed random variable. For every
fixed τT the Monte-Carlo experiments with 10000 simulations of time series are used to evaluate
the experimental values of the conditional risk.

The results of these experiments are given in the Figure 1. It is seen that the optimal
forecasting statistic is more preferable even for short intervals of censoring.

To estimate the model parameters the following approach is widely used [3]: each censored
observation xt is replaced by the lower bound at, and then classical estimators, for example, the
least square estimator (LSE), are computed. Computer experiments are performed to compare
MLE and LSE described above for right censored times series (bt → +∞, t ∈ [1, T ]). The
experiment consists of the following: 1) autoregressive time series of the length T = 300 is
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Figure 1: Comparison of forecasting statistics: 1 - risk of the optimal forecasting statistic (7), 2
- risk of the forecasting statistic (15), 3 - risk of the forecasting statistic (16)

generated with parameters p = 1, θ1 = −0.3, σ = 1; 2) if xt ≥ at, at ≡ 0, then the random
event A∗

t = {xt ≥ at} is observed; 3) the MLE and the LSE of the parameter θ1 are calculated
under the assumption that the parameter σ is known. The MLE of the θ1 can be approximately
found by the tabulation of the likelihood function (13) with certain accuracy. To calculate (13)
kmax = 6 or kmax = 10 summands in (10) – (12) are used.

Empirical means of the estimators and of the errors based on 100 experiments are given in
the Table 1. It is seen that the MLE gives a significant gain in accuracy.

Table 1: Comparison of MLE and LSE

LS ML
kmax = 6 kmax = 10

LSE Error MLE Error MLE Error
0.180923 0.480923 -0.3088 0.041029 -0.30081 0.038993

Conclusion

For autoregressive time series observed under distortions generated by interval censoring the
following results are presented in this paper.

1) The optimal forecasting statistic minimizing the conditional risk is found.
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2) The log-likelihood function and the maximum likelihood estimators are constructed.
3) The comparison between the optimal forecasting statistic and two used in practice statis-

tics is made. Numerical results confirm that the optimal forecasting statistic is more preferable
even for short intervals of censoring.

4) The comparison of the maximum likelihood estimator and the least square estimator of
parameters for the censored time series is made. Numerical results illustrate a significant gain in
the accuracy for the MLE w.r.t. the LSE.
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Abstract

This paper is concerned with models of event counts, particularly with the Poisson re-
gression model examination. Robust methods of M -estimation parameters were researched.
Expressions of the score function for Poisson model were given. Maximum likelihood esti-
mation and M -estimation for model’s parameters were compared by simulation.

Keywords: count data, Poisson regression, robustness, M -estimation, influence func-
tion.

Introduction

While doing practical researches we often have to operate with data being the result of counting.
Count data can be defined as the quantity of appearing of some event during the specified time
period. For instance, the amount of earthquakes occurred during a year, the number of car
accidents, the number of university graduates and etc. Such counting has place in many fields
of activity such as economics, sociology, insurance and others. The regression model in this
case connects the response - the amount of events happened - with factors, which characterize
the accompanying conditions [1]. The Poisson model and its generalization - negative binomial
model - have become wide spread for modeling of suchlike variables.

Real data may not correspond to the theoretical distribution, there one can meet gross errors
- ”outliers”. In this case we should use estimation methods which are not sensible to suchlike
change of data. This feature is not usually a characteristic of the classical statistical estimation
procedures. Particularly, the estimation of Poisson regression parameters, by using the maximum
likelihood method, is not stable. The estimation having stable characteristics is called robust.
At present there exist several classes of such estimation. We will use robust M-estimation of
the regression model parameters. The one of the approaches to get robust M-estimation was
suggested by Shurygin [2] (see also [3]). It based on the Bayesian dot contamination of model
distribution. Also the Shurygin’s approach was only used for modeling of continuous random
variables, but it can be easily applied while working with discrete variables.

1 Model Specification

Let z be the Poisson random variable with density

P(z = j|λ) = P (j, λ) = e−λλj

j!
, λ > 0.
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In Poisson regression the following parameterization of parameter λ is used:

λ = λ(x, θ) = exp[f(x)θ],

where f(x) is a vector of explanatory variables, θ is a vector of regression parameters. As a result
the Poisson regression can be presented like

P(z = j|x, θ) = P (j, x, θ) = e−f(x)θ[f(x)θ]j

j!
.

Define the sample of observations as (xi, zi), i = 1, 2, ..., N . We get M -estimation θ̂ of
parameter θ by solving the equations system

N∑
i=1

ψ(zi, xi, θ̂) = 0,

where ψ is a vector score function satisfying the following condition

∞∑
k=0

P (k, xi, θ)ψ(k, xi, θ) = 0. (1)

2 Robust estimation

Bayesian dot contamination distribution model is organized as a mixture

P (zi = j|xi, θ, z∗i ) = (1− ε)P (zi = j|xi, θ) + εδjz∗i ,

where z∗i is discrete random variable with distribution P (z∗i = j|xi, θ) = S (j, xi, θ), ε - the level
of contamination(0 < ε < 0.5), δ - Kronecker delta.

Indicator of estimation badness in Bayesian dot contamination model can be written as
functional

Us(ψ) =
N∑
i=1

∞∑
k=0

IF (k, xi, θ) IF
T (k, xi, θ)S (k, xi, θ),

where IF (j, x, ϕ) is the Hampel’s influence function, under some conditions having the form

IF (j, x, θ) = M−1ψ(j, x, θ), M =
N∑
i=1

∞∑
k=0

ψ(k, xi, θ)
∂
∂θT

P (k, xi, θ).

The functional has its minimum value in the estimation function [3]

ψ(z, x, θ) = C(θ)
[
∂
∂θ

lnP (z, x, θ) + β
]
P (z,x,θ)
S(z,x,θ)

,

where C(θ) is a nonsingular matrix, vector β = β(x, θ) provides the fulfillment of the condition (1).
For the Poisson regression it has the form

ψ(z, x, θ) = C(θ)ψλ
(
z, ef(x)θ

)
exp[f(x)θ]fT (x),
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where ψλ(z, λ) = c
(
z
λ
− 1 + βλ

) P (z,λ)
S(z,λ)

is an optimal score function for the Poisson distribution

parameter, c is a nonzero constant, βλ provides the fulfillment of the condition (1), S(j, λ),
j = 0, 1, 2, ... is a distribution of contamination value.

We can get generalized radical estimates after fixing the distribution of contamination value
in the form

S(z, λ) = P 1−α(z, λ)/∆(λ, α),

where α - parameter of estimation (α ≥ 0), value ∆(λ, α) is either
∞∑
k=0

P 1−α(k, λ) (it is used

to provide the condition of the normalization of number of probabilities, that is possible only
when α < 1), or equal one, if the given condition is not used. Note that the case when α = 0
corresponds the maximum likelihood estimation.

The score function of generalized radical estimation of parameter λ has the form

ψλ(z, λ) =
(
z
λ
− 1 + βλ

)
Pα(z, λ)∆(λ, α),

where βλ = 1− 1
λ

∞∑
k=0

kλ(1+α)k
/
[k!]1+α

/
∞∑
k=0

λ(1+α)k
/
[k!]1+α.

As a result we got score function for estimation of parameter θ :

ψ(z, x, θ) =

z −
∞∑
k=0

k[ef(x)θ]
(1+α)k

/
[k!]1+α

∞∑
k=0

[ef(x)θ]
(1+α)k

/
[k!]1+α

Pα(z, ef(x)θ)∆(ef(x)θ, α)fT (x).

3 Experimental research

To check the working capacity of the suggested approaches the experimental research was carried
out. Maximum likelihood estimation and M -estimation for model’s parameters were compared.
The model with scalar parameter was chosen: f(x) = x - explanatory variable, λ = exp[θx]
- parameter of Poisson distribution. True value of parameter θ is θtrue = 1. The values of x
are uniformly distributed on the interval [−1, 1]. Distribution of observations is the mixture of
model and contamination distributions. Contamination simulated like a Poisson distribution with
parameter λ̃ is equal 3λ and with different contamination levels ε ∈ {0.05, 0.15, 0.3}. Size of the

sample is 1000. Parameter of estimator is α = 0.5, function ∆(λ, α) =
∞∑
k=0

P 1−α(k, λ).

Figure 1 represents a diagram with dependence of the standard deviation

σ =

√
1
K

K∑
i=1

(
θ̂i − θtrue

)2

on the contamination level ε for M -estimation and maximum likelihood estimation (MLE), where
K = 1000 is the number of simulations, θ̂i is a estimation value of the i-th simulation.
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Figure 1: Standard deviation of estimation

Conclusions

Having done this research work we can make the following conclusions:

• the M -estimations that we got have robustness properties for examined contamination lev-
els;

• the estimations of the maximum likelihood method turn out to be much worse and they are
not robust even in the conditions of little contamination.
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Abstract

In this paper heterogeneous Markov model with two states and periodic transition prob-
ability matrix is considered. Expressions for limiting probabilities and distributions of long-
term identical value runs are obtained. On basis of real data, model is applied to investigation
of air temperature’s long-term overshoots.

Keywords: heterogeneous Markov chain, limiting probabilities, air temperature.

Introduction

During investigation of real time-series, for example meteorological (cloud amount, amount of
precipitation, etc.), appears necessity of random sequences with finite number of states modeling.
Such models may be used for modeling of every meteorological series, on condition that not all
possible values of real process, but only some their gradations are considered. Several approaches
to modeling of discrete sequences with given probabilistic properties are possible. Methods, based
on different order Markov chains, are used quite often [1,2,3]. Another widespread method of dis-
crete time-series modeling is based on threshold transformation of specially selected Gaussian
process [2]. In this case dependencies of time-series elements are determined by correlation func-
tion. Meteorological parameters, such as air temperature, wind speed, humidity, etc. possess
daily and seasonal variation. Therefore, it is necessary to use methods, which take into account
periodical properties of statistical characteristics of considered processes. In connection with
this in [1] different types of periodically correlated random processes are investigated. In the
same book some ranges of their application to description of real oceanological processes are also
considered.

In this paper model, based on scalar heterogeneous Markov chain with two states and
periodic transition probability matrix is considered. Such models may be used for modeling
of precipitation indicators, air temperature overshoots with taking into consideration of daily
variation. For model construction long-term meteorological data, obtained in Astrakhan, are
used.
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1 Heterogeneous Markov chain with periodic transition

probability matrix

1.1 Definition of process ξ(k)

Let’s consider binary heterogeneous Markov sequence ξ of random variables ξk, k ≥ 0 with set
of states C = {1, 0}, initial probability vector A and transition probability matrixes Q, R:

A = (a1, a0) = (a, 1− a),

Q =

(
q11 q10
q01 q00

)
=

(
p 1− p
1− q q

)
,

R =

(
p11 p10

p01 p00

)
=

(
r 1− r
1− s s

)
,

(a = a1, p = q11, q = q00, r = r11, s = r00),

Pr[ξ0 = α] = aα,
Pr[ξ2i+1 = β |ξ2i = α ] = qαβ,

Pr[ξ2i+2 = β |ξ2i+1 = α ] = rαβ,
i ≥ 0, α = 0, 1, β = 0, 1.

Transition matrixes Q, R are used in turn, starting from Q. Matrixes Q and R are stochas-
tic matrixes, so they are defined with four independent parameters p, q, r, s ∈ [0, 1]. These
parameters express probabilities of conservation of value during transition ξk → ξk+1 depending
on evenness of k.

General form of matrix of transition probability

pαβ[k] = Pr[ξk+1 = β |ξk = α ]

is

P [k] = (1− θ[k])Q+ θ[k]R =

(
p11[k] p10[k]
p01[k] p00[k]

)
,

where function θ[2i− 1] = 0, θ[2i] = 1, i ≥ 1 describes evenness of k. So

pαβ[k] = (1− θ[k])qαβ + θ[k]rαβ.

Particularly,

P [1] = (1− θ[1])Q+ θ[1]R = Q, P [2] = (1− θ[2])Q+ θ[2]R = R.
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It will be convenient to use form of general transition probability matrix without indexes

P [k] =

(
p[k] 1− p[k]
1− q[k] q[k]

)
where

p[k] = p11[k] = Pr[ξ[k + 1] = 1 |ξ[k] = 1],

q[k] = p00[k] = Pr[ξ[k + 1] = 0 |ξ[k] = 0].

1.2 Distribution of ξk

It is obvious that

2m∏
k=1

P [k] = (QR)m,
2m+1∏
k=1

P [k] = (QR)mQ, m ≥ 1 .

Let’s define

S = QR =

(
s11 s10

s01 s00

)
=

(
q10r01 + q11r11 q10r00 + q11r10
q00r01 + q01r11 q00r00 + q01r10

)
and

t = detR = r + s− 1,
u = detQ = p+ q − 1,

d = detS = detQdetR = (p+ q − 1)(r + s− 1),
b = (r − qt)/(1− d), d 6= 1.

Then

S = QR =

(
1− s+ pt s− pt
r − qt 1− r + qt

)
=

(
1− s s
r 1− r

)
+ t

(
p −p
−q q

)
.

It is possible to prove by induction that next equality for m−th power of S takes place

Sm =

(
b+ (1− b)dm 1− b− (1− b)dm

b− bdm 1− b+ bdm

)
.

If m ≥ 1, then distribution

P [2m] = ASm = (p2m, 1− p2m)

is equal to
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P [2m] = (b+ (a− b)dm, 1− b− (a− b)dm),
p2m = Pr[ξ2m = 1] = b+ (a− b)dm.

And distribution

P [2m+ 1] = ASmQ = (p2m+1, 1− p2m+1)

is equal to

P [2m+ 1] = (1− q + bu+ (a− b)udm, q − bu− (a− b)udm),
p2m+1 = Pr[ξ2m+1 = 1] = 1− q + bu+ (a− b)udm.

1.3 Limits of P [2m], P [2m+ 1].

If |d| < 1, then even and odd limiting probabilities and their difference are equal to

f∞ = lim
m→∞

Pr[ξ2m = 1] = b,

g∞ = lim
m→∞

Pr[ξ2m+1 = 1] = 1− q + bu,

g∞ − f∞ = (1− q)(1− b)− b(1− p).

Equality g∞ = f∞ is equivalent to p = q = 1 or b = (1− q)/(1− q), when p + q 6= 2.
Previous inequality is equivalent to p 6= 1 or q 6= 1, and also u 6= 1.

Let d = ut 6= 1, u 6= 1 and b = (r − qt)/(1− ut). Then,

r − qt

1− ut
=

1− q

1− u
,

r =
(1− q)− (u− q)t

1− u
=

(1− q) + (1− p)(r + s− 1)

1− u
.

So

(1− u)r = (1− q) + (1− p)(r + s− 1),
((1− u)− (1− p))r = (1− q)r = (1− q)− (1− p)(1− s),

(1− q)(1− r) = (1− p)(1− a)

and if s 6= 1, q 6= 1, proportion

1− r

1− s
=

1− p

1− q
,

which connects elements of Q, R, takes place.
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1.4 Distribution of 1-runs duration

In this section only stationary chains are considered. It follows from this that

P (ξ2t−1 = 0) = 1− g∞ = 1− (1− q + bu) = q − bu,

P (ξ2t = 0) = 1− f∞ = 1− b, t ≥ 1.

If 1-run begins at element with even number, distribution of 1-runs duration can be defined
as

P (L1 = k) =
P (ξ2t−1 = 0, ξ2t = 1, . . . , ξ2t+k−1 = 1, ξ2t+k = 0)

P (ξ2t−1 = 0, ξ2t = 1)
,

k = 1, 2, . . . .

If k = 2m, m = 1, 2, . . ., then

P (ξ2t−1 = 0, ξ2t = 1, . . . , ξ2t+2m−1 = 1, ξ2t+2m = 0) =
= (q − bu)(1− s)pmrm−1(1− r),

P (ξ2t−1 = 0, ξ2t = 1) = (q − bu)(1− s).

So

P (L1 = 2m) =
(q − bu)(1− s)pmrm−1(1− r)

(q − bu)(1− s)
= pmrm−1(1− r).

If k = 2m− 1, m = 1, 2, . . .

P (L1 = 2m− 1) =
(q − bu)(1− s)pm−1rm−1(1− p)

(q − bu)(1− s)
= pm−1rm−1(1− p).

When 1-run begins at element with odd number

P (L1 = k) =
P (ξ2t = 0, ξ2t+1 = 1, . . . , ξ2t+k = 1, ξ2t+k+1 = 0)

P (ξ2t = 0, ξ2t+1 = 1)
, k = 1, 2, . . .

P (ξ2t = 0, ξ2t+1 = 1) = (1− b)(1− q).

If k = 2m, m = 1, 2, . . .

P (ξ2t = 0, ξ2t+1 = 1, . . . , ξ2t+2m = 1, ξ2t+2m+1 = 0) =

= (1− b)(1− q)pm−1rm(1− p),

P (L1 = 2m) =
(1− b)(1− q)pm−1rm(1− p)

(1− b)(1− q)
= pm−1rm(1− p).
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Similarly, for k = 2m− 1, m = 1, 2, . . .

P (L1 = 2m− 1) =
(1− b)(1− q)pm−1rm−1(1− r)

(1− b)(1− q)
= pm−1rm−1(1− r).

Average value of 1-runs duration, in case when runs begin at chain’s element with even
number, equals

ML1 =
∞∑
k=1

kP (L1 = k) =

=
∞∑
m=1

(2m) pmrm−1 (1− r) +
∞∑
m=1

(2m− 1) pm−1rm−1 (1− p) = 1+p
(1−pr) .

(here we suppose that pr 6= 1). Average value of 1-runs duration, in case when runs begin
at chain’s element with odd number, equals

ML1 =
∞∑
m=1

(2m) pm−1rm (1− p) +
∞∑
m=1

(2m− 1) pm−1rm−1 (1− r) =
1 + r

(1− pr)
.

Variance of 1-runs duration, in case when runs begin at chain’s element with odd number,
is

ML2
1 =

∞∑
m=1

(2m)2 pmrm−1 (1− r) +
∞∑
m=1

(2m− 1)2 pm−1rm−1 (1− p) = 4p(1+r)

(1−pr)2 + (1−p)
(1−pr) ,

DL1 = ML2
1 − (ML1)

2 = −p2+2p+4pr−1

(1−pr)2 + (1−p)
(1−pr) .

In case when 1-runs begin at chain’s element with even number, variance equals

DL1 =
−r2 + 2r + 4pr − 1

(1− pr)2 +
(1− r)

(1− pr)
.

2 Duration distribution of exit of air temperature for the

given level

When numerical stochastic model of air temperature overshoots indicators with given one-dimensional
distributions and transition probability matrix on base of heterogeneous Markov chain is being
constructed, the essential thing is agreement between f∞, g∞ and p, q, r, s. Since these param-
eters are connected with each other in the following way

f∞ = lim
m→∞

Pr[ξ2m = 1] = b, g∞ = lim
m→∞

Pr[ξ2m+1 = 1] = 1− q + bu,

where b = (r − qt)/(1− d), d 6= 1, t = r + s− 1, d = (p+ q − 1)(r + s− 1), u = p+ q − 1,
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so it is necessary to choose probabilities f∞, g∞, p, q, r, s in special way: they must be, in some
sense, similar to real estimation. In this case considered Markov modelmay be used for estimations
of different characterictics, which depend on f∞, g∞, for example, correlation function.

But if it is necessary to estimate distribution of runs duration, using real data and Markov
model, considered in this paper, it is enough to use only estimations of transition probability
matrixes, because distribution of runs duration does not depend on f∞, g∞. In this case, limiting
probabilities may be used for model’s verification. For verification of the model probabilities of
rather short runs can be also used.

Let’s give results of numerical experiments. Described above Markov model was constructed
for estimations of probabilities of long-term overshoots above given level c on base of air temper-
ature time-series in December in Astrakhan. Distributions of 1-runs duration were estimated on
basis of real data and constructed model. As follows from Fig.1, model reproduces character of
distribution quite well. Increasing order of Markov chains it is possible to achieve more accurate
reproduction of real probabilities. As an example of such more accurate reproduction, distribu-
tion of 1-runs duration, obtained from numerical Markov model of second order with periodic
transition matrix, is given in Fig.1 (curve 3).

Figure 1: Distributions of 1-runs duration, obtained from: 1 - real data, 2 - Markov model of
first order, 3 - Markov model of second order.

It should be noted, that considered model can be successfully used not for all levels c. For
some levels, for example, levels close to average monthly temperature c = −5oC, model does not
give acceptable results. But for levels, relative remote from average monthly value (for example,
c = 1oC), model gives quite good results. Probabilities f∞, g∞, obtained with the help of model
and corresponding probabilities P (ξ = 1) calculated by real data are given in Table. 1. At the
last column a estimations with the help modeling data are presented.
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Table 1: Real probabilities P (ξ = 1) and limiting probabilities obtained with the help of model

lim.prob real data model model data
f∞ 0.17954 0.18208 0.18207
g∞ 0.37190 0.37821 0.37786

Conclusions

It is easy to generalize obtained formulas in case of transition probability matrix with arbitrary
finite period. Such generalization is necessary for more realistic models construction of mete-
orological processes statistical characteristics daily periodicity. From this point of view, it is
interesting to construct high-order Markov models, which take account of multivariate joint dis-
tribution. Such models can be carried out numerically with the aid of methods of statistical
modelling.

This work is supported by Russian Foundation for Basis Research (grant 11-01-00641)
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Abstract

The effective coefficients in Maxwell’s equations are calculated for a multiscale isotropic
medium by using a subgrid modeling approach. The correlated fields of conductivity and
permittivity are mathematically represented by a Kolmogorov multiplicative continuous cas-
cade with a lognormal probability distribution. The scale of solution domain is assumed to
be large as compared with the scale of heterogeneities of the medium.

Keywords: Maxwell’s equations, effective coefficients; subgrid modeling; multiscale
random conductivity and permittivity.

Introduction

Most of natural media are extremely heterogeneous [1]. The physical processes in such media are
described by mathematical models. The large-scale medium heterogeneities, for example, layers,
intercalations, are taken into account in these models with the help of some boundary conditions.
The spatial distributions of small-scale heterogeneities may not be exactly known. It is customary
to assume that these parameters are random fields characterized by the joint probability distri-
bution functions. As a rule, the small-scale fluctuations of parameters are taken into account by
some effective coefficients, i.e. some simplified models with computationally resolvable scales are
sought. The solution to governing equations in these models must be approximate, for exam-
ple, the ensemble-averaged solutions to the initial governing equations. This is major subject of
physical and engineering science that is encountered under various names, e.g. homogenization,
coarse graining and subgrid modeling.

The above-mentioned methods can be applied to a ”scale regular” medium. It has been
experimentally shown that the irregularity of the electric conductivity, permeability, porosity
and density increases as the scale of measurement decreases [1]–[4]. However, many natural
media are considered to be ”scale regular” in the sense that they can be described by fractals and
multiplicative cascades [2]–[4]. In the present paper, the electric conductivity and permittivity are
approximated by a multiplicative continuous cascade. Electromagnetic logging is an effective tool
for studying a medium structure. The aim of this method is to estimate the medium conductivity
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as precisely as possible. For the long probes the quasi-steady condition (1 � σ(x,l)
ωε(x,l)

), the week

influence of permittivity) is satisfied with a high accuracy, when a medium has typical values
of resistivities. When resistivities of the medium are high, dependence of measured signal on
dielectric permittivity occurs at high frequencies. In this case we have ( σ(x,l)

ωε(x,l)
� 1. Under this

condition we obtain the effective electric conductivity and permittivity to estimate the mean-value
of electric or magnetic field strengths and the current density in Maxwell’s equations.

1 Governing equations and the electric conductivity and

permittivity models

According to [5], Maxwell’s equations for monochromatic fields Ẽ (x, t) = Re (E (x) e−iωt), H̃ (x,t) =
Re (H (x) e−iωt) in the absence of extraneous currents can be written as

rotH (x) = (−iωε(x) + σ (x))E (x) , (1)

rotE = iωµH,

where E and H are the vectors of electric and magnetic field strengths, respectively; µ is the
magnetic permeability; σ (x) is the electric conductivity; ε(x) is the permittivity; ω is the cyclic
frequency; and x is the vector of spatial coordinates. The magnetic permeability is assumed to
be equal to the magnetic permeability of vacuum. We also assume that the electric conductivity
and the permittivity are constant outside a finite volume V with a smooth surface S. At the
surface S, the tangent components of electric and magnetic field strengths are continuous. The
electric conductivity, permittivity and cyclic frequency satisfy the inequality

σ(x, l)

ωε(x, l)
� 1. (2)

Let, for example, the field of electrical conductivity be known. This means that the field is
measured on a small scale l0 at each point x, σ (x)l0 = σ (x) . To pass to a coarser scale grid,
it is not sufficient to smooth the field σ (x)l0 on a scale l, l > l0. The field thus smoothed is not
a physical parameter that can describe physical process, the governed by equations (1), on the
scales (l, L), where L is the maximum scale of heterogeneities. This is due to the fact that the
fluctuations of electric conductivity on the scale interval (l0, l) correlate with the fluctuations of
electric field strength E induced by the electric conductivity. To find an electric conductivity that
can describe the physical process on the scales (l, L) system (1) will be used in this paper.

Following Kolmogorov [6], [7], consider a dimensionless field ψ, which is equal to the ratio
of two fields obtained by smoothing the field σ (x)l0 on two different scales l′, l. Let σ (x)l denote
the parameter σ (x)l0 smoothed on the scale l. Then ψ(x, l, l′) = σ(x)l′/σ(x)l, l′ < l. We obtain
expanding the field ψ into a power series in l− l′, and retaining the first order terms of the series,
at l′ → l the following equation:

∂ lnσ(x)l
∂ ln l

= ϕ(x, l), (3)
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where ϕ(x, l′) = (∂ψ(x, l′, l′y)/∂y) |y=1. The solution of equation (3) is

σl0(x) = σ0 exp

(
−
∫ L

l0

ϕ(x, l1)
dl1
l1

)
, (4)

where σ0 is a constant. The field ϕ determines the statistical properties of the electric conductivity.
This approach is described in detail in [8]. According to the limit theorem for sums of independent
random variables [9] if the variance of ϕ(x, l) is finite, the integral in (4) tends to a field with a
normal distribution as the ratio L/l0 increases. If the variance of ϕ(x, l) is infinite and there exists
a nondegenerate limit of the integral in (4), the integral tends to a field with a stable distribution.
In the present paper it is assumed that the field ϕ(x, l) is isotropic with a normal distribution
and a statistically homogeneous correlation function

< ϕ(x, l) ϕ(y, l′) > − < ϕ(x, l) >< ϕ(y, l′) >

= Φϕϕ(|x− y| , l, l′)δ (ln l − ln l′) . (5)

Here the angle brackets denote ensemble averaging. It follows from (5) that the fluctuations of
ϕ(x, l) on different scales do not correlate. This assumption is standard in the scaling models [6].
This is due to the fact that the statistical dependence is small if the scales of fluctuations are
different. To derive subgrid formulas to calculate effective coefficients, this assumption may be
ignored. However, this assumption is important for the numerical simulation of the field σ.

