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PREFACE

The Second International Workshop “Applied Methods of Statisti-

cal Analysis. Applications in Survival Analysis, Reliability and Quality
Control” -
AMSA’2013 is organized by Novosibirsk State Technical University.
The purpose of our Workshop is to organize interesting meeting on dif-
ferent statistical problems of interest. This seminar aims to provide an
overview of recent research in the areas of survival analysis, reliability,
quality of life, and related topics, from both statistical and probabilistic
points of view. The great attention is paid to applications of statistical
methods in survival analysis, reliability and quality control.

The First International Workshop “Applied Methods of Statistical
Analysis. Simulations and Statistical Inference” - AMSA’2011 took
place in Novosibirsk State Technical University, Novosibirsk, Russia.
This city is very well known for its fundamental contributions to the de-
velopment of theory of the probability, mathematical statistics, stochas-
tical processes and statistical simulation. The meeting had focused on
recent results in applied mathematical statistics and primarily on test-
ing statistical hypotheses, statistical methods in reliability and survival
analysis, nonparametric methods, robust methods of statistical analy-
sis, statistical simulation of natural processes, simulation and research
of probabilistic regularities, application of statistical methods.

The Workshop proceedings would certainly be interesting and useful
for specialists, who use statistical methods for data analysis in various
applied problems arising from engineering, biology, medicine, quality
control, social sciences, economics and business.

Boris Lemeshko
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Application of Nonparametric Goodness-of-Fit
Tests for Composite Hypotheses
in Case of Unknown Distributions of Statistics

Avrisa A. GORBUNOVA, BORIS YU. LEMESHKO, STANISLAV B. LEMESHKO,
AND ANDREY P. ROGOZHNIKOV
Department of Applied Mathematics, Novosibirsk State Technical University,
K.Marx pr., 20, Novosibirsk, Russia
e-mail: gorbunova.alisa@gmail.com, lemeshko@fpm.ami.nstu.ru

Abstract

While testing composite hypotheses when a scalar or vector parameter of
the probability distribution is calculated using the same sample, nonparametric
Kolmogorov, Cramer-von Mises-Smirnov and Anderson-Darling goodness-of-
fit tests lose their distribution freedom. When testing composite hypotheses
conditional distribution of the test statistic depends on several factors, even
the specific values of the distribution shape parameters.

An interactive method for investigating distributions of nonparametric goodness-
of-fit tests statistics, that allows us apply criteria for testing any composite
hypotheses using a variety of estimation methods, is implemented.

Keywords: goodness-of-fit test, testing composite hypothesis, Kolmogorov
test, Cramer-von Mises-Smirnov test, Anderson-Darling test, Kuiper test, Wat-
son test, Zhang test.

Introduction

Classical nonparametric tests were constructed for testing simple hypotheses: Hj :
F(z) = F(z,0), where 0 is known scalar or vector parameter of the distribution func-
tion F'(x,0). When testing simple hypotheses nonparametric criteria are distribution
free, i.e. the distribution G(S|Hy), where S is the test statistic, does not depend on
the F'(x,0) when the hypothesis Hy is true.

When testing composite hypotheses of the form Hy : F(z) € {F(x,0),0 € ©},
where the estimate @ of a scalar or vector parameter of the distribution F(z,6) is
calculated from the same sample, nonparametric tests lose the distribution freedom.
Conditional distributions G(S|Hy) of tests statistics for composite hypotheses depend
on a number of factors: the type of the distribution F'(x,#), corresponding to the
true hypothesis Hy; the type of the estimated parameter and the number of esti-
mated parameters and, in some cases, the value of the parameter; the method of the
parameter estimation.
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1 Nonparametric goodness-of-fit criteria for
testing simple hypotheses

In Kolmogorov test statistic the distance between the empirical and theoretical
distribution is determined by

D, = sup |F,(z) — F(z,0)],
|z|<oo
where F,(z) is the empirical distribution function, n is the sample size. When n — oo,
distribution of statistic v/nD,, for true hypothesis under test uniformly converges to
the Kolmogorov distribution [1]

K(S)= > (-1ke

k=—00

While testing hypothesis using the Kolmogorov test it is advisable to use the
statistic with Bolshev correction [2] given by [3]:

onD, +1

SK: 6\/57

(1)

where D,, = max(D,", D;),

Dt = max {E—F(a:i,e)},Dn = max {F(:L‘Z-,@)— 2_1}

1<i<n | N 1<i<n n

n is the sample size, x1, T, .. ., x, are the sample values in an increasing order. When
a simple hypothesis Hy under test is true, the statistic () converges to the Kolmogorov
distribution significantly faster than statistic \/nD,,.

The statistic of Cramer-von Mises-Smirnov test has the following form [3]:

. Z S 2i-1 2 @
w ‘TZJ )
12n P 2n

and Anderson-Darling test statistic [4], [5] is

n

- —n— 22 {2’ In F(z;,0) + (1 — %Q_ 1) In(1 — F(xn(?))}- (3)

When testing simple hypotheses, statistic (2) has the following distribution [3]

= 1/2)v4 4j+1)2
al(s) = L(j+1/2)vAjF1 %exp{_%}x

=0

{ [‘”“} B[]}

where [_ ( ) and [ 1( ) are modified Bessel functions,
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PR P o] < oo, |argz| <
PSS VRIS T CRIEE PR

The statistic (3) has the distribution [3]
T  T(j+1/2)(4j+1 4j41)%x2
02(s) = E 3 (UG e { -5 ) x
2 2 2
X feXp{ 80y 2+1) - Mﬁ{s)s }dy'
The Kuiper test [6] is based on the statistic V,, = D; + D, . The limit distribution

of statistic v/nV,, while testing simple hypothesis is the following distribution function
[7]:

’[ﬂ] §§i2 —2m2§.

m=1

The following modification of statistics converges faster to the limit distribution

8):
V=V, (\/’+0155+%)

or the modification that we have chosen:

vl = /n(D; + D) + (4)

1
3vn
Dependence of the distribution of statistic (4) on the sample size is practically

negligible when n > 30.
As a model of limit distribution we can use the beta distribution of the third kind

with the density
Oo—1 01—1
s—0 s—0.
o () (50
f(s) =

N N O e

and the vector of parameters 6 = (7.8624,7.6629,2.6927,0.495)7, obtained by the
simulation of the distribution of the statistic (4).
Watson test [9], [10] is used in the following form

U,f:zn:(F(xi,G)—in ) ( ZF:E,, )+ﬁ (5)

=1

The limit distribution of the statistic (5) while testing simple hypotheses is given
by [9], [10]:

10
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o)

(’HO _1_22 m172m27r2s

The good model for the limit distribution of the statistic (5) is the inverse Gaussian
distribution with the density

1/2

o () -0)

T aey) T ()

and the vector of parameters § = (0.2044,0.08344, 1.0, 0.0)7, obtained by the simula-
tion of the empirical distribution of the statistic (5). This distribution as well as the
limit one could be used in testing simple hypotheses with Watson test to calculate
the achieved significance level.

Zhang tests (Jin Zhang) were proposed in papers [11], [12], [13]. The statistics
of these criteria are:

7= (5 5) oo (i + (o0 e[ =)

log { F'(x;, log{1 — F(x;,0
T S [ R L ST

n—z—i—— 1 —

- Fa o -1 ]
Zc‘gnll‘)g{(n—l)/(z’— >—1H | "

2

The author gives the percentage points for statistics distributions for the case of
testing simple hypotheses. The strong dependence of statistics distributions on the
sample size n prevents one from wide use of the criteria with the statistics (6) — (8).
For example, Figure 1 shows a dependence of the distribution of the statistics (7) on
the sample size while testing simple hypotheses.

Of course, this dependence on the sample size n remains for the case of testing
composite hypotheses.

2 Comparative analysis of the tests power

In papers [14], [15], [16] the power of Kolmogorov (K), Cramer-von Mises-Smirnov
(KMS), Anderson-Darling (AD) tests, and also x? criteria, was analyzed and com-
pared for testing simple and composite hypotheses for a number of different pairs of
competing distributions. In the case of testing simple hypotheses and using asymp-
totically optimal grouping [17] in x? criterion, this test has the advantage in power

11
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Figure 1: The distribution G, (Z4|Hy) of statistic (7) depending on the sample size
n for testing simple hypothesis

compared with nonparametric tests [14], [15]. When testing composite hypotheses,
power of nonparametric tests increases significantly, and they become more powerful.

In order to be able to compare the power of Kuiper (V},), Watson (U?), and Zhang
tests (Zk, Za, Zc) with the power of other goodness-of-fit tests, the power of these
criteria was calculated for the same pairs of competing distributions in the paper [18]
alike papers [14], [15], [16].

The first pair is the normal and logistics distribution: for the hypothesis Hy —
the normal distribution with the density:

flz) = 005% exp {—%} ,

and for competing hypothesis H; — the logistic distribution with the density:

f(x) = #exp{—%}/{l+eXp{_%}]2 ’

and parameters 0y = 1, ¢; = 1. For the simple hypothesis H, parameters of the
normal distribution have the same values. These two distributions are close and
difficult to distinguish with goodness-of-fit tests.

The second pair was the following: Hy — Weibull distribution with the density

T — 290—1 T — 0Oy 0o
ﬂx)Z%“{% ele) }

and parameters 6y = 2, ; = 2, 0§, = 0; H; corresponds to gamma distribution with
the density

12
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f) = 1 <x - 92)90_1 o~ (2=02)/01
011 (0o) 0,

and parameters 0y = 2.12154, 8, = 0.557706, 05 = 0, when gamma distribution is the
closest to the Weibull counterpart.

Comparing the estimates of the power for the Kuiper, Watson and Zhang tests
[18] with results for Kolmogorov, Cramer-von Mises-Smirnov and Anderson-Darling
tests [14], [15], [16], the nonparametric tests can be ordered by decrease in power as
follows:

e for testing simple hypotheses with a pair “normal — logistic”: Zg > Z4 >
Zg = U2 =V, = AD = K = KMS,

e for testing simple hypotheses with a pair “Weibull — gamma”: Zs > Z4 >
Zi = U2 =V, = AD = KMS ~ K;

e for testing composite hypotheses with a pair “normal — logistic”: Z4 ~ Z¢ >
Zi = AD = KMS = U? =V, = K;

e for testing composite hypotheses with a pair “Weibull — gamma”: Z, > Z¢o >
AD = Zg = KMS = U?* =V, - K.

3 The distribution of statistics for testing
composite hypotheses

When testing composite hypotheses conditional distribution G(S|Hy) of the statistic
depends on several factors: the type of the observed distribution for true hypoth-
esis Hy; the type of the estimated parameter and the number of parameters to be
estimated, in some cases the parameter values (e.g., for the families of gamma and
beta distributions), the method of parameter estimation. The differences between
distributions of the one statistic for testing simple and composite hypotheses are
very significant, so we could not neglect this fact. For example, Figure 2 shows the
distribution of Kuiper statistic (4) for testing composite hypotheses for the different
distributions using maximum likelihood estimates (MLE) of the two parameters.

Figure 3 illustrates the dependence of the distribution of the Watson test statistic
(5) on the type and the number of estimated parameters having as an example the
Su-Johnson distribution with a density:

2

F(z) o e Ly, co,md =0, (x_03>2+1
xr) = X — n
V2m\/(z — 63)% + 63 Pl 2| 02 )

Figure 4 shows the dependence of the distribution of Anderson-Darling test statis-
tics (3) for testing composite hypotheses using MLEs of the 3 parameters of the
generalized normal distribution depending on the value of the shape parameter 6.

13



Novosibirsk, 25-27 September, 2013

tCwlH,)

TL00 {-ooemmmon ey :
for Laplace f

0.90 -
0.80 |----oooo- T ITT O
for logistic T ; : :
0.70 {---moonn ey a0 poonneeeeene Proeenoneeee :
0.60 |----o-oooo- dosoenees

0.50 |

040 |

0.60 0.80 1.00 1.20 1.40 1.60 1.80

Figure 2: The distribution of Kuiper statistic (4) for testing composite hypotheses
using MLEs of the two parameters
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Figure 3: The distribution of Watson statistic (5) for testing composite hypotheses
using MLEs of different number of parameters of the Su-Johnson distribution
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The first work that initiates the study of limiting distributions of nonparamet-
ric goodness-of-fit statistics for composite hypotheses was [19]. Later, different ap-
proaches were used to solve this problem: the limit distribution was investigated by
analytical methods [20]-[21], [22]-[23], [24]-]26], [27], [28]-[30], the percentage points
were calculated using statistical modeling [31], [32]-[33], [34], the formulas were ob-
tained to give a good approximation for small values of the probabilities [35], [36].

In our studies [37]-[49], the distribution of nonparametric Kolmogorov, Cramer-
von Mises-Smirnov and Anderson-Darling tests statistics were studied using statistical
modeling.

Further, based on obtained empirical distribution of statistics, we construct an
approximate analytical model of statistics distributions.

0,00 0.30 0,60 0.90 1.20 1.50 1.80

Figure 4: The distribution of Anderson-Darling statistics (3) for testing composite
hypotheses using MLEs of 3 parameters of the generalized normal distribution,
depending on the value of the shape parameter 6,

The obtained models of limiting distributions and percentage points for Kuiper
and Watson test statistics, which are required to test composite hypotheses (using
MLEs) for the most often used in applications parametric distributions, listed in
Table 1, could be found in the paper [50].

Previously obtained similar models (and percentage points) for distributions of
Kolmogorov, Cramer-von Mises-Smirnov and Anderson-Darling test statistics (for
distributions from Table 1) could be found in papers [43], [44], [45], [48], [49].

The tables of percentage points and models of test statistics distributions were
based on simulated samples of the statistics with the size N = 105, Such N makes
the difference between the actual distribution G(S|Hy) and empirical counterpart
Gn(S|Hy) that does not exceed 1073, The values of the test statistic were calculated
using samples of pseudorandom values simulated for the observed distribution F'(z, 0)
with the size n = 10%. In such a case the distribution G(S,|H,) practically equal to
the limit one G(S|Hy). The given models could be used for statistical analysis if the
sample sizes n > 25.

15
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Table 1: Random variable distributions

Random variable | Density function | Random variable Density function
distribution f(z,0) distribution f(z,0)
Exponential %e"’” % Laplace %e*b«“*w 902
Seminormal 90\2/%6—12/ 263 Normal — \1/ﬂ o ¢ 2% :

Rayleigh %6_9&2/293 Log-normal :Jc@oi/ﬂ e~ (Inz—01)?/263
Maxwell e/ Cauchy Ty

Random variable
distribution

Density function f(x,6)

Logistic

Extreme-value

(maximum)

e (-} e )]
}

Extreme-value

(minimum) % exp {””061 — exp
. 2001 o
Weibull e oxp {_ (%) }
Sb- Johnson
2
0.0 1 z—0
Sb(90,01,92,03) (13_03)(;2193_@@)(13{—2 |:90 —01 In m} }

Sl-Johnson

Sl(0o,61,02,03)

2
7(95—96’31)\/% exp {—; [90 +6;1n x;—ff"] }

Su-Johnson

Su(bo, 61,62,03)

2
fg + 61 1n {x5293 + <I5293) + 1}

61 1
% ex _1
V2m\/(x—63)?+63 P 2
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Unfortunately, the dependence of the nonparametric goodness-of-fit tests statistics
distributions for testing composite hypotheses on the values of the shape parameter
(or parameters) (see Fig. 4) appears to be for many parametric distributions imple-
mented in the most interesting applications, particularly in problems of survival and
reliability. This is true for families of gamma, beta distributions of the 1st, 2nd and
3rd kind, generalized normal, generalized Weibull, inverse Gaussian distributions,
and many others.

The limit distributions and percentage points for Kolmogorov, Cramer-von Mises-
Smirnov and Anderson-Darling tests for testing composite hypotheses with the family
of gamma distributions were obtained in paper [44], with the inverse Gaussian dis-
tribution — in papers [46], [47], with families of beta distributions — in paper [51],
with generalized normal distribution — in paper [52], with the generalized Weibull
distribution — in paper [53]. It should be noted that the data in these papers were
obtained only for a limited number of, generally, integer values of the shape parameter
(or parameters).