For a scale-invariant medium the following relation holds for any positive K

Φϕϕ(|x− y| , l, l′) = Φϕϕ(K |x− y| , Kl,Kl′)

In a scale invariant medium, the correlation function does not depend on the scale at x = y and
the following estimation is obtained in [8]:

l0 < lε < r < L

< σl0(x)σl0(x + r) >∼ C
( r
L

)−Φ0

, (6)

where C = σ2
0e

−Φ0γ/2, γ is the Euler constant. For rgL, we have

< σl0(x)σ(x + r, l0) >→ σ2
0. (7)

If for any l the equality < σl(x) >= σ0 is valid, then it follows from (4), (5) that

Φϕϕ
0 (l) = 2 < ϕ >, (8)

where Φϕϕ
0 (l) = Φϕϕ (0, l). As the minimum scale l0 tends to zero the electric conductivity field

described by (4) becomes a multifractal. We obtain an irregular field on a Cantor-type set to be
nonzero.
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The permittivity coefficient ε(x) is constructed by analogy to the conductivity coefficient:

εl0(x) = ε0 exp

(
−
∫ L

l0

χ(x, l1)
dl1
l1

)
. (9)

The function χ(x, l) is assumed to have the normal distribution and to be delta-correlated in the
logarithm of the scale. We can write

Φχχ(x,x,l, l′) = 〈χ(x, l)χ(x, l′)〉 − 〈χ(x, l)〉〈χ(x, l′)〉 = Φχχ
0 δ(ln l − ln l′). (10)

The permittivity field satisfies the equality < χl(x) >= χ0 for any l. Then it follows from (9),
(10) that

Φχχ
0 (l) = 2 < χ > . (11)

The correlation between the permittivity and conductivity fields is determined by the correlation
of the fields χ(x, l′) and (ϕ(x, l′):

Φϕχ(x,y,l, l′) = 〈ϕ(x, l)χ(y, l′)〉 − 〈ϕ(x, l)〉〈χ(y, l′)〉 = Φϕχ(|x− y| , l, l′)δ(ln l − ln l′). (12)

2 Subgrid model

The electric conductivity and permittivity functions σ (x) = σ (x)l0 , ε (x) = ε (x)l0 are divided
into two components with respect to the scale l. The large-scale (ongrid) components σ (x, l),
ε (x, l) are respectively obtained by statistical averaging over all ϕ(x, l1) and χ(x, l1) with , l0 <
l1 < l, l − l0 = dl, where dl is small. The small-scale (subgrid) components are equal to σ′(x) =
σ(x)− σ(x, l), ε′(x) = ε(x)− ε(x, l):

ε(x, l) = ε0 exp

[
−
∫ L

l

χ(x, l1)
dl1
l1

]〈
exp

[
−
∫ l

l0

χ(x, l1)
dl1
l1

]〉

ε′(x) = ε(x, l)


exp

[
−

l∫
l0

χ(x, l1)
dl1
l1

]
〈

exp

[
−

l∫
l0

χ(x, l1)
dl1
l1

]〉 − 1

 , 〈ε′(x)〉 = 0,

σ(x, l) = σ0 exp

[
−
∫ L

l

ϕ(x, l1)
dl1
l1

]〈
exp

[
−
∫ l

l0

ϕ(x, l1)
dl1
l1

]〉

σ′(x) = σ(x, l)


exp

[
−

l∫
l0

ϕ(x, l1)
dl1
l1

]
〈

exp

[
−

l∫
l0

ϕ(x, l1)
dl1
l1

]〉 − 1

 , 〈σ′(x)〉 = 0. (13)
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Hence

ε(x, l) '
[
1− 〈χ〉 dl

l
+

1

2
Φχχ

0 (l)
dl

l

]
εl(x),

σ(x, l) '
[
1− 〈ϕ〉 dl

l
+

1

2
Φ0 (l)

dl

l

]
σl(x). (14)

The large-scale (ongrid) components of electric and magnetic field strengths E (x, l) ,H (x, l)
are obtained by averaging the solutions to system (1), in which the large-scale component of
conductivity σ(x, l) is fixed and the small component σ′(x) is a random variable. The subgrid
components of the electric and magnetic field strengths are equal to H′ (x) = H (x) − H (x,l),
E′ (x) = E (x)−E (x,l). Substituting the relations for E (x) ,H (x) and σ(x) into system (1) and
averaging over small-scale components, we have

rotH (x, l) = (−iωε (x, l) + σ (x, l))E (x, l) + 〈(−iωε′ + σ′)E′〉 , (15)

rotE (x, l) = µiωH (x, l) .

The subgrid term 〈(−iωε′ + σ′)E′〉 in system (15) is unknown. This term cannot be neglected
without some preliminary estimation, since the correlation between the electric conductivity and
the electric field strength may be significant. The form of this term in (15) determines the subgrid
model. The subgrid term is estimated using perturbation theory. Subtracting system (15) from
system (1) and taking into account only the first order terms, we obtain the subgrid equations:

rotH′ = (−iωε (x, l) + σ (x, l))E′ + (−iωε′ (x) + σ′ (x))E (x, l) , (16)

rotE′ = µiωH′.

The variable E (x, l) on the right-hand side of (16) is assumed to be known. Solving system (16)
for the components of the electric field strength we have [10]

E ′
α=

1
4π
iωµ

∫
V

1
r
eik (−iωε′ (x′) + σ′ (x′))Eα (x′, l) dx′

+ 1
4π(−iωε(x,l)+σ(x,l))

∂
∂xα

∂
∂xβ

∫
V

1
r
eik (−iωε′ (x′) + σ′ (x′))Eβ (x′, l) dx′, (17)

where r = |x− x′|, k2 = (µω2ε (x, l) + iωµσ (x, l)). We take the square root such that Rek >
0, Im k > 0. Using (17) the subgrid term can be written as

〈(−iωε′ (x) + σ′ (x))E ′
α (x)〉 =

=
1

4π
iωµ

∫
V

1

r
eik 〈(−iωε′ (x) + σ′ (x)) (−iωε′ (x′) + σ′ (x′))〉 dx′Eα (x, l) + (18)

+

〈
(−iωε′ (x) + σ′ (x))

4π (−iωε (x, l) + σ (x, l))

∂

∂xα

∂

∂xβ

∫
V

1

r
eik (−iωε′ (x′) + σ′ (x′))

〉
dx′Eβ (x, l) .
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Since a small change in the scale of σ produces considerable fluctuations in the field (which is
typical of fractal fields), the field σ(x, l) and its derivatives are believed to change slower than
σ′ and its derivatives. Similar assumptions are made for E (x, l) and H (x, l). Therefore E (x, l),
σ(x, l) and their derivatives can be factored outside the integral sign in (18). Integrating by parts
(18) we have

〈(−iωε′ (x) + σ′ (x))E ′
α (x)〉 =

=
1

4π
iωµ

∫
V

1

r
eikr

(
−ω2 〈ε′ (x) ε′ (x′)〉 − 2iω 〈ε′ (x′)σ′ (x)〉+ 〈σ′ (x)σ′ (x′)〉

)
dx′Eα (x, l)

+
1

4π (−iωε (x, l) + σ (x, l))
× (19)

×
∫
V

∂

∂x′α

∂

∂x′β

1

r
eikr

(
−ω2 〈ε′ (x) ε′ (x′)〉 − 2iω 〈ε′ (x′)σ′ (x)〉+ 〈σ′ (x)σ′ (x′)〉

)
dx′Eβ (x, l) .

Here the summation of repeated indices is implied. As follows from formulas (2),(13) for a log-
normal probability distribution of σ and ε at small dl we have 〈ε′ (x) ε′ (x)〉 ≈ ε2(x, l)Φχχ

0
dl1
l1

,

〈σ′ (x)σ′ (x′)〉 = Φϕϕ (r, l)σ2 (x, l) dl
l
, 〈σ′ (x) ε′ (x)〉 ≈ ε(x, l)σ(x, l)Φχσ

0
dl1
l1

, 1
4π(−iωε(x,l)+σ(x,l))

≈

− 1
4πiωε(x,l)

(
1− iσ(x,l)

ωε(x,l)

)
. Substituting these formulas into (22) yields

〈(−iωε′ (x) + σ′ (x))E ′
α (x)〉 ≈

≈ − 1

4π
iω3µε(x, l)

∫
V

1

r
eikrΦχχ

0 (r) dx′
dl

l
ε(x, l)Ei (x, l)

+
1

2π
ω2ε(x, l)µ

∫
V

1

r
eikrΦχϕ

0 (r) dx′
dl

l
σ(x, l)Ei (x, l)

+
1

4π
iωµσ(x, l)

∫
V

1

r
eikrΦϕϕ

0 (r) dx′
dl

l
σ(x, l)Ei (x, l)

−iωε(x, l)
4π

∫
V

∂

∂x′α

∂

∂x′β

1

r
eikr

(
1− iσ (x, l)

ωε (x, l)

)
×

×
(

Φχχ
0 (r) + 2i

σ(x, l)

ωε(x, l)
Φχϕ

0 (r)− σ2(x, l)Φϕϕ
0 (r)

ω2ε2(x, l)

)
dx′

dl

l
Eβ (x, l) . (20)

The integrals over V in (20) can be changed by an integral with infinite limits, since the correlation
functions Φχχ, Φχϕ, Φϕϕ are small if |x| > L, L� L0, where L0 is minimum size of V . This change
gives a sensible error only in a narrow region of the correlation radius size near the boundary. In
formula (20), the Cartesian coordinates are changed for spherical coordinates. Integrating njnm,
where nm = xm/r, over the complete solid angle we arrive at the formula

∫
njnmdϑ = 4π

3
δjm.

Using this formula, neglecting terms of second order of smallness of σ(x, l)/ωε(x, l) and integrating
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(20) by parts, we obtain

〈(−iωε′ (x) + σ′ (x))E ′
α (x)〉 ≈

≈ −1

3

(
2µω2ε(x, l)− iωµσ (x, l)

) ∞∫
0

reikrΦχχ (r) dr
dl

l
iωε(x, l)Eα (x, l)

+
2

3

(
2µω2ε(x, l)− iωµσ (x, l)

) ∞∫
0

reikrΦχσ (r) dr
dl

l
σ(x, l)Eα (x, l)

+iωµσ(x, l)

∞∫
0

reikrΦσσ (r) dr
dl

l
σ (x, l)Eα (x, l) +

+
1

3
Φχχ

0

dl

l
iωε(x, l)Ei (x, l) +

(
1

3
Φχχ

0 − 2

3
Φχσ

(0)

)
dl

l
σ(x, l)Ei (x, l) . (21)

If ωµL2 |(iωε (x, l) + σ (x, l))| � 1, the integrals in (21) are small [11]. This inequality is not
restrictive for the problems of electromagnetic logging if L � L0. Hence, the integrals in (21)
can be neglected. We have:

〈−iωε′ (x)E ′
i (x)〉+ 〈σ′ (x)E ′

i (x)〉 ≈ −1
3
Φχχ (0) (−iωε(x, l)Ei (x, l)) dll −

−
(

2
3
Φχσ (0)− 1

3
Φχχ (0)

)
dl
l
σ(x, l)Ei (x, l) . (22)

Substituting (22) into (15), we have

rotH (x, l) = −iωεl0 exp
[
−
∫ L
l
χ(x, l1)

dl1
l1

]
E (x, l) + σl0 exp

[
−
∫ L
l
ϕ(x, l1)

dl1
l1

]
E (x, l) ,

rotE (x, l) = iωµH (x, l) . (23)

εl0 =
(
1− Φχχ0

3
dl
l

) [
1 +

(
Φχχ0

2
− 〈χ〉

)
dl
l

]
ε0.

σl0 =
(
1−

(
2
3
Φχϕ (0)− 1

3
Φχχ (0)

)
dl
l

) [
1 +

(
Φϕϕ0

2
− 〈ϕ〉

)
dl
l

]
σ0.

It follows from (23) that the new coefficients σl0 and εl0 are equal:

εl0 = ε0 +

(
Φχχ

0

6
− 〈χ〉

)
ε0
dl

l

σl0 = σ0 +

(
−2

3
Φχϕ

0 +
1

3
Φχχ

0 +
1

2
Φϕϕ

0 − 〈ϕ〉
)
σ0
dl

l
,

with second order of accuracy. As dl→ 0 we obtain the equation

d ln ε0l

d ln l
=

1

6
Φχχ

0 (l)− 〈χ〉 ,

d lnσ0l

d ln l
= −2

3
Φχϕ

0 +
1

3
Φχχ

0 +
1

2
Φϕϕ

0 − 〈ϕ〉 . (24)
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For a scale-invariant medium, effective equations have the following simple form

rotH (x, l) = −iω
(
l

L

)〈χ〉−Φχχ0 /6

εl (x)E (x, l) +

(
l

L

)〈ϕ〉+ 2
3
Φχϕ0 − 1

3
Φχχ0 − 1

2
Φϕϕ0

σl (x)E (x, l) ,

rotE (x, l) = iωµH (x, l) . (25)

Conclusions

Random media are considered in which the permittivity and conductivity are random functions
of position. For them we have obtained effective coefficients depending on the scale of smoothing
l when the condition σ(x,l)

ωε(x,l)
� 1 is satisfied. To verify our theory Monte Carlo simulation is

required. Such computations are being performed.
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Abstract

This paper deals with some problems of accuracy of algorithms for the numerical solutions
of stochastic differential equations (SDEs) versus the size of the ensemble of trajectories
simulated and on the mesh size of integrating the generalized Euler method. The problems
of accuracy arise in estimating functionals of SDE solutions with increasing variance, highly
asymmetric distributions, and an indefinite time of arrival of trajectories of solutions at
the boundaries of given domains. Some ways of parallelization of statistical algorithms on
a multiprocessor cluster are described. Results of numerical experiments performed on a
supercomputer available at the Siberian Supercomputer Center are presented.

Keywords: stochastic differential equations, statistical algorithms, parallelization, su-
percomputer, cluster, van der Pol equation, phase trajectory, stochastic oscillators.

Introduction

To use Monte Carlo methods for finding solutions to boundary-value problems of mathematical
physics in probabilistic terms, it is often necessary to solve numerically the resulting SDEs and
calculate some integrals along the trajectories simulated.

This paper studies the accuracy of statistical algorithms for solving simple SDEs versus the
size of the ensemble of trajectories simulated and on the mesh size of integrating the general-
ized Euler method. The results of numerical experiments on estimating some moments of SDE
solutions with increasing variance and the mean time of first arrival of SDE trajectories with
multiplicative noise at a boundary of a given domain are presented.

But the accuracy of estimates of functionals of SDE solutions depend not only on the size
of the ensembles of simulated trajectories of solutions, but also on the size of the integration step
used a numerical method for solving CDSs. Of particular difficulty is the statistical modeling of
stochastic oscillators. Mathematical models in the form of CDS with oscillating solutions occur in
many different fields of science [1-3]. Of particular interest is the analysis of the possible transitions
from one type of oscillation to another, for example, in predicting failures and accidents caused
by increasing amplitude of oscillations. In this connection there is the problem of estimating the
stability of a given operation. As shown previously conducted experiments [4], the numerical
solution of oscillatory SDEs with integration step h < 104 is often an instability of the numerical
solution, ie, the strong growth of the oscillation amplitude and dispersion. In this regard, it is
necessary to reduce the size of the integration step by several orders of magnitude. In addition,
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small amounts of simulated trajectories of solutions of SDE give completely incorrect assessment
of the moments of decision in the case of strong asymmetry in their distribution densities.

Ratings st functionals of solutions of SDE, the calculation of the integrals along the simulated
trajectories, and the midget step size generalized Euler’s method, and vast amounts of simulated
trajectories of solutions of SDE, in both cases require the use of supercomputers with large
number of processors to obtain satisfactory accuracy of the numerical analysis in a reasonable
computation time. The first study authors for the numerical solution of SDE with increasing
variance on supercomputers have been described in [5].

A description of parallel programs and estimates of the calculation time versus the number
of processors used and the size of the ensemble of SDE trajectories simulated are presented. The
numerical experiments were performed on a cluster, NKS-30T, available at the Siberian Super-
computer Center at the Institute of Computational Mathematics and Mathematical Geophysics,
Siberian Branch of the Russian Academy of Sciences.

1 Problems to be Solved

For solving the Cauchy problem for general SDEs in the sense of Ito,

dy = f(y) dt+ σ(y) dw(t), y(0) = y0, 0 ≤ t ≤ T (1)

the generalized Euler method

yn+1 = yn + h f(yn) + σ(yn)
√
h ξn+1. (2)

is commonly used. Here, yn+1 is a numerical solution on a grid tn+1 = tn + h, and {ξn+1}N−1
0

is a sequence of standard Gaussian random quantities that are mutually independent and also
independent of yn. To generate ξn, we use the standard formula ξ =

√
−2 lnα1 sin 2πα2, where

α1 and α2 are uniformly distributed random quantities in (0,1] [6].

1) The Solution of the SDEs with Multiplicative Noise

a) The exact solution to the Cauchy problem for the simple linear SDE in the Ito sense with
multiplicative noise

dy = αy dt+ σy dw(t), 0 ≤ t ≤ T,
y(0) = y0

(3)

SDEs (3) has an exact solution. The size of the ensemble of simulated trajectories required to
obtain acceptable accuracy (2-3 mark) of the solution estimated.

b) It is often recommended to use Monte Carlo methods for finding solutions to boundary
value problems for elliptic equations with the help of a probabilistic representation [7]. For
instance, for the 1D Ditchless problem

1

2
σ2(y)

d 2u

dy2
+ f(y)

du

dy
+ 1 = 0 (4)
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in an interval [a, b] with boundary conditions u(a) = u(b) = 0 the solution u(y0) at a point y0
can be represented in the probabilistic form

u(y0) = Eτ(y0), (5)

where τ is the time of first exit from [a, b] for the solution of SDE (1).

2) Stochastic Oscillators

a) Multiplicative noise is often associated with ”noisy” the coefficients in SDEs. Consider
the case of ”noisy” the coefficients in the linear oscillatory circuit, which is given SDEs second-
order form

d2y

dt2
+ (λ+ σ1

dw1

dt
)
dy

dt
+ (ω2 + σ2

dw2

dt
) y = 0 (6)

with constant λ, ω, σ1, σ2.
We consider the special case of the SDE (3) of the form

d2y

dt2
+ (ω2 +

dw

dt
) y = 0, y(0) ∈ N(1, 1),

dy

dt
(0) = 0, (7)

where the ”noise” only the oscillation frequency solutions and there is no decrement.

b) A stochastic nonlinear Van der Pol oscillator with a ”noisy” coefficient, written as a
system of SDE in the sense of Ito type

dy1 = y2 dt,
dy2 = (a y2 (1− b y2

1)− ω2y1) dt+ σy1 dw(t),
(8)

describes the oscillations of the nonlinear circuit. In (8) constants a, b, ω determine the rate of
transition in the decision. For the expectation exact solution of SDEs (8) there is no explicit
formula-representation, nor a closed system of ODE for its numerical calculation. The only
constructive way to analyze the nonlinear SDE with a large noise is the Monte Carlo.

2 Description of Parallel Programs

Two ways of parallelization of algorithms on a multiprocessor cluster are described. The parallel-
ing is performed in the MPI parallel programming system [8]. First, a method of parallelization
is considered where the ME of the SDE solution is estimated over the entire integration interval
and the simulation time of all ensemble trajectories is the same.

Since independent implementations of the SDE solution are simulated by Monte Carlo meth-
ods, an efficient organization of parallel implementation on a multiprocessor cluster is possible.
In this case, a simple parallelization scheme is: different processors of the computational system
provide fully independent solutions, that is, they calculate sequences obtained on the basis of
different (in each processor) pseudorandom numbers.
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LetK be the number of processors in a computational system that implements the algorithm
and let M be the ensemble size of trajectories simulated. Let Mk = M/K be the ensemble size
on one processor. Then formula for estimating of the ME of the solution at a grid node tn in the
parallel implementation has the following form:

mn =
1

K

K∑
k=1

1

Mk

Mk∑
m=1

y(m,k)
n . (9)

Here, y
(m,k)
n is the value of the mth implementation of the SDE solution at the nth grid node

obtained on the kth processor.
In the parallel implementation of this algorithm, these times are minimal: here, the time

spent on final averaging of independent results plays a minor role [9, 10].
In another parallelization method, the trajectories are simulated up to their first arrival

at the boundary of a given domain, and the simulation times of different trajectories from the
ensemble are different. The first arrival of the sequence {yn} that is simulated at the boundary of
a given domain and the number of iteration steps nm made prior to this arrival are fixed. Here,
an iteration step means a calculation of the next value, yn+1. Then the simulation process starts
again from the point y0.

As in the previous algorithm, here the realizations of SDE solutions are independent. There-
fore, an efficient organization of the parallel implementation is possible. Let Mmin

k = Mmin/K.
Then formula for estimating the mean time of first arrival of trajectories starting from y0 in the
parallel implementation can be written as

τ̂(y0) =
1

K

K∑
k=1

1

Mmin
k

Mmin
k∑

m=1

n(k)
m h. (10)

Here, n
(k)
m is the number of iteration steps prior to the arrival of the mth realization made on the

kth processor. It should be noted that when the simulation terminates, the number of arrivals
at the domain boundary on different processors can differ greatly. It is important that the total
number of arrivals must be no less than Mmin. It should be noted that, in contrast to the first
algorithm, here the spacing h must be sufficiently small not to decrease the estimation accuracy
when fixing the time of trajectory passage outside the domain.

In the second algorithm, the paralleling scheme differs from that in the first algorithm,
because here after a given number of iteration steps the quantities Mmin

k must be constantly
scanned on all processors, their sum must be calculated, and it must be checked whether the
common minimum Mmin is reached. The number of iteration steps on each processor taken by a
realization to pass outside the domain boundaries greatly depends on the parameters in (3), and
the approximate mean number of these steps is unknown. In this case it is best to perform this
testing (summation) synchronously, exchanging information between the processors after a given
number of iteration steps, Is made on each processor.

The frequency of interactions between the processors, that is, the period Is, greatly affects
the time of execution of the parallel algorithm. Summation of the current number of passages
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on the processors and summation of the total number of steps on each processor in each interval
Is is made by using a reduced MPI-function [8]. This operation takes much more time than the
operations on one processor. Therefore, in this paper the following strategy of dynamics choosing
the size of the interval Is is used:

1. At the initial calculation time, set a size of the interval, Is = NIs.

2. If LMmin
k = 0, all processors double the size of the interval Is. Thus, next time all

processors will interact after an interval that is twice as large as the previous one.

3. If GSMmin
k 6= 0 and GSnk 6= 0, each processor assigns the quantity C · (GSnk)/GSMmin

k

to its variable Is.

Here, GSMmin
k is the current total (global) number of realization passages on all processors,

and GSnk is the current total (global) number of iteration steps on all processors for these
passages. It should be specially noted that only those iteration steps that are associated with
passages outside the domain boundaries are summed up. Notice also that, due to the reduced
(MPI)-summation operation, the values of GSMmin

k and GSnk counters will be on each processor.

The wide range of problems that can be solved by Monte Carlo methods, are ideal for vector
calculations. The speed of the programs, due to the vectorization of calculations, increases by
40% − 50% (on each processor) in comparison to the same programs without vectorization of
calculations.

In the problems being solved, the samples of basic random numbers are very large (≈
2 · 10 · 1013) and, therefore, it is reasonable to use ”long-period” pseudorandom sequences. In
these problems, a function from the MKL library is used [11]. This function implements: 1) type of
statistical distributions-UNIFORM; 2) method-STD (standard); 3) generator of random numbers-
MT2203. This is, in fact, a set of 1024 pseudorandom number generators designed for using in
parallel Monte Carlo methods simulations. Each of them generates a sequence with a periodicity
equal to 2 to the power 2203. The parameters of the generators provide the corresponding
sequences of pseudorandom numbers that are mutually independent. One of these parameters is
the processor identification logical number assigned by the MPI system of parallel programming
[8].

3 Numerical Experiments

The calculations were performed on a cluster, NKS-30T, available at the Siberian Supercomputer
Center at the Institute of Computational Mathematics and Mathematical Geophysics, Siberian
Branch of the Russian Academy of Sciences.

The following numerical experiments were performed to study the accuracy of Monte Carlo
methods estimation versus the size of the ensemble of the SDE trajectories simulated.

Here, a processor means a processor kernel.

Test 1.
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The solution of the SDE in the Ito sense

dy = y dw(t), 0 ≤ t ≤ 10,
y(0) = 1

(11)

is simulated by the following exact recurrent formula: yn = yn−1 exp (−1
2

+ ξn), y0 = 1, n =
1, 2, ..., 10. The ME of the SDE solution is estimated by formula (9), and the second moment of
the solution, by the formula

α2n =
1

M

M∑
m=1

y(m)2

n , n = 1, ..., 10.

For SDE (11), we have Ey(t) ≡ 1, Ey2(t) = et. The variance Dy(T ) = exp(T ) − 1 can be
considerable. This means that the accuracy of estimating Ey(T ) and Ey2(T ) by Monte Carlo
methods with an ensemble of simulated SDE trajectories of size 102 ÷ 104 would be very low,
that means a possible loss of accuracy of 10% ÷ 1000% in comparison to its exact value [12,
13]. Calculations were performed for various sizes of the ensemble of trajectories simulated:
M = 103, 106, 109, 1012, and 1013. The number of processors K = 20 for the first three sizes, and
for the last two sizes K = 50. The accuracy of estimates mn and α2n at the end of the integration
interval is high only with M = 109−1013. The required accuracy of the estimate α2n (= 22943) is
high only for M = 1013. Recall that Ey2(10) = e10 = 22026. The accuracy of estimates α2n small
sample sizes is low due to the fact that these samples do not have occasional greatly increasing
trajectories of the SDE solution. Calculation time versus the number of processors is close to
linear.

Test 2.

For solving SDE (11) simulated by the formula yn = yn−1 exp (−h
2

+
√
h ξn), y0 = 1, we

estimate the first and second moments of a random quantity τ , which is the time of first arrival of
realizations at the boundary of the interval [0, 2]. Calculations were performed by formula (10)
for K = 64, h = 10−4 for the following ensemble sizes of the trajectories simulated: M = 102, 104,
and 107. In this test, the exact values of Eτ and Eτ 2 are unknown. Nevertheless, one can see
a great difference in the estimates for M = 102 and M = 104, 107. This means that ensembles
of maximal sizes should be used in problems on boundary reaching. The number of coinciding
significant figures at various values of M can serve as a criterion of accuracy. The estimate of τ̂ 2

for M = 102 is small due to the fact that the sample does not have occasional realizations that
arrive at the interval boundary for a long time.

Test 3.

If we set f(y) = 0 and σ(y) = σ in (4), the accompanying SDE is a SDE with additive noise,

dy = σ dw(t), y(0) = y0 (12)

For solve SDE (12) simulated by the formula yn = yn−1 + σξn
√
h, we estimate the mean time

and the second moment of τ , which is the time of first arrival of realizations at the boundary
of the interval [−1, 1]. Calculations were performed for K = 64 and h = 10−4 for ensemble
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sizes M = 102, 103, 106, and 108. In the first case, y0 = 0, the SDE trajectories start from the
center of the interval [−1, 1]. In the second case, y0 = 0.9, the trajectories start from a point
near the right boundary of the interval, and the accuracy of estimation is strongly affected by
occasional realizations that arrive at the left boundary of the interval. The results of calculations
shows a great difference in the accuracy of estimation for various M , both for the case when y0

is in the center of the interval [−1, 1] and near the boundary for various σ. In all the tests, the
second moment estimates for all M = 102, 103 have very low accuracy. The ensemble simulated
for K = 64 has a large size, which requires too much calculation time, more than two days.

Test 4.