4 An interactive method to study distributions of
statistics

The dependence of the test statistics distributions on the values of the shape param-
eter or parameters is the most serious difficulty that is faced while applying nonpara-
metric goodness-of-fit criteria to test composite hypotheses in different applications.

Since estimates of the parameters are only known during the analysis, so the
statistic distribution required to test the hypothesis could not be obtained in advance
(before calculating estimates for the analyzed sample!). For criteria with statistics (6)
— (8), the problem is harder as statistics distributions depend on the samples sizes.
Therefore, statistics distributions of applied criteria should be obtained interactively
during statistical analysis [54], and then should be used to make conclusions about
composite hypothesis under test.

The implementation of such an interactive mode requires developed software that
allows parallelizing the simulation process and taking available computing resources.
While using parallel computing the time to obtain the required test statistic distri-
bution Gy(S,|Hp) (with the required accuracy) and use it to calculate the achieved
significance level P{S, > S*}, where S* is the value of the statistic calculated using
an original sample, is not very noticeable compared to a process of statistical analysis.

In the paper [55], an interactive method to research statistics distributions is im-
plemented for the following nonparametric goodness-of-fit tests: Kolmogorov, Cramer-
von Mises-Smirnov, Anderson-Darling, Kuiper, Watson, and three Zhang tests. More-
over, the different methods of parameter estimation could be used there.

The following example demonstrates the accuracy of calculating the achieved sig-
nificance level depending on sample size N of simulated interactively empirical statis-
tics distributions [55].

Example. You should check the composite hypothesis that the following sample

17
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with the size n = 100 has the inverse Gaussian distribution with the density (9):

0.945 1.040 0.239 0.382 0.398 0.946 1.248 1.437 0.286 0.987
2.009 0.319 0498 0.694 0.340 1.289 0.316 1.839 0.432 0.705
0.371 0.668 0.421 1.267 0.466 0.311 0.466 0.967 1.031 0.477
0.322 1.656 1.745 0.786 0.253 1.260 0.145 3.032 0.329 0.645
0.374 0.236 2.081 1.198 0.692 0.599 0.811 0.274 1.311 0.534
1.048 1.411 1.052 1.051 4.682 0.111 1.201 0.375 0.373 3.694
0.426 0.675 3.150 0.424 1.422 3.058 1.579 0.436 1.167 0.445
0.463 0.759 1.598 2.270 0.884 0.448 0.858 0.310 0.431 0.919
0.796 0.415 0.143 0.805 0.827 0.161 8.028 0.149 2.396 2.514
1.027 0.775 0.240 2.745 0.885 0.672 0.810 0.144 0.125 1.621

1/2

0} g\
f(x)_l % exp _00<< 92) ;) ‘ 9)

%\ 2n (x;—js)?’ 263 (252

02
The shift parameter 65 is assumed to be known and equal to 0.

The shape parameters 6y, 01, and the scale parameter 6, are estimated using the
sample. The MLEs calculated using the sample above are the following: éo = 0.7481,
6, = 0.7808, f, = 1.3202. Statistics distributions of nonparametric goodness-of-
fit tests depend on the values of the shape parameters 6, and 6, [46, 47], do not
depend on the value of the scale parameter 6, and can to be calculated using values
6y = 0.7481, 6; = 0.7808.

The calculated values of the statistics S; for Kuiper, Watson, Zhang, Kolmogorov,
Cramer-von Mises-Smirnov, Anderson-Darling tests and achieved significance levels
for these values P{S > S}|Hy} (p-values), obtained with different accuracy of sim-
ulation (with different sizes N of simulated samples of statistics) are given in Table
2.

Table 2: The achieved significance levels for different sizes N when testing
goodness-of-fit with the inverse Gaussian distribution

The values of test statistics | N =102 | N =10* | N =10° | N = 10°

ymed —1.1113 0.479 0.492 0.493 0.492

U? = 0.05200 0.467 0.479 0.483 0.482

Z4 = 3.3043 0.661 0.681 0.679 0.678

Zo =4.7975 0.751 0.776 0.777 0.776

Jg = 1.4164 0.263 0.278 0.272 0.270

K =0.5919 0.643 0.659 0.662 0.662

KMS = 0.05387 0.540 0.557 0.560 0.561

AD = 0.3514 0.529 0.549 0.548 0.547

The similar results for testing goodness-of-fit of a given sample with ['-distribution
with the density:

18
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601 x— 0, fob =1 - 1594 o1
f(x)zegr(eo)( 0 ) ()

are given in Table 3. The MLEs of the parameters are 6, = 2.4933, 8, = 0.6065,
0y = 0.1697, 6, = 0.10308. In this case the distribution of the test statistic depends
on the values of the shape parameters 6y and 6.

Figure 5 presents the empirical distribution and the two theoretical ones (IG-
distribution and I'-distribution), obtained by the sample above while testing compos-
ite hypotheses.

Table 3: The achieved significance levels for different sizes N when testing
goodness-of-fit with the I'-distribution

The values of test statistics | N =102 | N =10* | N =10° | N = 10°
V,and = 1.14855 0.321 0.321 0.323 0.322
U,QL = 0.057777 0.271 0.265 0.267 0.269
Z 4 = 3.30999 0.235 0.245 0.240 0.240
Zo = 4.26688 0.512 0.557 0.559 0.559
i = 1.01942 0.336 0.347 0.345 0.344
K = 0.60265 0.425 0.423 0.423 0.424
KMS = 0.05831 0.278 0.272 0.276 0.277
AD = 0.39234 0.234 0.238 0.238 0.237

F

1.00 -

0,90 A
0,80
0.70 -
0,60
0.50
0.40 -
0.30 -

0.20 A

0.10 |--§
i

0.00 T T T T —
0,00 1.00 2,00 3.00 4,00 5.00

Figure 5: Empirical and theoretical distributions (IG-distribution and
[-distribution), calculated using the given sample

Conclusion

The implemented interactive mode to study statistics distributions enables to cor-
rectly apply goodness-of-fit Kolmogorov, Cramer-von Mises-Smirnov, Anderson-Darling,
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Kuiper, Watson, Zhang (with statistics Zo, Za, Zk) tests with calculating the
achieved significance level (p-value) even in those cases when the statistic distri-
bution for true hypothesis Hy is unknown while testing composite hypothesis. For
Zhang tests, this method allows us to test a simple hypothesis for every sample size.
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Introduction

This paper describes the semiparametric dynamic regression or accelerated life mod-
els that are very important in econometric duration analysis in estimation of the
risk of defaults, which plays an important role in the pricing and hedging of credit
risk see Horowitz (1998), Mosler (2002), Duffie and Singleton (2003), Kiefer (1988),
Gouriéroux and Josiak (2005), etc... Dynamic regression models are applied often
in reliability and survival analysis, see, for example, Bedford and Cooke (2001),
Bagdonavicius and Nikulin (2002), Martinussen and Scheike (2006), Nikulin and
Wu (2007), Nikulin, Gerville-Reache, Couallier (2007), Bagdonavicius, Kruopis and
Nikulin (2011), etc. Evident that this approach can be very useful to modelling the
default probabilities. Accelerated life models relate lifetime distribution of the de-
fault time to the time varying explanatory variables, called in reliability stresses, it
terms of which is described the past performance of the firms, the information about
the current market conditions or about some important economic, political and social
factors which influence on the risk of default. These models are used for estimation
of the effects of covariates (stresses) over the time on survival and for estimation
of survival via its effects on default rates under given covariates values. In terms
of the time dependent covariates are described the possible direct and indirect eco-
nomic (financial) loss for firms, or as one can say, conditional on reasonable available
information, which have to be taken in consideration in business risk analysis. For
example, the time depending stresses can explain the influence of such characteristics
as quality, productivity, credibility, profitability of firms, or the dramatic decline in
oil price in the market, or the business cyclic effects on default rates. The reliability
approach based on applications of semiparametric dynamic regression models pro-
vides a basis for some suggestions for further research on statistical estimation and
prediction of the default risk and gives an interesting possibility approach to obtain a
statistical inference in dependence on situation in the market. The considered models
are very flexible and are applicable to estimate possible financial losses of different
types of firms in the real world economic, financial and politic situations, described
in terms of time dependent stresses. Using the terminology of Singpurwalla (1995)
we have the possibility to estimate the probability of default risk in dynamic envi-
ronments. The proportional hazards model is the most important model in duration
analysis. We consider some recent models based on the C'ox model. The proportional
hazards model is generalized by assuming that at any moment the ratio of hazard
rates is depending not only on values of time-varying covariates (stresses) but also
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on resources used until this moment. Relations with generalized multiplicative, mod-
ified proportional hazards, frailty, linear transformation, Sedyakin are considered.
We consider semiparametric models for longitudinal studies the relations between a
longitudinal response process and a time-to-event. We consider also the models with
cross-effects of survival functions. These models are applied for longitudinal stud-
ies of the economic and industrial data by Hsieh (2001) , Wu (2007), Nikulin and
Wu (2007), Bagdonavicius and Nikulin (2002), Bagdonavicius, Kruopis and Nikulin
(2011) . We discuss also the applications of the so-called degradation models, which
are very useful in economics and business to make a comprehensive risk analysis when
economic damage grow. Such models allow assessing the probability of specific trau-
matic events and their impact on business (default) process. These models are well
adapted for statistical analysis of industrial firms, insurance companies, banks fail-
ure data ( bankruptcy) in dynamic environments, to qualitatively and quantitavely
estimate possible financial and economic losses and damage due to economic, social,
politic, etc changes over the time.

The explanatory variables (stress) may be modelled by stochastic processes, de-
terministic time functions or constants (possibly different for different individuals).
Denote by x(-) = (21(-),...,zn(-))T : [0,00) — R™, a deterministic time function
(possibly multidimentional) which is a vector of covariates itself or a realisation of a
stochastic process X () = (X1(-), ..., X;n(-))T when covariates (stresses) are modeled
by this stochastic process. We denote E = E{xz(-)} a set of all possible or admissible
stresses. If a stress z(-) is constant in time, x(f) = z, then we shall write = instead
of z(-). We denote E; a set of all constant in time stresses, F; C FE.

The distribution of survival under covariates can be defined by the survival, cumu-
lative distribution, or probability density function. Nevertheless, the sense of models
is best seen if they are formulated in terms of so-called hazard rate function. This
notion is used widely in reliability and survival analysis. In econometrics , and in
particular in credit analysis, instead of the hazard rate function people use the term
forward default rate function or more simple term default rate function

Denote by T the time to default. Then the probability of surviving function given
stress z(+) is defined as

Sey(t) =P{T >t |2(u),0 <u<t}, t>0, z()€E,

with S;()(0) = 1 for any stress x(-) from the set E of all admissible stresses. So for
any ¢t > 0 the value S,(,)(t) denote the probability that the firm will not default for
at least t years, if we measure the time in the years, for example,

The default rate function or intensity of default function under given stress xz(-)
is defined as

1
Ay (B) = Tim - PAT € [t +1) | T2 ta(w),0 Su <) = =

From this definition it follows for any stress #(-) € E and any ¢, > 0, the value A,(.y(?)
is the rate of default arrival at time t conditional only on survival up to time t. The
default rate function is the most important reliability characteristics of survival and
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its value A;y(t) gives the instantaneous exit rate per unit of time evaluated at the
time ¢. It is evident also that if the function A,.)(-) is continuous in ¢, then under
the stress x(-) the probability of default in the interval [t,t + A] for small A; A > 0,
conditional on survival to ¢, is approximately equal to A;.y(¢)A. We note here that
sometimes A;()(-) is called also the forward default rate, see Duffie and Singleton
(2003), the bankruptcy rate or failure rate of instruments, see Gouriéroux and Josiak
(2005). The default rate function is the most important reliability characteristics.
Denote by

Agy(t) = /0 Aoy (W)du = —In{S;()(t)}, () € E,

the cumulative rate of default under stress z(-). For any z(-) € E the function Ay)(+)
is increasing in ¢, with A,)(0) = 0, and A,()(4+00) = +00.

Each specified model relates the hazard rate (or survival function) to the explana-
tory variable in some particular way. From this definition it follows immediately that

t
Sz()(t) = e e = exp{—/ Ae(y(u)du}, x(-) € E.
0

At the end of this section we note that we write T}y instead of T" to remind that we
study the time to default under the stress z(-), and hence the distribution of time to
default depends on z(-), z(-) € E.

1 The Cox or the proportional default rate model

Under the proportional default rate model (traditionally PH model or Cox model)
on E the defaul rate under a stress z(-) has the form

M) () = r{e(®)} Molt), 2() € B, (1)

where \o(%) is a so called baseline default rate function, and r(-) is a positive function

on .
The model implies that the ratio R(t,z1,x2) of default rates under different fixed
constant stresses z; and x5 is constant over time:

Aalt) o)
)‘Il (t) 7"{.%1}

In most applications the function r is parametrized in the form
r(z) = exp{Tz}, where B= (B, ,Bm)"

is the vector of regression parameters. Under this parametrization we obtain the
classical semiparametric Cox model with time-dependent covariables:

R(t, z1,x9) = = const.

My (t) = 7 TON (1), >0, x(-)€E. (2)
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Usually the Cox model is considered as semiparametric: the finite-dimensional pa-
rameter 5 and the baseline hazard function Ay are supposed to be completely un-
known. Nevertheless, non-parametric estimation procedures when the function r is
also supposed to be unknown are sometimes used. Parametric estimation procedures
when ) is taken from some parametric class of functions is scarcely used because
the parametric accelerated failure time model (see in the following sections) is also
simple for analysis and more natural. In parametric case we recommend to chose as
parametric family for the baseline function the so-called Power Generalized Weibull
(PGW) Family of Distributions, proposed by Bagdonavicius and Nikulin (2002). In
terms of the survival functions the PGW family is given by the next formula:

o

1
t\""
S(t,a,uyy)—emp{l—{l%—(—)] }, t>0,v>0,v>00>0.

If v = 1 we have the Weibull family of distributions. If y =1 and v =1 =1, we
have the exponential family of distributions. This class of distributions has very nice
probability properties. All moments of this distribution are finite. In dependence
of parameter values the hazard rate can be constant, monotone (increasing or de-
creasing), unimodal or [}-shaped, and bathtub or | J-shaped. At the beginning of a
firm’s life, it has a great risk of failure because of bad market investigation, absence
of management experiences, etc. When this initial period known as birn in period is
passed, the firm has less risks of bankruptcy and win the market. It is a period of
prosperity. The hazard function A(---) is almost constant which corresponds to the
Exponential Distribution. In its end, the firm will undergo competing risks. In this
description of its life cycle, its hazard function is U-shaped. The PGW distribution
family corresponds to this kind of modelling needs. Another interesting family, is the
so-called the Fxponentiated Weibull Family of distributions, which was proposed by
Mudholkar & Srivastava (1995).

The Cox model is not much used analysing failure time regression data in relia-
bility. The cause is that the model is not natural when subjects are aging. Indeed,
from (1) it follows that for any ¢ the default rate function under the time-varying
stress z(-) at the moment t does not depend on the values of the stress x(-) before the
moment t but only on the value of it at this moment:

PT<t+s|T>t)=1—¢e" ftHSeﬁTz(“))\O(U)du’

where )\ is the baseline hazard function which does not depend on stress. For this
reason we can say that PH model has the absence of memory property.

Nevertheless, in survival analysis the Cox model usually works quite well, because
the values of covariates under which estimation of survival is needed are in the range
of covariate values used in experiments. So the use of a not very exact but simple
model often is preferable to the use of more adequate but complicated model. It is
similar with application of linear regression models in classical regression analysis:
the mean of dependent variable is rarely a linear function of independent variables
but the linear approximation works reasonably well in some range of independent
variable values.
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In reliability, accelerated life testing in particular, the choice of a good model
is much more important than in survival analysis. For example, in accelerated life
testing units are tested under accelerated stresses which shorten the life. Using such
experiments the life under the usual stress is estimated using some regression model.
The values of the usual stress is not in range of the values of accelerated stresses, so
if the model is misspecified, the estimators of survival under the usual stress may be
very bad.