Evaluation of the expectation and second moment of solutions y(t) linear SDEs (7). Expectation
under the initial conditions m(0) = 1, dm

dt
(0) = 0 given by m(t) = cos(wt). If ω = 2π the function

m(t) on the interval [0, 100] has 100 periods of oscillation with equal amplitude of 1.
CDE (6) can be rewritten as a linear system with L = 2, J = 2:

dy1 = y2 dt,
dy2 = −(ω2y1 + λ y2) dt− σ1 y2 dw1(t)− σ2 y1 dw2(t).

(13)

Using the Euler method (2) to CDEs (7), written in the form of first-order system (13) with L =
2, J = 1, we obtain the following difference scheme:

y
(1)
n+1 = y

(1)
n + hy

(2)
n ,

y
(2)
n+1 = y

(2)
n − hω2y

(1)
n +

√
h y

(1)
n ξn+1 .

(14)

Calculations of the phase trajectory of (Ey
(1)
n , Ey

(2)
n ), The calculated using the difference scheme

(14) with step h = 10−3 and the size of ensemble of simulated trajectories of solutions M = 87.
Calculations show that with this step size of integration has been a steady increase in ampli-
tude estimation of the expectation. Stable phase trajectory in the form of an ellipse (Cos 2πt,
−2π sin πt) can be obtained only when the integration step h = 10−6 and less.

In evaluating the second moment of the generalized Euler method with step h = 10−3, we
have a maximum value of 205, indicating that the complete loss of estimation accuracy with
the step. Satisfactory accuracy is obtained only if h is not more than 10−6, when we estimate a
maximum value equal to 4.00 close to the exact solution [9]. The number of simulated trajectories
is chosen so large that in this calculation the size of the ensemble of simulated trajectories had
no effect on the accuracy of the estimates.

Growth dispersion solutions CDSs (6) over time makes the problem an accurate assessment
of the expectation of Ey(t) = cos 2πt for a large number of oscillation periods and requires an
increase in the size of the ensemble of simulated trajectories with increasing T , that naturally
increases the computation time problem.

The computing time on 64 processors with step h = 10−6, M = 86 was about 16 hours.
Calculations with a smaller integration step requires a lot of daily calculating.

Test 5.
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Evaluation of the expectation and second moment of the solution of the nonlinear Van der
Pol (8) with parameters a = 20, b = 1, ω = 2π, σ = 1.

Simulated the trajectory of a solution y1(t) of CDEs (7) with step h = 10−8 If you choose
the parameters a = 20 a stochastic equation of Van der Pol oscillator can be considered ”tough”
[9], we have fast transient plots and ”shelves” near the values ±3. Calculations show that the
amplitude of trajectory solutions is not reduced. However, numerical calculations show that this
can not be said about the behavior of the expectation of Ey1(t). Estimates were made of the
expectation of Ey1(t), obtained by the generalized Euler method with step h = 10−8 and the
size of the ensemble M = 85. Calculations show that the amplitude of Ey1(t) decreases from
period to period, which is in sharp contrast with the behavior of the expectation of a linear
oscillator circuit (Test 4). We can say that the expectation of a nonlinear SDEs with time ”loses
information” about the behavior of each individual trajectory of the solution (8). Additional
calculations showed that in the case of weak nonlinearity (with a = 1) the expectation of the
solution (8) is also decreasing over time, the amplitude of oscillation. Such a dramatic difference
in the behavior of the expectation of solutions of linear and nonlinear oscillators warns about the
dangers of solutions of nonlinear SDEs with their linearization.

The estimation of second moment of solutions Ey2
1(t). Fast enough is stabilized dispersion

solutions, which also differs from the behavior of the variance in the linear case. The computing
time of this test on 128 processors with step h = 10−8 and M = 85 accounted for about 73 hours.
Note that the use of larger integration step leads to the instability of numerical solutions, which
ultimately leads to the overflow bit arithmetic unit of the processor grid and the emergence of
values Nan (nonexistent number).

Conclusions

The numerical calculations clearly show that supercomputers are necessary for solving SDEs nu-
merically. In a subsequent paper, we plan to consider problems of numerical simulation of linear
and nonlinear stochastic oscillators with the use of about 400 processors. Numerical experi-
ments will be performed with the solutions to more complicated boundary value problems (where
integrals are calculated along trajectories of SDE solutions).

Studies have shown that the numerical analysis stochastic oscillators Monte Carlo use large
integration steps making the CDS, which is almost always done in the numerical experiments on
personal computers, can lead to completely erroneous conclusions.

Also note that the conclusions drawn from the behavior of moments for solving the stochastic
equation Van der Pol equation with large noise can not be obtained nor any other method, except
for stochastic simulation. This applies to both methods approximation of Gauss and the spectral
method [14].
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Abstract

The problems of statistical simulation of light propagation in stochastic scattering media
as applied to the problems of optics of aerosol cloudy atmosphere are considered. A set
of Monte Carlo algorithms, allowing the construction of numerical models for the field of
multiply scattered optical radiation in the aerosol atmosphere and stochastic cloudiness has
been provided for the purpose. A special attention has been paid to solving the problem
of optimization of Monte Carlo algorithms. The optimization is based on the method of
”dependent trials”.

Keywords: stochastic media, transfer equation, Monte Carlo method.

Introduction

To stochastic problems of transfer theory we refer the problems, where spatial variations of optical
parameters of the scattering media are of random nature. The transfer of optical radiation in a
substance may be described by integral equation [1]

f(~x) =

k(~x′,~x)f(~x′)d~x′+ψ(~x)∫
X

, (1)

k(~x′, ~x) =
Σs(~r

′)g(µ,~r′) exp(−τ(~r′, ~r))Σ(~r)

2π |~r − ~r′|2 Σ(~r′)
δ(ω − ~r − ~r′

|~r − ~r′|
),

where f(~x) is the collision density, ~x = (~r, ~ω) and ~x′ = (~r′, ~ω′) are the points of the phase space

X =
{
~r ∈ R ⊂ R3, ~ω = (a, b, c) ∈ Ω = (a2 + b2 + c2 = 1)

}
,

µ = ((~ω′, ~r − ~r′) / |~r − ~r′|)

is the cosine of the scattering angle; g(µ,~r) is the scattering phase function (scattering indica-

trix) such that
1∫

−1

g(µ,~r)dµ = 1; τ(~r′, ~r) =
l∫

0

∑
(~r(s))ds is the optical length of the segment

[~r′, ~r], ~r(s) = ~r′ + s(~r − ~r′)/l, l = |~r′ − ~r| ; Σ(~r) = Σa(~r)+Σs(~r) is the extinction coefficient
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of the flux, Σa(~r) is the absorption coefficient, Σs(~r) is the scattering coefficient; ψ(~x) is the
distribution density of the source,

∫
X

ψ(~x)d~x = 1. Equation (1) determines the corresponding ran-

dom Markov chain of collisions with the initial states ψ(~x) and the transition density k(~x′, ~x).
The Monte Carlo method is in the simulation of this chain of trajectories on a computer and of
the computation of statistical estimates for the sought for functionals. We consider a problem of
computing the linear functionals Jφ = (f, φ) from the solution of Eq.(1); here ϕ(~x) ≥ 0. In the
stochastic case, the kernel k(~x′, ~x) and the density of collisions f(~x) are dependent on a random
field σ (~r) = (σ1 (~r) , . . . , σs (~r)), denoting the set of s optical parameters of the medium. The
problem is solved on the basis of computation of some random values ξ(ω, σ) given on the trajec-
tories ω of the simulated random process such that Eω(σ)[ξ(ω, σ)/σ] = Jφ(σ). Here Eω(σ) denotes
mathematical expectation with respect to the distribution of random trajectories ω depending
on σ. Sought for functional is determined by Iφ = 〈Jφ (σ)〉 , where 〈〉 denotes mathematical
expectation with respect to a random field σ. The solution of the formulated stochastic problem
by the Monte Carlo method is based on the principle of “double randomization” resulting from
the relation:

〈Jφ(σ)〉 =
〈
Eω(σ)[ξ(ω, σ)/σ

〉
= E(ω,σ)ξ(ω, σ).This relation shows that for the estimate Jφ it

is sufficient to construct one trajectory ω for any realization of the random field σ. Thus, the
problem to compute the functionals Iφ includes:
the construction of realizations of the random field σ;
simulation for each realization of σ of m conditionally independent trajectories of the Markov
chain (m ≥ 1);
computation of corresponding random values ξ(ω, σ).

It is well known that for the majority of real transfer problems to increase the efficiency of
the Monte Carlo calculations usually the weight algorithms are used [2]. In order to construct
weight algorithms we use the Markov chain with some initial density r0(~x) and transition density
r(~x′, ~x |σ ) which should contain the generalized multiplier δ(~ω − ~r−~r′

|~r−~r′|)from Eq. (1). In this case
one should calculate the auxiliary weights

Q0(~x0) =
ψ(~x0)

r0(~x0)
, Qn (σ) = Qn−1 (σ) k(~xn−1,~xn|σ )

r(~xn−1,~xn|σ ) (2)

at every collision, n - number of the state of random Markov chain (collision number). For the

functional Jφ (σ) the random estimate (so called “collision” estimate) ξ (σ) =
N∑
n=0

Qn (σ)φ(~xn) is

calculated, like that Jφ (σ) = Eω(σ)ξ (σ) , N – random number of the last state of the random
trajectory ω (σ) ( last collision before escape from the scattering medium ).

1 Optimization of the Monte Carlo algorithm

Let us consider a problem to compute the functional Iφ for optical radiation scatted by the ran-
dom inhomogeneous layer, in general, with three-dimensional continuous stochasticity, i.e. when
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Σ(~r) is a random field (~r ∈ R = (−∞,+∞)2 × [0, H]). It means that σ (~r) = Σ (~r)and all the
rest optical parameters are known and determined. In this case we have two main problems.
The first one is to construct a most adequate mathematical model of a stochastic layer and its
efficient numerical implementation. In very many cases the sample size of numerical realizations
of random field Σ(~r) should be statistically representative and the number of realizations may
be compared to the number of trajectories. The second difficulty arises in simulation of pho-
ton trajectories in a random inhomogeneous 3D – medium. These both procedures take much
computer time. To avoid these complications we suggest the following algorithm based on the
well-known “dependent trials” method [1]. The given method’s main idea is that the estimates of
the sought for functional Iφ for different values of Σ(~r) may be obtained from the same random
photon trajectories, using weights (2) to remove the appearing bias. Specifically, the trajectories
constructed for Σ(~r) = Σ0(~r) may be used to estimate the sought for functional for other values
of Σ(~r), if after every transition ~x′ → ~x the auxiliary weight of the particle is multiplied by the
value k(~x′, ~x |Σ)/r(~x′, ~x |Σ0 ). Let ωn = {(~x0, ~x1, ..., ~xn); ~xi = (~ri, ~ωi), i = 0, n} be an arbi-
trary n-link trajectory, constructed with the transition density r(~x′, ~x |σ ) = k(~x′, ~x |Σ0 ). Then
one can easily see, that the weight multiplier Qn(Σ) corresponding to the realization of Σ(~r) is
calculated by the formula

Qn(Σ) =
n−1∏
i=1

{
Σs(~ri−1)Σ0 (~ri−1)

Σ(~ri−1)Σs,0 (~ri−1)

}
· Σ(~rn)

Σ0(~rn)
e
−

n∑
i=1

[τ(~ri−1,~ri)−τ0(~ri−1,~ri)]
, (3)

where τ0(~ri−1, ~ri) =
|~ri−1−~ri|∫

0

Σ0(~ri−1 + s~ωi−1)ds, τ(~ri−1, ~ri) =
|~ri−1−~ri|∫

0

Σ(~ri−1 + s~ωi−1)ds. Let ξ(Σ)

be the random estimate of the functional Jφ(Σ) for the given realization of the random field Σ(~r).
Then from (3) we can obtain that, in order to calculate ξ(Σ) from the trajectory constructed
with the transition density k(~x′, ~x |Σ0 ), it isn’t necessary to construct the random field Σ(~r) at
every point of the considered space, but we have to know the values of the random field Σ(~r) only
at the points ~r1, ..., ~rN , i.e. Σ(~r1), ...,Σ(~rN), as well as the values τ(~ri−1, ~ri), along the directions
~ωi = (~ri − ~ri−1)/|~ri − ~ri−1| on the segments (~ri−1, ~ri), i = 1, N . Thus, the problem of calculating
the functional 〈Jφ(Σ)〉, instead of averaging a random functional Jφ(Σ) over the realizations of the
random field Σ(~r), is reduced to determining it by the realizations of random vectors {Σ(~ri)}i=1,N

and {τ(~ri−1, ~ri)}i=1,N . In many cases this allows to considerably decrease the computing time.
The effectiveness of such an approach is dependent on the model of the random field Σ(~r). To
illustrate this approach, we shall limit ourselves to considering the following problem, related
to the problem of optical radiation propagation through the continuous stratus-type stochastic
cloudiness.

2 Numerical experiment

Suppose the scattering substance occupies the space R = (−∞,+∞) × (−∞,+∞) × [0, H] and
all optical characteristics of the medium are not dependent on the horizontal coordinates, Σ(~r) =
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Σ(z) be a random process with correlation function KΣ(s) and marginal distribution p (Σ) with
mean value Σ̄ (z) and variance σ. One of the most popular spectral model of the random process
Σ(z) is an approximate model (see, for example, [3])

Σ(z) ≈ Σ(k)(z) = Σ̄ (z) + σΣ

k∑
j=1

aj
√
−2 lnαj cos(λjz + 2πβj),

where αj and βj are independent random values uniformly distributed in [0, 1], a2
j = 1

k
, λj are

distributed on [0,∞) with probability density s(λ) = 2
π

∞∫
0

cos(λz)K(z)dz.In this case τ [~ri−1, ~ri], i =

1, . . . , n in (3) are calculated as follows

τ [~ri−1, ~ri] =

=
1

|(~ωi−1, ~k)|
{Σ̄|zi−1 − zi|+ σΣ

k∑
j=1

aj
λj

√
−2 lnαj × [sin(λjzi−1 + 2πβj)− sin(λjzi + 2πβj)]}.

Here ~k = (0, 0, 1). In the capacity of the correlation function was used the following function

KΣ (s) = exp (−τs/H) ,where τ =
H∫
0

Σ̄ (z)dz denotes the optical thickness of the determinate

layer. The marginal distribution p (Σ) of the random fieldΣ (z)in accordance with [4] was chosen as
p (Σ) = (H/τ) exp (−HΣ/τ) . To illustrate the influence of stochasticity we compare functionals
from the solution of the transfer equation in a determinate flat cloud layer 0 ≤ z ≤ H with average
values of those functionals corresponding to stochastic cloud layer when Σ (z) is mentioned above
random process. In the Table 1 the calculation results of the probability of passage through
the scattering layer of radiation incident perpendicularly to the layer’s upper boundary z = 0
are given, obtained by the described algorithm. The phase function g (µ,~r) = (1− µ0) /2 +
µ0δ (µ− 1)with an average cosine of the angle of scattering µ0 = 0.9 was considered in the
capacity of the scattering indicatrix. The probability of survival of a photon in a collision (albedo
of single scattering) Σs/Σ was set to be 0.7.

Note: S – stochastical layer, D – determinate layer, PSandPD – probabilities of passage
respectively through stochastic and determinate layers, ε - relative statistical error of the estimate
for passage.

Conclusions

Due to the space limitation of the current paper it is not possible to carry out a more detailed
analysis of, for example, the influence of 3D- stochasticity of the scattering medium on the transfer
of optical radiation. But even the abovementioned calculation results for a simple enough model
show that taking stochasticity into account gives an increase of the probability of passage. The
ratio of the probability of passage in a stochastical medium to the probability of passage in a
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Table 1: Probabilities of radiation passage through the determinate and stochastic scattering
layers

Layers PS, PD ε,% Ratio
PS/PD

τ

S
D

0.082
0.039

1.2
1.8

2.1 10

S
D

0.022
0.0075

2.2
3.1

2.9 15

S
D

0.0059
0.0015

3.3
3.8

3.9 20

determinate medium grows with the increase of optical thickness. The obtained numerical results
demonstrate that, when interpreting physical changes of radiation fields in a cloudy medium in
some cases the stochastical properties of the medium play a significant role. The weight algorithm
considered in this paper allows avoiding the laborious procedure of modeling random photon
trajectories in randomly-inhomogeneous scattering media and therefore reducing the calculation
time. Realization of the algorithm is quite simple. The profit in terms of calculation time depends
upon the choice of model for the random field.
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Abstract

Laser sensing is an effective way of studying optical properties of various atmospheric
structures. If we consider strongly scattering media, like clouds, there arises the necessity
of taking into account the effects of multiple scattering which changes the space and time
characteristics of the light pulse. The Monte Carlo method is the most convenient one
for obtaining practical results in such problems. In this paper two problems were solved.
One is constructing an adequate optical model of crystal clouds taking into account optical
anisotropy of the medium. The other is Monte Carlo modeling of laser radiation transfer
in such a medium. The form and duration of light pulses reflected by clouds (lidar returns)
are obtained by the Monte Carlo method in the case of single layer continuous crystal cloud
and double layer continuous cloudiness (a crystal cloud of highest level is located above a
drop cloud).

Keywords: Monte Carlo method, transfer equation, laser radiation, crystal clouds,
optical anisotropy.

The object of the current paper is to construct an adequate optical model of crystal clouds
and establish connections between the properties of a light impulse reflected from a cloud (lidar
return) and certain parameters of the cloudy medium. Knowing these connections allows de-
termining which parameters of cloudiness may be obtained from a reflected signal with a given
degree of reliability. A no less important task is taking into account of thin clouds in remote sens-
ing of the ocean with optical methods. To solve those problems, data must be obtained about
the form and size of the time-base of the light impulse reflected from clouds when illuminated
by an impulse source. The problem was solved in the conditions of single-layer and double-layer
continuous cloudiness for various optical parameters of the clouds and various properties of the
source and receiver. The calculations were carried out using the Monte Carlo method.

Unlike drop clouds, for which quite long ago a Mie solution was obtained as a result of
applying Maxwell’s electromagnetic field theory to the problem of scattering of light on a homo-
geneous spherical particle [1], the properties of crystal clouds are little-studied. It is due to the
fact that crystal clouds are an anisotropic medium, i. e. its optical characteristics (scattering
indicatrix, single scattering albedo, attenuation, scattering and absorption cross-sections) depend
on the direction of the photon propagation before colliding with a crystalline particle.

For their calculation in accordance with the idea from [2, 3] it’s convenient to define the
position of a crystal in space through Euler angles α, β, γ (see Fig. 1). Those angles, describing
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the orientation of a rigid body in 3-D Euclidean space allow defining any rotation of the system
in the initial (global) coordinate system. Denote the initial coordinate system with (x, y, z), the
transformed one with (X, Y, Z). The intersection of the coordinate planes xy and XY is called the
line of nodes N. α is the angle between axis x and the line of nodes N, β is the angle between axes
z and Z, γ is the angle between axis X and the line of nodes N: α ∈ [0, 2π) , β ∈ [0, π] , γ ∈ [0, 2π) .

Figure 1: Defining Euler angles α, β, γ.

Figure 2: Modeling of photon trajectory in a crystal.

To clarify further calculations let’s choose a regular 6-prism as an example. The coordinates
of all inner and surface points of the crystal shall be set in the X ′Y ′Z ′ system so that the origin
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coincides with the geometrical center of the crystal, the axis O′Z ′ is directed along the axis of
symmetry of the crystal connecting the centers of its base faces (further on in this text we’ll refer
to it simply as the crystal’s axis), the axis O′Y ′ passes through the center of a lateral edge and the
axis O′X ′is perpendicular to one of the crystal’s lateral faces and passes through its center. Note,
that all numerical results (concerning crystal clouds) given in section 5 are obtained for the case
when crystal clouds consist of crystals having the form of regular 6-prisms. According to [3,4],
this form of crystal, among a great variety of form in dependence of temperature is present in from
10 to 60 percent cases. Any orientation of the rotation of the crystal’s axis relative to the global
coordinate system may be described by the triplet [α, β, γ]. Let’s make a discretization of the
space in Euler angles [nα, nβ, nγ]. Place the crystal into a regular cuboid and from random points
on one fixed face let’s emit rays inside the regular cuboid. Part of them will pass through the
crystal and experience inside it refraction and scattering (see Fig. 2). Random photon trajectories
inside crystals are modeled in a standard way used for modeling the transfer process in optically
isotropic media. After refraction of an incoming photon trajectory at a certain random point r0
on one of the faces of the crystalline particle (see Fig.2) a random value of the free pass length is
generated l = −(ln ν)/σc, where σc – the attenuation cross-section inside the crystal, ν is a random
value uniformly distributed on the segment (0,1). If the photon does not reach any of the particle’s
faces then at the point r1 = r0 + ω0 · l a new direction of the photon’s movement ω1 is generated.
ω0 is the direction of the refracted ray. The vector ω1 is defined by the local inclination angle Θ
and azimuth angle φ (Fig. 2). Here φ is a value distributed uniformly on the segment (0,2π) and

the inclination angle Θ is calculated from the relation
Θ∫
0

gc(Θ
′) sin(Θ′)dΘ′ = ν

π∫
0

gc(Θ
′) sin(Θ′)dΘ′

where gc denotes the inner scattering function. Absorption is taken into account by multiplying
the weight of the photon by the inner single scattering albedoqc. This procedure is repeated while
the photon is inside the crystal where it experiences scattering, reflection and refraction. The
modeling process stops when the photon’s weight becomes lower than a certain value or when the
refracted ray escapes the crystal’s boundaries. Using the method described above we can obtain
the matrix G (r, ω, ω′) of order nα × nβ × nγ, its’ elements being the scattering functions of a
cloudy medium gijk(r, ω, ω

′), i = 1, ..., nα, j = 1, ..., nβ, k = 1, ..., nγ. In addition we must take
into account diffraction on a projection of the particle of area S. For polyhedral particles the
projection is a closed polygon for which the diffraction scattering function ΣD

ext may be calculated
analytically. Beam and diffraction properties are summed weighted with their own scattering
cross-sections. By definition, the beam scattering cross-section is equal to the geometrical section
of a particle Σs

ext (ω) = S (ω)and the beam scattering cross-section Σs
sca is the direction of the

radiation incident to the crystal. The diffraction attenuation cross-section ΣD
ext (ω) = S (ω) is

always equal to the diffraction scattering cross-section ΣD
sca (ω) . Therefore the full attenuation

cross-section, albedo of a single scattering event and scattering functions are of the form [2]

Σext (ω) = Σs
ext (ω) + ΣD

ext (ω) = 2S (ω) ,

Σsca (ω) = Σs
sca (ω) + ΣD

sca (ω) = (1 + qc (ω))S (ω) ,
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q (ω) =
Σsca (ω)

Σext (ω)
=

1 + qc (ω)

2
,

g (r, ω, ω′) =
Σs
sca (ω) g (r, ω, ω′) + ΣD

sca (ω) g (r, ω, ω′)

Σs
sca (ω) + ΣD

sca (ω)
.

To obtain the macroscopic attenuation, scattering, absorption cross-sections the correspond-
ing microscopic cross-sections must be multiplied by the concentration of particles n0 in a unit
volume (σ = Σextn0, σs = Σscan0).

In the calculations it was stipulated that the scattering medium consists of prisms with
regular hexagon base faces and rectangular lateral faces. Then the orientation of the crystal in
space is explicitly described by the position of its axis. All in all, as an addition to the matrix
G (r, ω, ω′) we have two tables of size nα × nβ × nγ, in each cell of which we keep a triplet

σ(r, ω |α, β, γ ), q(r, ω |α, β, γ ).

Consider a model for laser sensing with a monostatic LIDAR. It means that the source of the
signal (emitter) and receiver are located at one and the same point. Suppose that a delta-impulse
of unit energy (with a certain wavelength λ) is emitted from point r∗ in space vertically into the
atmosphere in a certain cone of directions with the semiaperture Θs. At the same point r∗ a
receiver with area S∗ is located which registers radiation incoming vertically upwards in a spatial
angle bounded with a cone with a plane angle 2Θd (Θd - semiaperture of the detector). Suppose the
optical characteristics of the atmosphere and underlying surface are known. The problem consists
of calculating the echo-signal J (t) which will be registered by the receiver (LIDAR return – time
distribution of the laser radiation reflected by the underlying medium). The process of transfer of
optical radiation (without taking into account of polarization) may be described by the following
non-stationary integral equation

f (r, ω, t) =
∫
R3

∫
Ω

∞∫
0

q(r′,ω′)σ(r,ω′)e−τ(r
′,r)g(r′,ω′,ω)

2π|r−r′|2 × δ
(
ω − r−r′

|r−r′|

)
×

×δ
(
t−
(
t′ + |r−r′|

v

))
· f (r′, ω′, t′) dt′dω′dr′ + ψ (r, ω, t) .

Here f (r, ω, t) is the particle (photon) collision density, r = (x, y, z) , r′ = (x′, y′, z′) ∈ R3;

τ (r′, r) =
′r∫
r

σ (ρ, ω) dρ is the optical length of the segment [r′, r]; ω, ω′ ∈ Ω = {ω ∈ R3, |ω| = 1};

δ is the Dirac delta function; q (r′, ω′)- single scattering albedo; σ (r′, ω′) is the attenuation coef-
ficient; ψ (r, ω, t) is the density of sources; v is the velocity of light propagating in the medium;
g (r′, ω′, ω) is the scattering indicatrix at the point r′ satisfying the normalization condition∫

Ω
g (r′, ω′, ω) = 1.

With the Monte Carlo method the following functional was estimated
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J(r∗, ω∗, t) = J∗(t) =
∫
D

∫
Ω

f(r,ω,t)
σ(r,ω)

dr dω = (f, ϕ),

ϕ(r, ω, t) =

{ 1
σ(r,ω)

, r ∈ Dr, ω ∈ θd
0, overwise

.

Within the bounds of the model under consideration the transfer process is a homogenous
Markov chain of collisions of a photon with matter particles. An important distinction of an
optically anisotropic medium for an isotropic one is the fact that the functions q(r′, ω′), σ(r, ω′)
depend on the previous direction ω′.

Let’s describe one possible algorithm of constructing an estimate J∗(t)for the trajectory

ensemble Wi =
{

(p
(i)
n−1, ω

(i)
n−1, r

(i)
n , t

(i)
n : n = 0, . . . , N(i)

}
.Here, apart from the photon’s weight,

the moment of time tn in which the n−th collision occurs is also an element of trajectory, t0 = 0.
At first p−1 = p0 = 1 , afterwards the weight is multiplied by the scattering probability pn =

q · pn−1, n ≥ 1. For each trajectory W =
{(
pn−1, ωn−1, rn, t

(i)
n

)}
the so-called local estimate is

constructed

Lin = pn−1q (rn, ωn−1) e
−τ(rn,r∗)g (rn, ωn−1, ω

∗)
S∗

2π |rn − r∗|2
∆ (rn) ∆

(
t(i)n
)
,

where ∆ (r) is the indicator function of the receiver equal to 1 if the point r is located inside

the receiver cone and equal to 0 otherwise, ∆
(
t
(i)
n

)
- is the indicator function of the i-th interval

in the time hystogram. Thus, only those collisions make a contribution to the echo-signal which
take place in the field of view of the receiver. The local estimate Lin gives a contribution to the

echo-signal at the moment of time t
(i)
n = tn + t∗, where t∗ is the time necessary for the photon to

get in a straight line from the point rn to the receiver r∗. On the local estimates obtained from
an ensemble of M trajectories a frequency bar chart is constructed:

J∗(t) =
1

M∆tk

∑
t̂
(i)
n ∈∆tk

L(i)
n , t ∈ ∆tk (1)

Here ∆tkare the intervals into which the time axis is partitioned for the chart’s construction.
This chart is the estimate of the echo-signalJ∗ (t).