If on the bases of graphical analysis or goodness-of-fit tests the PH model is
rejected and one has a reason to suppose that the ratios of hazard rates are not
constant, other models should be used.

2 Accelerated Failure Time Model

The PH model has the absence of memory propriety: the hazard rate at any
moment does not depend on the values of the stress before this moment. It is more
natural to suppose that the default rate at any moment ¢ should depend not only
on the value of stress at this moment but on the probability to survive up to this
moment. Under stress x(-) this probability is S, (¢). It characterizes the summing
effect of values of stress (of the history) in the interval [0, ¢] on survival. The equality
Ayy(t) = —In Sy (t) implies that the cumulative default rate also characterizes this
summing effect. So it can be supposed that the default rate at any moment ¢ is a
function of the value x(t) of a stress and the value of the cumulative default rate
Auy ().

The generalized Sedyakin’s model namely supposes it (see Sedyakin (1966), Bag-
donavicius (1978), Bagdonavicius & Nikulin (1998)):

Aa()(t) = g (2(t), Aagy (1)) - (3)

This model with g completely unknown is too general to do statistical inference. But
if we choose some regression model for constant covariates, the form of the function
g can be made more concrete.

Suppose that under different constant covariates x € Ej the survival functions
differ only in scale:

Sx(t) = So (r(z)t), (4)

If the GS model holds on a set E, Ey C E of covariates then (4) holds on Ej if and
only if the function ¢ has the form g(x,s) = r(x)q(s) (see Bagdonavicius & Nikulin
(1998)).

We obtain the following model:

Aa(y (1) = r{z(t)} q{As(y(1)}. (5)

Solving this differential equation with respect to A,()(t), and using the relation be-
tween the survival and the cumulative hazard functions we obtain that the survival
function has the form

S0 = S0 ([ rtatupan) (©

29



Novosibirsk, 25-27 September, 2013

where the function Sy does not depend on z(-). The function r changes locally the
time-scale.

The model (6) (or, equivalently, (5)) is called accelerated failure time (AFT)
model.

The function r is often parametrized in the following form:
r(z) =e” o

where 3 = (831, -, Bm)?T is a vector of unknown parameters.
Under the parametrized AF'T model the survival function is

Se(y(t) = So ( /D t e‘ﬁT””(“)du) , (7)

t
Aa(y () = €770 ) ( /0 e‘BT’”(“)du> , (8)

and for constant covariates

and the default rate is

S.(t) = So (efﬁ% t) .

So in the case of constant covariates the AFT model can also be written as a loglinear
model, since the logarithm of the failure time 7, under constant covariate x can be
written as

In{7T,} = Tz +¢, (9)

where the survival function of the random variable € does not depend on x and is
S(t) = So(Int). In the case of lognormal failure-time distribution the distribution of
e is normal and we have the standard linear regression model. The equality (8) im-
plies that if the survival function under any constant covariate belongs to parametric
families such as Weibull, loglogistic, lognormal, then the survival function under any
other constant covariate also belongs to that family.

Differently from PH model, the AFT model is mostly applied in survival analysis
as a parametric model: the function Sy (or the distribution of ¢) is taken from some
parametric class of distributions and the parameters to estimate are the parameters
of this class and the regression parameters .

In the case of semiparametric estimation the function Sj is supposed to be com-
pletely unknown and the regression parameters as the function Sy are the parameters
to estimate in the model (7). The semiparametric AFT model is much less used in
survival analysis then the Cox model because of complicated estimation procedures:
modified variants of likelihood functions are not differentiable and even not contin-
uous functions, the limit covariance matrices of the normed regression parameters
depend on the derivatives of the probability density functions, so their estimation is
complicated.

The parametric AFT model is used in failure time regression analysis and accer-
erated life testing. Under special experiment plans even non-parametric estimation
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procedures are used. In such a case not only the function Sy but also the function r
in the model (6) would be completely unknown.

The AFT model is a good choice when the lifetime distribution class is supposed
to be known. Nevertherless, it is as restrictive as the PH model. The assumption
that the survival distributions under different covariate values differ only in scale is
rather strong assumption. So more sophisticated models are also needed.

3 (Generalized proportional hazards model

a Definitions

The AFT and PH models are rather restrictive.

Under the PH model lifetime distributions under constant covariates are from the
narrow class of distributions: the ratio of the default rates under any two different
constant covariates is constant over time.

Under the AFT model the covariate changes (locally, if the covariate is not con-
stant) only the scale.

Generalized proportional hazards (GPH) models allow the ratios of the default
rates under constant covariables to be not only constant but also increasing or de-
creasing. They include AFT and PH models as particular cases.

As was discussed in the previous section, the survival function S,.)(t) (or, equiv-
alently, the cumulative rate of default function A;()(t)) characterizes the summing
effect of stress values in the interval [0,¢] on survival. So suppose that the default
rate function at any moment ¢ is proportional not only to a function of the covariate
applied at this moment and to a baseline default rate, but also to a function of the
probability of survival until ¢ (or, equivalently, to the cumulative rate of default at

t):
Aoy () = r{z()} ¢{Auiy (D)} Ao(). (10)
We call the model (10) the generalized proportional hazards (GPH) model, see

Bagdonavic¢ius V. and Nikulin M (1999). Particular cases of the GPH model are the
PH model (¢(u) = 1) and the AFT model (A\g(t) = Ao = const).

Under the GPH model the survival functions S, have the form

5000 = G { [ rtatmnano]}. (1)

where
—Inu dU

Ao(t):/ot)\o(u)du, G-—H", H(u):/o ot

We denote by H~! the function inverse to G.
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b Relations with the linear transformations and frailty
models

Models of different levels of generality can be obtained by completely specifying ¢,
parametrizing ¢, or considering ¢ as unknown.

Completely specifying ¢ we obtain rather strict models which are alternatives to
the PH model and the field of their application is relatively narrow (see Bagdonavicius
and Nikulin (1994)). Under constant stresses such models are the linear transforma-
tion (LT) models. Indeed, if ¢ is specified and r is parametrized by r(z) = e?"* then

under constant stresses the survival functions have the form S;()(t) = G {eﬁTf”Ao(t)

with G specified. This implies that the random variable T, can be transformed by
the function h(t) = In{H(Sy(t))} to the random variable of the form

MT,) = —p"z +e, (12)

where ¢ is a random error with the parameter-free distribution function Q(u) =
1 — G(e"). It is the linear transformation (LT) model of Dabrowska and Doksum
(1988). Examples of the LT models:

1) PH model (G is a Weibull survival function, € has the extreme value distribu-
tion);

2) logistic regresion model (G is a loglogistic survival function, ¢ has the loglogistic

distribution): ) )
m—lzr(m) (m—l).

3) generalized probit model (G is a lognormal survival function, has the normal
distribution):
71 (Su(t) = log (r(x)) + @7 (So(t)),

where @ is the standard normal cumulative distribution function.

The last two models are alternatives to the PH model. They are widely used
for analysis of dichotomous data when the probability of "success” in dependence of
some factors is analyzed. If application of the PH model is dubious then better is to
use a (not very) wider GPH model which is obtained from the general GPH model
not by complete specification of the function ¢ but taking a simple parametric model
for it.

Let us consider relations between the GPH models and the frailty models
(Hougaard(1986)) with covariates.

The hazard rate can be influenced not only by the observable stress z(-) but also
by a non-observable positive random covariate Z, called the frailty variable. Suppose
that the default rate given the frailty variable value is

My (HZ = 2) = 2r(a(t)) Mo (D).
Then

Suiy(t) = E cap{—Z /0 r(2(7)) dAg(7)} = G /0 r(2(7))dAo(7)),
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where G(s) = Ee™*2.
So the GPH model can be defined by specification of the frailty variable distribu-
tion.

¢ The GPH models with monotone hazard ratios

The following parametrizations of r and ¢ give submodels of the GPH model with
monotone ratios of default rates under constant covariates. Using only one parameter
and power or exponential functions for function ¢ parametrization several important
models are obtained.

c.l The first GPH model

Suppose that ¢(0) = 1 (if it is not so, we can include ¢(0) in A\, which is considered
as unknown). Taking a power function ¢(u) = (1+u)™""" and r(2) = ®"* we obtain

the first GPH model:
Moy (1) = 2O (1 4 Ay (£)) 77 (1), (13)

It coincides with the PH model when v = 1. The supports of the survival functions
Sz() are [0,00) when v > 0 and [0, sp,(.)) with finite right ends sp,(.), sps) < 00,
when v < 0. Finite supports are very possible in accelerated life testing: failures
of units at different accelerated stresses are concentrated in intervals with different
finite right limits.

Suppose that at the point t = 0 the ratio R(t,z1,x5) of the default rates under
constant stresses x; and x5 is greater then 1:

R((),xl,ﬁz) =

=cy > 1.

The ratio R(t, 1, x2) has the following properties:
a) if v > 1, then the ratio of the default rates decreases from the value ¢y > 1
1

to the value coo = ¢§ € (1,cp), i.e. the hazard rates approach one another when ¢
increases.

b) if v = 1 (PH model), the ratio of the default rates is constant.
c¢) if 0 <~ < 1, then the ratio of the default rates increases from the value ¢q > 1
1

to the value coo = ¢] € (cg,00), i.e. the default rates go away one from another when
t increases.

d) if v < 0, then the ratio of the default rates increases from the value ¢o > 1 to
o0, end the infinity is attained at the point sp,, = Ay {—1/((7)r(z2))}. The default
rates go away one from another quickly when ¢ increases.

The first GPH model is a generalization of the positive stable frailty model with
explanatory variables: the GPH model with v = 1/a > 0 is obtained taking the
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frailty variable Z which follows the positive stable distribution with the density

1 — (—1)* I'(ak+1
pz(z) = —Eexp{—ozz +1} Z % sin(wak)%, z >0,
k=1 )

where « is a stable index, 0 < o < 1.

c.2 The second GPH model

Under the first GPH model the support of the survival functions is infinite when
~v > 0 and finite when v < 0. The limit is v = 1. So it is interesting to take a model
with the following parametrization: q(u) = (1 + yu)~!. We obtain the second GPH
model:

Moy (8) = 77O (L 38,0 () Ao(t), (72 0). (14)

It also coincides with the PH model when v = 0. The supports of the survival
functions S, are [0, 00).
The ratio R(t,z1,x2) = Ay, (t)/ Az, (t) has the following properties:

a) if v > 0, then the ratio of the default rates decreases from ¢y > 1 to the value
VG € (1,¢p), i.e. the default rates approach one another when ¢ increases.

b) if ¥ = 0 (PH model), the ratio of the default rates is constant.

The second GPH model equivalent to the inverse gaussian frailty model with
explanatory variables: the GPH model with v = (406)'/2 > 0 is obtained taking the
frailty variable Z which follows the inverse gaussian distribution with the density

1/2 .,
pz(z) = <E> eV1o0;=32e=0-5 1 2 > 0.
m

c.3 The third GPH model

Taking the exponential function g(u) = e™* and r(z) = €' we obtain the third
GPH model:
Aa( (£) = 770700 2o (1), (15)
It coincides with the PH model when v = 0. The supports of the survival functions
Sz( are [0,00) when v > 0 and [0, sp,(.y) with finite right ends when v < 0.
Suppose that R(0, x1,z2) = r(xs)/r(x1) = ¢o > 1.
The ratio R(t,z1,x2) has the following properties:

a) if v > 0, then the ratio of the default rates decreases from the value ¢ > 0 to
1, i.e. the default rates approach one another and meet at infinity.

b) if v = 0 (PH model), the ratio of the default rates is constant.

c) if v < 0, then the ratio of the default rates increases from the value ¢o > 1 to
o0, end the infinity is attained at the point sp,, = Ay'{—1/(y7r(x3))}. The default
rates go away one from another quickly when ¢ increases.
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The third GPH model is a generalization of the gamma frailty model with ex-
planatory variables: the GPH model with v = 1/k > 0 is obtained taking the frailty
variable Z which follows the gamma distribution with the density

(2) = ﬁe—zw 2> 0

All the three GPH models are considered as semiparametric: finite-dimensional pa-
rameters $ and v and unknown baseline function Ay are the unknown parameters.

d Regression models with cross-effects of survival functions

Let us consider models for analysis of data with cross-effects of survival functions
under constant covariates.

e First model with cross-effects of survival functions

The first model with cross-effects of survival functions (CE model) can be obtained
from the first GPH model considered in the previous section replacing the scalar pa-
rameter y by ¢’ *(®) in the formula (13), where ~y is m-dimensional (see Bagdonavicius
and Nikulin (2002)):

Aelt) = & FOLL 4 A0 Not), 7 = (s s ) (16)
Suppose that at the point ¢ = 0 the ratio of the default rates
R(t,x1,x9) = Ay (1) /A, (2)
under constant covariates x; and x, is greater then 1:
R(0, 3y, 15) = ¥ @272 — ¢ > 1 and  ~7 (21 — x3) < 0.

In this case the ratio R(t,z1,z5) decreases from the value ¢y > 1 to 0, i.e. the
hazard rates intersect once. The survival functions S,, and S;, also intersect once in
the interval (0,00) (more about see in Bagdonavicius and Nikulin (2002).)

Other CE models can be obtained using the same procedure for the second and
the third GPH models.

f Second CE-model

Hsieh (2001) considered the following model with cross effects of the survival functions
generalization of the PH model

Au(t) = 7O LAg(1)} . (17)

It is a generalization of the PH model taking the power ¢ *® of Ay(t) instead of the
power 1.
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Note that the difference between this second model and the first CE model is the
following. In the case of the second CE model the ratios of the default rates and even
the ratios of the cumulative rate of defaults go to co (or 0) as t — 0. In the case of
the first CE model these ratios are defined and finite at ¢ = 0. This property of the
first CE model is more natural and helps avoid complications when seeking efficient
estimators.

g Changing shape and scale models

Natural generalization of the AFT model (4) is obtained by supposing that dif-
ferent constant stresses x influence not only the scale but also the shape of survival
distribution, see Mann et al (1974):

&@z&{(ﬁgfm}

where ¢ and v some positive functions on E;. Generalization of this model to the
case of time-variale covariates is the changing shape and scale (CHSS) model, Bag-
donavic¢ius and Nikulin (1999):

Suiy(t) = Sy < /0 t r{x<u)}uv<w<u>>1du> | (18)

In this model the variation of stress changes locally not only the scale but also the
shape of distribution.
In terms of the default rate functions the model can be written in the form:

Ae(y(t) = r{x(t)} q(Ag(y(t)) re®-1 (19)
where g(u) = Ao(Ag (1)), Ao(t) = —InSo(t), Ao(t) = Aj(t).

If v(x) = 1 then the model coincides with the AFT model with r(z) = 1/0(z).
The CHSS model is not in the class of the GPH models because the third factor at
the right of the formula (19) depends not only on ¢ but also on z(t).

The GHSS model is parametric, if Sy is taken from some parametric class of
survival functions and the functions r and v are parametrized, usually taking r(x) =
ef' v(z) = €. The model is semiparametric, if the function Sy is considered as
unknown and the functions r and v are parametrized:

ATty
Aoty (£) = 7720 (A (1))t 07, (20)

For various classes of Sy the CHSS model includes cross-effects of survival func-
tions under constant covariates. For example, it is so, if the survival distribution
under constant covariates is Weibull, loglogistic (Ag(t) = t,1In(1 + t), respectively).

Parametric analysis can be done using the method of maximum likelihood. Semi-
parametric analysis is more complicated because the same problems as in the case of
AFT semiparametric model arise: modified variants of likelihood functions are not
differentiable and even not continuous functions, the limit covariance matrices of the
normed regression parameters depend on the derivatives of the probability density
functions.
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4 Models with time-dependent regression
coefficients

a PH model with time dependent regression coefficients

Flexible models can be obtained by supposing that the regression coefficients
in the PH model (2) are time-dependent, i.e. taking

Moy (1) = PO\ (1), (21)

where

Bt x(t) = Z Bi(t)zi(t).

If the function f§;(-) is increasing or decreasing in time then the effect of the ith
component of the explanatory variable is increasing or decreasing in time.
The model (21) is the PH model with time-dependent regression coefficients.
Usually the coefficients f3;(t) are considered in the form

Bl(t) = Bz + %gi(t), (Z = 1,2, ...,m),

where g;(t) are some specified deterministic functions as t,Int,In(1+1¢), (1+¢)7*, for
example, or realizations of predictable processes. In such a case the PH model with
time dependent coefficients and constant or time dependent explanatory variables can
be written in the usual form (2), where the role of the components of the ” covariables”
play not only the components x;(-) but also z;(-)g;(-). Indeed, set

9: (91,"' ,62m)T: (517"' 7ﬁm7fyla"' 77m)T7

Z() = (Zl(')7 M) ZZm(')>T = (xl(')7 T umm(')a 5(71(‘)91(')7 o ’xm()gm())T (22>
Then

B (wa(w) =Y (B +7igi(t) mi(t) = 07 2(u).
i=1
So the PS model with time dependent regression coefficients of above given form can
be written in the form

Aoy (1) = e” =00 (). (23)

We have the PH model with time-dependent ”covariables” and constant "regression
parameters”. So methods of estimation for the usual PH model can be used. Note
that the introduced ”covariables” have time-dependent components even in the case
when the covariable x is constant over time.

Alternative method is to take (3;(t) as piecewise constant functions with jumps
as unknown parameters. In such a case the PH model is used locally and the ratios
of the default rates under constant covariates are constant on each of several time
intervals.
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b AFT model with time dependent regression coefficients

Similarly as in the case of the PH model flexible models can be obtained by supposing
that the regression coefficients /3 in the AFT model (7) are time-dependent, i.e. taking

¢
Sz()(t) = So {/ e‘ﬁT(“)x(“)du} , (24)
0

where

Bt =(t) = Z@'(t)fﬂi(t)-

As in the case of the PH model with time-dependent coefficients, the model (24) with
Bi(t) = Bi + 7:gi(t) can be written in the form of the usual AFT model

t
Sey = G { / eHTZ(”)du}. (24)
0

where 6 and z are defined by (22).
Alternative method is to take [3;(t) as piecewise constant functions with jumps as
unknown parameters.

5 Additive hazards model and its generalizations

An alternative of the PH model is the additive defaults or hazards (AH) model:
Ay (£) = Mo(t) + BT (1), (26)

where ( is the vector of regressor parameters. If the AH model holds then the
difference of default rates under constant covariates does not depend on ¢. As the
PH model this model has the absence of memory property: the default rate at the
moment ¢ does not depend on on the values of the covariate before the moment ¢.

Usually the AH model is used in the semiparametric form: the parameters § and
the baseline default rate A\g are supposed to be unknown.

Both the PH and AH models are included in the additive-multiplicative hazards
(AMH) model (Lin and Ying (1996)) :

Aoy (£) = ¥ ON (1) + 4T (1), (27)

Even this model has the absence of memory propriety so rather restrictive.

A modification of the AH model for constant covariates is the Aalen’s additive risk
(AAR) model (Aalen (1980)): the default rate under the covariate z is modeled by a
linear combination of several baseline rates with covariate components as coefficients:

Ao(t) = aTa(t). (28)

where a(t) = (A(t), -, An(t))T is an unknown vector function.
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Both AH and AAR models are included in the partly parametric additive risk
(PPAR) model (McKeague and Sasieni (1994)):

Ao(t) = aia(t) + BTy, (29)

where x1 and x5 are ¢ and p dimensional components of the explanatory variable z,
at) = (b)), - AN, B=(B1,---,B,)" are unknown.

Analogously as in the case of the PH model the AH model can be generalized by
the generalized additive hazards (GAH) model:

Aoty (8) = a{Aar (D} Malt) + BT (1)), (30)

where the function ¢ is parametrized as in the case of GPH models.
Both the GPH and the GAH models can be included into the generalized additive-
multiplicative hazards (GAMH) model (Bagdonavicius and Nikulin (1997)):

Xy (1) = ey (O} (7O () + 672 (1)) (31)

In both GAH and GAMH models the function ¢ is parametrized as in the GPH
models: q(u) = (1 +u)™" (1 +yu)™, e and the GAH1, GAH2, GAH3 or
GAMH1, GAMH2, GAMH3 models are obtained.

6 Remarks on parametric and semiparametric
estimation

The literature on parametric and non-parametric estimation for the above con-
sidered models is enormous. Methods of estimation depend on experiment plans,
censoring, covariate types, etc. We do not give here all these methods but give two
general methods of estimation (one for parametric and other for semiparametric case)
which work well for all models.

If the models are considered as parametric then the maximum likelihood estima-
tion procedure gives the best estimators.

Let us consider for simplicity right censored survival regression data which is
typical in survival analysis (more complicated censoring or truncating schemes are
considered similarly):

(X17 617 1’1(')), ) (Xm 57” xn()))v

where
XZ:T'Z/\C“ 6i:1{T¢SCi} (Z:L ,n),

T; and C; and are the failure and censoring times, z;(-)-the covariate corresponding
to the ith object, T; A C; = min(T;,C;), 14 is the indicator of the event A.
Equivalently, right censored data can be presented in the form

(Nl(t)7}/1(t)7x1(t)7t Z 0)7 e 7(Nn(t>’Yn(t)7xn<'>’t Z 0)7
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where
Nl(t) = 1{XiSt75i:1}7 K(t) = 1{X;Zt}
In this case for any ¢, t > 0

n

N(t)=> Ni(t) and Y(t ZY

=1

are the number of observed failures of all objects in the interval [0,¢] and the number
of objects at risk just prior the moment ¢ respectively.

Suppose that survival distributions of all n objects given z;(-) are absolutely
continuous with the survival functions S;(t, §) and the default rates \;(¢, 0), specified
by a common possibly multidimensional parameter § € © C RS.

Denote by G; the survival function of the censoring time C;. We suppose that the
function G; and the distributions of x;(-) (if they are random) do not depend on .

Suppose that the multiplicative intensities model is verified: the compensators of
the counting processes N; with respect to the history of the observed processes are
J Yi\idu. The likelihood function for 6 estimation is:

L(6) = ﬁ Ao(X;,60) Si( X, 0)

i=1

H(/Oo u, 0) dN;(u ))éiexp{—/OOOE(U))\i(u,H)du}

i=1

The maximum likelihood (ML) estimator @ of the parameter § maximizes the
likelihood function. It verifies the equation:

U(f) =

where U is the score function:

U(G):—lnL Z/ S Tog A, AN () — Vi) A O)du. (32)

The form of the default rates \; for the PH, AFT, GPH1, GPH2, GPH3, CE, CHSS,
AH,AMH, AAR, PPAR, GAH, GAMH are given by the formulas (2),(7),(13),(14),
(15), (16),(20),(26),(27),(28), (29), (30), (31). The parameter 6 contains the re-
gression parameter (3, the complementary parameter « (for some models) and the
parameters of the baseline rate function Ay, which is taken from some parametric
family:.

Let us consider a general approach (Bagdonavicius and Nikulin (2002)) for semi-
parametric estimation in all given models when the baseline default function A is
supposed to be unknown. The martingale property of the difference

Ni(t) - /0 Yi(u)Ai(u, 6)du (33)
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implies an ”estimator” (which depends on ) of the baseline cumulative hazard A,.
Indeed, all the above considered models can be classified into three groups in depen-
dence on the form of X;(t, )dt. It is of the form

g(xi(s), Ao(s),0 < s <t 8)dAo(t)
(for PH, GPH, CE models), and dAo(f;(t,8)) (for AFT, CHSS models) or
g1(xi(8), Ao(5),0 < s < t,0)dAo(t) + ga(xi(s), Ao(s),0 < s <t 0)dt

(for AH, AMH, AR, PPAR, GAH, GAMH models), Ay possibly multi-dimensional
for the AR and PPAR models). We remind that the estimation for the PH and
AFT models with time-dependent regression coefficients and time-dependent or in-
dependent covariates is analogous to the estimation for the PH and AFT models with
constant regression coefficients and properly chosen time-dependent ”covariates”.

For the first group the martingale property of the difference (33) implies the
recurrently defined ”estimator”:

oft,6) / AN (w) .
> i Yi(u)g(zi(v), Ao(v,0),0 < v < u,0)

For the second group

0)
o(t-6) 23/211 Yilhi(u, 0))

where h;(u, ) is the function inverse to f;(u, ) with respect to the first argument.
For the third group (AH, AMH, GAH, GAMH models)

A (t 9) _/t dN( ) ZZL 192($i(v>7A0<v)70§v<u79>du
Tl T Vi), A(0),0 S v < u )
A little more complicated situation is with AR and PPAR models. The ”estimator”

Ag is obtained in the following way (McKeague and Sasieni (1994)): let us consider
a submodel

Ao(t) = alt) +ne(t),
in which 7 is a one-dimensional parameter and ¢, @ are m-vector of functions.

The score function obtained from the parametric likelihood function for the pa-
rameter 7 (AR model) is

oo oT (1)) |
n) = Zl /0 %(dlw(t) —Y;(#) (=9 (#)TdAo(t)),

and the score functions for the parameters n and § (PPAR model) are:

o] T 331)
9= 3 [ SN ¥ o)~ S =0
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(@)

Ui 8) = 3 [ SN~ Yot anott) ~ a0 <0 (@9

If Ag is unknown and we want to estimate it, the estimator should be the same for
all p. Setting U(n) = 0 (AR model) or U;(n, f) = 0 (PPAR model) for all functions
© implies that for all ¢

m(i)(t)
Ai(t)

(dNi(t) = Yi(£)(a ()" dAo(2)) = 0,

or ‘
20
Ai(t)
which implies the "estimators” (AR model):

(AN;(t) = Yi(t) (2T dAo (8) — BT Yi(t)dt) = 0,

f\o(t)=z /0 (Zw“)(U)(w“)(U))TK(U)(Ai(U))‘1> 29 (w) (N ()™ dN; (u)

or (PPAR model)

Ay =3 / (Zxﬁ“<x§Z>>T1@<u><Ai<u>>-1) 27 (O ()™ (AN ()= 8725 Y (u)du).
j=170 \i=1
Note that for PH, GPH1, GPH2, GPH3 models

¢
g(x(s),Ao(s),0 < s <t,0)= eﬂTz(t), e'BTr(t)(l + 7/ eBTm(“)dAg(u))%_l,
0

respectively. For the CE model
Tz t
9((s), hals).0 < s < £,6) = {1+ Ay (D} 777,
where the function A, is defined by the equation
! BT x(u) 1—er 2w
/0 1T (1 1 A ()} o) = Aue (8).

If z is constant in time then for the CE model
Tz
g(w, Ao(s),0 < 5 < ,0) = ¢ {1 4+ P TN (1)}

For the AFT and CHSS models

t t .
f,-(t,@) :/ e—ﬂTx(U)du’ / 6_5Tx(u)uew x(u)_ldu.
0 0
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For the AH, AMH, AR, PPAR, GAH and GAMH models
g1(xi(s),Ao(s),0 < s <t,0) =1, eﬁT”C(t), zT, mlT

and

92(xi(8), Ao(5),0 < s < t,0) = gTa(t), BYx(t), 0, Bra(t),
respectively. For the GAMH1 model (formulas are analogous for the GAMH2,
GAMH3, GAH1, GAH2, GAH3 models):

g1(2i(5), Ao(5),0 < 5 < t,0) = ” D g(z;(s), Ao(s),0 < s < t,6),
g2(zi(s), No(s),0 < s <t,0) = 6Tx(t) g(xi(s), Ao(s

~—
(el
IA

V)

VAN
\‘N
>

~—

where

g(z:i(5), Ao(5),0 < 5 < t,0) = (1 + 7(/; "W dNg (u) + 67 /Ota:(u)du))

For the PH, GPH and CE models the weight 2 log A;(u, ) in (32) is a function of
z;(+)(v), AO( ),0 <v <wand 6. So the modlﬁed score function is obtained replacing
Ao by its consistent estimator Ay in the parametric score function (32).

In the case of the AFT, CHSS, AH, AMH, AR and PPAR models the weight
depends not only on Ay but also on A\g and (or) Aj. But the more important thing is
that \;(u)du do not depend on Ay and Aj,. So construction of the modified likelihood
function can be done by two ways. The first way is to replace Ay by A and Ay and
Ay by nonparametric kernel estimators which are easily obtained from the estimator
Ag. The second, much more easy way is to replace A by 1, X' by 0 and Ay by A, in
the score function (32) (or (34) for the PPAR model, in the case of the AR model
there are no parameters left to estimate). The efficiency loses very slightly in this
case of such simplified weight.

Computing of the modified likelihood estimators is simple for the PH, GPH and
CE models. It is due to the remarkable fact that these estimators can be obtained
by another way: write the partial likelihood function

i
5

u o g{zi(v), Ao(v),0 < v < w,b0}
L0 =11 [ o S Y (wgle ) Ao, 0 <o < uoy | Y

and suppose at first that Ay is known. Replacing Ay in the score function by A
exactly the same modified score function is obtained as going from the full likelihood!
So computing the estimator 6 the score equation is not needed. Better maximize
the modified partial likelihood function which is obtained from the partial likelihood
function (35) replacing Ay by Ag. The general quasi-Newton optimization algorithm
(given in Splus) works very well seeking the value of 6 which maximizes this modified
function (Bagdonaviccius, Hafdi, Himdi and Nikulin (2002)).

The most complicated case is the case of AFT and CHSS models: the modified
score functions are not differentiable and even continuous. So the modified maximum
likelihood estimators are the values of § which minimize the distance of the modified
score function from zero. Computational methods for such estimators are given in
Lin and Geyer (1992).
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Abstract

Novel methods for estimating the depth of whole genome sequencing re-
quired for adequate coverage are presented. Employing the notion of r-spacing
existent results for the uniform coverage were extended for the large scope of
non-uniform distributions.

Keywords: coverage problem, spacings, uniform spacings.

Introduction

With next generation random shotgun sequencing and assembly of large eukaryotic
genomes, it is important to develop a robust and accurate estimation a priori of the
extent of fold coverage required to confidently sample the complete representation of
a sequenced genome.

Next generation sequencers (NGS) make use of the short reads (~200 bp). To
assemble the entire genome, available sequence read should include all or nearly all
contiguous sequence of reads with overlaps. The last are needed for the correct
overlapping of reads and also for the error detection, which may be efficient only if
coverage reaches sufficient multiplicity, i. e. the every base pair is sequenced by not
less than a sufficient number of reads.

Thus one needs to obtain a full genome coverage with an adequate multiplicity
by reads of known minimum lengths (it also may be random, so its distribution is
assumed to be known in that case) with overlaps, The question posed here is how
many reads of minimum length would be required to achieve coverage
specified above with sufficiently large probability?

The partial answer was estimated in the pioneer paper [2], where an efficient
heuristic method was introduced. This result was extended in [4] employing the
notion of uniform spacings, which was employed in multiple subsequent studies. The
nonuniform coverage problem for the large scope of distributions was resolved in [1].
In this study we perform an extended analysis of the “Coverage Problem”, expanding
the notations and methods of the mentioned paper.

For the sake of consistency, we will remind the basic notations of [1]. The entire
genome is represented by an interval [0,1]. The reads are the subintervals of small
fixed length [, 0 < [ < 1, and assumed to be random.
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The problem of r-times covering of an interval [0, 1] can be expressed in the terms
of maximal r-spacings as follows. Let Xi,..., X, be i.i.d. random variables and n
the number of reads. Denote by X;, < ... < X, , the order statistics associated to
X1,...,X, and introduce spacings 562 = X0, s — Xitrn—Xppfori=1,... n—r,

and ST(Q,,H,R =1- X, 41, Let M'I(LT—)T—FQ,R <...< Ml(r) be their associated order

statistics. Then the probability of r-times coverage of the interval [0, 1] by random
segments of length [ is ]P’(Ml(rz <1).