In the case of an anisotropic medium standard calculation algorithms of the Monte Carlo
method must be modified considerably. Suppose the crystal cloud is a homogeneous medium
(single scattering albedo, attenuation coefficient and scattering indicatrix are not dependent on
the space variable) consisting of identical crystals of 6-prism form. Let (a, b, c) be the direction of
the photon’s movement. Before the collision of a photon and a crystal its position in the cloud is
modeled according to a given distribution for crystal’s axes. For example, all axes and two faces
of the crystals lie in a horizontal plane and Euler angles define a crystal’s orientation in the global
coordinate system [α′, β′, γ′]. Place the crystal in a regular cuboid in such a way that a beam
is perpendicularly incident to one of the faces. Transforming to the crystal’s local coordinate
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system we can find Euler’s angles of the crystal in the regular cuboid [5]: α = α′ − tg−1
(
a
b

)
, β =

β′ + cos−1 (c) , γ = γ′.

In the table [nα, nβ, nγ] we find the optical properties

g(r, ω |α, β, γ), σ (r, α, β, γ) , σs(r, α, β, γ), q (r, α, β, γ)

for this orientation.

For numerical examination of the dependence of the time-base of the echo-signal from ori-
entations of crystals in a crystal cloud the double-layer model of cloudiness were chosen. In this
model the crystal cloud consists of crystals having the form of regular 6-prisms with a height to
radius ratio 200 µm/100 µm for three kinds of crystal’s orientation in space described below. In
the double-layer variant a drop cloud is located beneath the crystal cloud. The concentration of
the crystals is 0.5 cm−3. To calculate the sought for values of intensity of reflected radiation the
local estimate (1) was used. The distance from the source to the upper boundary of cloudiness
was set to ∆h=200 km. A combined source-receiver system was considered. The source and
receiver are disks of diameter Ds and Dr. The source emits and the receiver registers light inside
cones with whole conical angles Θs and Θd accordingly. Their axes coincide and are directed
parallel to the OZ axis. The impulse emitted by the source is considered to be a δ-function of
time. The following variant was considered: Ds =19 cm, Θs = 2′, Dr= 28 cm, Θd = 3′. The
density functions of the crystal’s positions in the cloud were taken from the book [4]. For the drop
cloud h1 = 0.2km, it’s thickness is 0.3 km. The volume scattering coefficient in the drop cloud
was set to be constant at the same altitude and equal to σw = 30 km−1. For the crystal cloud
the altitude of lower boundary was set to h3 = 6 km, and the cloud’s thickness to 0.5 km. In the
crystal cloud the crystals’ orientation is isotropic. The scattering indicatrix for the drop cloud
was taken from [1] for a C1 cloud model with wavelength λ = 0.7µm. In this case we can see two
clear spikes (see Fig. 3). The first spike represents the echo-signal off the crystal cloud. After a
certain time period the echo-signal has a second spike connected with the reflected radiation off
the drop cloud.Relative error of the calculations did not exceed 2%. Using these values we model
the photon’s movement in a standard way.

In this paper the problem of statistical modeling of radiation transfer in crystal and drop clouds
was considered. An anisotropic optical model of crystal clouds, taking into account diffraction
on the crystals, was proposed and examined. This model is sufficiently versatile and allows mod-
eling radiation transfer for various crystals’ orientations inside the cloud. From the calculations’
results a conclusion can be made that crystal clouds, despite their small optical thickness, have a
considerable influence on the reflected impulse signal for LIDARs of aerospace basing.

The work has been done under the financial support of the RFFR (grant 09-01-00035), SB
RAS (grants 1.3.2 and 2.2).
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Figure 3: Time-base of the echo-signal (double-layer variant)
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Abstract

The algorithm for statistical modeling of systems with a separated time, which can be
described as a system with a distributed change of structure has been constructed. The
offered algorithm is based on numerical methods of the solution to the stochastic differen-
tial equations and uses the modified maximum cross section method when the intensity of
transition depends on a vector of state.

Keywords: Numerical methods, stochastic differential equations, systems with random
structure, systems with a separated time, maximum cross section method.

Introduction

Many models of dynamic systems in various areas of science (including automatic control) are
described by stochastic differential equations (SDEs). The term dynamic systems with a sudden
random changed structure (or random-structure system) appeared in the 60s. These are dynamic
systems, which on random time intervals are described by different SDEs [1]. Their characteristic
feature is a sudden change of some system parameters.

There are many different probabilistic analysis problems of random-structure systems. For
example, the estimate of the probability of the fact that the system is in any of its possible struc-
tures (the structure probability); the estimates of mean transition time from one structure to
another and variance of this time; the estimate of distribution or the probabilistic characteristics
of all or a part of phase coordinates. There problems can be solved by integrating the gener-
alized Focker-Planck-Kolmogorov equation - a second-order partial differential equation for the
distribution density of solution. Difficulties arising in solving problems by this method are asso-
ciated with complicated computational procedure for solving partial differential equations. Other
approximate methods of the probabilistic analysis of random-structure systems are based on two-
moment parametric approximation of distribution density and statistical linearization. Thus, one
obtains a system of ordinary differential equations for expansion coefficients, viz. probabilistic
moments, cumulants or other time-dependent values. A serious disadvantage of these methods
is the complexity of obtaining approximation estimations and the fact that changing the original
model causes essential changes in the equations for probabilistic characteristics.
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A statistical simulation algorithm for the probabilistic analysis of systems with a distributed
change of structure was constructed in [2]. It was based on the numerical methods for stochastic
differential equations [3] and maximum cross section method [4].

In this paper, we consider a new modification of this algorithm. We use the modified
maximum cross section method [5, 6]. New algorithm is simple and allows us to estimate differ-
ent probabilistic characteristics of the solution with high accuracy. The computational cost of
modified algorithm is lower then that of algorithm from [2].

1 Systems with distributed change of structure

A random-structure system is defined by the state vector Y(t) and a structure number L(t) =
1, ..., N0; where N0 is a number of determinate structures. The structure number L(t) is a discrete
random scalar process with integer values.

The vector equation for the fixed l–th structure has the form of stochastic differential equa-
tions (SDEs) in the Stratonovich sense:

dY(t) = a(l)(Y, t)dt+ σ(l)(Y, t)dW(t),Y(t0) = Y0, l = 1, ..., N0. (1)

The state vector Y(t) of the system for each of the l–th structures is the n–dimensional continuous
random process; W(t) is an m dimensional standard Wiener process;
a(l)(Y, t) is an n–dimensional vector function; σ(l)(Y, t) is a matrix-valued function of n ∗ m
dimension; Y0 is the initial state of the system.

The discrete random process L(t) may be an arbitrary non-Markov process, Markov process
or a conditional Markov process from the vector Y(t) [1].

We consider systems with a distributed change of structure when the process L(t) is Markov
process or a conditional Markov process, the dependence on the vector Y(t) statistically being
given. The conditional transition probabilities from the l-th structure to the r-th one within a
short time interval ∆t are defined through the conditional transition intensity νlr(Y, t) from the
l-th structure to the r-th one and have the form [1]:

plr(r, t+ ∆t|l, t,Y) = νlr(Y, t)∆t+ o(∆t), l 6= r;

pll(l, t+ ∆t|l, t,Y) = 1− νll(Y, t)∆t+ o(∆t), νll(Y, t) =
N0∑

r=1 6=l
νlr(Y, t),

where o(∆t) is a small value of order no less than (∆t)2, νlr ≥ 0.
The conditional distribution density fτlr(t, τ) of the transition time interval τ from the l-th

structure to the r-th one is the exponential density and has the form

fτlr(t, τ) = νlr(Y, t+ τ)exp(−
τ∫

0

νlr(Y, t+ t1)dt1). (2)

The lr-th elements of absorption and reconstruction functions have the forms [1]:
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v∗lr(Y, t) = νlr(Y, t)p
∗(l)
1 (Y, t), l, r = 1, ..., N0; l 6= r,

u∗lr(Y, t) =

∞∫
−∞

νlr(Y
′, t)p

∗(l)
1 (Y′, t)qlr(Y, t|Y′, t)dY′, (3)

v∗ll(Y, t) = u∗ll(Y, t) = 0,

where qlr(Y, t|Y′, t) is a conditional distribution density of reconstruction of the r-th structure

from the l-th, p
∗(l)
1 (Y, t) is a conditional distribution density of Y on condition that L(t) = l (∗

mean non-absorbed realizations, i.e., the function p
∗(l)
1 (Y, t) is non-normalized).

The one-dimensional distribution density p
∗(l)
1 (Y, t) for each of the l–th structures of the

system is satisfied by the generalized Focker-Planck- Kolmogorov equation [1]. The differential

equation for the l–th structure probability P (l)(t) =
∞∫

−∞
p∗(l)(Y, t)dY has the form

Ṗ (l)(t) = −
N0∑
r=1

∞∫
−∞

v∗lr(Y, t)dY +
N0∑
r=1

∞∫
−∞

u∗rl(Y, t)dY.

The form of the function qlr in (3) is defined by the physical sense of a problem. This
function defines the initial conditions of reconstruction of the r-th structure from the l-th one.
For example, if

qlr(Y, t|Y′, t) = δ(Y −Y′),

then the reconstruction is exact, i.e., the finite value of the process in the previous structure is
equal to the initial value of the process in the new structure.

2 Algorithms for statistical modeling of an inhomogeneous

Poisson process

The inhomogeneous Poisson process ξ(t) = ξ([0, t]), t ≥ 0 can be considered as an inhomogeneous
Poisson ensemble in the one-dimensional case. The algorithms proposed in [6] can be used for
modeling inhomogeneous Poisson processes.

It is well known (see [7]) that the probability density of the time intervals between the
adjacent points of the Poisson process is distributed exponentially. For that reason, Poisson
processes are usually simulated using the exponential probability distribution.

The following algorithm is a direct consequence of Algorithm 1 from [6].
Maximum cross section method for modeling an inhomogeneous Poisson process under

the assumption λ(t) ≤ λ0, t ≥ 0: If t1, . . . , tk−1 is an ordered sequence of the Poisson point
process with the intensity λ(t), then two sequences of independent sample values are constructed
to model tk. These are the sequence {θi} with the probability distribution density λ0exp(−λ0t)
{αi} and the sequence {αi} with the elements uniformly distributed in (0, 1). Set ζn =

∑n
i=1 θi.

Let
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N = min{n : αn ≤ λ(tk−1 + ζn)/λ0}.

Then, tk = tk−1 + ζN and ξ(tk) = k.
The validity of this algorithm was rigorously proved in [8] for the case of a constant majorant;

for a variable majorant, it was heuristically justified in [9].
Using Theorem 1 from [6] and its corollaries, one can derive the following algorithm.
Modification of the maximum cross section method for modeling an inhomogeneous

Poisson process under the assumption λ(t) ≤ λ0, t ≥ 0: If t1, . . . , tk−1 is an ordered sequence
of the Poisson point process with the intensity λ(t), then, in order to model tk, a sequence {θi}
of independent sample values is constructed with the probability density λ0exp(−λ0t). Set ζn =∑n

i=1 θi. Let

N = min{n : 1− α >
∏n

i=1

(
1− λ(tk−1+ζi)

λ0(tk−1+ζi)

)
},

where α is a random variable uniformly distributed in (0, 1). Then, tk = tk−1 + ζN and ξ(tk) = k.
This method is more efficient than the maximum cross section method. It produces a

sequence of random variables by calling a random variable generator only once.
The results of the statistical modeling are presented in [6]. The results show that the

computational cost of modified maximum cross section method is lower than that of maximum
cross section method. It is seen that the estimates obtained by both algorithms are within the
confidence intervals and the computation time of modified maximum cross section method is at
least 10% less than the computation time of maximum cross section method.

3 Modified algorithm of statistical simulation

of dynamic systems with distributed change of struc-

ture

The algorithm for statistical simulation of solutions of dynamic Markov systems with a dis-
tributed independent change of structure was described in [10]. This algorithm was generalized
for statistical simulation of solutions of dynamic systems with a distributed conditional Markov
change of structure using maximum cross section method [2]. Now we modify this algorithm
using modification of the maximum cross section method.

Since each structure is described by the SDEs, then the numerical algorithm should include:
1) the solution of the SDE systems and 2) modeling of absorption and reconstruction conditions.

The transition from the l–th structure may be to each r-th structure, r = 1, ..., N0, r 6= l.
The transition time interval τlr has the conditional probability density (2). We propose the
modified maximum cross section method for simulation of moments of a structure change, because
the transition intensities depend on phase coordinates. The application of this method requires
execution of the following conditions

νli(Y(t), t) ≤ νmli = const, i = 1, ..., N0, i 6= l
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within the whole time interval [0, T ].
The algorithm for statistical simulation of the transition from the l-th structure for systems

with a distributed (independent Markov or conditional Markov) change of structure:

1. Let the system at the moment tk be in the l-th structure and the state vector be Yk.

2. We simulate additional random variable α1 with an uniform density on the interval (0,1)
and we establish the counter, set z = 1; .

3. We simulate a possible moment of leaving the l-th structure tk+1 = tk + τ , where τ is a
random variable with distribution density p(x) = νml ∗ exp(−νml x), νml =

∑
i6=l
νmli (by the

formula τ = −lnα/νml , α with an uniform density on the interval (0, 1)).

4. We simulate the number r (a possible number of a new structure) with probability pr(x) =
νmlr
νml

, r 6= l, r = 1, ...N0;

5. we solve equations (1) for the l-th structure on the interval [tk, tk+1] by the numerical
method for the SDEs [2] with time step h > 0 and find Yk+1, viz. the state vector of
the system at the moment tk+1 (the step must be consistent with transition intensity, for
example, h ≤ 0.1/νml ).

6. tk := tk+1, Yk := Yk+1; z := z ∗ (1− νlr(Yk, tk)/ν
m
lr ).

7. We verify the structure change condition: if 1− α1 > z, then go to 8); else go to 3).

8. We change the structure number for r-th; we are modelling Yk according to the required
conditional reconstruction density qlr .

Remark. Item 7) of the algorithm is absent for Markov systems with a distributed indepen-
dent change of structure, because the verified condition is always valid.

The examples used for verifying the statistical simulation algorithm were taken from [1, 7].

Conclusions

The new modified algorithm is proposed for statistical modeling of system with a separated time.
The computational cost of this algorithm is lower than computational cost of algorithm from [2],
because we used a sequence of rejections with respect to the same random number.

In addition to decreasing the computational cost (which can be insignificant), the decrease
in the number of the employed values of α decreases the constructive dimension of the algorithm
related to the multidimensional uniformity of the pseudorandom numbers used in the algorithm
(see [11]).
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Abstract

In this study, we represent some recommendations for construction the probabilistic
densities allowing efficient numerical realization of the sample values.

Keywords: Monte Carlo methods, numerical statistical simulation, numerical realiza-
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tion function, numerical simulation of stochastic vectors, superposition method, majorant
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Introduction

Considering the numerical models with random parameters (particularly, applying the Monte
Carlo methods), emerges the necessity to choose the parameters distribution laws (based on ex-
perimental statistical data) and at the same time, the need for algorithms which would numerically
realize the sample values of those chosen parameters with respect to the corresponding probability
laws (see, eg, [1–4]). Thereby, it is worthwhile to engage in the detailed specification of the class
of distributions which allows to design high-effective algorithms for numerical simulation.

This paper presents the opportunities for construction of the probabilistic distribu-tions,
allowing effective use of following methods of sample value realization: the inverse distribution
function algorithm, the method for simulation the two-dimensional random vector with dependent
components, the integral and discrete superposition algorithms; the majorant rejection method
(the relevant algorithms are described, e. g., [1]). In particular it lays the foundation for the
”bank” of the ”modelled” probabilistic distributions. Such bank may be used for constructing
high-efficient algorithms for numerical statistical simulation.

1 Technology of recursive substitutions

Let’s review the standard algorithm for numerical realization of the sample value ξ0 of continu-
ous random variable ξ which is distributed on the interval (a, b) with respect to the continuous
distribution function F (x), monotone increasing on (a, b) or the method of inverse distribution
function (see, e. g., [1]). This algorithm is based on the relation

ξ0 = F−1(α0). (1)
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Here α0 is the standard random number (i. e. sample value of the random variable α which
is uniformly distributed on the interval (0, 1)). The computation of the sample values αi of
the random variable α are realized with appropriate subroutines (generators from RAND or
RANDOM group).

Usage of algorithm (1), is complicated by the ”programming” problem: how to express
the inverse function F−1(v) through elementary functions. As this problem is considered for
practically important cases of absolutely continuous distributions which are described by the
piecewise continuous distribution densities f(u) of the random variables ξ (see, e.g., [1]), arises
the question of solvability of the equation∫ ξ0

a

f(u) du = α0 (2)

with respect to the upper limit of the integral in elementary functions. Difficulties related both to
solving the integral on the left side of the relation (2), and to analytical solution of the equation
may occur after integration with respect to elementary functions. When expression of the kind
of (1) for solution of the equation (2) exists

ξ0 = ψ(α0) (3)

and it is relatively simple for programming, then the density f(u) and formula (3) itself are called
elementary [1]. As we need the elementary densities in other general algorithms of numerical
realization of random variables and vectors (refers to the superposition and rejection methods and
special techniques – see, e. g., [1] and further sections 2–4) as well as in numerous applications of
the Monte Carlo method (see, e. g., [1–4]), the problem of expansion of the set of such densities
arises.

The following technology of ”recursive substitutions” seems to be virtually unlimited
on constructing such elementary densities.

Technology 1 [1]. Let fη(v) be the density of the random variable η, which has an elemen-
tary distribution on the interval (c, d): i. e. from the relation of type (2)∫ η0

c

fη(v) dv = α0

for the corresponding sample value η0 of the random variable η we can obtain a formula like
(3): η0 = ψη(α0): here ψη(w) is a simple composition of elementary functions. Let’s consider
the one-to-one transformation which is defined by a monotone increasing differentiable function
ϕ(x), which transforms the interval (a, b) to the interval (c, d); ϕ(a) = c, ϕ(b) = d. We also
assume that the function ϕ(x) and its inverse ϕ−1(y) can be represented as a simple composition
of elementary functions. Let the random variable ξ has a distribution density

f(u) = fη(ϕ(u))ϕ′(u), u ∈ (a, b). (4)

369



Statistical Simulation of Natural Processes

Under these assumptions, we can assert that f(u) is the density of the elementary distribution, i. e.
relation (2) is solvable with respect to ξ0 in elementary functions and the formula ξ0 = ϕ−1(ψη(α0))
is valid.

Really, writing equation (2) for the density (4), we obtain∫ ξ0

a

fη(ϕ(u))ϕ′(u) du = α0, then

∫ ϕ(ξ0)

ϕ(a)

fη(v) dv = α0,

then ϕ(ξ0) = ψη(α0), then ξ0 = ϕ−1(ψη(α0)). (5)

The term ”technology of recursive substitutions” for technology 1 relates to the fact that the
resulting density (4) can be taken as the initial density of fη(v) and make another one-to-one
transformation of type ϕ(u). Using such recursive substitutions one can obtain an unlimited
number of new elementary density distributions.

Example 1. Formula

η0 = − lnα0

λ
, (6)

which corresponds to the exponential distribution with the density

fη(v) = λ e−λ v, v > 0, λ > 0 (7)

is widely applied in numerical methods of statistical simulation. Formula (6) is used for construc-
tion of Poisson streams, applied in queuing theory, in elementary models of radiative transfer
theory, random fields simulation, etc. (see, e. g., [1]).

Let’s also consider a random variable ξ, which has the distribution density

f(u) = expu× exp(− expu), −∞ < u < +∞. (8)

That’s the extremal (more precisely, minimal) distribution density (see, e.g., [5])), describing one of
three possible asymptotic distributions of linear combinations of the type an min{η(1), . . . , η(n)}+
bn herewith an 6= 0, n→∞; here an, bn are the numerical sequences and {η(i)} are the indepen-
dent identically distributed random variables. Applications of the distribution (8) is associated
with the multiple comparisons in the complex decision-making procedures (inter alia, as ranking
of mean values).

Function (8) can be obtained from the density (7) according to technology 1 via the trans-
formation ϕ(x) = expx, which transfers interval (a, b) = (−∞,+∞) to interval (c, d) = (0,+∞).
According to (5), simulation formula for the distribution (8) looks like ξ0 = ln(− lnα0).

This example shows that the use of technology 1 allows to obtain the distribution densities
and the corresponding simulation formulas for the various branches of the Probability theory and
related applications.
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2 The technology of weighed parameter

In numerous applications of numerical statistical simulation (mostly, for realization of Markov
chain paths as well as applying the method of dual randomization – see, e. g., [1]) it’s required to
construct the ”modelled” distribution densities f(u, v) of two-dimensional random vectors (ξ, η)
with dependent components. Two representations are valid here (see, e. g., [1]):

f(u, v) = fξ(u)fη(v|u); fξ(u) =

∫
f(u, v) dv, fη(v|u) =

f(u, v)

fξ(u)
; (9)

f(u, v) = fη(v)fξ(u|v); fη(v) =

∫
f(u, v) du, fξ(u|v) =

f(u, v)

fη(v)
. (10)

Representation (9) corresponds to the following vector (ξ, η) numerical simulation
algorithm: initially, the sample value ξ0 is realized with respect to the density
f(ξ0, v)/fξ(ξ0), and later the sample value η0 is simulated with respect to the density f(ξ0, v)/fξ(ξ0).
Similarly, for the representation (10) initially the sample value η0

with respect to the density of fη(v) is realized, and afterwards the sample value ξ0 is simu-
lated with respect to the density of f(u, η0)/fη(η0). The formulated algorithms may be far not
equivalent in terms of their effective computer implementation.

Example 2. Let’s assume that it is necessary to construct an efficient algorithm for simu-
lation of two-dimensional random vector (ξ, η) with the distribution density

f(u, v) =
1

2
ve−uv, u > 0, 0 < v < 2.

Consider the representation (10):

fη(v) =

∫ +∞

0

1

2
ve−uv du =

1

2
, 0 < v < 2; fξ(u|v) =

f(u, v)

fη(v)
= ve−vu, u > 0.

Here fη(v) is the density of uniform distribution over the interval (0, 2); the corresponding simula-
tion formula is: η0 = 2α1. Function fξ(u|η0) is an exponential distribution density with parameter
λ = η0 (see the relation (7)) and, therefore, ξ = −(lnα2)/η0 (see formula (6)). Now let’s consider
the representation (9). Integrating by parts, we obtain

fξ(u) =

∫ 2

0

1

2
ve−uv dv =

1− (2u+ 1)e−2u

2u2
, u > 0.

The obtained function clearly is not an elementary distribution density and, therefore, for this
example, the representation (9) is a certainly the worst (in terms of computer implementation),
as compared with the representation (10).

The following technology of ”weighed parameter” provides the examples of densities,
for which at least one of the presentations (9) or (10) gives an effective algorithm for numerical
realization of sample value (ξ0, η0).
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Technology 2. Consider an elementary distribution density fξ(u;λ), u ∈ (a, b), depending
on parameter λ, allowed values of which belong to the interval (C,D). Elemen-tary of distribution
means the existence of simple (elementary) formula ξ0 = ψξ(α1;λ) for obtaining the sample value
of the random variable ξ. Consider also another elemen-tary density fη(v) of random variable
η, with values in the interval (c, d) ⊆ (C,D); in this case the appropriate elementary simulation
formula η0 = ψη(α2) exists. Now let’s set the problem of construction an efficient algorithm for
realization the sample value (ξ0, η0) of two-dimensional random vector (ξ, η) which takes values
in the rectangle G = {(u, v) : a < u < b; c < v < d} and has the distribution density

f(u, v) = fη(v)× fξ(u; v), (u, v) ∈ G. (11)

This is a result of a formal product the densities fη(v) and fξ(u; v) (here proceeds substitution
of variable v instead of parameter λ). In the representation (10) for the density (11), we obtain
fξ(u|v) = fξ(u; v). For this representation an efficient algorithm exists:

η0 = ψη(α1), ξ0 = ψξ(α2; η0). (12)

Per contra: attempt to construct an effective formulas, like (12), for the representation (9) of
density (11) usually fails.

In particular, example 2 describes application of technology 2. As the initial density with
parameter function (7) was taken (here (C,D) = (0,+∞)), and density of the uniform distribution
was selected on the subset (c, d) = (0, 2) ⊂ (C;D).

3 Technology of forming the mix

Consider the method of double randomization (or, in other words – integral superposition method
– see, e. g., [1]), in which during realization of random variable ξ an auxiliary random variable η
and density

f(u) =

∫
fη(v)fξ(u|v) dv (13)

are introduced and the corresponding representation (10) gives an efficient simulation algorithm
for couple (ξ0, η0) (see, e. g., [1]). Particular for such method is the case when auxiliary η is taken as
a discrete integer value with distribution P(η = i) = pi;
i = 1, 2, . . .. Here the density (13) has the following form

f(u) =
∑
i

pifi(u), where fi(u) = fξ(u|η = i), (14)

and simulation algorithm (the discrete superposition method – see, e. g., [1]) includes the choice
of item η0 = m according to the standard method of realization of a discrete random variable or
any of it’s modifications (see, e. g., [1]) together with simulation of value ξ0 with respect to the
density fm(u). It is possible to obtain a wide set of examples when the discrete superposition
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method may be realized effectively, when amount M of numbers i; i = 1, . . . ,M is small enough
(in particular, for M = 2). Let us describe the appropriate technology of ”forming the mix”.

Technology 3. Let’s take two densities of elementary distributions f1(u) and f2(u), defined
on an interval (a, b), such that a linear combination with positive coefficients

f(u) = p1 f1(u) + p2 f2(u), u ∈ (a, b), p1 > 0, p2 > 0, p1 + p2 = 1 (15)

is not an elementary density. It is possible to obtain such densities f1(u) and f2(u), in particular,

using the heterogeneous substitutions in technology 1. For sample values ξ
(i)
0 , realized with respect

to the densities fi(u), simulation formulas ξ
(i)
0 = ψi(α0), i = 1, 2 can be written. For density (15)

one can construct an efficient discrete superposition algorithm such as: if α1 < p1, then η0 – the
sample value of the auxiliary integer random value η – is equal to unit, and the sample value ξ0
of the random variable ξ is realized according to the formula ξ0 = ψ1(α2); otherwise ξ0 = ψ2(α2).

Example 3 [1]. Suppose we want to construct an algorithm for numerical simulation of the
random variable ξ, with distribution density

f(u) =
3

8
(1 + u2), −1 < u < 1. (16)

Relation (16) represents the so-called Rayleigh molecular scattering of photons in atmo-sphere,
used in radiative transfer theory. Function (16) is not a density of elementary distribution, since

the equation
∫ ξ0
−1
f(u) du = α0 is reduced to the relation

ξ3
0 + 3ξ0 − 8α0 − 4 = 0, which prevents obtaining an elementary formula for realization the

random variable ξ. The density (16) can be represented as a mix of the (15) type:

f(u) =
3

4
× 1

2
+

1

4
× 3

2
u2, −1 < u < 1,

i. e. p1 = 3/4, f1(u) = 1/2; p2 = 1/4; f2(u) = 3u2/2. Function f1(u) is a density of uniform
distribution on the interval (−1, 1), while density f2(u) is elementary (power). The discrete
superposition algorithm here looks like this: if α1 < 3/4, then ξ0 = 2α2 − 1; otherwise ξ0 =
3
√

2α2 − 1.