The last statement can be rewritten in the “scale” of genome. Let L be a length
of single read in bp (base of pairs), N be a total length of genome, I be a minimal
required overlap of two random reads assembled in the sequence. Then obviously
l=(L—1I)/N and P(Q,) = IP(M{Q < (L—1)/N), where @, is an event in which the
existing reads containing at least r bases from all positions, taking into account only
reads with minimal intersection I bp with at least r neighbors.

1 Theoretical results

To summarize of results of [1], which are necessary for our further considerations, we
stipulate:

Uniform distribution In this case we assume, that X; = U;, + = 1,...,n, where
Uy, ..., U, are i.i.d. standard uniform random variables. Desired probability can be
efficiently estimated in the following way:

P(nM") — b)) < z) > e, (1)

4 )
bng —logn — log (Z %) =

i=1

Distributions with bounded support In this case we deal with a sample
Xi, ..., X, from an absolutely continuous distributions with bounder support [A, B],

—o00 < A < B < oo. For the sake of clarity we redefine SS?L = X,n — A and
Sn—rtin = B — Xy rp1n. Fix r > 1. Let {f.,}nen be a sequence of uniformly
equicontinuous and nonnegative functions such that

sup |IF’(nM1(2 < z)—exp(—nfn, (r))] =0 as n— oco.
x>0

Assume additionally that Xi,..., X, have a PDF p(x), satisfying 0 < § < p(z) <
M < oo, x € [A, B] and the Holder’s condition piece-wise

]p(x)—p(y)|§0|x—y|a for all x7y6,-ri7i:17"‘78
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with some C' and a > 0, and some intreval partition {7;};_, of the interval [A, B].
Then

sup ]P,<an(2 <x)— exp(—n /B frr(zp(u)) p(u) du>‘ -0 as n—oo. (2
A

>0

Extended class of distributions Some limit results, see theorem 4.1 from [1],
can be obtained for the classes of distributions related to the so called three extremal
types: Gumbel type, Fréchet type and Weibull type. Not going into a meticulous
formulation of the corresponding theorems and definitions, we only investigate their
particular cases.

This results can be applied for some symmetric distributions with p(1_) = p(04) =
0. For instance, the trapezoidal distribution having PDF

(k(1 — k) o, T €|

o) = (1—r), z € [k, (1 —K));
( [
[

k(1—r)Y(1—-2), =x€
0, x ¢

with some x € [0,1/2] belongs to Weibull’s extremal type with a = 2 (see [3], Theorem
1.6.1). Then, by [1], Corollary 4.1 (iii),

P(My) < 1)~ (H'.(1Vn//26(1 = 5))),

where HKZ, is a CDF of maszo{(zzz E)'V? —( zzl Es)l/z}, and Ey, E,,...1is a
sequence of i.i.d. random variables having the standard exponential E(1) distribu-
tion. Despite the fact this CDF can’t be easily obtained exactly, it can be efficiently
estimated via empiric simulations.

By [1], Lemma 6.3, the same approximation is valid for any PDF having the same
behavior near bounds 0 and 1 and separated from zero in other points of the interval

0, 1].

Random read lengths The important extension to the coverage problem gives a
permission for reads to have random lengths.

Introduce a sample Y7,...,Y, from a positive distribution with CDF Fy and
independent of X1,...,X,. Denote by N, ,.(z) the number of of r-spacings greater
than 2 Y}, i.e. Ny, (v) =#{i e {l,...,n*}: 5’2(72 >z Y}

Under the independence assumption of the original sample of covering segments
left ends Xi,..., X, and the corresponding sample of their length Y;,...,Y,, the
r-times coverage probability can be expressed as P(Ml(rg < Y), where Y has the
distribution of random length of the small segments concentrated on [0, 1] and in-
dependent of M1(2 As a result the probability of r-times coverage of whole interval
[0,1] is

1
P(M) < V) = / P(ME) < 5)dFy(s). (3)
0
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The desired probability can be obtained utilizing estimates and approximative for-
mulas for Mf’g Similarly, the probability to have less then k regions without r-times
coverage 1s

,n

1
P(N,, < k) =P(M") <Y) = / P(M,") < s)dFy(s).
0

2 Simulations and Applications

In this section we address the question stated in the Introduction: “how many reads
do we need to obtain coverage with sufficiently large probability?”. To assess numeric
results of the methods described above we performed simulations via R Project soft-
ware [5].

In the tables 1-2 we give a ratios between a total (expected) length of reads
and whole genome length required for full r-coverage of Human’s genome with 95%
probability. In our computations we assume N = 3.2 - 10° and I = 50.

Table 1: Total (expected) length of reads divided by whole genome length: uniform
distribution

Distribution Uniform

L 100 | 150 | 200 | 250 | 300 | Random
r=1 48 | 35 | 31 | 28 | 27 27
r=2 55 | 40 | 35 | 33 | 31 31
r==5 72 | 52 | 46 | 43 | 41 41
r=10 94 | 69 | 61 | 56 | 54 54

r =25 148 | 110 | 97 | 90 | 86 86

r =50 227 | 168 | 149 | 139 | 133 133

Table 2: Total (expected) length of reads divided by whole genome length:
truncated normal distributions

Distribution Truncated N(1/2,1) Truncated N(1/2,1/4)
L 100 | 200 | 300 | Random | 100 | 200 | 300 | Random
r=1 49 | 31 | 27 27 173 1 109 | 95 95
r=2 56 | 36 | 32 32 201 | 127 | 112 112
r=>5 73 | A7 | 42 42 268 | 171 | 151 151

r =10 9 | 62 | 55 55 359 | 231 | 204 204
r=25 154 | 100 | 89 89 586 | 381 | 338 338

r =50 237 | 155 | 138 138 916 | 599 | 534 534

To fulfill table for the uniform case we used estimator (1). Truncated normal
distribution was estimated throughout formula (2). Formula (3) was applied in the
case of random length with Y ~ N (300, 50%).
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The results in the table demonstrate how much the total length of reads should
be greater then the length of genome. It is important to note that ‘random’ results
are equal to the corresponding ‘non-random’ ones due to the considerable length of
the entire genome.
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Abstract

Probabilistic estimation method of the average straight residual lifetime for
nuclear power plants (NPPs) systems and their constituent elements is consid-
ered. The mathematical model for calculating of this reliability characteristic
for the objects to be recovered from the initial data on failures censored interval
is presented. Besides, the issue of its accuracy estimating using the bootstrap
method is considered.

Keywords: residual lifetime, system, element, reliability characteristic,
operational data.

Introduction

Currently, increased attention of researchers in the reliability theory is given to the
analysis of technical object operation subject to the aging. This problem is particu-
larly relevant in the nuclear power industry. The most of power capacities in nuclear
power engineering were put into operation in the 70ies-80ies. Today operating or-
ganizations are oriented to extend the assigned lifetime of the NPPs, but for the
reasonable prolongation of the lifetime of power units as a whole and their individual
components, systems, parts, etc. reliability analysis of all the constitu-ent elements,
assemblies and systems is required.

In this paper the problem of estimating the residual operating time between fail-
ures of renewal objects is solved. It is assumed that the strategy of maintenance
facilities include monitoring for proper operation of functioning, as well as routine
preventive and emergency repairs. The proposed method for estimating the residual
operating time is based on building a stochastic model, which is mathematically de-
scribed by the Voltaire integral equation. One of the problems that appear during
the calculation of systems reliability characteristics is the problem of determining
the reliability of elements included in the structure of the system using operational
failure information. During the NPPs reliability characteristics calculations the relia-
bility characteristics is assessed as well as confidence estimation is required. It means
that the problem becomes to the task of assessing the accuracy of the calculated
parameters.
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1 Problem Definition

One of the conditions for the extension of equipment assigned lifetime is the substan-
tiation of its reliability. The present article is concerned with computational methods
for determining the reliability of renewal facilities, when repairs are possible and pro-
vided by regulatory, technical, repair and design documentation. In the capacity of
determinants of reliability a residual operating time of the object was selected by
the authors. A residual operating time is an operating time of the object from the
beginning of the operation or installation into the system to the recovery to date of
failure.

The general practice of calculating the reliability characteristics of renewal systems
is based on the application of the mathematical methods of the renewal theory under
the assumption that the system renewal time is small in comparison with the normal
operating time value and it can be neglected. As a result, in the capacity of the
computational model the model of regenerative processes is used, which suggests that
during the repairs carried out a complete restoration of all the original properties of
the system. This model describes well the practical situation when the renewal of
the system in operative condition after failure means the replacement of the failed
element by the same type element from repair kits or spare parts.

However, even with a simple model calculation of the residual operating time
is a very complicated mathematical problem, an analytic solution of which can be
obtained only in special cases with a parametric specification of the original data. In
addition, nuclear power has a large number of serviced systems and equipment, the
renewal time of which has the same order of magnitude that the operating time to
failure. During the operation diagnostic tests organized in a special way are carried
out, spare equipment sets are created that is installed into the system in case of
failure. Repair system including the current plan, secondary and capital repairs is
organized and planned. All these facts lead to the conclusion that the renewal time
can not be neglected. In this case, it is necessary to use the theory of alternating
processes for the description of models of equipment functioning.

Thus, the task of this paper is the construction of adequate and reliable models of
the residual lifetime estimating taking into account the different operation strategies,
service activities.

2 The Estimation of Straight Residual Time for
Renewal Objects

a The Strategy of the System Operation with a Built-in
Monitoring Efficiency and Low Renewal Time

In modern technical systems different devices of the equipment efficiency monitoring
are used. Early detection of failures and defects allows carrying out procedures for
their elimination and, consequently, exploit the technical facilities more effectively.
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The system which is characterized by the presence of elements with faultiness control
is going to be considered in this paper. In case of failure of a subsystem the operation
staff immediately become aware of the failure element (e.g., the alarm indication goes
off). Monitoring of performance is carried out constantly.

Lets consider the model of the objects operation, which has a built-in test system.
In the case of failure the system becomes inoperable and the emergency maintenance
work to renew functionality shall be started.

Lets suppose that in initial time ¢y5 = 0 the object is in working condition. The
system operates until failure 7;. Built-in monitoring system instantly and unambigu-
ously provides infor-mation about the place of failure to service staff, and system
renewals for a negligible time. After restoring the system continues to operate until
the next failure. The cycle of such states changing is repeated until a certain time t.
Denote time to failure at the i-th operating cycle ;. Described strategy of functioning
is shown in Figure 1.

Figure 1: The strategy of the system with failure indication and a small recovery
time

In [1] a process {V;',t>0,i = 1,2, ...} called the straight residual time process is
described, where
Vi=r11—t. (1)

It should be noted that V! is the straight residual time, or the residual operating
time of system at time ¢.
Also in [1] showed that the average straight residual time can be defined as

MV(t) = (H(t) + 1) /0 e (u)du — t. 2)

where f¢(t) is a failure density function, H(¢) renewal function, which is determined
by solving of the equation

However, in practice this analytical solution for the straight residual time is quite
difficult to be use even in special cases, because it is not always possible to calc an
estimation of the renewal function.

Its possible to find the average straight residual lifetime MV*(t) using the defi-
nition of the mathematical expectation of the time remaining until the next system
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failure, starting at time ¢ in which the system was operable. According to this defi-
nition

MVt :MZ — ) I{Ti<t < i1}, (3)

where 7; - the failure time. Then

MV(t) ZM ) I{<t < Tipq} = Z% (4)
Write down the expression under the summation sign

= / / (s+a—t)I{s<t <s+ax}fr(s)fe(x)drds = / zpi(t;x)dx  (5)
o Jo 0
Lets make the Laplace transform of the inner integral ¢;(¢;z) and obtain:

Gilpsx) = f.,(0)G(pi2) = (Fe(p))'g(ps @), (6)

where g(p; z) the image of the function ¢(¢; x) = f¢(t+x). Then the Laplace function
of average straight residual lifetime M V*(p) will be determined by the expression

t 1 > (-
MVi(p) = 1= 7.00 )/ g (p; x)dz.

Turning to the originals, it obtains the Voltaire integral equation

MVi(t) = /000 zfe(t + x)de + /Ot MV () fe(t — u)du. (7)

Its solving allows estimating the value of the average straight residual lifetime.

b Calculation of the Characteristics Used in the Equation
for Average Straight Residual Time

In order to make calculations of reliability characteristics including average straight
residual time it is necessary to know the density function of operating time to the i-th
failure and renewal time. It should be note that information obtained from operating
experience should be used to estimate the density functions. It is important for the
described method that failure times of devices are unknown when the collection of
data on nuclear power systems (NPS) equipment failures is performed. There is
only data about the number of failures of the same-type elements, distributed at
intervals of efficiency. As the range of efficiency a calendar year is considered. In
other words, failures are grouped by the operating year and only the facts of failures
are known. Based on the analysis of such statistics it is quite difficult to determine
the distribution of failure time. In order to renew the density of failure time the
method of kernel estimates is used.
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Consider the observation period for the object operation as an array of observation
time intervals

Lk = (L, 7m1); (L2, m); o5 (Lsy 7))

, where the random number of failures
T = [, 1, ..., V]

has taken place. Note that the intervals are disjoint and the right border of the
considered interval is equal to the left border of the subsequent interval r; = ;4.

Lets consider that n is the total number of failures, m the number of similar
objects forming this failure flow. Suppose that in case of failure the failed element
is replaced by another analog with the same characteristics. In this case, there is a
complete renewal of the system. Consequently, the failure flow parameter w(t) can
be determined. If there are data about failures censored intervals for the failure flow
parameter following kernel estimation is obtained

t-?"i

50 =3 gy (7 -6 +e )

where

ﬁ/ an (g ) o

- Gaussian kernel; h is the locality parameter (the measure that depends on the
standard deviation of the failure time); £(¢) is the estimated systematic errors of the
failure flow parameter which should be obtain as

) s an/m —t N (Qat) f an/m+t
~— |lerfec| —— exp | — | -erfe| —m—

2a \/2no?/m P\ \/2no?/m
As it is known from renewal theory, the failure flow parameter is related with the
density distribution of failure time through the Voltaire integral equation

felt /f wit — )d (9)

Thus, having sufficient statistical data, it is possible to estimate the density distribu-
tion of the failure time, solving the equation (9), and then estimate the mathematical
expectation of straight residual lifetime (7). Lets consider the example of calculation.
Suppose it is known that the system consists of m = 4 the same elements. The vector
of failures is

v=(1,9,3,4,3,2,1,0,3,0,3,0,0,0,0,1,0,6,1,0,1,2,1,0,1,0,0,0,0,0,0,0,0,0).
(10)
Data are grouped by operating years, the total number of failures amounted to n = 42
for s = 34 years. Using formula (8) for these elements lets estimate the failure flow
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Density of distribution

Figure 2: The kernel estimation of failure time density

parameter and then solving the equation (9), define the density of failure. The result
of the density distribution calculation is shown in Figure 2.

Now the mathematical expectation of straight residual lifetime can be estimated
using formula (7). Solving the equation (7) and taking into account these initial data,
the following estimate of the average straight residual lifetime for the element can be
obtained (Figure 3).

atraight residual lifetime (yr)
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Figure 3: The mathematical expectation of average straight residual time

Thus, the presented methodology allows to obtain the estimation of the straight
residual lifetime and to predict the residual lifetime of the technical objects.
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3 The Estimations Accuracy Determination for the
Average Straight Residual Lifetime

Determining the accuracy estimation of the mathematical expectation of straight
residual lifetime is a quite difficult task in the set of initial conditions. In the case
of nonparametric estimation for the moment it is not yet decided how to obtain
estimation for the variance of the straight residual time. Therefore, the authors
suggest carrying out estimation of the accuracy using bootstrap method.