A generalization of technology 3 may be associated with increased number of terms M
in (15) (up to consideration of function series), as well as with the transition to simulation of
multivariate random variables ξ.

4 Technology of ”spoiling” the ”modelled” density

Use the special options of the majorant rejection method, leads to the further broadening of the
set of probabilistic distributions, which admit the efficient numerical realization of sample values.
The method consists in the following [1].
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Let it be required to realize the numerical sample value ξ0 of the random vector (random
variable) ξ, which is distributed in U ∈ Rd with respect to the density f(u), which is proportional
to a given nonnegative function g(u), i. e.

f(u) =
g(u)

Ḡ
, Ḡ =

∫
U

g(u) du. (17)

It is assumed that none of the known standard and special methods does provide an efficient
algorithm for realization the value ξ0. The majorant g(1)(u) of function g(u) such that g(u) ≤
g(1)(u) for u ∈ U is considered. The first requirement for majorant g(1)(u) is as that for density

f (1)(u) =
g(1)(u)

Ḡ(1)
, Ḡ(1) =

∫
U

g(1)(u) du, (18)

exists an efficient algorithm (formula) of the form ξ
(1)
0 = ψ(1)(ᾱ1) for realization a sample value

ξ
(1)
0 of random vector ξ(1) (here ᾱ1 is the corresponding set of standard random numbers).

The majorant rejection method includes the realization of sample value ξ
(1)
0 with respect

to the density (18) and also the value η0 = α2g
(1)(ξ

(1)
0 ). It is easy to get (see, e. g., [1]) that the pair

(ξ
(1)
0 , η0) is uniformly distributed in the ”subgraph”

G(1) = {u ∈ U, 0 < v < g(1)(u)} of function g(1)(u). If

η0 < g(ξ
(1)
0 ), (19)

then the realized point (ξ
(1)
0 , η0) gets into the ”subgraph” G = {u ∈ U, 0 < v < g(u)} of function

g(u). Since in this case, the pair (ξ
(1)
0 , η0) is uniformly distributed in the domain G, then for the

required sample value ξ0 of vector ξ we take ξ0 = ξ
(1)
0 . In case when inequality (19) is not true,

we draw a pair of (ξ
(1)
0 , η0) again; then check the inequality (19) etc. It is easy to get that the

point ξ0, realized in this way, will be distributed with respect to the density (17).
The average simulation time for the sample value ξ0 is proportional to mathematical expec-

tation of number of those realizable pairs (ξ
(1)
0 , η0), which is equal to s = Ḡ1/Ḡ (see, e. g., [1]).

When s is close to unit, then the majorant rejection method can be treated as effective one.
It is possible to construct examples for effective realization of the rejection method using

the following technology of ”spoiling” the ”modelled” density.
Technology 4. First, let’s construct the ”modelled” density f (1)(u), (u ∈ U ⊆ Rd) of vector

ξ(1), for which exists an efficient algorithm (formula) of numerical realization:

ξ
(1)
0 = ψ(1)(ᾱ1) (this algorithm is afterwards used in the first step of the rejection algorithm).

To construct the function f (1)(u) the entire set of possibilities (particularly technologies 1–3) may
be used. Next, we transform the density f (1)(u) to turn it into function g(u), which is propor-
tional to the ”non-modelled” density f(u) (actually, we ”¡spoil”¿ the ”modelled” density f (1)(u)).
One of the simplest transformations is to multiply the density f (1)(u) by the low-varying function
Y (u):

g(u) = f (1)(u)× Y (u), u ∈ U ; where 0 < A ≤ Y (u) ≤ B (20)
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and (B − A) is close to zero positive value. Then we can take as a majorant
g(1)(u) = B f (1)(u). The density which is proportional to such a function is obviously equal to
f (1)(u). By integrating the non-negative functions g(1)(u) and g(u) over the domain U according to
the relation Af (1)(u) = Ag(1)(u)/B ≤ g(u), we obtain
AḠ(1)/B ≤ Ḡ. Then s ≤ B/A, i. e. for A ≈ B the value of s is small (close to unit), and
the appropriate rejection algorithm can be regarded as efficient (economical).

For the convenience of the calculations in (20), instead of density f (1)(u) we can consider
the proportional function g̃(1)(u) (for example, by omitting the normalizing constant).

Example 4. Suppose it is required to construct an algorithm for simulation the random
variable ξ, which has distribution density f(u), proportional to the function

g(u) =

(
2 +

arcsinu

5π

)
u3, 0 < u < 1.

It is easy to verify that the density f(u) is not elementary. Note that
g(u) = Y (u) × g̃(1)(u), moreover, due to monotonicity of the function arcsinu on (0, 1), the
inequality 2 < Y (u) < 2.1 is valid. Thus, g(u) < g(1)(u) = 2.1u3. The density which is propor-
tional to the majorant g(1)(u), is equal to f (1)(u) = 4u3, 0 < u < 1; the appropriate simulation

formula is: ξ
(1)
0 = 4

√
α0 [1]. Algorithm for the rejection method comprises the following steps.

1. Simulate the sample value ξ
(1)
0 according to formula ξ

(1)
0 = 4

√
α1, and also the value

η0 = α2 g
(1)(ξ

(1)
0 ) = 2.1α2 (ξ

(1)
0 )3.

2. Check the inequality η0 < g(ξ
(1)
0 ) or

10.5π α2 < 10π + arcsin 4
√
α1. (21)

If the inequality is satisfied, we take ξ0 = ξ
(1)
0 as sample value ξ0 of the random variable ξ. If the

inequality (21) is not true, then repeat step 1, and so on, etc.

The cost s (i. e. the average number of attempts to draw couples (ξ
(1)
0 , η0) till fits the

inequality (21)) has the following upper bound: 1 < s < 2.1/2 = 1.05.

Conclusions

In this paper we have stated the technologies for constructing the distribution probabilis-tic
densities, which admit the efficient numerical realization of sample values: the technology of
recursive substitutions (to implement the method of inverse distribution function); the technology
of weighed parameter (to implement the method of simulation a two-dimensional random vector
with dependent components); the technology of forming the mix (to implement the discrete
superposition method); the technology of ”spoiling” the ”modelled” density (to implement the
majorant rejection method). This work was sponsored by the Russian Foundation for Basic
Research (projects No. 10–01–00040, 09–01–00035), and partially supported by Israeli Research
budget of the Zefat Academic College (Northern branch of Bar-Ilan University).
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Abstract
A 2D parabolic boundary problem with moving boundary is considered in the paper.

The moving part of the boundary is approximated by a broken line. A statistical modeling
method for estimation of the solution of this problem and its parametric derivatives is
proposed. Desired estimates are obtained as results of numerical simulation of trajectories
of the corresponding to the problem diffusion process and its derivatives with respect to
parameters determining the boundary motion. We set a biunique correspondence at any
time point between the moving boundary domain and a fixed domain which coincides with
the initial state of the moving boundary domain. In calculations the numerical simulation
of the diffusion process is performed in the fixed domain.

Keywords: moving boundary problem, stochastic differential equations, statistical mod-
eling, Euler method .

Introduction

A possibility of applying statistical modeling diffusion processes to estimating solutions of elliptic
and parabolic types problems is well known.

In this paper we consider a 2D moving boundary problem

∂u/∂t+ Lu = 0 , (t, x, y) ∈ QT ≡ (0, T )×G(t), (1)

u(T, x, y) = ϕ(x, y, θ), (2)

u(t, x, y) = 0, (x, y) ∈ Γ(t, θ), (3)

where L ≡ b11(t, x, y)
∂2

∂x2 + 2b12(t, x, y)
∂2

∂x∂y
+ b22(t, x, y)

∂2

∂y2
+ a1(t, x, y)

∂
∂x

+ a2(t, x, y)
∂
∂y

; B =

(bij)ij=1,2 is a symmetric positively definite matrix; G(t) is a time dependent 2D bounded domain
having a moving boundary Γ(t).

We introduce a diffusion process (X·, Y·), which is defined by the two following stochastic
differential equations:

Xs = x+
s∫
t

a1(v,Xv, Yv)dv +
s∫
t

2∑
i=1

σ1i(v,Xv, Yv)dWiv ,

Ys = y +
s∫
t

a2(v,Xv, Yv)dv +
s∫
t

2∑
i=1

σ2i(v,Xv, Yv)dWiv ,
(4)

∗The work was supported by RFBR, grant № 11-01-00252-a.
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where σ is 2× 2 matrix such that σσ∗ = 2B; Wi·, i = 1, 2 are independent Wiener processes.

Let us denote by Et,x,y the conditional expectation of a functional of (X·, Y·) on the condition
that the process starts from a point (x, y) at a time point t; τ = inf{t : (t,Xt, Yt) /∈ QT}.

Then a solution of the moving boundary problem (1) — (3) at a point (t, x, y) ∈ QT coincides
with the mathematical expectation of a functional of the diffusion process (4) in the form (see,
for example, [1])

u(t, x, y, θ) = Et ,x ,y

[
ϕ(XT , YT , θ)χτ>T

]
. (5)

We propose a statistical modeling method of estimating solution of the problem (1) — (3)
at some given point in QT and its sensitivities to parameters, which define the motion of the
boundary.

In this work the moving boundary Γ(t) is approximated by a broken line. The corresponding
domain is denominated by Gm(t), and we define a fixed domain as Gc = Gm(t0) that coincides
with the start state of Gm. The motion of boundary vertexes of the broken line is determined by
some set of parameters. We constract a triangle net in a neighborhood of the broken line, so that
legs of the broken line are sides of the triangles.

Then a bijective mapping between Gm(t) and Gc at any point in time is established on the
base of triangle nets in Gm(t) and Gc.

Further we define a stochastic process (X̄·, Ȳ·) in Gc that one-to-one corresponds to the
original diffusion process in Gm(t). This construction allows us to realize modeling the trajectories
of a random process in the fixed domain Gc instead of Gm.

The requierred estimates of the solution of the moving boundary problem and the sensitivi-
ties are obtained as mathematical expectations of the corresponding functional of (X̄·, Ȳ·) and its
parametric derivatives that are modeled in a fixed domain Gc.

1 A Biunique Correspondence between Triangles

Let us establish a biunique correspondence between triangles in Gm and Gc. Let T be a triangle
with vertexes (x1, y1), (x2, y2), (x3, y3) in Gm, and T̄ be a triangle in Gc with vertexes (x̄1, ȳ1),
(x̄2, ȳ2), (x̄3, ȳ3).

We remind that coordinates of boundary vertexes of T depend on t and θ.

Let us define a plane in R3 passing through the following three points X1 = (x̄1, ȳ1, x1),
X2 = (x̄2, ȳ2, x2), X3 = (x̄3, ȳ3, x3). We denote an equation of the plane as follows

Axx̄+Bxȳ + Cxx+Dx = 0 . (6)

Values of the coefficients Ax, Bx, Cx can be obtained by vector product of two not collinear
vectors lying in this plane, for example, X2 −X1 X3 −X1. Value of Dx can be defined as result
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of substitution X1 in the equation (6). So we have

Ax = (ȳ2 − ȳ1)(x3 − x1)− (ȳ3 − ȳ1)(x2 − x1) , (7)

Bx = (x̄2 − x̄1)(x3 − x1)− (x̄3 − x̄1)(x2 − x1) , (8)

Cx = (x̄2 − x̄1)(ȳ3 − ȳ1)− (x̄3 − x̄1)(ȳ2 − ȳ1) , (9)

Dx = −(Axx̄1 +Bxȳ1 + Cxx1). (10)

Let us similarly define a plane

Ayx̄+Byȳ + Cyy +Dy = 0 , (11)

passing through three points Y1 = (x̄1, ȳ1, y1), Y2 = (x̄2, ȳ2, y2), Y3 = (x̄3, ȳ3, y3).
And coefficients of the plane (11) are written in the form

Ay = (ȳ2 − ȳ1)(y3 − y1)− (ȳ3 − ȳ1)(y2 − y1) , (12)

By = (x̄3 − x̄1)(y2 − y1)− (x̄2 − x̄1)(y3 − y1) , (13)

Cy = (x̄2 − x̄1)(ȳ3 − ȳ1)− (x̄3 − x̄1)(ȳ2 − ȳ1) , (14)

Dy = −(Ayx̄1 +Byȳ1 + Cyy1). (15)

Note that Cx = Cy, therefore we will write further this coefficient without any index. Let
us derive x, y from the equations (6), (11)

x = − 1

C
(Ax(t, θ)x̄+Bx(t, θ)ȳ +Dx(t, θ)), (16)

y = − 1

C
(Ay(t, θ)x̄+By(t, θ)ȳ +Dy(t, θ)). (17)

Equations (16, (17) establish a biunique correspondence between points (x̄, ȳ) of the fixed triangle
T̄ in Gc and points (x, y) of the moving triangle T in Gm under the condition

AxBy − AyBx 6= 0. (18)

The condition (18) corresponds to noncollinearity of vectors directed along sides of T and T̄ .
In the following we will mark denominations of points and triangles in Gc by bar above.
Let us denote by fx, fy right-hand sides of the equations (16), (17) respectively. These

functions establish an one-to-one correspondence between points of the fixed triangle net in Gc

and points of moving triangle net in Gm. Therefore, under the condition (18), we can express from
(16, (17) coordinates of points of a fixed triangle T̄ ⊆ Gc through coordinates of the corresponding
points of moving triangle T ⊆ Gm(

x̄
ȳ

)
=
C

∆

(
−By Bx

Ay −Ax

)(
x+Dx/C
y +Dy/C

)
, (19)
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where ∆ = AxBy − AyBx. The equation (19) gives us inverse functions to fx, fy

f−1
x (t, x, y) =

C

∆
[−By(x+Dx/C) +Bx(y +Dy/C)] , (20)

f−1
y (t, x, y) =

C

∆
[Ay(x+Dx/C)− Ax(y +Dy/C)] . (21)

Let kT be a number of triangles in the net. We denote by Ti, T̄i , i = 1, . . . , kT triangles of the
moving net in Gm and the fixed net in Gc correspondingly. And plains coefficients corresponding
to triangles Ti, T̄i , i = 1, . . . , kT will be marked by upper index i: Aix, B

i
x, D

i
x, A

i
y, B

i
y, D

i
y, C

i.
We assume that the condition (18) holds for all coefficients Aix, B

i
x, A

i
y, B

i
y.

We define a biunivocal mapping F : Gc → Gm by the equality

(x, y) =


(fx, fy), (x̄, ȳ) ∈

kT⋃
i=1

T̄i,

(x̄, ȳ), (x̄, ȳ) /∈
kT⋃
i=1

T̄i.

(22)

2 Stochastic Process in the Fixed Domain

We define a stochastic process in Gc which corresponds to the diffusion process (4) in Gm via
bijection (22).

Outside of the triangle net processes in Gm and Gc must be coinside. Now we define the
corresponding process on each triangle in Gc by determining the corresponding grift and diffusion
coefficients.

Let (x̄, ȳ) ∈ T̄i be some point in Gc. The point (x̄, ȳ) corresponds to the following point in
Gm at the mapping (22)

(x, y) = (fx(t, x̄, ȳ, θ), fy(t, x̄, ȳ, θ)). (23)

Let us study a transformation of the equation (1) if it is considered as equation on Gc at
substitution instead of x, y functions fx, fy respectively. For this purpose we define on triangles
of Gc functions ū, āi, b̄ij, σ̄ij by the following equations

ū(t, x̄, ȳ, θ) = u(t, fx(t, x̄, ȳ, θ), fy(t, x̄, ȳ, θ)), (24)

āi(t, x̄, ȳ, θ) = ai(t, fx(t, x̄, ȳ, θ), fy(t, x̄, ȳ, θ)), (25)

b̄ij(t, x̄, ȳ, θ) = bij(t, fx(t, x̄, ȳ, θ), fy(t, x̄, ȳ, θ)), (26)

σ̄ij(t, x̄, ȳ, θ) = σij(t, fx(t, x̄, ȳ, θ), fy(t, x̄, ȳ, θ)). (27)

We express all derivatives of u in the equation (1) via derivatives of function ū with respect
to t, x̄ and ȳ. After substitution obtained expressions in (1) we derive a parabolic equation on
Gc. Then we use this equation to defining drift and diffusion coefficients of the stochastic process
in the domain Gc.

380



Applied Methods of Statistical Analysis. Simulations and Statistical Inference

After differentiating (24) with respect to t we obtain

∂u

∂t
=
∂ū

∂t
− ∂u

∂x

∂fx
∂t

− ∂u

∂y

∂fy
∂t

. (28)

Let us differentiate (24) with respect to x̄, ȳ with provision (16), (17). Then we derive expressions
of the first derivatives of ū with respect to x̄, ȳ in the domain Gc trough the first derivatives of
the function u with respect to x, y in Gm(

∂ū
∂x̄
∂ū
∂ȳ

)
= − 1

Ci

(
Aix Aiy
Bi
x Bi

y

)(
∂u
∂x
∂u
∂y

)
. (29)

By solving system (29) with respect to ∂u
∂x

, ∂u
∂y

we derive(
∂u
∂x
∂u
∂y

)
=

1

∆i

(
−Bi

y Aiy
Bi
x −Aix

)(
∂ū
∂x̄
∂ū
∂ȳ

)
, (30)

where ∆i = (AixB
i
y − AiyB

i
x)/C

i.
Substituting expressions of derivatives of u (28), (30) in the equation (1), we receive a vector

of coefficients at ∂ū/∂x̄, ∂ū/∂ȳ (drift coefficients) for the triangle T̄i(
āi1
āi2

)
=

1

∆i

(
−Bi

y Aiy
Bi
x −Aix

)(
a1 − ∂fx

∂t

a2 − ∂fy
∂t

)
. (31)

Differentiating the equation (29) with respect to x̄, ȳ we derive expressions of the the second
derivatives of ū with respect to x̄, ȳ in Gc trough the second derivatives of u with respect to x, y
in Gm  ∂2ū

∂x̄2

∂2ū
∂x̄∂ȳ
∂2ū
∂ȳ2

 =
1

Ci2

 Aix
2

2AixA
i
y Aiy

2

AixB
i
x AixB

i
y + AiyB

i
x AiyB

i
y

Bi
x
2

2Bi
xB

i
y Bi

y
2


 ∂2u

∂x2

∂2u
∂x∂y
∂2u
∂y2

 . (32)

Then we determine the second derivatives of u from the linear equations system (32) ∂2u
∂x2

∂2u
∂x∂y
∂2u
∂y2

 =
1

(∆i)2

 Bi
y
2 −2AiyB

i
y Aiy

2

−Bi
xB

i
y AixB

i
y + AiyB

i
x −AixAiy

Bi
x
2 −2AixB

i
x Aix

2


 ∂2ū

∂x̄2

∂2ū
∂x̄∂ȳ
∂2ū
∂ȳ2

 . (33)

Let us denote by Ei
kl (k, l = 1, 3) elements of the matrix of the system equations (33). Then on

the base of (33) we obtain elements of the second derivatives matrix of ū in the parabolic equation
in the domain Gc that corresponds to the parabolic equation (1) in Gm

bi11 =
(
b11E

i
11 + 2b12E

i
21 + b22E

i
31

)
/2 ,

bi12 = bi21 =
(
b11E

i
12 + 2b12E

i
22 + b22E

i
32

)
/2 , (34)

bi22 =
(
b11E

i
13 + 2b12E

i
23 + b22E

i
33

)
/2 .

Then it is necessary to verify positive definiteness of the matrix (bikl) (k, l = 1, 2). The
following theorem is valid.
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Theorem 1. Under the condition (18) the matrix (bikl) (k, l = 1, 2) is positive definite.

The matrix (bikl) defined in (34) can be represented in terms of matrix product(
bi11b

i
12

bi12b
i
22

)
=

1

∆i2

(
−Bi

y Bi
x

Aiy − Aix

)(
b11 b12
b12 b22

)(
−Bi

y Aiy
Bi
x − Aix

)
. (35)

We can obtain from (35) the cooresponding to the triangle T̄i the diffusion matrix for SDE
system in the domain Gc

σi =
1

∆i

(
−Bi

y B
i
x

Aiy − Aix

)(
σ11 σ12

σ21 σ22

)
.

Then from the equations (31), (36) we derive that the stochastic process in the triangle
T̄i ∈ Gc satisfies to the following vector equation(

dX̄ i

dȲ i

)
=

1

∆i

(
−Bi

y Aiy
Bi
x −Aix

)[(
a1 − ∂fx

∂t

a2 − ∂fy
∂t

)
dt+

(
σ11 σ12

σ21 σ22

)(
dW1t

dW2t

)]
. (36)

We obtain the following SDE system describing the part of a trajectory of the stochastic
process belonging to the triangle T̄i ∈ Gc by substitution in coefficients ai, bij in (36) instead of
X·, Y· right-hand sides of the equations (16), (17).

(
dX̄ i

dȲ i

)
=

1

∆i

(
−Bi

y Aiy
Bi
x −Aix

)[(
ā1 − ∂fx

∂t

ā2 − ∂fy
∂t

)
dt+

(
σ̄11 σ̄12

σ̄21 σ̄22

)(
dW1t

dW2t

)]
. (37)

The equation (36) gives us a relation between processes (X̄ i, Ȳ i) in Gc and (X·, Y·) in Gm

on each pair corresponding to triangles T̄i and Ti.(
dX
dY

)
= − 1

Ci

(
Aix Bi

x

Aiy Bi
y

)(
dX̄ i

dȲ i

)
+

(
∂fx(t,X̄i

t ,Ȳ
i
t ,θ)

∂t
∂fy(t,X̄i

t ,Ȳ
i
t ,θ)

∂t

)
dt. (38)

Hence we can numerically reproduce trajectories of the process (X·, Y·) in Gm step by step
after modeling corresponding (X̄·, Ȳ·) trajectories in Gc.

3 Numerical Algorithm

We use the Euler method for modeling trajectories (X·, Y·) and (X̄·, Ȳ·). In the interior of the i-th
triangle we use the following transition formulas at a step with number k:(

∆X̄ i

∆Ȳ i

)
k

=
1

∆i
k

(
−Bi

y Aiy
Bi
x −Aix

)
k

[
h

(
ā1 − ∂fx

∂t

ā2 − ∂fy
∂t

)
k

+
√
h

(
σ̄11 σ̄12

σ̄21 σ̄22

)
k

(
ξ1
ξ2

)
k

]
, (39)(

X̄ i

Ȳ i

)
k+1

=

(
X̄ i

Ȳ i

)
k

+

(
∆X̄ i

∆Ȳ i

)
k

, (40)

382



Applied Methods of Statistical Analysis. Simulations and Statistical Inference

where h is an integration step; ξl (l = 1, 2) are independent standard normal random
variables.

If (X̄ i, Ȳ i)k is outside of T̄i, then we calculate (X̄ i, Ȳ i)k+1 in another way. Firstly we calculate(
X i
k

Y i
k

)
=

(
fx
(
tk, X̄

i
k, Ȳ

i
k

)
fy
(
tk, X̄

i
k, Ȳ

i
k

) )− 1

Ci

(
Aix Bi

x

Aiy Bi
y

)
k

(
∆X̄ i

∆Ȳ i

)
k

+ h

(
∂fx(tk,X̄

i
k,Ȳ

i
k )

∂t
∂fy(tk,X̄

i
k,Ȳ

i
k )

∂t

)
.

Then we determine a triangle in Gm to which (X i
k, Y

i
k ) belongs. Let a number of this triangle be

i1. After that we calculate (
X̄ i1

Ȳ i1

)
k+1

=

(
f−1
x (tk, X

i
k, Y

i
k )

f−1
y (tk, X

i
k, Y

i
k )

)
.

Numerical modeling trajectories outside the triangle net we do by the Euler method as usual.

4 Differentiation with respect to Parameters

Using representation (fx, fy) of the process (X·, Y·) in Gm through the process (X̄·, Ȳ·) in Gc we
can reformulate the expression of u(t, x, y) in (5) as follows

u(t, x, y, θ) = Et ,x̄ ,ȳ

[
ϕ(fx(T, X̄T , ȲT ), fy(T, X̄T , ȲT ), θ)χ(τ>T )&((X̄T ,ȲT )∈∪T̄i)

+ϕ(X̄T , ȲT ), θ)χ(τ>T )&((X̄T ,ȲT )/∈∪T̄i)
]
, (41)

where x̄, ȳ are coordinates of the point in Gc that corresponds to (x, y) ∈ Gm.
To obtain statistical estimation uθ we derive its probability representation in the form

uθ(t, x, y, θ) = Et,x̄,ȳ

[(
∂ϕ
∂x

(
∂fx
∂x

(
X̄θ

)
T

+ ∂fx
∂y

(
Ȳθ
)
T

+ ∂fx
∂θ

)
+∂ϕ
∂y

(
∂fy
∂x

(
X̄θ

)
T

+ ∂fy
∂y

(
Ȳθ
)
T

+ ∂fy
∂θ

)
+
(
∂ϕ
∂θ

)
T

)
χ(τ>T )&((X̄T ,ȲT )∈∪T̄i)

+
((

∂ϕ
∂x

) (
X̄θ

)
T

+
(
∂ϕ
∂y

) (
Ȳθ
)
T

+
(
∂ϕ
∂θ

)
T

)
χ(τ>T )&((X̄T ,ȲT )/∈∪T̄i)

]
.

5 Examination of the Method

We applied the proposed method to estimation of a solution and its parametric derivative of 2D
melting problem [2]. It is an ice melting problem for a circle of radius r2 with heating clement at
the centre. Phase transition is on distance r1(t) = θ

√
t apart the centre. Heat exchange in the

solid phase is described by the following boundary problem

∂u
∂t

= K
(
∂2u
∂x2 + ∂2u

∂y2

)
,
√
x2 + y2 ∈ (r1(t), r2), t ∈ [t0, T ], (42)

u(t, x, y) = 0,
√
x2 + y2 = r1(t), (43)

u(t, x, y) = −Θ,
√
x2 + y2 = r2, (44)

u(t0, x, y) = u0(x, y). (45)
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The exact solution of (47) – (50) is the function

u(t, x, y) = Θ

[
Ei (−(x2 + y2)/4Kt)

Ei (−θ2/4K)
− 1

]
, x2 + y2 > θ2t, (46)

where Ei(z) ≡
−z∫
∞

e−s

s
ds is the exponential integral.

We did a change of the time variable s = T + t0 − t to obtain the problem with backward
time. Then we defined a function w by the equation w(s, x, y) = u(T + t0 − t, x, y) and derived
the following boundary problem

∂w
∂s

+K
(
∂2w
∂x2 + ∂2w

∂y2

)
,
√
x2 + y2 ∈ (r1(T + t0 − s), r2), s ∈ [t0, T ], (47)

w(s, x, y) = 0,
√
x2 + y2 = r1(T + t0 − s), (48)

w(s, x, y) = −Θ,
√
x2 + y2 = r2, (49)

w(T, x, y) = u0(x, y). (50)

In calculations values of numerical parameters was taken as follows: θ = 0.06637cm/c,
Θ = 2◦, r2 = 4, t0 = 9, T = 20.

We constructed a triangle net near the moving boundary by selecting rm a radius of a middle
circle such that r1(t) < rm < r2. The ring formed by circles of radiuses r1(t) and rm was uniformly
split into specified number of sectors. In each sector three triangles were defined as it is shown
in the fig.1.

Figure 1: A triangle net in the ice melting
problem.