Bootstrap method was described in [2], and its essence is that one-sample statis-
tics of observations is transformed into many samples with the same sample size. The
transformation is carried out on basis of the primary sample and taking into account
its distribution law.

Thus, the main idea of the bootstrap method is in the multiplication of the avail-
able data. The task is to simulate random samples with the same size as the primary
sample. In addition, each simulated sample is generated by random selection with
the returning of one of the events from the primary sample. This procedure allows to
build the sampling distribution of the estimated feature without any additional as-
sumptions and to make nonparametric confidence intervals. Lets explain the essence
of the accuracy estimating of the bootstrap method applied to the sample paragraph
2.2, where a vector of element failures grouped by operating years is defined.

In the contrast to the classical application of the bootstrap method, in our case,
the available data are grouped by operating year and failure times are unknown.
Therefore, if in case of the classical bootstrap method implementation a random
uniformly distributed variable is played on the axis of the probability (interval [0, 1])
and then it is projected to the axis of failure times, but in our case it is necessary
to map the simulated random uniformly distributed variable on the axis of failures
events implementation.

Lets consider the sequence of action in determining the accuracy of the estimated
feature with bootstrap method.

Step 1. Each failure event is assigned to an ordinal index ¢ and determine to
the observation time interval when happened. There are n failures distributed in &
observation time intervals. For our example (n = 42, k = 34), there are 1st failure in
1st observation time interval, 2nd-10th failures in 2nd interval, 11th-13th failures in
3rd interval, etc.

Step 2. The axis of the probability is divided to n equal disjoint intervals [0, y;),
[Y1,Y2), s [Yn—1,Yn). Simulate a random uniformly distributed variable U0, 1] on the
axis of the probability. Determine which of the n observation time intervals contains
this variable. If [y;_1,%;), then it means that the event with index ¢ is realized.
Repeat the operation of modeling n times, thereby a sample of the event numbers of
the failures is built. Finding events should be assigned to observation time intervals
according to the partition, in step 1. Using the obtained bootstrap sample as input
data, lets calculate the expectation of straight residual lifetime M VY.

Step 3. Repeat step 2 many times independently. Thus a lot of ratings MV} are
got.
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Step 4. For nonparametric estimation performance limits of the confidence inter-
vals are defined as follows. First, set the significance level « in accordance with the
confidence level of 1 — 2a. Secondly, define the boundaries of intervals that satisfy
the following relations for the given a.

d(MVI<MV?
o = ( V; — ‘/Eow); (11)
T
d(MVI<MVL
1 — o= ( % —T hzgh); (12>

where r the amount of bootstrap repetitions; d(MV;/<MV}, ) the number of pa-
rameter M V" bootstrap repetitions which took values less than MV}, ;. In this case,
evaluation MV}, and MV}, . defined by expressions (10) and (11) will character-
ize the approximate confidence interval, corresponding to a confidence probability
1 —2a. The results of MV}; , and MV}, , calculations according to initial data of the
represented example and formulas (10) and (11) are shown in figure 4.
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Figure 4: The construction of confidence intervals for estimating of average straight
residual lifetime

The advantage of the represented method is the possibility to build the confidence
interval for estimation besides the estimation of the reliability features on the basis
of initial censored sample of small size.

Conclusions

In this paper the method of estimating the average straight residual lifetime is con-
sidered and the algorithm for estimating the calculations accuracy is described. The
distinctive feature of the presented method is the possibility of using non-parametric
methods of estimation. The considered method allows carrying out practical research,
taking into account the quality of available basic statistical data. This method can
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be used to estimate the reliability characteristics of systems with complex service
strategies.
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Abstract

A new method for solving the pattern recognition problems is proposed.
Unlike artificial neural networks it does not utilize concepts of an the artifi-
cial neuron and the neural network. The Monte Carlo method is applied for
modeling the training signals. A numerical example is considered.

Keywords: artificial neural networks, fuzzy algorithm, Monte Carlo method.

Introduction

The pattern recognition theory studies methods of classification/identification of ob-
jects with a finite number of numerical parameters. To solve these problems artificial
neural networks (ANN) were proposed. ANN’s replaced humans in many tasks. The
simplest networks (perceptrons) were able to solve simple problems; the training the-
orem was proved for perceptrons [2]. But perceptrons were unable to solve some
important problems. Then powerful and complicated multilayer ANN’s were devel-
oped. But theoretical study of these ANN’s is too difficult; the training theorem
has not been proved for them and there are still theoretical /practical difficulties and
unsolved issues related to them.

A new method is introduced in this paper which can replace ANN. It does not
use concepts of the neuron, the network, the layer. Its work is based on another
principle. Methods of mathematical analysis and probability theory can be applied
to study it. As a result, the training theorem was formulated and proved.

1 Brief description of the work of ANN

Here we briefly consider the main phases in the work of ANN.

1) First, the ANN works in the training mode. A long sequence of training signals
z = (z1,...,2,) is supplied to the input of the ANN. Coordinates z; are properties of
the studied object. For example, these may be results of a medical test of a patient:
the blood pressure, body temperature and so on. The so-called <teachers gives cor-
rect answers to a stated question (the main question) for each training signal. Using
these answers ANN adjusts its weights wy.

2) When the training process is over, the ANN resumes the work in an operating
mode. Working signals z with unknown answers are supplied to the input, and the
ANN performs two successive operations:

2.1) z = net = w - z (w is the weight vector),
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2.2) net = out = F(net) (F : R — R is the activation function [3]),

Finally, ANN produces the answer:

2.3) If out > 1/2 we assume that the ANN puts out 0 and the object under exam-
ination is related to the first group, otherwise it is related to the second group (the
patient can be attributed to the sick group or to the healthy one).

2 (Geometric description of the ANN

Let ANN be in the operating mode and z = (z1,...,2,) be a signal. ANN checks
whether the components z; satisfy the system of inequalities (1) (each inequality has
the form (2)) [3]:

{inequality 1} & {inequality 2} & {inequality 3} V {inequality 4} ..., (1)

Zwmjzj <1 Zwmjzj > 1. (2)
J J

(the order of the logical signs &, V is determined by the complex topology of the
graph of the ANN). From geometric viewpoint, each inequality (2) determines a half-

Figure 1: Approximation of the required set X by the polyhedron S.

space in R™ bounded by a hyperplane. The whole system (1) determines a polyhedron
Sk (possibly nonconvex), or a union of separated polyhedra. The signal z satisfies
system of inequalities (1) if and only if the point z € Si. Thus, the geometric event
{ z € Sy } is equivalent to the logical event { the numbers z;, i = 1,..., n satisfy the
system of inequalities (1) }.

Denote by X (X C R™) the set of signal points corresponding to the positive
answer 1. Solving problem for ANN means finding the set X. Therefore, we may call
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the sets Sy and X approximate and ideal correspondingly. At each step, the ANN
determines the approximate set Sy corresponding to the weights, and thus forms the
sequence of sets Sq,2,.... In terms of the set theory, the learning capability of the
ANN means that the sequence Sy, Ss, ... converges in a way to the ideal set X (see.
Fig.1). We give an exact definition of this convergence below. From the geometric
viewpoint, the process of ANN training may be reduced to approximating the ideal
set X by the polyhedra Sy (each Sy is a composition — unions, intersections, or
supplements — of half-spaces).

If the set X is not a union of polyhedra, then certainly S, # X for any k£ and a
finite number of training steps cannot produce the exact solution to the problem.

The perceptrons can form only simply connected convex sets. Therefore, many
problems cannot be solved using perceptrons. Multilayer networks only are able to
construct complex sets for solving complicated problems. Note that the nonconvexity
and disconnectedness of the ideal set X do not make any obstacle to solving problems
by the proposed method.

3 Description of ANN in terms of functions

Describe the work of an ANN in the language of functions. ANN can be identified
with a function ANN : R"™ — {0; 1} which is defined by the logical algorithm of
the ANN and the weights wy, are its parameters: ANN(z) = ANN,(z). In the same
way we can define a fuzzy neural network [3]. In this case the value domain of the
function f is the whole segment [0, 1] (not the two numbers 0, 1): ANN : R" — [0, 1].
There is one-to-one correspondence between the sets S C R™ and their characteristic
functions ys(z), z € R™

1, z€S8,

we={ o 253

We have defined X, Sy as the ideal and approximate sets. Now define the ideal
decision function f(z) = xx(z) and approximate decision functions fi(z) = xs,(2).
In terms of 01, the correct answer to the signal z is equal to xx(z). From the
viewpoint of of functions, the ANN training process is the process of approximating
the ideal decision function f(z) by approximate decision functions fy(z). Now we
can give a rigorous definition of the convergence S, — X. This limiting relation is
equivalent to ’}LIEO XS, = XX

4 The new decision algorithm of competition
In this section we introduce some auxiliary functions and finally the new algorithm.

a Requirements for approximate decision functions f;

First, We list some natural conditions for the functions f; and then construct func-
tions satisfying those conditions.
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(1) The new algorithm is fuzzy and its action in the working mode can be identified
with the mapping f : R"™ — [0; 1]. The value domain of f is the segment [0; 1],
the number f(z) gives the empirical probability of the event z € X after the whole
training course. Similarly, fx(z) gives the same probability after the k-th training
step. So, the value domain of the function fj is the segment [0; 1].

(2) Consider the new algorithm in the training mode. Let z! = (z1,...2z!) be the
first input training signal. Let the point 2* € X. Then fi(z') = 1. Now, if a signal
2 falls into a small neighbourhood of the point z!, then the probability of the event
z € X should be close to 1. Similar rules with the corresponding corrections should
hold in the case 2! ¢ X as well. This gives the requirement for the continuity of f.
(3) Each function f must be constructed according to all previous training signals

21 22, .., 2% Its values at the points 2!, 22, ..., z* must remain equal to 1 or 0 when
subsequent training signals come in.
(4) The same training signals 2%, 2%, ..., 2z may come to the input in a different or-

der. Obviously, the result of this training , i.e. the function fy, should not depend
on the order of the incoming signals.
Now we briefly formulate these requirements:

e The functions f, must be continuous;

: 1, 2'e X .
. fk(Zl>:{ 0 2igx i=1,...,k

e the functions f; do not depend on the incoming order of training signals.

Constructing functions of a simple form satisfying thess conditions is the main goal
of the paper.

b Influence function

Let Z be a set where all possible signals lie. Divide the set Z into the subset X, Y of
the positive and the negative signals: X UY =27, X NY = 0.
Let z' = (z{,...,2!) be the first training signal and, as the teacher told, 2! € X.
We are absolutely sure (our confidence is infinite) that z!' € X. If the point z lies in
a small neighbourhood of 2!, then it most likely falls into the set X too. This time
our confidence is not infinite but still is big. As the point z moves away from z;, this
confidence decreases to zero since the system forgets what has occurred at z;. In the
same way, we assign the value —oo to our confidence if the point z! falls into the
negative set Y and so on. We can imagine that each training signal creates a scalar
influence field (positive or negative) around itself.

Specify an analytic expression for the intensity of the scalar influence field of a
signal. First, determine the the indicator £(z) of the signal z:

+1, ze X
e(2) = -1, z¢ X
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The function h(z)

1

— 2z#0
h(z) =4 [z

400, z=0

defines the intensity of the elementary influence field. Here n is the dimension of the
space Z, m > n is an arbitrary number.

Let the next training signal z* be supplied to the input. The number

e(2F) - h(z — 2F) = =) z# 2k (3)

|z = 2R

may be called a heuristic value of our confidence in the fact that the z-sign coincides
with the sign of the training signal zj (recall that the z;-sign has been prompted by
the teacher). Really, values of the function (3) are large in a small neighbourhood of
2k, which corresponds to a large confidence in the sign of z in this neighbourhood. If
the point z goes away from z, absolute value of the function (4.1) decreases to zero
which corresponds to the decrease of the confidence in the z-sign.

Expression (4.1) resembles the formula of Coulombs law for the interaction of
point charges. The difference is that the influence field is scalar here. Besides, the
exponent m in the formula can exceed 2. Each training signal creates the influence
field around itself, which spreads onto surrounding test points. We call the function
e(2%)-h(z — 2*) (the argument z and parameter z;,) the elementary influence function
of the signal z,. This function determines the influence field of a particular signal
2z taking into account the sign of the signal and the point of its location. Further
we use the notation hy(z) = g(2%) - h(z — 2¥). Thus, each training signal creates the
scalar field of positive or negative influence on all the other points around it. The
elementary influence function determines the intensity magnitude of this field. The
set {z1,22,...,2V} of several training signals also induces the influence field. This
field is a superposition of elementary fields of the signals z*, k = 1,2,...,N. We
define the intensity magnitude of this field at the point z as the sum hq(2)+...+hy(2)
of the values of the elementary influence functions of the training signals z*.

All the training signals influence the signs of other point signals. So the positive
and the negative groups of training signals compete with each other in their <strug-
gles for the influence on a particular signal z # 2!, 22,.... So, the new algorithm can
be called competition algorithm (CA). The idea of the competition lies at its basis,
as well as the idea of an artificial neuron lies at the basis of the ANN algorithm.

Fig. 2 shows the effect of the influence functions of negative (black) and positive
(white) training signals. As the color of the points of the space continuously changes
from pure black to pure white, the values of the influence function grow from —oo to
+00. The points distant from the training signals are colored neutral grey and the
values of the influence function are close to zero at this points.
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Figure 2: Influence function diagram.

¢ The approximate decision functions and the new algorithm

Introduce a few auxiliary functions.

(1) F(t) : (—o0, +00) — (0, 1) is a function variable with a typical s-shaped graph.
This function is intended for transforming a function B! — R! with an unbounded
value domain into a function with the required value domain [0, 1] and can be defined
by the formula

1 t . .
F(t)zil t2+1+1} tl}r_nooF(t)—O, tkfrnooF(t)—l
N
(2) Hy(2) = >_ hi(z) is the influence function for the set {2!,2%,..., 2V}
k=1
(3) Define the decision functions fi. Let fy(z) = 1/2 and
fn(2) = F(Hy(2)), z#2%  fv(z%) = lim F(Hy(2)) =

zZ—z

1, e X
0, 2F¢ X

The function Hj, is not defined at the points z = 2¥, k = 1,... N and we define f;
at these points. Figure 5 presents the graph of the decision functions for n = 2. It is
easy to see that the constructed functions f; satisfy the predesigned properties.

Write down a sequence of operations for solving the problem which make the
competition algorithm.

e Specify the influence function Hy(z) =0,z € Z.
e Simulate the training signal 2* uniformly in Z (X C Z C R").

e Change the influence function: Hy_1(z) = Hg(z) = Hp—1(2) + he(2).
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Figure 3: Graph of the decision function, n = 2.

e Construct the decision function f.

e Choose the step number N for finishing, stop the training process and pass to
its working mode. In the working mode, the value fy(z) is calculated for each
point z € Z. If fy(z) < 1/2, we hold that the event does not occur; otherwise,
we assume the event takes place.

5 Numerical experiment

Let A be a 3 x 3 matrix with known coefficients and unknown determinant det(A).
We want to separate the matrices A : det(A) < 0 from those A : det(A) > 0.

Write down the matrix A as a set of its columns: A = (a.1,a.2,a.3). The set of all
3 x 3 matrices is unbounded. Therefore, solving the problem, we reduce consideration
to the bounded subset {Z} of matrices A composed of the normed column vectors
@y. Just consider association A — A and notice that the sign of det(A) coincides
with the sign of det(A).