In the fig.1 the ring is uniformly split into 8 sectors. We applied our method to obtain
estimations of u and uθ in different points. A good coincidence with the exact solution was
obtained in the experiment.
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Abstract

A service of conflict flows with time-sharing algorithm with readjustments in random
environment is considered. A mathematical model is constructed as a homogeneous denu-
merable discrete-time Markov chain. Conditions for the stationary distribution existence
are found. A computer simulation model is also built. With means of computer simulation
a switching function can be found which minimizes several cost-type objective functionals.

Keywords: Conflict flows, time-sharing algorithm with readjustments, optimal switch-
ing.

Introduction

Time-sharing algorithm for service of conflict flows is used in many real controlling systems such
as computers, road traffic control systems, micro-welding machines, customs inspection in large
airports. One has to take into account variability of probabilistic characteristics of input flows
to construct a mathematical model of a queueing system governed by time-sharing algorithm.
The investigator has to calculate many important performance measures, namely, loading of the
processor, mean sojourn time of an arbitrary customer in the queueing system, mean sojourn
cost, etc. Moreover it is important to find the optimal switching rule for the server between the
queues of waiting customers. No ultimate analytical solution is found for the whole complex of
problems [1], thus it is the computer simulation of the time-sharing service process that can give
answers to the investigator’s problems. Also, computer simulation of queueing systems allows
investigation of queueing systems with diverse input flows of customers both simulated and once
observed.

1 Mathematical model of service process in the class of

time-sharing algorithms with readjustments

A queueing system withm <∞ conflict input flows Π1, Π2, . . . , Πm is considered. The input flows
are formed in a random external environment with d < 5 states e(1), e(2), . . . , e(d). Customers in
these flows are called primary. At a state e(k), k = 1, 2, . . . , d, customers in a flow Πj, j = 1, 2,
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. . . , m, arrive in batches so that the flow of batches in poissonian with intensity λ
(k)
j , batch sizes

are independent random variables. A batch contains b customers with probability p
(j,k)
b , b = 1, 2,

. . . . In the computer simulation model it is assumed p
(j,k)
1 = 1−b(k)j , p

(j,k)
b = b

(k)
j (1−q(k)

j )(q
(k)
j )b−2,

b = 2, 3, . . . , witch corresponds to Bartlett flow [2]. Customers in the flow Πj are placed in
a buffer Oj with infinite capacity. Service duration for a customer in Oj is a random variable
with probability distribution function Bj(t). After each service act the sever performs an inner
readjustment. After service of the queue Oj the readjustment duration is also random with a
probability distribution function B̄j(t). In the computer simulation model there are five types
of probability distributions for service and readjustment acts: exponential, Erlang of 2nd order,
uniform, triangular and degenerate. When exponential distribution is selected, then Bj(t) = 0
for t 6 0 and Bj(t) = 1− exp{−tβ−1

j,1 } for t > 0, B̄j(t) = 0 for t 6 0 and B̄j(t) = 1− exp{−tβ̄ −1
j,1 }

for t > 0, for each j = 1, 2, . . . , m. When Erlang distribution is selected, Bj(t) = 0 for
t 6 0 and Bj(t) = 1 − 2tβ−1

j1 exp{−2tβ−1
j,1 } − exp{−2tβ−1

j,1 } for t > 0, B̄j(t) = 0 for t 6 0 and

B̄j(t) = 1−2tβ̄ −1
j,1 exp{−2tβ̄ −1

j,1 }−exp{−2tβ̄ −1
j,1 } for t > 0 for each j = 1, 2, . . . , m. When uniform

distribution is selected, Bj(t) = 0 for t 6 0, Bj(t) = t(2βj,1)
−1 for 0 < t 6 2βj,1, Bj(t) = 1 for

t > 2βj,1; B̄j(t) = 0 for t < 0, B̄j(t) = t(2β̄j,1)
−1 for 0 6 t < 2β̄j,1, Bj(t) = 1 for t > 2β̄j,1.

When triangular distribution is selected, Bj(t) = 0 for t 6 0, Bj(t) = t2(2βj,1)
−1 for 0 < t 6 b−1

j,1 ,
Bj(t) = 1 − (2βj,1 − t)2(2β2

j,1)
−1 for βj,1 < t 6 1, Bj(t) = 1 for t > 2βj,1, B̄j(t) = 0 for t 6 0,

B̄j(t) = t2(2β̄j,1)
−1 for 0 < t 6 b̄−1

j,1 , Bj(t) = 1 − (2β̄j,1 − t)2(2β̄2
j,1)

−1 for β̄j,1 < t 6 1, B̄j(t) = 1

for t > 2β̄j,1 for each j = 1, 2, . . . , m. When degenerate distribution is selected, Bj(t) = 0
for t 6 βj,1, Bj(t) = 1 for t > βj,1, B̄j(t) = 0 for t 6 β̄j,1, B̄j(t) = 1 for t > β̄j,1 for each
j = 1, 2, . . . , m. Notice that mathematical expectations for each of the distributions for service
durations equal βj,1, mathematical expectations for each of the distributions for service durations
equal β̄j,1, but variances decrease (β2

j,1,
1
2
β2
j,1,

1
3
β2
j,1,

1
6
β2
j,1, 0 for the service durations, β̄2

j,1,
1
2
β̄2
j,1,

1
3
β̄2
j,1,

1
6
β̄2
j,1, 0 for the readjustment durations). If the queues are empty after an readjustment

then the first incoming customer is chosen for service. On the contrary if the queues’ lengths are
represented with a nonzero vector x = (x1, x2, . . . , xm) then a customer from the queue number
j = h(x) is chosen, where h(·) : X = {0, 1, . . .}m → {1, 2, . . . ,m + 1} is a given mapping of
the nonnegative integer lattice such that the only inverse of the point n = m + 1 is the zero
vector 0̄ = (0, 0, . . . , 0) ∈ X. In particular the computer simulation model includes the following
switching functions: 1) let σ be a fixed permutation of the elements of {1, 2, . . . ,m} determining
the relative priorities for the queues, then for x 6= 0̄, xσ(1) = xσ(2) = . . . = xσ(j−1) = 0, xσ(j) > 0
the mapping hσ(x) takes on value j; 2) service of the longest queue, hmax(x) = min{j : xj =
max{xr : 1 6 r 6 m}}; 3) mixed switching function hr(·), taking on value r when xr > 0,
and value min{j : xj = max{xj′ : 1 6 j′ 6 m, j′ 6= r}} when xr = 0. In the environment’s

state e(k) a served customer from the queue Oj with probability π
(k)
j,r goes into the queue Or for

repeated service, and with probability π
(k)
j,n = 1 −

∑m
r=1 π

(k)
j,r leaves the queueing system. Thus

the input flows of the queueing system are superpositions of primary and secondary flows of
customers. Changing of the random environment’s state can occur only at instants of service
and readjustment terminations, so that the sequence of the random environment’s states makes
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a irreducible aperiodic Markov chain. The probability of a transition from a state e(l), l = 1,
2, . . . , d, into e(k), k = 1, 2, . . . , d, equals al,k. The sojourn cost for a single customer per
time unit in queue Oj is cj. Put τ0 = 0, let τi be either an instant of service termination or
readjustment termination, i = 1, 2, . . . . An interval (τi−1, τi] is called the i-th working tact of the
queueing system. Denote by ζj,i the total sojourn time of all customers in the queue Oj during
the i-th working tact; then the mean sojourn cost for all customers during the i-th working tact is
Ji(h) =

∑m
j=1 E(cjζj,i) (here E denotes the mathematical expectation symbol). We will treat the

functional Ji(h) as the economic criterium for the system performance during the i-th working
tact. A switching function h(·) is optimal if it minimizes the functional Ji(h) in the stationary
regime of operation.

Denote by χi ∈ {e(1), e(2), . . . , e(d)} the state of the external random environment during
the interval (τi, τi+1], by κj,i the length of the queue Oj at τi counting the arriving secondary
customer, by Γi ∈ Γ = {Γ(1),Γ(2), . . . ,Γ(n)} the server state during the interval (τi−1, τi]. For
1 6 s 6 m i = 1, 2, . . . the equation Γi = Γ(s) takes place if a service of a customer from Os

is taking place or has just terminated, and for s = n a readjustment is taking place or has just
terminated. An element Γ0 with values in Γ defines the initial state of the server at τ0. Put for
convenience κi = (κ1,i,κ2,i, . . . ,κm,i), λ

(k)
+ = λ

(k)
1 +λ

(k)
2 + . . .+λ

(k)
m , Q

(s,k)
i (w) = P({Γi = Γ(s),κi =

w, χi = e(k)}). Using methods presented in [3] we get

Theorem 1. A sequence

{(Γi,κi, χi); i = 0, 1, . . .} (1)

given the probability distribution of the vector (Γ0,κ0, χ0) is a Markov chain. The states of Markov
chain (1) form a unique class of communicating periodic states.

In the next section we will present necessary and sufficient conditions for the stationary
distribution existence for the Markov chain (1) in order to solve the optimization problem.

2 Conditions for stationary distribution existence and so-

lution of optimization problem in some particular cases

Denote by {al : l = 1, 2, . . . , d} the stationary probability distribution for the random environ-

ment. Put π(k) = (π
(k)
j,r : j, r = 1, 2, . . . ,m), π = (πj,r : j, r = 1, 2, . . . ,m) =

∑d
k=1 akπ

(k), β =

= (β1, β2, . . . , βm), β̄ = (β̄1, β̄2, . . . , β̄m), µ
(k)
j,1 =

∑∞
b=1 bp

(k.j)
b , λ̄

(k)
j = λ

(k)
j µ

(k)
j,1 ,

λ̄(k) = (λ̄
(k)
1 , λ̄

(k)
2 , . . . , λ̄

(k)
m )T . Using methods in [1], one can prove Theorem 2, which contains in

fact necessary conditions for the stationary distribution existence for Markov chain (1).

Theorem 2. Assume that one of the following hypotheses holds: 1) the largest absolute value
R of eigenvalues of the matrix π is 1; 2) R < 1, (β + β̄)(Im − πT )−1

(∑d
l=1 alλ̄

(l)
)
> 1. Then

for every (Γ(s), w, e(k)) ∈ Γ ×X × {e(1), e(2), . . . , e(d)} and independently of the initial probability
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distribution of (Γ0,κ0, χ0) the following limit relation takes place:

lim
i→∞

Q
(s,k)
i (y(n)) = 0. (2)

It is known [4] that a denumerable Markov chain either has a stationary probability dis-
tribution (not necessarily unique if the states form more that one positive recurrent class), or
equation (2) takes place for each (Γ(s), w, e(k)) ∈ Γ×X ×{e(1), e(2), . . . , e(d)} independently of the
initial probability distribution. In the last case the sequence {E(

∑m
j=1 κj,i); i = 0, 1, . . .} increases

unboundly. So, the boundness of the sequence of mean number of customers in the queueing
system gives the sufficient condition for a stationary distribution existence.

Theorem 3. Assume R < 1 and (β + β̄)(Im − πT )−1
(∑d

l=1 alλ̄
(l)
)
< 1. Then the sequence

{E(
∑m

j=1 κj,i); i = 0, 1, . . .} is bounded.

Assuming that the conditions for a stationary distribution existence are fulfilled find the
expression of the functional Ji(h) with means of queueing system’s parameters and random envi-
ronment parameters.

Theorem 4. If either al,k = ak for l, k = 1, 2, . . . , d, or λ̄(1) = λ̄(2) = . . . = λ̄(d), then

Ji(h) = J(h) =
m∑
j=1

cj

m∑
r=1

(βr,1 + β̄r,1)x
r,j + const (3)

and the constant in the right-hand side doesn’t depend on h(·).

Theorem 5. Let βr,2 =
∫∞

0
t2 dBr(t), β̄r,2 =

∫∞
0
t2 dB̄r(t), r = 1, 2, . . . , m, al,k = ak. Then

quantities xg,j, g, j = 1, 2, . . ., . . . , m, satisfy the system of equations

xg,j + xj,g −
m∑
r=1

(d̄ r,jxr,g + d̄ r,gxr,j) = c̄g,j, (4)

where d̄ r,g = (βr,1 + β̄r,1)
∑d

k=1 akλ̄
(k)
g + πr,g, d̄

r,j = (βr,1 + β̄r,1)
∑d

k=1 akλ̄
(k)
j + πr,j, constants c̄g,j

do not depend on the mapping h(·) and c̄g,j = c̄j,g.

Theorem 6. Let λ̄(1) = λ̄(2) = . . . = λ̄(d), π
(1)
j,r = π

(2)
j,r = . . . = p

(d)
j,r , λ

(1)
r b

(1)
r (1 − q

(1)
r )−2 =

λ
(2)
r b

(2)
r (1 − q

(2)
r )−2 = . . . = λ

(d)
r b

(d)
r (1 − q

(d)
r )−2 for j, r = 1, 2, . . . , m. Then quantities xg,j, g,

j = 1, 2, . . ., . . . , m, satisfy the system of equations

xg,j + xj,g −
m∑
r=1

( ¯̄d r,jxr,g + ¯̄d r,gxr,j) = ¯̄cg,j, (5)

where ¯̄d r,g = (βr,1 + β̄r,1)
∑d

k=1 akλ̄
(k)
g + πr,g,

¯̄d r,j = (βr,1 + β̄r,1)λ̄
(1)
j + πr,j, constants ¯̄cg,j do not

depend on the mapping h(·) and ¯̄cg,j = ¯̄cj,g.
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Thus we get the linear programming problem: find the minimum for the functional

J0(h) =
m∑
j=1

cj

m∑
r=1

(βr1 + β̄r1)x
rj

under linear constraints (4) or (5) and constraints xrj > 0. An optimization problem of this type
was first solved by G. P. Klimov in [5]. Recall that the queueing system under study differs much
from that of G. P. Klimov in presence of the random stationary environment, non-ordinary input
flows, varying redirection probabilities of secondary customers and readjustments. Despite of this
the linear programming problems differ only in particular form of the coefficients in expressions for
the objective functionals and linear constraints. Despite of the wide class of admissible controls,
the optimal switching function h∗(·) belongs to the class of priority control. Priority indices can
be identified with means of the next algorithm. Put D1 = {1, 2, . . . ,m}, cr(D1) = cr. Next, let
{ϑr(Ds) : r ∈ Ds} be the solution to the system

ϑr(Ds) =
∑
j∈Ds

ϑj(Ds)πr,j + βr,1 + β̄r,1, r ∈ Ds,

r(Ds) = arg min{cj(Ds)/ϑj(Ds) : j ∈ Ds},Ds+1 = Ds\{r(Ds)}, cr(Ds+1) = (cr(Ds)×(ϑr(Ds))
−1−

min{cj(Ds)/ϑj(Ds) : j ∈ Ds})ϑr(Ds). Put h∗(x) ∈ Ds, when
∑

r∈Ds+1
xr is zero and

∑
r∈Ds xr >

0. Then the switching function h∗(·) is optimal.

3 Description of computer simulation model and numer-

ical experiments

Computer simulation of the queueing system is done in intervals (τi, τi+1], i = 0, 1, . . . . Here
we describe the steps of the simulation algorithm. Assume that the environment state χi is e(k)

during the interval and the server is in the state Γi = Γ(s). Arrival instants τ̂ι of primary customers
during the interval are generated and kept in appropriate queues. The number of customers in the
queue Oj at the instant τi is determined by the variable κi,j. If at the instant τi a readjustment
has terminated and the queues are empty then the following independent random variables are
generated: the index of the flow with the earliest arrival is a discrete random variable taking on
value j with probability λ

(k)
j /λ

(k)
+ ; the batch size for the first arrival is a random variable taking

on value 1 with probability 1 − b
(k)
j and value ϑ > 2 with probability b

(k)
j (1 − q

(k)
j )(q

(k)
j )ϑ−2; and

finally the time from τi to the earliest arrival is a random variable with exponential distribution
with parameter λ

(k)
+ . All customers from the first batch are kept is the right queue with record of

their arrival time. After this according to the switching function s̃ = h(x) the next queue Os is
selected for service, Γi+1 = Γ(s̃). This step is also done if τi a readjustment termination occurred
and not all queues are empty. If at instant τi a service terminated, then s is determined from
Γi = Γ(s), and put Γi+1 = Γ(n). Now we generate the service or readjustment duration using an
appropriate probability distribution function Bs̃(t) for service interval, and B̄s(t) for readjustment
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interval. Thus we get a value t∆ of a random variable ∆i. For a queue Oj we generate the arrival
instants of primary customers in the interval (τi+1−∆i, τi]. To do this first determine the number

of batches with Poisson probability distribution with parameter λ
(k)
j t∆. Then for each batch

we randomly generate its size as above and its arrival instant which has a uniform conditional
probability distribution in the interval (τi+1 − ∆i, τi+1). If Γi+1 6= Γ(n) and χi = e(k), then the
redirection of the served customer is simulated. We sample a value r of a discrete random variable
with probabilities π

(k)
s̃,1 , π

(k)
s̃,2 , . . . , π

(k)
s̃,n of the values 1, 2, . . . , n accordingly. If a value r < n is

obtained, then we move the customer from Os̃ into Or, otherwise we calculate the sojourn time
for the customer as the difference between τi+1 and its arrival time and place the customer in
the output flow memorizing its sojourn time. Finally we simulate the random environment state
change.

To estimate stationary characteristics of the queueing system performance the simulation of
one realization was accomplished in two stages. At the first stage the termination instant of the
transition process is determined, after this instant the process is considered to be in the quasi-
stationary mode. To carry out this instant determination with given parameters of the external
random environment, input flows, service and readjustments durations, redirection for repeated
service two queueing systems are run simultaneously. Initially the queues of the first queueing
system are empty while the lengths of the queues of the second queueing system are described
with the nonzero vector x∗ ∈ X. At the i-th simulation step a departure of a predefined number
of served customers from each system is awaited. Then the estimates γ̂i(y

(n)) and γ̂i(x
∗) of the

mean sojourn time of an arbitrary customer in each system and the loading estimates ρ̂i(y
(n)),

ρ̂i(x
∗) (as the ratios of working time to the total simulation time) in each system are found. Given

accuracies εmean ∈ (0, 1) and εload ∈ (0, 1), if the inequalities |γ̂i(y(n)) − γ̂i(x
∗)| > εmeanγ̂i(y

(n))
or |ρ̂i(y(n))− ρ̂i(x

∗)| > εloadρ̂i(y
(n)) take place then we proceed to the (i+ 1)-th step. But if both

|γ̂i(y(n))− γ̂i(x∗)| < εmeanγ̂i(y
(n)) and |ρ̂i(y(n))− ρ̂i(x∗)| < εloadρ̂i(y

(n)) then it is considered as the
entrance into quasi-stationary mode. In out experiments we put εmean = 0.05, εload = 0.05. At
the second stage the simulation of the work of the first queueing system is continued to compute
estimated of performance characteristics in the quasi-stationary regime. For each realization the
following performance characteristics are estimated: an estimate Ĵ of the mean sojourn cost of all
customers during one working tact, an estimate γ̂ of the mean sojourn time for a single customer.
Thus the computer simulation program allows to conduct the numerical optimization of the time-
sharing servicing process with respect to two objectives: minimization of the mean sojourn time
of a single customer and minimization of the mean sojourn cost for all customers during one
working tact. Notice that both objective functionals are different from one in [5]. The program
is written in C++ and uses pthread library to allow parallel simulation of different realizations
on multicore processors.

We would like to remind that the optimal switching function was found in Section 2 only
for aperiodic external environment and mean characteristics of primary and secondary customers
independent of the random environment. In practice the we have observed cases when we may
use a modified Klimov’s algorithm and cases when we may not use this algorithm. Consider
the following numerical example. Let d = 3, p

(1)
1,2 = p

(1)
2,3 = p

(1)
3,1 = 0.9, p

(2)
1,1 = p

(2)
1,2 = p

(2)
1,3 = 0.1,
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p
(2)
2,1 = 0.1, p

(2)
3,1 = p

(2)
3,2 = 0.125, p

(3)
1,1 = 0.5, p

(3)
1,3 = 0.2, p

(3)
3,1 = p

(3)
3,2 = 0.125, β1 = 0.3, β2 = 0.5, β3 = 2,

β̄1 = 0.15, β̄2 = 0.25, β̄3 = 1, λ
(1)
1 = 0.145, λ

(1)
2 = 0.13, λ

(1)
3 = 0.125, b

(1)
1 = b

(1)
2 = b

(1)
3 = 0.5,

q
(1)
1 = q

(1)
2 = q

(1)
3 = 0, λ

(2)
1 = 0.0125, λ

(2)
2 = 0.0105, λ

(2)
3 = 0.025, b

(2)
1 = b

(2)
2 = b

(2)
3 = 0.5,

q
(2)
1 = q

(2)
2 = q

(2)
3 = 0, λ

(3)
1 = λ

(3)
2 = λ

(3)
3 = 0.05, b

(3)
1 = b

(3)
2 = b

(3)
3 = 0, q

(3)
1 = q

(3)
2 = q

(3)
3 = 0, and

the transition probabilities for the environment are given by one of the following sets: 1) a1,1 = 0.1,
a1,2 = 0.8, a1,3 = 0.1, a2,1 = 0.2, a2,2 = 0.7, a2,3 = 0.1, a3,1 = 1; 2) a1,2 = a2,3 = a3,1 = 1. The
sojourn costs per unit time are given by c = (2, 1, 5). In Table 1 the estimates for the mean
sojourn time of a single customer, the mean sojourn cost of all customers in the system and
the load are shown for both sets of transition probabilities of the environment. The smallest
computed values are printed in bold face.

Table 1: for the mean sojourn time of a single customer, the mean sojourn cost of all customers
in the system and the load for different transition probabilities of the environment

Switching γ̂ Ĵ ρ̂
function set 1 set 2 set 1 set 2 set 1 set 2
hmax 6.31 11.25 6.03 8.59 0.310 0.569

hσ, σ =

(
1 2 3
1 2 3

)
5.51 11.45 6.29 11.61 0.309 0.609

hσ, σ =

(
1 2 3
1 3 2

)
7.04 21.22 5.22 8.88 0.309 0.657

hσ, σ =

(
1 2 3
2 1 3

)
5.50 8.38 6.34 8.65 0.311 0.538

hσ, σ =

(
1 2 3
2 3 1

)
7.39 10.37 6.41 7.70 0.311 0.483

hσ, σ =

(
1 2 3
3 1 2

)
7.64 15.16 5.41 7.08 0.311 0.593

hσ, σ =

(
1 2 3
3 2 1

)
7.94 12.19 6.07 7.81 0.311 0.501

h1 5.92 14.81 5.90 11.51 0.311 0.629
h2 6.09 8.38 6.37 7.69 0.312 0.515
h3 7.70 11.97 5.62 6.81 0.311 0.542

From the table one can see that a ’fair’ algorithm choosing the longest queue for service is
worse that at least one priority algorithm. Since π is computed as a1π

(1) + a2π
(2) + a3π

(3), the
algorithm from the end of Section 2 suggests hσ with

σ =

(
1 2 3
1 3 2

)
.
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If we run the algorithm for c = (1, 1, 1), we get

σ =

(
1 2 3
2 1 3

)
, σ =

(
1 2 3
1 2 3

)
for sets 1 and 2 correspondingly. In Table 1 we see that in several cases this prediction is not
correct.

Conclusions

In this work we studied a time-sharing queueing system with readjustments with input flows
formed in a random environment. We have found the stationarity conditions and we also found
the optimal switching function in certain constrained cases. However we have found that optimal
switching for a time-sharing servicing process with readjustments can not be found using Klimov’s
algorithm so more theoretical study into the subject is required.
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Abstract

In this paper, we make an attempt to apply stochastic spatial-temporal conditional
spectral models of the sea surface undulation to study features of formation and development
of the ocean extreme waves.
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Introduction

Extreme (rogue, freak) waves are known as a natural ocean phenomenon and hazards for mariners.
Extreme waves are distinct from tsunami, as they are usually highly localized in space and
duration, and unexpectedly occur far out at sea. The shapes of extreme waves can vary: sometimes
they look like solitary waves, sometimes they appear as a group of waves (like the ’Three Sisters’
on the Great Lakes) or as a wall of water (see details and further references in [14], for instance).
The MaxWave research project [20] reads: ’Within the last years a high number of large ships
has been lost. The causes of accidents are in many cases believed to be rogue waves’. The
phenomenon of extreme waves has not been studied sufficiently well (for the first time a rogue
wave was instrumentally detected only in 1995), and nowadays serious efforts are mounted to
observe the extreme waves and to study the phenomenon both theoretically and experimentally.

In this paper, we attempt to simulate extreme waves by using a specific technique of condi-
tional stochastic spectral models of random fields. The necessary information for the stochastic
models proposed is a spectrum of the time-space random field, which describes the sea surface
undulation. This information enables us to numerically construct time-space realizations of the
surface of the sea that is statistically homogeneous in space and stationary in time. Similar models
were constructed in [1, 3, 4, 5] to study optical properties of the sea swell by Monte Carlo method.
To simulate waves of abnormal height in addition to the spectrum, we need to know the ”true”
level of the sea surface for a number of fixed points at given moments of time. The technique
of conditional spectral models proposed in [15] allows one to construct an ensemble of random
time-space realizations of the sea swell passing through these points. Thus, demanding the sea
level to reach considerable heights, we can simulate and study the processes of occurrence and

394



Applied Methods of Statistical Analysis. Simulations and Statistical Inference

attenuation of extreme waves. In particular, one of the most fascinating results that was obtained
by numerical experiments is the existence of accompanying waves before and after the main giant
wave. This group of three waves can, probably, be interpreted as a successful simulation of the
’Three Sisters’.

1 Stochastic spectral models of the sea surface undulation

The experimental data of statistical properties of wind-driven waves indicate to the fact that
they may be described with a high precision by a homogeneous Gaussian random field of surface
deviations from a mean level [2, 8]. Therefore, numerical models of homogeneous Gaussian fields
appear to be efficient means for the sea swell simulation. In the next two subsections, we present
the basic principles of constructing spectral models and specific features of spectral models for
the sea surface.

1.1 Spectral models of Gaussian random fields

One of the most promising general approaches for the simulation of homogeneous Gaussian pro-
cesses and fields is based on the spectral decomposition of random functions. Among a rich
variety of publications devoted to this approach, we would like to mention the earliest publi-
cations [6, 11, 13, 19], paper [12], where the spectrum randomization was combined with the
spectrum partitioning, papers [9, 10] with advanced results on convergence, recent publication
[7], and monographs [17, 18], where the detailed information and more references to numerical
spectral models can be found.

Let us consider a real-valued homogeneous random Gaussian field w(x), x ∈ Rk, with zero
mean, unit variance and correlation function R(x) = Ew(x+y)w(y). The spectral representations
of the random field and its correlation function can be written down in the following way

w(x) =

∫
P

cos < x, λ > ξ(dλ) +

∫
P

sin < x, λ > η(dλ), (1)

R(x) =

∫
P

cos < x, λ > ν(dλ). (2)

Here ξ(dλ), η(dλ) are real-valued orthogonal stochastic Gaussian measures in a “spectral space”
P (i.e., P is a measurable set such that P ∩ (−P ) = {0}, P ∪ (−P ) = Rk), ν(dλ) is a spectral
measure of the random field w(x), and < . , . > denotes the scalar product in Rk.

The main idea underlying the spectral models is to use an approximation of stochastic
integral (1) for simulation of random field w(x). In particular, a spectral model can be constructed

in the following way. Let us fix some splitting of the spectral space: P =
n∑
j=1

Qj, Qj ∩ Qi =
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∅ for i 6= j. As an approximation of (1) we consider

wn(x) =
n∑
j=1

aj [ξj cos < λ(j), x > +ηj sin < λ(j), x >] , aj = ν1/2(Qj) (3)

where ξj, ηj are independent standard normal variables, while vectors λ(j) ∈ P belong to the
corresponding sets Qj. A specific algorithm of simulation is defined by partitioning of the spectral
space P and by a method of choosing λ(j) ∈ Qj. Various modifications of spectral models, their
properties and convergence are discussed, for example, in [17].

1.2 Simulation of the sea surface undulation

Various investigations were performed on the spectrum of the wind-driven see surface undulation
(see, for example [2, 8]). In this paper, we make use of a spectral model of the sea surface w(x1, x2)
with the following approximation of the spectrum [2]:

ν(dλ1dλ2) = f(λ1, λ2)dλ1dλ2, λ1 ∈ (0,+∞), λ2 ∈ (−∞,+∞),

f(λ1, λ2) = Sρθ(ρ, θ))ρ
−1, ρ = (λ2

1 + λ2
2)

1/2, θ = arg(λ1 + iλ2) ∈ [−π/2, π/2],

Sρθ(ρ, θ) = Q(µ, θ)Sρ(ρ), Sρ(ρ) = 0.5(g/ρ)1/2S((gρ)1/2),

S(µ)=

 6m0 (µmax/µ)5 µ−1 exp
{
−1.2

[
(µmax/µ)5 − (µmax/µ1)

5]} , µ ∈ [0, µ1],
S(µ1) + (S(µ2)− S(µ1)) (µ− µ1)/(µ2 − µ1), µ ∈ (µ1, µ2),
0.0078g2µ−5, µ ∈ [µ2, µ3);

Q(µ, θ) = 2π−1 cos2 θ.

Here S(µ) is the “frequency” spectrum, Q(µ, θ) is the “angular” spectrum, µ3 ≈ 30 sec−1 is the
upper boundary of the frequency spectrum of gravity waves, µmax is the frequency of a spectral
maximum for S, g is the gravity acceleration,

µ1 = 1.8µmaxµ̃
(−0.7), µ2 = 2.0µmaxµ̃

(−0.7),

µ̃ = vµmax/g, m0 = 0.00127g−2v4µ̃(−3.19),

v is the wind speed (m/sec) at the height of 10 meters above the sea level. Within this spectrum
approximation, statistical properties of the sea undulation are determined by µmax and by the
wind speed v. A realization of a spectral model of the surface of a wind-ruffled sea is presented
in Figure 1.

A spatial-temporal spectral model of the sea surface with zero mean level can be written
down in the form:

wn(x1, x2, t) =
n∑
j=1

aj [ξj cos(ϕj(x1, x2, t)) + ηj sin(ϕj(x1, x2, t))] , (4)
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ϕj(x1, x2, t) = λ1(j)x1 + λ2(j)x2 + µ(j)t,

where µ(j) are connected with λ1(j), λ2(j) by the dispersion relation

µ(j)2 = gρj tanh(ρjH), ρj = [λ2
1(j) + λ2

2(j)]
1/2.

In case of the deep water (for large values of depth H), the dispersion relation has the form
µ(j) =

√
gρj. It means that if the monochromatic wavelength is equal to L = 2π/ρ, then the

velocity of the wave is equal to
√
gL/(2π) = µ/ρ, where µ =

√
gρ.

Figure 1: An example of the simulated topography of the sea surface roughness (a spectral
model). The wind direction is parallel to the horizontal axis

2 Conditional spectral models and simulation of the sea

surface with abnormally high points of elevation

Below we present a novel approach that can be used to simulate ensembles of temporal-spatial
realizations of the sea surface with abnormally high waves (see Figures 2,3). This approach is
based on conditional spectral models.

Assume, that it is necessary to simulate Gaussian random field (1) which satisfies the con-
dition

w(xm) = bm, m ∈ {1, 2, . . . ,M}. (5)
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Figure 2: An extreme wave with 30m maximum height and deep troughs simulated by a
conditional spectral model: 8 profiles of 2000 meters length at time 0, 4, 8, 12, 16, 20, 24, 28
sec. The first four profiles are on the left (sequentially from top to bottom) and the next four

profiles are on the right. The extreme wave moves from right to left
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Figure 3: The ”Three Sisters” with 30m maximum height simulated by a conditional spectral
model: 10 profiles of 2000 meters length at the instants 0, 8, 16, 22, 32, 38, 46, 52, 56, 66 sec.

The first five profiles are on the left (sequentially from top to bottom) and the next five profiles
are on the right. The first wave (images 1, 2), the second (main) wave (images 5, 6, 7), and the

third wave (image 10) can be well defined
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This means that in spectral model (3), the standard normal random variables ξj, ηj must be
simulated under additional constraints:

N∑
j=1

dmjξj + d′mjηj = bm, m = 1, . . . ,M,

dmj = aj cos < λ(j), xm >, d′mj = aj sin < λ(j), xm > .

The corresponding simulation methods for the conditional spectral models were proposed in [15]
(see, also, [16, 17]).

Figures 2, 3 present 2000 meter long realizations of conditional spectral models with the
parameters µmax = 0.3 sec−1, v = 10 m/sec. These parameters correspond to the sea swell with
waves up to 10 meters high. The extreme wave in Figure 2 was simulated at the instants 0, 4,
8, 12, 16, 20, 24, 28 sec. under additional condition (5) that at the time of 14 sec., its height is
equal to 30 meters. One can see deep troughs just before and after the simulated extreme wave.
Similarly, the extreme wave in Figure 3 was simulated at the instants 0, 8, 16, 22, 32, 38, 46, 52,
56, 66 sec. subject to the requirement that at the time of 38 sec., its height is equal to 30 meters
(see image 6 in Figure 3). The profiles in Figure 3 show that two smaller waves appear before
and after the main extreme wave. This can be interpreted as a shape of the freak wave known as
’Three Sisters’.

Conclusions

Preliminary results of stochastic simulation of the sea surface undulation with abnormally high
waves based on conditional spectral models show that this approach can be an efficient tool when
studying the formation and development of the ocean extreme waves.
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Abstract

This paper deals with numerical simulation of stochastic indicator fields corresponding to
satellite images of broken clouds in the atmosphere. Numerical spectral models and a method
based on thresholds of the Gaussian functions are used to simulate the indicator fields. An
additional example of simulation of a binary pattern of granules on the photosphere of the
Sun is presented as well.

Keywords: Broken clouds, stochastic geometry, numerical simulation, random fields,
threshold and spectral models, Sun photosphere granules.

Introduction

Cloudiness is a major factor affecting the radiation balance in the Earth’s atmosphere, and the
stochastic structure of clouds brings about a considerable uncertainty in climate models. That
is why it is a challenging problem to construct numerical models of clouds taking into account
their random optical properties and geometry. There are a lot of different approaches to solve
this problem (see, for example [14], and references therein). This paper deals with a method first
proposed in [1] and then developed in [2, 11, 12, 13, 14, 17]. The method in point is based on the
statistical analysis of planar indicator fields for broken clouds. The corresponding software can
be found at the Internet [10]. The main objective of this paper is to present some new simulation
examples to demonstrate, in addition to the previous investigations, how the method works. The
method seems to be universal: see [3, 6, 7, 4, 5, 18], where the same approach was used for rather
different applications. In this paper, as an additional example, simulation results are presented
for a pattern of granules on the photosphere of the Sun.

1 Description of the method

Assume that ε(x) is a binary random field, ε(x) ∈ {0, 1}, with a (multidimensional) parameter
x. We consider binary models of the following type. Let u(x) be a real-valued Gaussian random
field, A0 ∪ A1 = (−∞,∞) be splitting of the real axis to two disjoint sets, and

ε(x) =

{
0, for u(x) ∈ A0,
1, for u(x) ∈ A1.

(1)
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Furthermore, we make two other assumptions to simplify our considerations. First, the Gaussian
field u is supposed to be homogeneous with mean zero and correlation function Ku(x) = Eu(x+
y)u(x) and, second, the sets A0, A1 are supposed to be of the form

A0 = (−∞, d), A1 = [d,+∞), d ∈ (−∞,+∞). (2)

Parameter d will be called a threshold level and model (1) of the binary fields will be called
threshold model.

Remark. Evidently, more general threshold models can be considered, but we restrict this
study by this model because of its simplicity and adaptability for a considerably large number of
applied problems. In papers [8, 11, 12, 15], the following splitting of the real axis was considered
in addition to (2):

A0 = (−d, d), A1 = (−∞, d] ∪ [d,+∞), d ∈ (0,+∞).

However, numerical experiments have showen that this model is more complicated and unstable
in tuning than model (2).

For the threshold model, the binary field ε (just as the Gaussian field u) is a homogeneous
one. Its average is

mε = P (ε = 1) = P (u ∈ A1) = 1− Φ(d).

Here Φ is the function of the standard normal distribution. For the covariance function Kε(x) =
Eε(x+ y)ε(y) of the field ε(x), we have

Kε(x) = R (Ku(x)) ,

where

R(ρ) =

∫
{(ξ,η): ε(ξ)ε(η)=1}

ϕρ(ξ, η)dξdη, (3)

and

ϕρ(ξ, η) =

[
2π
√

1− ρ2 exp

(
ξ2 + η2 − 2ρξη

2(1− ρ2)

)]−1

is the probability density of the two-dimensional Gaussian random vector with zero mean, unit
variance of the components and correlation coefficient ρ between the components. Note, that
the covariance distortion for the general point-wise nonlinear transformations of the Gaussian
functions was studied in [7, 8].

Thereby, the parameters of the threshold model for a binary field ε(x) are the following:
the threshold level d and the correlation function Ku(x) of the homogeneous Gaussian field u(x).

2 Estimation of parameters and isotropic spectral models

If a set of realizations of the binary field ε is available, then parameters of the model can be found
in the following way. First, we compute an estimation m∗

ε of the mean value mε for the field ε.
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Then approximation d∗ for the threshold level can be found from the equation m∗
ε = 1 − Φ(d∗).

Second, we compute an estimate K∗
ε (x) of the covariance function Kε(x) and find approximation

K∗
u(x) for the correlation function Ku(x) of the Gaussian field u(x) using the equation

K∗
ε (x) = R(K∗

u(x)), (4)

where the function R is defined in (3). For the defined parameters of the threshold model, the
numerical algorithm consists in the simulation of the Gaussian field u(x) with the estimated
correlation function K∗

u(x) and subsequent transformation (1).
Remark. The direct inversion of (4) can fail because the result K∗

u may not be positive
definite and the inversion can be ill-defined. Thus, to construct the estimate K∗

u in addition
to equation (4), it is reasonable to take into account different considerations such as positive
definiteness, smoothness, the rate of convergence to zero, etc.

For the simulation of a binary field ε(x), according to threshold model (1), it is necessary
to construct realizations of the homogeneous Gaussian random field u(x). Various numerical
methods are known to simulate Gaussian random fields. Below we give a brief information about
spectral models of the isotropic homogeneous Gaussian fields on the plane. Exactly these models
are presented in [10], and we used them in the numerical experiments described in the next
section.

A correlation function of any homogeneous isotropic field u(x1, x2) on the plane can be
written down in the form

Ku(x1, x2) = Eu(x1, x2)u(0, 0) = σ2

∞∫
0

J0

(
z
√
x2

1 + x2
2

)
G(dz),

where σ2 is variance of the field, J0 is the Bessel function of the first kind, G(dz) is a “radial”
spectral measure on [0,∞), G[0,∞) = 1. Further we assume that the measure G has the density:
G(dz) = g(z)dz. (A table of spectral densities and the corresponding correlation functions of
isotropic fields on the plane can be found in [9].)

Assume that 0 = Z0 < Z1 < . . . < ZN−1 < ZN = ∞. For an approximate simulation of the
isotropic homogeneous Gaussian field u(x1, x2) on the plane we consider the following spectral
model [9]:

uNM(x1, x2) = σ

N∑
n=1

cnM
−1/2

M∑
m=1

(−2 ln αnm)1/2

× cos [x1zn cos ωnm + x2zn sin ωnm + 2πβnm] , (5)

where

c2n = G[Zn−1, Zn) =

Zn∫
Zn−1

g(z)dz, ωnm =
π(m− γn)

M
,
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zn are random variables distributed in [Zn−1, Zn) according to the probability density g(z)/c2n, and
αnm, βnm, γn are independent random variables uniformly distributed in [0, 1]. Thus, the field u
is approximated by the spectral model uNM , which is the sum of N ×M harmonics with random
amplitudes and random frequencies. The randomness of frequencies ensures the coincidence of
correlation functions of the field u and its spectral model uNM . On the other hand, random
frequencies make the distributions of the field uNM to be non-Gaussian. However, a sequence of
the fields uNM is asymptotically Gaussian if NM → ∞ and max

n≤N
(c2n/M) → 0 (see [9] about the

convergence of spectral models).
The simulation algorithm provides the computation of the following arrays:

A(n,m) = σcn (−2(ln αnm)/M)1/2 , D(n,m) = 2πβnm,

B(n,m) = zn cos ωnm, C(n,m) = zn sin ωnm,

and the value of the field at the desired point (x1, x2) is calculated by the formula

uNM(x1, x2) =
N∑
n=1

M∑
m=1

A(n,m) cos [B(n,m)x1 + C(n,m)x2 +D(n,m)] .

Different modifications of the spectral model can be used to simplify the algorithm or to
reproduce specific properties of the field. Algorithmically simpler, but less flexible is model (5),
where cn = N−1/2 and zn are independent and distributed on the whole semi-axis [0,∞) with
probability density g(z). The choice of a version of the simulation algorithm and its parameters
(particularly, the number of harmonics) is specified by the intension to represent in detail the
corresponding parts of the spectrum.

In order to calculate the radial spectral density g(z) for isotropic spectral models on the
plane, a numerical approximation of the following representation is used

g(z) = z

+∞∫
0

rJ0(zr)K0(r)dr, K0

(√
x2

1 + x2
2

)
= K∗

u(x1, x2).

3 Simulation examples and additional remarks

The results of numerical experiments for broken clouds are presented in Figs.1-2. On the left,
there is a realization of the observed binary field obtained from a satellite image of clouds. On the
right, there is a realization of the isotropic threshold model constructed on the basis of statistical
analysis of the observed binary field by the method described in the previous Sections. The
satellite images were borrowed from the NASA Earth Observatory Site.

Fig. 3 presents the results of simulation of a binary texture generated by an image of
granules on the photosphere of the Sun. The source image was borrowed from NASA-Marshall
Solar Physics Site.
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To simulate Gaussian random fields on the plane, an isotropic spectral model of the form of
(5) was used with 2500 harmonics for the images presented in Figs. 1,3 and with 5000 harmonics
for the image presented in Fig. 2.

Figure 1: A satellite image of a 540km× 400km region of cyclonic clouds over the South
Atlantic Ocean (on the left), and results of simulation (on the right). The cloud fraction is 0.62.

Figure 2: A satellite image of open-cell clouds (480km× 215km) off the west coast of South
America (the upper image), and results of simulation (the lower image). The cloud fraction is

0.15.

Note, that the Gaussian threshold models are appropriate only for the simulation of ”ran-
dom” but not ”regular” fields (examples of unsuccessful simulation can be found in [16]). The
proposed binary models are based on the Gaussian field transformations. The Gaussian fields
have a maximum entropy among the fields with fixed moments of the first and second order. This
maximum entropy property, in a sense, is inherited by the threshold models. According to the
simulation results, for many of random binary fields, the threshold models can generate fairly
good replications reproducing the mean value and the correlation structure.

Finally, let us mention here that the described threshold method can be applied to anisotropic
and, even, to non-homogeneous random fields. In this case, one should construct numerical mod-
els of the corresponding anisotropic or non-homogeneous Gaussian functions (see, for example,
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Figure 3: Granules on the photosphere of the Sun: the source (upper) image of

40000× 40000km2 area, the corresponding bitmap (the left middle), a result of its simulation
(the right middle), the left lower corner of the bitmap (the left lower image), and its simulation

(the right lower image)
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[7, 9]). More complicated structures, like semi-binary fields (whose single-point marginal distri-
butions are mixtures of singular and continuous distributions) and vector-valued fields, can be
simulated as well [13, 14].
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Abstract

We consider a kinetic vehicular traffic flow (VTF) model with acceleration variable and
study evolution of the N -particle systems, which are governed by a homogeneous Boltz-
mann-like equation. For this model we obtain a linear integral equation of the second kind
and suggest to solve it by the statistical modeling method. The numerical results show that
the approach to simulation suggested by the authors is reasonable to apply to the vehicular
traffic problems. Moreover, authors managed to exclude from simulation an external to the
initial model parameter – a discrete time interval, which was used previously. It resulted in
a simpler simulation process.

Keywords: N -particle system, vehicular traffic flow, Monte Carlo method.

Introduction

This paper is devoted to the study and simulation of the vehicular traffic flow (VTF). This
study appears to be significant due to the constant growth of traffic in most parts of the world
nowadays. It results in the necessity for improvement of the transportation network, considering
the principles of its growth and distribution of load on its sections.

There are two main approaches to the VTF simulation – a deterministic and a stochastic
ones. A functional relation between some parameters, such as, for example, velocity and distance
between the cars in the flow, underlies the deterministic type of models. On the other hand, in
the frame of stochastic models, VTF is considered as a random process. Moreover, the models
describing the VTF can be further classified into three categories: micro-, macro-, and mesoscopic
ones (for more details see [5]).

Mesoscopic (or kinetic) models, a type of models we use in our paper, consider the VTF as
a random process. Moreover, these models regard the VTF as a gas, which consists of interacting
particles and every particle in this gas corresponds to a car. By an interaction of two cars we
understand an event when their state, determined by a number of parameters, is changed. There
are two main types of interactions in the kinetic models between the cars in the system, depending
on velocity of the leading car: acceleration and breaking. The possibility of overtaking is usually
introduced into the model by means of a probability, depending on the density of cars on the road.
The equations describing kinetic models are similar to the gas kinetic equations, in particular, to
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the Boltzmann equation. However, unlike the latter one, the momentum and energy conservation
laws do not hold in case of the VTF.

In this paper we develop our methods in the frame of the kinetic VTF model suggested
in [8]. A distinctive feature of this model consists in introducing of the acceleration variable into
the set of phase coordinates along with the space and velocity coordinates of the car. Such a
modification of the phase space allowed in [8] to apply this acceleration oriented model to a wider
range of the VTF types. This model adequately describes not only a constrained traffic but also
a higher car density regimes.

In order to verify approach to the study and simulation of the VTF suggested in this paper
further we will consider a single-lane traffic in a spatially homogeneous case without overtaking.
Note that the obtained results will be compared with a known analytical solution in case of
stochastic equilibrium (i. e. stationary distribution). We would like to underline that information
about the equilibrium velocity can be of a great importance, for example, in planning the road
capacity.

In the framework of [8], distribution of a single car with acceleration a and velocity v has the
probability density f(a, v, t), which solves the integro-differential equation of Boltzmann type:

∂f

∂t
(a, v, t) + a

∂f

∂v
(a, v, t) =

∫
ā,v̄,a′

[Σ(a|a′, v, ā, v̄,mf (t))f(a′, v, t)− (1)

− Σ(a′|a, v, ā, v̄,mf (t))f(a, v, t)] f(ā, v̄, t) dā dv̄ da′,

with the initial distribution f(a, v, 0) = f0(a, v). Here ā and v̄ are the acceleration and the velocity
of the leading car (leader), correspondingly. By a leader here and further on we understand the
car situated straight ahead to the current car, which we will call the follower. It is the leader
and the follower who interact. The function Σ(a|a′, v, ā, v̄,mf (t)) = Σ(a′ → a|v, ā, v̄,mf (t)) is a
weighted interaction rate function and it has the following form

Σ(a|a′, v, ā, v̄,mf (t)) =

∞∫
hmin

σ(a|h, a′, v, ā, v̄)Q(h, a′, v, ā, v̄)D(h|a′, v,mf (t)) dh. (2)

Here we used the notations:
hmin is the minimal distance between two cars at rest, (the mean length of a car);
σ(·) is the probability density of the follower’s acceleration in case the interaction between the
cars with states (a′, v) and (ā, v̄) takes place at distance h;
Q(·) is the interaction rate, it depends on a current microscopic state of the interacting car pair
and the distance h between them;
D(·) is a conditioned probability density of the distance h. It depends on the follower’s state
(a′, v) and a vector mf (t), which value is determined by some moments of the solution f (such
as mean velocity, velocity scattering, mean acceleration etc.). Further on the function D(·) will
also depend on the car density K.
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We should note that in this model, suggested in [8], the car acceleration a is added to the
phase coordinates as an independent variable in contrast to the gas dynamics. As a result of
this modification there are only acceleration jumps (no velocity jumps as in other kinetic models)
produced by the pairwise interactions in the system. Moreover, after the interaction takes place
the leader does not change its acceleration. Therefore the function Σ(·) is not symmetric. We
suggest to designate the interacting cars as ordered pairs (i, j), where the first number stands for
the follower and the second one stands for the leader.

This paper aims at constructing the basic integral equation of the second kind. The latter
equation will enable us to use well-developed techniques of the weight statistical modelling (see
e. g. [6]) for estimating the functionals of solution to the equation (1).

1 Basic integral equation of the second kind

The simulation process of stochastic kinetics of the N -particle system is a homogeneous Markov
chain in which transitions are due to elementary pair interactions. Note that we deliberately do
not use a gas dynamic term collision because it has evidently a confusing meaning in case of the
vehicular traffic flow.

The integral equation, which describes evolution of the particle (car in this case) ensemble,
uniquely defines all the transition densities in the Markov chain. It means that the distribution
density of time intervals between elementary interactions in the system can also be determined
using this integral equation.

In order to construct the required basic integral equation of the second kind we intro-
duce a phase space Λ of velocities and accelerations for the ensemble of N cars: (A, V ) =
(a1, v1, . . . , aN , vN) ∈ Λ. Let us consider the distribution density of the N -particle system
P (A, V, t). Further we omit the dependence of the function Σ(·) on the vector mf (t) without
loss of generality. In this case the function P (A, V, t) satisfies a master equation (see [3]) of the
form

∂P

∂t
+ A

∂P

∂V
=
∑
i6=j

∫
Σ(ai|a′i, vi, aj, vj)P (A′

i, V, t)− Σ(a′i|ai, vi, aj, vj)P (A, V, t)

N − 1
da′i, (3)

here A′
i = (a1, . . . , ai−1, a

′
i, ai+1, . . . , aN). To complete the problem statement we add an initial

condition P (A, V, 0) = P0(A, V ) as well as boundary conditions to the equation (3). The latter
conditions should eliminate both negative velocities and ones exceeding some maximum value
Vmax: P (A, V, t) = 0 if there is such a number i that either condition (vi = 0 and ai < 0) or
condition (vi = Vmax and ai > 0) is fulfilled.

Let us now rewrite the equation (3) in the form

∂P

∂t
(A, V, t) + A

∂P

∂V
(A, V, t) + υ(A, V )P (A, V, t) = JN(A, V, t), (4)

here we used the following notations: JN(A, V, t) =
∫
F (A′ → A|V )P (A′, V, t) dA′,
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F (A′ → A|V ) = 1
N−1

∑
i6=j

Σ(a′i → ai|vi, aj, vj) ·

{∏
m6=i

δ(a′m − am)

}
;

υ(A, V ) = 1
N−1

∑
i6=j

υ(i,j); υ(i,j) =
∫

Σ(ai → a′′i |vi, aj, vj) da′′i .

Here δ(·) is a Dirac delta function. Taking into account the initial conditions and parametric
dependence between velocity, acceleration and time V = V ′ + A(t − t′), we can integrate the
equation (4) with respect to time.

Let us consider in our system the interaction density Φ(A, V, t) = υ(A, V )P (A, V, t) and the
function Ψ(A, V, t), for which the following integral relation holds

Φ(A, V, t) =

t∫
0

∫
Kt(t

′ → t|A, V ′)KV (V ′ → V |A, t− t′)Ψ(A, V ′, t′) dV ′ dt′. (5)

Then Ψ(A, V, t) satisfies the equation Ψ = K1Ψ + Ψ0 with a free term Ψ0(A, V, t) = δ(t)P0(A, V )
and the kernel

K1(A, V, t|A′, V ′, t′) = Kt(t
′ → t|A′, V ′)KV (V ′ → V |A′, t− t′)KA(A′ → A|V ).

Note that the kernel K1 is a product of distribution densities of new values t, V , A:

Kt(t
′ → t|A′, V ′) = Θ(t− t′)υ(A′, V ′ + A′(t− t′))Eυ(A

′, V ′, t, t′),

KV (V ′ → V |A′, t− t′) = δV (A′, V ′, t, t′), KA(A′ → A|V ) = F (A′→A|V )
υ(A′,V )

,

here we used the following notations Eυ(A, V
′, t, t′) = exp{−

t∫
t′
υ(A, V ′+A(τ−t′))dτ}, δV (A, V ′, t, t′) =

N∏
m=1

δ(vm − v′m − am(t− t′)), and Θ(·) is a Heaviside step function.

Thus, the transition in our Markov chain consists of several elementary transitions in the
following order: (A′, V ′, t′) → (A′, V ′, t) → (A′, V, t) → {π} → (A, V, t).

Let us denote Φ(A, V, t) = υ(A, V )P (A, V, t) =
∑
π

υ(π)
N−1

P (A, V, t) =
∑
π

FΦ(π,A, V, t), here

the summation is performed over indices π = (i, j) of all possible ordered pairs of cars in the
system. The function FΦ(·) here is related to the function FΨ(·) similarly to the formula (5).

Let us now introduce the number of an interacting pair π to the set of phase coordinates
(A, V, t) of our system (see [7] for more details). Further we will consider Markov chain in this
modified phase space Z× [0, T ] 3 (Z, t) = (π,A, V, t).

The initial state Z0 = (π0, A0, V0) (i. e. the point of the first interaction in the system at
t0 = 0) in our modified phase space is simulated according to the distribution density P0(A, V ) ·
δ(π0). Note, that π0 can be chosen arbitrary since it does not affect the distribution of the next
interaction. The density function of the point (Z0, t0) is denoted by F0(Z, t) = δ(t)·P0(A, V )·δ(π0).

The mentioned above modification results in decomposition of the phase space according to
the pair number π and makes it possible to derive a new basic integral equation of the second
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kind for the function F (Z, t) = FΨ(Z, t): F = KF + F0. We can rewrite the latter equation as
follows

F (Z, t) =

t∫
0

∫
Z

F (Z ′, t′)K(Z ′, t′ → Z, t) dZ ′ dt′ + F0(Z, t). (6)

Here dZ = dV dAdµ(π) and integration with respect to µ means the summation over all possible
ordered pairs (i, j). The kernel K of the equation (6) is a product of transitional densities
K(Z ′, t′ → Z, t) = Kt(t

′ → t|A′, V ′) ·KV (V ′ → V |A′, t − t′) ·Kπ(π) ·Ka(a
′
i → ai|π = (i, j), V ) ·{∏

m6=i
δ(a′m − am)

}
, i. e. it contains δ-functions as factors only.