Each normed column vector is a point on the two-dimensional sphere Ss, so the
matrix A € Sy x Sy x Sy. The training process consists of modeling uniformly dis-
tributed training signals, which should be densely distributed in the set Z = {Z} We
use the following Monte Carlo formulas for modeling the vector coordinates [1]: xy =
1 =20, 2 = \/1— (209 —1)2 cos(2maz), x3 = /1— (204 —1)? cos(27as),.
After finding the fraction of correct answers in the group of working signals, we use
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Figure 4: Graph of the frequency p (the number of training samples in thousands).

these signals for further training. We can track how the frequency of the correct
answers depends on the number of training samples. Divide the matrices sequence
Ay, Ag, ... into groups: Gy = {Ay,..., A0}, G2 = {Awo1,-.-, A0}, - ., and calcu-
late the number ny, of the correct answers for each group Gy: p(k) = (nx/100) - 100%.
The graph in Fig. 6 shows: at the start p = 1/2 (the absence of information), the
value of p grows quickly, then the growth rate decreases, at the end the value of p is
close to one.
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Abstract

The Smoluchowski equation with linear coagulation coefficients depending
on two parameters is considered. We construct weight algorithm for estimating
various linear functionals in ensemble, which is governed by the equation under
study. Numerical results show that constructed algorithm simultaneously es-
timate both the functionals for various parameters and parametric derivatives
on the same trajectories of the simulated Markov chain.

Keywords: Monte Carlo method, coagulation, linear functional, weight
estimator.

Introduction

In this paper we consider pure coagulation Smoluchowski equation, which describes
a wide class of coalescence processes in physical systems consisting of particles with
positive integer sizes. For given coagulation coefficients Kj;; let the probability of
interaction (or collision) for particles with sizes i and j during a time interval At
be equal to K;;At. Call a particle of size | an [-mer. Under these notations, a
concentration of [-mers n,;(t) at the instant ¢ in spatially homogeneous case satisfies
the following kinetic equation:

87”;55) _ % Z Kijn;(t)n;(t) — ZKilni(t)nl(t), 1> 1. (1)

i+j=l i>1

This equation gives the rate of change of the [-mer concentration with respect to
time as the sum of two terms: the first one is the rate at which [-mers form from the
coagulation of smaller particles (the factor of 1/2 ensures that each of such coagulation
is counted once); the second one is the rate of [-mer coagulation with other particles,
causing [-mer disappearance. Adding the initial data

nl(o) = n0<l)7 [ >0,

to the equation (1), we obtain a Cauchy problem for the nonlinear Smoluchowski
equation. Further we will develop weight modifications of statistical simulation for
estimating the linear functionals of the function n;(t).
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For numerical estimation of linear functionals we are going to consider evolution of
a many-particle system [4]. For this purpose we will simulate a homogeneous Markov
chain, which transitions are due to elementary pair interactions. Further we will use
the following notations:

o Nj is the initial number of particles in the system, be given at time ¢ = 0;
o [; is the size of the particle with number ¢;

o N < Ny is the current number of particles in the system;

o number w = (4, j) is the interacting pair;

o X =(N,Ly)=(N,l,---,ly) describes the phase state of the system;

o A(X)=> a(N,l;!;), where for N > 1 we have

w

a(w) = a(N,;,1l;) = ZNJIthljélinl, here 0,,, is a Kronecker delta (and
=1
a(l,1;,1;) = 0);

o P(X,t) is the set of probabilities, which determines the state distribution of
the system at the time t;

o Z = (X,w), dZ = dXduo(w). Integration with respect to the measure pqg
implies summation over all possible pairs w, and integration over dX means
summation over all values of N and Ly.

Under molecular chaos assumption one can obtain in the limit (see [7] for details)

1 00 00 0o
FZZ...ZNP(N,Z,ZQ,...,ZN,t)—>’n,l(t), when N0—>OO.

O Nello=1  Iy=1

This limit allows us to estimate solution to the equation (1) with the help of linear
integral equation in the way described as follows.

We construct weight modifications of the Monte Carlo algorithms on the basis of
the technique suggested in [6], which introduces the pair number w responsible for a
collision in the system to the set of phase coordinates. This approach allowed in [6] to
derive a special integral equation for the function F(Z,t) = F(X,w,t) = a(w)P(X, )
in the transformed phase space Z x [0, T]:

F(Z1) = / / F(Z #)K(Z' ¥ — 72,8) 7' &' + Fo(2)3(8).

Here §(-) is a Dirac delta function. The latter equation can be used to construct
standard weight modifications of the Markov chain simulation for a many-particle
system due to multiplicative structure of its kernel:

K(Z'\t' — Zt)= K;1(t' = t|X) - Ky(w|X') - K3(X' — X|w).
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The distribution density of the time between elementary interactions is exponential:
Ki(t' — t|X") = A(X") exp{—AX")(t — ")}

The probability that a pair of particles w = (i, j) interacts in the N’-particle system
is
. a(w)  a(N') ;1)
Ky(w|X') = Ksy(i, j|X') = = L v
Finally, the function K3(X’ — X|w) defines the transformation of the system after
an interaction of the pair w, which results in replacement of two interacting particles
i and j by a single particle of the size I =1; +1;, so N = N’ — 1.

Thus, the simulation process of the next interaction in the Markov chain includes
two successive elementary transitions: first we choose the time interval between in-
teractions, and then we choose two particles for interaction.

Usually the following functionals are of interest:

Ju(T) = / H(X)P(X,T) dX.

For the function

A(X.t) = H(X) exp{—A(X)t}, H(X) € Lo, 2)

the following equality was derived in [6]:

JH(T)://EI(X,T—t’)F(Z,t’) dZ dt' = (F, H),

which we will make use of later.

1 Problem statement

In this work we consider the case of linear coefficients depending on two parameters

aand b o
Kij =a+ b@. (3)
These coefficients can be found, for example, in the classical polymer model
A—R By (see [1]). In this model the molecules with (f — 1) chemically ac-
tive units of one kind (B), and a single unit of another kind (A), are regarded as
monomers. Chemical bonds could be formed between A and B units, regardless of
ring formation (i. e. cyclization), and reactions between units of the same kind are
forbidden. This leads to branched molecules if f > 3 (see Figure 1). As the number
of unreacted A’s per j-meric molecule is one and the number of unreacted B’s is
(f —2)j + 1, for this model the coagulation (or polymerization) rate is proportional
to (i +7)(f —2) +2, 1. e. has a form (3).
In this paper we are interested in construction of new algorithms for two problems:
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Figure 1: An example of 5-mer for f =3

1. estimation of functionals Jy(T) = Jy(a, b, T) for various parameters a and b
using simulation of the many-particles ensemble for a given a* and b*;

oJ J
2. estimation of parametric derivatives a—H(a*,b*,T) and a—s(a*,b*,T). with
a

respect to a and b.

These problems were stated in our previous work [3], in which we suggested value
algorithms for reduction in computational cost. For the considered case of linear
coefficients K;; we have

a(a b ) = 2a+b(zi+zj>7A<a,b’X):M{ N +b}7

2N, 2 |*N,

Ki(a,b,t' = t|X') = A(a, b, X')elA@PX)=)}

2a + b(ll + l])
aN(N — 1) + bNy(N — 1)’

Ks(a,b,i,j|X") =

2  Weight simulation of Markov chain for integral
equation

To solve the first problem stated in the previous section we suggest to simulate
ensemble evolution for parameters a* and b* and estimate the functionals for another

parameters with the help of the weight simulation. For this purpose we define the
simulated Markov chain {Z,,t,}"_,; k = max{n : t, < T} with a transition density

P(Z' ¢ — Zt) = Pt = t|X') - Po(w|X') - K3(X' — X |w)
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and a distribution density Fy(Z)d(t) of the initial state (Zy,to). Then we can define
random weights by the formulas:
Ki(t' = t|X") Ky(w|X')

=1 n — Wn— Zn— s bn— ;thn; Z/’t/;Z’t = ‘ '
Qo=1, Qn=0Qn1Q(Zn_1,tn1 ); Q ) Pi(t' = t|X") Py(w|X)

We propose to use for simulation the following probability density function P; and
probabilities Ps:

Pt = t|1X") = Ki(a*,b*, ' = t|X'); P(w|X') = Ky(a*, b*, i, j|X").

Using the forms of K; and K we obtain the set of weights )(a,b) in the following
form:

2a +b(l; + 1) xe{_ Fnt=t [ M aat) 4 (b-b)] (tn—tn—l)}.

b an 7t'nf 7Zn7tn = i i
Q(a,b, 1 1 ) 23*+b*(li+lj) t=tn

In order to estimate the functional Jy(a,b,T) = (F(a,b), H), the “weight” col-
lision estimator & and absorption estimator n could be used (see [8]):

Q.H(X,.,T —t,)
(X, te)

Eab) = Q.H(X,,T—t,), n(a,b) =
n=0

T
ﬂXﬂ%ﬂ—/HW%ﬂXﬁt
t/

Taking into account the representation (2), we can show that n = Q. H(X,) with

K

Qﬁ(a7 b) - H

k=1

Ng—1-1[Ng_1

2a+ b(ll + l]) ] y ﬁ e{,f[ r= (afa*)+(b*b*)] (tkftk,l)}
1=tk k=1

bl

where ty = 0 and t,.; = T. Using the results of [5], we can obtain the following
theorem.

Theorem 1. Let Q(Z',t'; Z,t) < +oo, for Z'. Z € Z, and t',t < T, then E{ = Jy(T).
If ¢(X,t) > 0, for t' < T, then also En = Jy(T). Moreover, if the weights are
uniformly bounded and H € L, then there exists T*, that for T' < T* the variances
of the estimators are finite. O

Taking into consideration the form of weights @,(a,b), we can show that The-
orem 1 is valid for our problem for some intervals a* — ¢, < a < a* + ¢, and
b*—EbSbSb*—FEb.

For solving the second stated problem we suggest to use the following theorem,
which is valid for our problem due to the forms of the integral operator K with the
kernel K and the integral operator Kp with the kernel K2/P*.
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Theorem 2. Under conditions of the Theorem 1 let also the spectral radii p(K) < 1,
p(Kp) < 1, and the value of ||K.|| be uniformly bounded in some interval ¢* — e, <
c<c"+¢. forc=aorc=>b. Then for ( =& or ( =n we have:

A\ O, , ., ¢
E<%>— 5% (a*,b*, 1), Var(ac><—|—oo. O

For example, for the absorption estimator we have

O O
Oa 0b

where the weights are the following:

(2 b", 1) = B |QH(X,)] . Sl b",7) = B[QLH(X,)].

K

Qr = ZM [a“r%(lﬂrlj)}l —§ [M] (te = th-a),

k=1 2 t=tr k=1 2

. i b* 1IN (N — 1

&= {a* + 5 Hj)] - { : 1(211;}1 )} (B = Bi-a).
k=1 t=tp k=1 0

3 Results of the numerical experiments

Without loss of generality we present numerical results for estimation of two function-
als: the monomer concentration Jg, (), and the total polymer concentration Jg, (1)
with

H(X) = 5 D000 = 1 HU(X) = 5 3 1= 5
=1 1

These functionals estimate the solution to the initial equation (1): Jg, (1) = ny(T") +

ONg ), Ju,(T) = u(T) + O(Ny"). Here u(T) = > ny(T) is the total polymer

i=1
concentration. The deterministic error of order O(N,; ') occurs due to the finiteness
of Ny (see [7] for details).

Further in this section the simulation results according to the suggested algo-
rithms are presented and compared to the analytic solution of the test problem. As
a test problem for implementation of the algorithms described above, we take the
problem (1) with the coagulation coefficients (3) and the initial data ng(l) = ;1
(monodisperse equation). This problem has an exact solution in the form (see [9]):

a 1+lb/a
m(t) = u(t)(1 — p(t)=! <%) D = ) ex;{bt/Z} —a

We used the following data in the algorithm: Ny = 200, T'=1.2, a* = 1.3, b* = 1.1,
a=a*"+10%, b =b* £+ 10%, and M = 107 is the number of simulated trajectories.
Note that the statistical error is of order O(M~1/2) (see, e. g., [8]). We also used
the following notations in the tables: & is the mean square error (square root of the

estimate variance); and PE% is the percent error. You can find some results in the
Tables 1-3.
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Table 1: Estimation of Jg, (7).

a b | exact solution | estimator =+ o PE%

1.3 ] 1.1 ] 1429-107Y [ 1.436-1071 +8.1-107%| 0.46
1.43 ] 1.1 | 1.340-107' | 1.347-107* +1.8-107% | 0.50
1.43 1121 | 1.247-107% [1.253-107* +5.1-107° | 0.45
1.3 [1.21] 1.328-10"% |1.333-1071 +26-107° | 0.40
1.17 1121 | 1.416-107% |1.422-107* +£1.6-107°| 0.37
117 | 1.1 1.527 1071 | 1.534-10"' + 3.7-107° | 0.43
1.171099 | 1.648-10"' |[1.656-10"* +1.2-107*| 0.49
1.3 1099 | 1.539-10"Y | 1.547-1071 +4.6-107° | 0.49
1.43 1099 | 1.441-107' |1.449-107*+1.8-107°| 0.53

Table 2: Estimation of Jy, (7).

a b | exact solution | estimator =+ o PE%

1.3 ] 1.1 | 3.290-107' [3.315-107' £9.1-107%] 0.76
143 | 1.1 | 3.175-107' |3.201-107' 4+ 4.6-10"° | 0.83
143 | 1.21| 3.005-10"' |3.031-107' 4+ 1.3-10~* | 0.85
1.3 [ 1.21| 3.112-107' |3.137-100' £6.2-107°| 0.78
1.17 | 1.21 | 3.228-10"' |3.251-107' +2.9-107° | 0.71
1.17 | 1.1 | 3.414-107' |3.438-107' 4+ 7.3-107° | 0.70
1.17 1099 | 3.610-107" |3.636-10"' +£2.4-107* | 0.70
1.3 10.99 | 3.477-10"' |3.502-107' £9.8-107° | 0.73
1.43 1099 | 3.352-107' |3.379-107' +£4.2-107° | 0.80

oJ. aJ.
Table 3: Estimation of a—;(T) and 8_§(T)

functional | exact solution estimator =+ o PE%
aé]Hl (T) | =7.170-107% | —=7.156-1072 £ 1.9-107* | 0.18

a

oJ.
agl (T) | —9.589-1072 | —9.687- 1072 £ 2.9-10* | 1.02

aJ.
aHﬂ (T) | —9.198-102 | —9.003-10~2 £ 4.2-10* | 1.14

a

oJ
8]? (T) | —1.654-10"" | =1.659-10"2 + 6.5-104 | 0.28

Conclusions
We have constructed algorithm to estimate the functionals for various parameters (a,

b) as well as parametric derivatives using the same set of trajectories. This algorithm
could be useful for solving the interpolation problem. We would like to point out that
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we used the monodisperse pure coagulation equation as test problem due to the fact
that there exists an analytic solution only for this problem. The algorithm works
for polydisperse case (initial particles of varying size) as well. The reduction of the
computational cost for estimation of various functionals for large values of 1" is a
challenging problem. It could be solved by the combination of the weight parametric
simulation (suggested in this work) and the value simulation (see [2, 3]).
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Abstract

In this paper, degradation models are considered. We suppose, that the
degradation process is a stochastic process with independent increments (in
this case increments of the degradation index). We propose the algorithm
for identification of the distribution of degradation increments, as well as the
algorithm for estimation of the reliability at some given moment of time. We
have investigated the operation of these algorithms using computer simulations.
In this paper, we also give an example of the application of proposed algorithms
for the GaAs lasers data.

Keywords: degradation process, stochastic process with independent in-
crements, reliability, distribution of degradation increments, GaAs lasers data.

Introduction

There are many scientists, who carry out the research in area of degradation. The
topic of degradation processes is considered, for example, in papers [1-5]. In theory,
the degradation process is often supposed to be a stochastic process with independent
increments. Many researchers use gamma-distribution (for example, Nikulin and
Bagdonavicius (2001)) or normal distribution (for example, Bordes (2010) and Tang,
Yang and Xie (2004)) as the distribution of degradation increments. And it can be
explained by repeatability of these distributions (the sum of random variates has the
same distribution as each variate). But in practice, there are many cases, when the
goodness-of-fit hypothesis with the gamma and normal distributions is not confirmed.

The aim of this research work is to develop the identification algorithm for distri-
bution of degradation increments and estimation algorithm for reliability basing on
the degradation data.