Despite the presence of general functions, it is possible to treat K as an operator from
L1(Z× [0, T ]) to L1(Z× [0, T ]) (see [6]). Moreover, due to the finiteness of T, the norm ‖K‖L1

< 1

and the Neumann series F (Z, t) =
∞∑
n=0

KnF0(Z, t) =
∞∑
n=0

Fn(Z, t) for the integral equation (6)

converges with respect to the L1 norm. Note, that Fn(Z, t) is a distribution density of the nth
interaction in the system. This fact makes it possible to construct weight estimates using the
integral equation (6) rather than the equation for the function Ψ.

The transition of the system from the state Z ′ to the state Z is performed as follows: 1.
the instant t of the next interaction in the system is chosen according to Kt;
2. the velocities of all cars are calculated at time t according to KV ;
3. the pair number π = (i, j) of the interacting cars is chosen by the probabilities p(π) = p(i, j) =
υ(i,j)/υ(A

′, V )(N − 1);
4. new accelerations ai of the car with number i is changed according to Ka(a

′
i → ai|π, V ) =

Σ(a′i → ai|vi, aj, vj)/υ(i,j); the accelerations of other cars do not change.

2 Estimation of functionals

Usually when solving the equation (1) the functionals Ih(T ) of one-particle distribution function
f in following form

Ih(T ) =
∫ ∫

h(a1, v1)f(a1, v1, T ) da1 dv1 =
∫
Λ

h(a1, v1)P (A, V, T ) dA dV

are of interest. Let us denote H(A, V ) = 1
N

N∑
i=1

h(ai, vi). Then, by analogy with [7], we use the

relation between the functions P , Ψ, F and obtain a formula for the functional Ih(T ) of solution
to the equation (6):

Ih(T ) =
∫
Z

T∫
0

H(A, V + A(T − t′))Eυ(A, V, T, t
′)F (Z, t′) dZ dt′.
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Since we have at our disposal an integral equation of the second kind and a Markov chain
corresponding to it, we can apply a well-developed techniques of weight statistical simulation
(see [6], e. g.). This enables us to study dependence of our model on various parameters, estimate
parametric derivatives and reduce computational costs of statistical methods (e. g. with the help
of the majorant frequency principle [2] and the value modelling algorithms [4]).

Let us introduce a Markov chain {Zn, tn}, n = 0, 1..., κ, where κ is the number of interaction
preceding the passage of the system beyond the time boundary T , with the normalized transition
density P (Z ′, t′ → Z, t):

P = P1(t|A′, V ′, t′)P2(V |A′, V ′, t)P3(π|A′, V, t)P4(ai|π,A′, V, t) ·

{∏
m6=i

δ(a′m − am)

}
,

and the normalized distribution density P (0)(A, V )δ(t)δ(π0) of the initial state (Z0, t0). We define
random weights Qn by the formulas

Q0 = P0(A0,V0)

P (0)(A0,V0)
, Qn = Qn−1Q(Zn−1, tn−1;Zn, tn),

Q(Z ′, t′;Z, t) =
{
Kt(t′→t|A′,V ′)
P1(t|A′,V ′,t′)

}{
KV (V ′→V |A′,t−t′)

P2(V |A′,V ′,t)

}{
Kπ(π)

P3(π|A′,V,t)

}{
Ka(a′i→ai|π=(i,j),V

P4(ai|π,A′,V,t)

}
.

For numerical estimation of the functional Ih(T ) we can use the collision estimator ξ or absorption
estimator η, which are functionals of the Markov chain trajectory [6, 7]:

ξ =
κ∑

n=0

QnH̃(An, Vn, T − tn), η = QκH̃(Aκ,Vκ,T−tκ)
q(Aκ,Vκ,tκ)

, q(A, V, t′) = 1−
T−t′∫
0

P1(τ |A, V, t′) dτ.

Theorem 1 ([7]). If P (0)(A, V ) 6= 0 for P0(A, V ) 6= 0; and Q(Z ′, t′;Z, t) < +∞ for Z ′, Z ∈ Z,
t′, t < T , then Eξ = Ih(T ). If, additionally, q(A, V, t′) > 0 for (A, V ) ∈ Λ and t′ < T , then
Eη = Ih(T ). Moreover, if the weights Qn are uniformly bounded and H ∈ L∞, then there exists
such T ∗ that Vξ < +∞ and Vη < +∞ for T < T ∗.

3 Numerical results

The numerical results in this section show the efficiency of transition to the basic integral equation
in VTF problems with distance threshold interaction. Moreover, we succeeded not to use in the
simulation procedure an external discrete time parameter. In [1] we successfully tested two types
of interactions (maxwellian and hard sphere) for a spatially homogeneous nearly free stationary
VTF. In this paper as a test for the algorithm described at the end of the Sect. 1 we consider a
distance oriented interaction model [9] with the following parameters: Q = υ(π) = 1/T ,

D(h) = 1
H̄−hmin

exp
{
− h−hmin

H̄−hmin

}
Θ(h− hmin), H̄ = 1/K,

σ(a|h, v) = Θ(h−H(v)) · δ(a− a0) + Θ(H(v)− h) · δ(a+ a0)
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and a simple distance interaction threshold H(v) = α · v + hmin. Taking these functions into
account we find the form of the weighted interaction density (2)

Σ(a′i → ai|vi, aj, vj) = p
T δ(a+ a0) + (1−p)

T δ(a− a0), p =
H(vi)∫
hmin

D(h) dh.

For such coefficient Σ(·) the solution to the equation (1) is given by (see [9]):

f(v) = 1
a0T exp

{
− v
a0T − 2βe

− v
a0T β

}(
e−2β + β(2β)−βγ(β, 2β)

)−1
, β = H̄−hmin

αa0T ,

here γ(β, 2β) is an incomplete gamma function.

Velocity distribution. First we estimate the velocity distribution in the flow. In this case we
choose functions h(a, v) equal to indicators of some partitioning of the velocity interval 0 ≤ vi ≤
Vmax = 40 m/s. As an initial velocity distribution we use a mixture of two normal distributions
with the means V1 = 15 m/s, V2 = 25 m/s and the variance σ0 = 1 m/s. Initial accelerations are
equal to 0. We simulated M = 103 trajectories of our system consisting of N = 103 cars. The
numerical estimate for evolution of the velocity distribution is shown in Fig. 1 (K = 0.025 m−1,
T = 2.5 s, hmin = 6.5 m, a0 = 0.3 m/s2, α = 1.2 s).

Figure 1: Numerical estimate for evolution of the velocity distribution f(v, T ).
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Fundamental diagram. Next we consider a numerical estimation of the traffic density KV
dependence (here V is the mean velocity which is estimated with the help of corresponding
function h(a, v) = v) on the car density K which is called a fundamental diagram. Fig. 2 shows a
typical shape of this curve for the following parameters: T = 2.5 s, hmin = 6.5 m, a0 = 0.1 m/s2,
α1 = 1.2 s, α2 = 1.5 s, α3 = 1.8 s. For some value of K there is a change from a free flow (with
no dependence on α) to an interaction oriented flow (with strong dependence on α). For the
latter flow cars can not drive in their own way, but they should agree their velocity with the flow
velocity. Note that low values of α correspond to a more aggressive driver, while high values of

Figure 2: Fundamental diagram (M = 102, N = 102): 1 – α1, 2 – α2, 3 – α3.

this parameter stand for a more conservative driving manner.
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Abstract

We investigate stochastic models of series of price increments for trade algorithms. The
models are constracted based on stochastic differential equations. The estimates of unknown
parameters of the model of price increments with jumps are obtained by using the method
of moments.

Keywords: price increments, probability density, estimates of parameters.

Introduction

Price series models in the form of stochastic differential equations (SDEs) are widely used in finan-
cial mathematics because such models are flexible and are able to reproduce various hypothetical
market situations with a proper choice of parameters. A simple model of price increments of a
financial instrument is obtained by solving a linear SDE with additive noise on a uniform time
grid. This model is generalized to price series with jumps on random intervals between these.
In real stock exchange, such jumps are observed, for instance, with the opening of some trade
sessions, or upon receiving unexpected pieces of news of economic or political character. Such
model of price increments is an approximation to the solution of a linear SDE with a Poisson
component on a uniform time grid [2]. Estimates of the unknown parameters of this model are
computed based on observations of price increments with simple formulas obtained by the method
of moments.

Price series models are used in the theory of trade algorithms. The main characteristic of
a trade algorithm is its total profitability. The complexity of analysis of this random sequence
is connected with unknown distribution laws for its two components: the number of buy-sell
transactions per given number of the algorithm steps and the profitability of the algorithm at
each step. Under the assumption of the stationary nature and m-dependence of a sequence of
price increments, it is possible to establish the asymptotic normality of the total profitability
of the trade algorithm. The usage of a stationary model for a series of price increments allows
one to reduce the analysis of the mean of the number of transactions to analysis of the constant
probability of transaction closing [1].
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1 Analysis of the price series model

The easy-to-use stochastic model of a price series is given in a recurrent form [1]

Pn+1 = Pn exp(rn+1),

where
rn+1 = ρrn + σ

√
1− ρ2ξn+1, n = 0, 1, 2, . . . , r0 = σξ0. (1)

Here ξn+1 are mutually independent and independent of rk, k ≤ n, random values having the
same symmetric distribution with zero mean and unit variance, ρ is the correlation coefficient of
two consecutive price increments, σ is the price volatility, |ρ| < 1, σ > 0.

The Markov sequence of price increments given according to (1) is homogeneous with zero
mean and constant variance σ2. If random values rn have the same one-dimensional distribution,
it is stationary. In this case fr(x) ≡ (1/σ) fξ(x/σ), where fr(x) and fξ(x) are the probability
densities of the random values rn and ξn, respectively. The random sequence {rn} is stationary if
fξ(x) is a normal probability density. The normal random sequence (1) for ρ > 0 on a uniform
time grid with step h is the solution of a linear SDE with additive noise

dr(t) =
(
(ln ρ)/h

)
r(t)dt+

√
−2(ln ρ)/h σ dw(t), r(0) = r0.

The following theorem is valid for stationary random sequence (1).
Theorem. Let ξn, n = 0, 1, 2, . . ., be mutually independent continuous random values having

the same symmetric distribution with zero mean, unit variance, and finite E|ξn|2+δ for some δ > 0.
If random values rn defined according to (1) are equally distributed for all n and all ρ ∈ [0, 1),
then the probability density fξ(x) is normal.

Proof. Let there exists a nonnormal probability density fξ(x) where the random values rn
satisfy the requirements of the theorem. Form the recurrent sequence

s0 = σξ0, s1 =
1√
2
s0 +

σ√
2
ξ1, . . . , sn =

√
n√

n+ 1
sn−1 +

σ√
n+ 1

ξn, . . . . (2)

Since random sequence (2) is obtained from (1) by replacing ρ in the latter one by ρn =√
n/
√
n+ 1 for each n, then sn and rn are equally distributed, i.e., fs(x) ≡ fr(x) independently

of n. On the other hand, (2) is reduced to the form

sn = σ√
n+1

n∑
i=0

ξi

and by the central limit theorem the probability density fs(x) converges for n→∞ to the normal
one with the parameters (0, σ2). The contradiction obtained shows that the probability density
fξ(x) can be only normal. Theorem is proved.

Remark. Theorem does not state that there are no random values rn with the probability
density fr(x) being nonnormal and the same for all n and some particular values of the parameter
ρ 6= 0 in (1); however symmetric distributions convenient for practical usage in a price series
model do not satisfy this requirement. For example, for the Laplace distribution with σ = 1 we
have
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fξ(x) = 1√
2
e−

√
2|x|, −∞ < x <∞

and the random value r1 has the probability density

fr1(x) = 1√
2(µ2−ρ2)

(
µ e−

√
2
µ
|x| − |ρ| e−

√
2

|ρ| |x|
)

where µ =
√

1− ρ2, which does not relate to the Laplace distribution for any values of ρ, except
for ρ = 0. The same is valid for the uniform distribution whose convolution, for example, for
ρ = µ = 1/

√
2 gives a Simpson (triangular) distribution.

For stationary Markov sequence (1) the probability density fξ(x) has to satisfy the integral
equation

fξ(y) = 1
µ

∞∫
−∞

fξ

(
y−ρx
µ

)
fξ(x)dx.

This is valid for the normal distribution of random values ξn.

2 Price series model with jumps

Suppose that the price increment undergoes jumps at random times. The time interval between
neighbouring jumps is distributed in accordance with an exponential law with intensity λ

f(τ) = λe−λτ , τ ≥ 0, (3)

and the value of jump is distributed in accordance with a normal law with zero mean and variance
s2. Then instead of stationary normal random sequence (1) we obtain

rn+1 = ρrn +
√

1− ρ2
(
σξn+1 + sIn+1ηn+1

)
, n = 0, 1, 2, . . . , r0 =

√
σ2 + ps2ξ0. (4)

Here {ξk} and {ηk} are sequences of mutually independent standard normal random values, In+1

are random indicators of jumps independent of each other, and also of ri, i ≤ n, {ξk}, and {ηk}.
We have EIn+1 ≡ p, where p is the probability of a jump on the half-interval (tn, tn+1], and in
view of (3), p = 1− e−λh. The model of price increments specified in (4) according to [2] is an
approximation to the solution of the linear SDE with a Poisson component. Specifically, between
neighbouring nodes tn and tn+1 = tn + h on a given uniform time grid, there may appear at most
one jump, and that jump is fixed at tn+1. A random sequence of form (4) is a homogeneous
Markov sequence with zero mean and constant variance Dr = σ2 + ps2.

Now we determine a transition probability density for the Markov sequence in (4). Consider
the following random values:

βn = σ
√

1− ρ2ξn, γn = s
√

1− ρ2Inηn.

The probability density fβ(x) of the random value βn is normal. The random value γn is normal
with probability p and is zero with probability 1− p. For the probability density of γn, therefore,
we have
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fγ(x) = p fs(x) + (1− p) δ(x),

where

fs(x) = 1√
2π(1−ρ2)s

e−x
2/(2(1−ρ2)s2),

and δ(x) is the delta function. The probability density of a sum of independent random values,
βn + γn, is determined by the convolution of the densities

fβ+γ(x) = p

∞∫
−∞

fs(τ)fβ(x− τ) dτ + (1− p)

∞∫
−∞

δ(τ)fβ(x− τ) dτ = p f1(x) + (1− p) fβ(x), (5)

where

f1(x) = 1√
2πσ1

e
− x2

2σ2
1 , fβ(x) = 1√

2πσ2
e
− x2

2σ2
2 ,

σ2
1 = σ2

2 + (1− ρ2)s2, σ2
2 = (1− ρ2)σ2. (6)

Thus, a distribution of the sum βn + γn of random values is a mixture of normal distributions.
For the transition density of sequence (4), in view of (5), we obtain

f(y|x) = p f1(y − ρx) + (1− p) fβ(y − ρx). (7)

3 Estimation of parameters of the price series model

A multidimensional probability density of the Markov sequence {r0, r1, . . . , rN} is the following:

f(y0, y1, . . . , yN) = f0(y0)
N−1∏
n=0

f(yn+1 | yn), (8)

where f0(y0) is the probability density of a random value r0, and the transition density f(yn+1 |
yn) is determined in accordance with (7). A maximum likelihood estimate with observations
{r0, r1, . . . , rN} for the parameter vector Θ = (ρ, σ2

1, σ
2
2, p)

T is that value of the vector at which the
likelihood function L(Θ) = ln f(r0, r1, . . . , rN) reaches maximum. Assuming that the probability
density f0(y0) is independent of Θ, from (7) and (8) we obtain

L1(Θ) =
N−1∑
n=0

ln
(
pf1(rn+1 − ρrn) + (1− p)fβ(rn+1 − ρrn)

)
. (9)

To find the maximum likelihood estimate for the vector of parameters Θ, the four-variable function
in (9) must be maximized and inspected for having a global maximum, which is rather difficult
and does not generally lead to satisfactory results. Even if there is only one unknown parameter
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p, an algebraic equation dL1/dp = 0 of order N − 1 must be solved for p. The method of
approximate estimation in this case involves finding an estimate that is asymptotically equivalent
to a maximum likelihood one [3].

Thus, another more convenient method should be used to estimate unknown parameters of
model (4). For this problem, the method of moments can be applied. For the parameter ρ in (4),
we have Ern+1rn = ρEr2

n for any n. Replacing the mathematical expectations in this equality by
suitable sample moments in one realization of the random sequence {rn}, we obtain the estimate

ρ̂ =
N−1∑
n=0

rn+1rn

/N−1∑
n=0

r2
n. (10)

With independent random values rn+1 − ρrn, in accordance with their probability density given
by (5), for the second, fourth, and sixth moments we have

E(rn+1 − ρrn)
2 = pσ2

1 + (1− p)σ2
2,

E(rn+1 − ρrn)
4 = 3(pσ4

1 + (1− p)σ4
2), (11)

E(rn+1 − ρrn)
6 = 15(pσ6

1 + (1− p)σ6
2).

In the same way as we did in deriving estimate (10), from (11) we obtain the following system
for the three remaining unknown parameters:

pσ2
1 + (1− p)σ2

2 = S1, (12)

pσ4
1 + (1− p)σ4

2 = S2, (13)

pσ6
1 + (1− p)σ6

2 = S3, (14)

where

S1 = 1
N

N−1∑
n=0

(rn+1 − ρ̂rn)
2, S2 = 1

3N

N−1∑
n=0

(rn+1 − ρ̂rn)
4, S3 = 1

15N

N−1∑
n=0

(rn+1 − ρ̂rn)
6.

Substituting p from (12) into equations (13) and (14), after transformations, we arrive at the
following system of two equations:

S1(σ
2
1 + σ2

2)− σ2
1σ

2
2 = S2, σ2

1σ
2
2 = (S1S3 − S2

2)/(S2 − S2
1).

Its solution is

σ̂2
1,2 =

S3 − S1S2 ±
√
S2

3 + 4S3
2 + 4S3

1S3 − 3S2
1S

2
2 − 6S1S2S3

2(S2 − S2
1)

, (15)

where “+” is chosen for σ̂2
1 since σ2

1 > σ2
2 in accordance with (6). In view of (15), from (12)

and formulas (6) we derive estimates

p̂ =
S1 − σ̂2

2

σ̂2
1 − σ̂2

2

, σ̂ =
σ̂2√

1− ρ̂2
, ŝ =

√
σ̂2

1 − σ̂2
2√

1− ρ̂2
, (16)
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and λ̂ = −(1/h) ln(1− p̂).
Remark. For the price increment model without jumps in (1) (i.e., with p = 0), (12)

immediately implies σ̂2 = S1/(1−ρ̂2). In this case the estimates σ̂ and ρ̂ in (10) are also maximum
likelihood estimates, which maximize function (9) for variables σ and ρ.

The parameter estimates were computed based on observations for one trajectory of price
increments by the statistical simulation algorithm presented in [2]. An example of such cal-
culations is presented below. The number of observations on a uniform time grid is N = 105,
which corresponds to about 10 months in real stock exchange. A time grid step is h = 1(minute).
Parameter values are

ρ = 0.1, σ = 0.001, s = 0.01, p = 0.05.

Parameter estimates by formulas (10) and (16) are

ρ̂ = 0.099168, σ̂ = 0.0011042, ŝ = 0.010289, p̂ = 0.046480.

Under the decreasing values of the jump probability p and the ratio s/σ, estimation errors of the
parameters p and s increase.

In the future, we intend to investigate properties of the above parameter estimates.
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Abstract

In the paper the results of modeling of radiation heat transfer in systems of dust proto-
planetary clouds with the Monte Carlo method using an algorithm of temperature correction
[1] with the NMC code are presented. The results of a series of standard calculations are
presented. Also within the bounds of the paper an attempt is made to apply the mentioned
modeling method with use of external iterations to planet atmospheres by means of intro-
ducing a gas component into the modeled system. The results of calculations of altitude
distribution of temperature in a simplified model of Venus’ atmosphere without taking into
account convection and reradiation with the gas component are presented. The obtained
results show a qualitative correspondence with experimental data.

Keywords: Radiation heat transfer, dust circumstellar clouds, Venus, Monte Carlo
method.

The problem of modeling radiation heat transfer in dust and gas-dust media in the presence
of an external radiation source is one of the main problems in modeling the radiation balance in
stellar and planetary atmospheres and dust circumstellar clouds. The Monte Carlo method has
an important place among numerical methods use for solving this problem. This is due to its ease
of use in systems with geometry different from spherical or flat. In the last two decades several
algorithms were introduced for the solution of the problem of temperature balance in circumstellar
dust clouds with the Monte Carlo method. Earlier versions of the algorithms required an iteration
approach and, as a consequence, multiple modeling of trajectories. An algorithm proposed later
in the paper [2] reduced the iterative process to solving balance equations. In 2001 the so-
called algorithm of temperature correction was proposed [1], which requires neither solving of the
balance equation nor external iterations for media, optical properties of which are not dependent
on temperature. In the current paper an attempt is undertaken to implement this algorithm for
solving the problem of radiation balance in a planet atmosphere.

Modeling was conducted with the NMC code, based on which an algorithm of temperature
correction was realized and validation was carried out on the example of standard calculations.
The application of this algorithm without significant changes to the case of a dense atmosphere
required certain nonphysical assumptions which led to a considerable difference of obtained results
from experimental data; however this did not prevent the obtainment of qualitatively correct
properties of the temperature dependence.
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Let us briefly discuss the application of the algorithm of temperature correction to a system
with luminosity Lin a unit time interval ∆t, surrounded with a dust medium with absorption
coefficient kabsν and scattering coefficient kscaν for a unit of mass. Let us model the source’s radiation
in the form of Nγ parcels such that the energy of a single parcel will be Eν = L∆t/Nγ. The
frequency spacing of a parcel dν is chosen according to a distribution density corresponding to
the source’s spectrum. Let’s say that as a result of modeling in the volume i, ni parcels were
absorbed so that the full absorbed energy in this volume is Eabs = niEγ. Supposing that the
medium in a volume i is in a local thermodynamic equilibrium and is radiation according to the
law

jν = kabsν ρBν (T ) (1)

where Bν (T )is the Planck function, the expression for the amount of radiated energy may be
written out as

Eem
i = 4π∆t

∫
dVi

∫
ρkabsν Bν (T ) dν = 4∆t

∫
kp (T )σT 4ρdVi (2)

where ρ is the density of matter in the volume i and kp (T ) = π
∫
kabsν Bν (T )dν

/
σT 4. Choosing

the volume i sufficiently small that in it the temperature Ti may be considered constant, we have

Eem
i = 4∆tkP (Ti)σT

4
i mi, (3)

where mi is the mass of matter in a volume. Equating the absorbed and radiated energies we
obtain an equation for the temperature of the volume i after absorption

σT 4
i =

niL

4NγkP (Ti)mi

. (4)

The value kP (Ti)σT
4
i grows steadily with the growth of Ti. The solving of equation (4)

at each collision event presents a considerably labor-intensive problem, however with kabsν not
dependent on temperature it’s possible to tabulate the solutions of the mentioned equation for
different values of ni/Nγ, mi , kabsν using multi-dimensional interpolation directly during the
computation process.

Knowing the temperature after an absorption event we have to determine the probability
density according to which we shall choose the frequency of a reradiated portion of energy. The
frequency is defined by the difference in energy fluxes emitted by a cell before and after an
absorption event

∆jν = jν − j′ν = kabsν (Bν (Ti)−Bν (Ti −∆T )) , (5)

where ∆T is the temperature increase as a result of absorption. Choose Eγ sufficiently small so
that the temperature increase is marginal, then

∆jν ≈ kabsν ∆T
dBν

dT
. (6)
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Normalizing to a unit, we have

dPi
dν

=
kν
K

(
dBν

dT

)
T=Ti

, (7)

where dPi/dν is the probability to emit a parcel with frequency in the interval [ν, ν + dν], and
K =

∫∞
0
kabsν (dBν/dT ) dν is the normalizing coefficient. In the process of calculation the initial

temperature distribution in small volumes {Ti}iteratively relaxes to the sought for distribution.
The initial values of {Ti}must be nonnegative, there are also certain restrictions on the difference
of the initial distribution from the final for a given value of Nγ, the mentioned restrictions are
considered thoroughly in the work [4]. An algorithm was realized using the NMC code. Validation
of the algorithm was conducted (fig. 1) on benchmarks proposed in the works [1,3].

Figure 1: The result of calculation of vertical temperature structure at a distance of
R = 200AUin a system with optical thickness τ = 104, benchmark P04, work [3].

When the calculations were conducted the assumptions were stipulated that a sufficiently
small volume is an atmosphere is in a local thermodynamic equilibrium and that in the volume
absorption is made by gas and aerosol and emission – only by aerosol. Convection and Rayleigh
scattering are also not taken into account. It’s necessary to note, however, that a similar algo-
rithm for solving of the problem may be constructed for systems not conforming to mentioned
restrictions, but it will require solving a dynamical problem and a considerable complication of
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the process of solving the equation (4). Apart from this the conditions of energy balance will no
longer take place in independent small volumes, but will be true for the system in whole.

Figure 2: The result of calculating the vertical profile of temperature. The measurement results
of the pioneer probe are shown in solid line.

The atmosphere is represented in the form of a hemisphere layer 90 km thick with a given
pressure profile illuminated from the pole by a radiation flux with a spectrum corresponding to the
Planck spectrum at a temperature of 5780 K. The atmosphere consists of gases and aerosol. The
modeling algorithm is supplemented with an external iteration by temperature. It’s connected
with the fact that the attenuation coefficient in gas is strongly dependent on temperature and after
each calculation of temperature we have to conduct a re-calculation of the attenuation coefficient
in gas and concentration of gas molecules. Using formally the dependence of kabsν (Ti) may in
some cases lead to divergence while solving the equation (4) as well as while modeling the free
path length. Apart from external iterations the character of absorption of energy in atmosphere
layers also changes. A continuous gas absorption is introduced, so that a part of the energy is
absorbed even in the absence of interactions in a layer. While propagating a path of length lthe
energy absorbed by the gas will be equal to Ein

γ −Eout
γ = Ein

γ

(
1− exp(−Kabs

ν l)
)
, where Kabs

ν is the
monochromatic attenuation coefficient for gas. The presence of this procedure leads to a necessity
to discard trajectories with a too small weight. The equation (4) also changes: in the j-th step by
temperature the value of kabsν is considered to be constant, kabsν = kabsν (Tj−1).The remaining steps

429



Statistical Simulation of Natural Processes

of the algorithm remain the same thanks to the absence of reradiation by the gas component and
local thermodynamic equilibrium.

Besides the changes mentioned above, optimization of the algorithm was realized using an
asymptotic solution of the Milne problem [5] for the case of not much transparent media proposed
in [6,7] based on the “value-modeling” theory. Modification allowed reducing the computation
time by 30%. The data about Venus’ atmosphere composition as well as the data about the
fractions of gas, pressure, composition, form and size of aerosol particles were taken from [5]. The
optical properties of aerosol were calculated according to Mie theory, the refraction coefficient of
the mixture of sulfuric acid and water were taken from the database HITRAN [6]. The parameters
of gas were calculated with the help of multilinear calculations using the databases HITRAN and
HITEMP [7]. The data obtained were compared to results from other codes.

In fig.2 the result of calculation of the vertical profile of temperature in the atmosphere is
presented.

The obtained dependence shows higher temperature values with respect to the experiment,
this is explained by the absence in the model of a reradiation channel connected to the radiation
from gas, which makes a significant contribution due to high temperatures. Regretfully intro-
ducing this process into the considered model leads to the necessity of solving a non-stationary
problem. Effects connected to convection are also not taken into account.

The work has been done under the financial support of the RFFR (grant 09-01-00035-a),
Projects of RAS (2.4) and DMS of RAS (1.3.2).
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