1 Identification of the degradation model

Suppose that an increasing stochastic process Z(t) describes the degradation level of
an item. The failure occurs, when the degradation level reaches the critical value zj
[4]:

T=sup{t:Z < z}=inf{t: Z > 2},.

In this paper, the mean degradation m(t) = E(Z(t)) is refered to as the trend
function. Let we know values of the degradation Z},i = 1,n,j = 1,k for n items at
moments ¢;. We suppose that the initial value of the degradation level is zero.
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We introduce some assumptions.
Assumption 1. The degradation process is a stochastic process with independent
increments. We denote the increment as
Xj=2j—Zj_i=1nj=1k (1)

J—b

Assumption 2. Let the distribution of the degradation increments has the follow-

ing form:
P () 2

where m(t;7) is the known trend function of the degradation level, # is the vector
parameter of the distribution (shift and shape parameters). The main assumption is
that the difference between the trend functions at time ¢ = ¢; and time s = ¢;_; is
the scale parameter of the distribution of increments.

Assumption 3. Let the distribution 2 of increments X JZ belongs to the collection
of distributions ¥ = {F}, F5, ..., F.}.

The identification algorithm for the distribution of the degradation increments
can be written as following:

1. calculate the degradation increments 1 basing on degradation data;
2. set 1 =1;
3. select the distribution F; from the collection of distributions F;

4. estimate the distribution parameters by the sample of increments with maxi-
mum likelihood method: trend function parameters are always estimated, shift
and shape parameters are estimated if it is necessary;

X,

] m(t;;y)—m(tj-159)’

tion increments X7 can be not identically distributed;

5. standardize the sample of increments: X; = because degrada-

6. calculate the p-value by one of the goodness-of-fit tests, for example, Kol-
mogorov, Cramer-von Mises-Smirnov or Anderson-Darling tests, basing on the
standardized sample of increments X ]Z and the distribution F; with the scale
parameter equal to 1;

7. if i = L, go to step 8, otherwise set i =7 4+ 1 and go to step 3;

8. choose the distribution, which has the biggest p-value «,, > o, where o is the
significance level.

The most difficult stage of the algorithm is the calculation of p-values of the
Kolmogorov, Cramer-von Mises-Smirnov and Anderson-Darling tests, which is based
on the distribution of the test statistics under true null hypothesis. Here, the values of
test statistics are calculated after estimation of unknown parameters of the model. In
this case the distribution of the test statistic is affected by a number of factors, such
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as the form of the distribution F;, the type and the number of estimated parameters,
the method of parameter estimation used, and so on. Approximations for the limiting
distributions of the test statistics for testing various composite hypotheses have been
discussed in works of Lemeshko, for example, [6].

In this paper, we have investigated the distributions of Kolmogorov, Cramer-von
Mises-Smirnov and Anderson-Darling statistics by means of Monte-Carlo simulations.
It has been shown, that on step 6 of the algorithm, it is possible to use approximations
of limiting distributions of considered statistics, obtained in [6], for calculation of p-
values.

To check the assumption, that the degradation process is a stochastic process
with independent increments, it is possible to test the lack of trend hypothesis by the
sample of increments, ordered according to the time of measurements. In [6], it is
recommended to use the Foster-Stuart and Cox-Stuart tests as they have rather high
power comparing to the Wald-Wolfowitz, Bartlett and Hsu tests. The assumption of
independence of increments for the constructed degradation model can not be held,
if the trend function is not appropriate. In this case, the lack of trend hypothesis
will be rejected. It has been shown, that the Foster-Stuart and Cox-Stuart tests have
rather high power in such situations.

The aim of degradation data analysis is to calculate the probability of no-failure
lifetime for a given period of time, that is the value of reliability function, which is

defined as
S(ts) = P(T > ts) = P(Z(ts) < 20), (3)

where zq is the critical value of the degradation level.
The value of reliability function at the given moment ¢5 can be estimated on the

basis of the obtained distribution of degradation increments F'(t;4,6) by means of
computer simulations using the following algorithm:

1. calculate the moments of time from the initial point till the moment ¢, with the
time step equal to the arithmetic mean of original time steps;

2. generate the sample of degradation increments for N objects in accordance with
the distribution F(¢;4, 0);

3. summing obtained increments for each item, get the sample of values of degra-
dation level at the moment t,;

4. estimate the reliability 3 basing on the empirical distribution function Fly ob-
tained at step 3:

S(ts) = FN(ZO).

The amount of simulations /N should be chosen according to the desired deviation
of the empirical distribution Fj from the distribution of degradation level at the
moment t,. For example, if we want to get the deviation not more than 0.01 with
the probability 0.99, then we need to set N not less than 16590.
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2 The analysis of the degradation processes based
on the data of the GaAs lasers testing

To analyze the work of identification and estimation algorithms, we have considered
the data on degradation of gallium arsenide (GaAs) lasers [3]. Gallium arsenide
(GaAs) lasers are used in telecommunication systems. During the operation, they
consume more and more current to maintain a fixed level of light output. They
are provided with feedback devices that support the consistency of luminous flux.
A device fails, when it consumes a current on 10% higher than the nominal value.
15 lasers have been tested under ambient temperature, increased to 80 degrees of
Celsium. During the test 3 lasers had failed. Failures had occurred at 3374, 3521 and
3781 hours.

In accordance with the requirements, these lasers must operate at least 200 thou-
sand hours under ambient temperature equal to 20C. Basing on the previous expe-
rience, the engineers supposed that the increase of ambient temperatures up to 80
degrees accelerates the failure in 40 times (conservative estimate). In other words,
we have to estimate the reliability at the moment of 200000/40 = 5000 hours (that
is equivalent to two decades of operation).

There are a lot of papers devoted to the analysis of these data. However, in
most of them, authors made an assumption on the distribution of increments, and
all following conclusions are based on this assumption. For example, in paper [2],
authors considered Wiener degradation process for these data, in papers [5] authors
compared Wiener and gamma degradation models. In this paper, we question of
the normal and gamma distributions for the degradation increments. In accordance
with the steps of the identification algorithm of the distribution of increments, we
included normal and gamma distributions, as well as the Weibull, Maxwell, exponen-
tial and inverse Gaussian distributions into the collection of distributions F. Then,
we estimated parameters of the degradation models for each distribution from F.
Following the steps of the proposed algorithm, we used the Kolmogorov test to cal-
culate p-values for all considered distributions. The results are given in Table 1. As
it is seen from this table, the best distribution for these data is the inverse Gaussian
distribution. Moreover, the hypothesis of goodness-of-fit with this distribution is not
rejected for o = 0.05. Thus, it is seen that the normal and gamma distributions are
not appropriate for increments of GaAs lasers degradation.

Table 1: The estimates of parameters of considered degradation models for the
GaAs lasers data

Name of the distribution | Shift parameter p | Form parameter § | Trend parameter v | Value of the statistics | p-value oy
Normal 0.5135 — 0.0008 1.6651 5.4086e — 6
Inverse Gaussian — 0.7276; 0.1122 0.0183 0.6774 0.383
Maxwell 0.0013 1.2558 0.0107
Weibull 2.6525 0.0023 1.4127 0.0001
Gamma — 7.0911 0.0002 1.0696 0.0082
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Then, in accordance with the algorithm for estimation of reliability and the se-
lected inverse Gaussian distribution we simulated the distribution of degradation level
at moment of time 5000 hours. The fixed value of the critical level is 10. So, the
estimate of reliability at moment 5000 hours is S(5000) = 0.6252. We can say, that
engineers suppositions on the reliability of lasers were incorrect: about 40% of lasers
will fail during the 5000 hours of operation under temperature 80 degrees of Celsium
(engineers predicted no-failure operation during this period).

Conclusions

In this paper, we proposed the algorithm for identification of the distribution of
degradation increments, as well as the algorithm for estimation of the reliability at
some given moment of time under assumptions. On the example of the analysis of
the GaAs lasers data, it was shown that Wiener and gamma degradation processes,
which are commonly used in the analysis of degradation, can be inadequate for the
data and, hence, they will provide the wrong prediction of reliability. The most ap-
propriate model among considered is the inverse Gaussian distribution of degradation
increments. It was shown, that about 40% of lasers would fail during the 5000 hours
of accelerated tests although engineers have predicted no-failure operation during this
period.

This research has been supported by the Russian Ministry of Education and Sci-
ence as part of the state task (project 8.1274.2011) and the Federal Target Program
“Research and scientific-pedagogical personnel of innovative Russia” (contract num-
ber 14.B37.21.0860).
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Abstract

The most popular approach for nonparametric estimation of a regression
reliability model, proposed by Beran, is considered in this paper. In this pa-
per, we give the detailed analysis of the selection method for the bandwidth
parameter, which is based on minimization of the distance of failure times from
kernel estimate of the inverse reliability function. The accuracy of the Beran
estimator is studied depending on the plan of experiment (the sample size and
the number of values of the explanatory variable) and the way of calculating
kernel estimates of the inverse reliability function. We formulate some conclu-
sions on the choice of smoothing parameter and kernel function for the kernel
estimates of the inverse reliability function, which give the best accuracy of
Beran’s estimator.

Keywords: reliability function, the regression model, nonparametric Beran
estimator, smoothing parameter, bandwidth parameter.

Introduction

In problems of the statistical analysis of lifetime data, such as failure time of technical
devices in reliability theory or time of death in medical studies, the most common
task is the analysis of the dependence of the reliability (survival) function on the
observed explanatory variables. In reliability theory, such factors as temperature,
pressure, voltage, mechanical and other are usually taken as explanatory variables or,
as they are usually called in the lifetime data analysis, covariates. The most popular
parametric regression models in reliability are the AFT (Accelerated Failure Time)
model and the proportional hazards model. The construction of any parametric
model requires knowledge of the lifetime distribution and the kind of dependence of
reliability function on the observed covariates. In practice, however, this information
is usually absent. In such a situation it is advisable to use nonparametric methods,
which enable not only to estimate the reliability function for different values of the
covariate, but also can be used to construct a goodness-of-fit test for some parametric
reliability model.

One of the most popular approaches to nonparametric estimation of the regres-
sion reliability model is the estimator, proposed by Beran [1]. The investigation of
statistical properties of this estimator in the case of random plans, when the value
of covariates are not fixed, are presented in [2-5]. In [6], the properties of Beran’s
estimator are studied, when the values of covariate are defined in advance.
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Today, a great number of publications is devoted to the problem of the kernel
smoothing; the main attention is usually paid on the problem of selecting the optimal
smoothing parameter. In the context of this problem, it is important to understand,
that such methods as reference heuristic methods, substitution methods and cross-
validation are not applicable for the nonparametric Beran estimator, as in this case
the kernel function determines only the weight of each observation according to the
value of the covariate.

However, it is known that the quality of the Beran estimator essentially depends on
the chosen value of the bandwidth parameter. In [6], a theoretical method of selection
of the optimal bandwidth parameter is suggested, however, it is extremely difficult
to implement this method in practice, as it uses several functions, which are usually
unknown. In [7], the method of selection of the optimal bandwidth parameter, based
on the bootstrap procedure is offered, however, this approach is applicable only to the
case of the random plan. Thus, it is necessary to develop the method of calculation
of the optimal value of the bandwidth parameter for the Beran estimator. In [8],
we have proposed the idea of selecting the optimal bandwidth parameter, which is
based on the minimization of the distance of failure times from kernel estimate of
the inverse reliability function. So, the purpose of this paper is to investigate the
statistical properties of the Beran estimator and to give some recommendations on
the way of application of the proposed method.

1 Nonparametric Beran estimator

Denote by T, the lifetime of considered technical product, which depends on scalar
covariate. The reliability function is denoted by

S(tlx) = P(T, > t) = 1 — F(t|z), (1)

where F'(t|z) is the conditional distribution function of a random variable 7.
The main feature of the lifetime data is the presence of right censored observations,
which can be represented as

(}/laxhal)? (}/2,.%‘2,52)7 ey (Yn7xn75n)7

where n is the sample size, z; is the value of covariate for i-th object, Y; is the failure
time or censoring time and ¢; is the censoring indicator, which is equal to 1, if the
1-th observation is complete, and 0 if it is censored.

The Beran estimator is defined as follows [1]

) i
& . o W, (:U; hn)
Sh, (tlz) = H {1 1_ Zi—l Wi (3 hn) } ) (2)

Yo <t =t

where x is the value of the covariate, for which reliability function is estimated,
W' (x;hy,),i=1,...,n are the Nadaraya-Watson weights, which are defined as fol-
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x; a T —x;
(2 K J
n ) Z ( hy, ) ’
7j=1
where K ( ) is the kernel function, satisfying to the regularity conditions: K(y) =

K(—-y),0< K( < o0, f_oo K(y)dy = 1; h,, > 0 is the bandwidth parameter, which

satisfies to the conditions: lim h, =0, lim nh, = oo
n—o0 n—oo

It should be noted, that in the case of the values of the Nadaraya-Watson weights
W/ (z;h,) = n~!, the Beran estimator is led to the Kaplan-Meier estimator [5]. As
it was shown in [9], the accuracy of the Beran estimates essentially depends on the
values of the bandwidth parameter and is almost independent of the type of kernel
function. The optimal bandwidth parameter depends primarily on the degree of
influence of the covariate on the reliability function, while the effect of sample size is
not so significant.

lows [5]:

Wi (;hy) = K (:‘7

2 The choice of bandwidth parameter

The choice of the bandwidth parameter determines the values of the weights W (z; h,,),
which in turn determine, which observations will participate in the construction of
the estimate of the conditional reliability function (1). Thus, varying the bandwidth
parameter, in a certain way, it is possible to drop “bad” observations.

In this paper, we consider the method for selecting an optimal parameter, which
is based on the minimization of the mean deviation failure times Y7, Y5, ..., Y,, from
nonparametric estimation of the inverse reliability function S;'(p) [8]. We denote
the inverse reliability function through g(p|x). Then, the model (1) can be rewritten
in the form:

T = g (plz) + ¢, (3)

where p € (0,1), € is the error of observation, which, in general, may depend on p
and x.
Kernel estimator for the model (3) can be written as

9 (Dilxs) = Z wi, (P (4)

where w’ is a certain weight, which can be calculated using various weighting func-
tions. In particular, we consider the Nadaraya-Watson weights of the first order

ﬁj) iK (ﬁib—ﬁk)
n 1 n

ot =& (25

and the Priestley-Chao weights of the second order [1]:

85



Novosibirsk, 25-27 September, 2013

where the smoothing parameter b, can be selected using one of the methods proposed
for kernel smoothing [1,10]. Probabilities p; are calculated using the Beran estimates:
pi = Sh, (Yilz:).

Thus, the optimal value of the bandwidth parameter can be obtained by solving
the following optimization problem:

1 n
opt __ ; a(plr.) — V.
hy* = argmin — El 0i - g (pilz:) — Yil. (5)

3 Choice of weights and smoothing parameter

As we consider the problem, involving the use of kernel smoothing, we can use pre-
developed approaches for the optimal bandwidth parameter for the kernel estimator
of regression. Let us consider the following methods:

1. The method of cross-validation, which is often regarded as the most accurate;
however, it requires significant computational resources.

2. Method of minimal mean of integrated error according to the smoothing pa-
rameter, which is calculated as:

, srl2R(K)]Y°
v [wm%} "

where po(K) = [2?K(x)dz, R(K) = [ K*(z)dz, ¢ is the estimate of the
variance, which can be calculated in various ways, most often used for this
purpose, for example, the sample variance:

. 1 .=
P =5= 3 (D)

1=

However, firstly, this estimate is not robust, and secondly, has “good” properties
only if the distribution is close to normal. Therefore, in this paper we shall also
consider the robust estimate of the variance:

pi— med (pA—j +ﬁk> ’ .

= S, = med
o j=1.n,k=j.n 2

i=1..n

Q>

This estimate is a combination of the well-known robust estimate of Hodges-
Lehmann for the shift parameter and the robust estimate of Rousseeuw, and it
is called the median absolute deviation for the scale parameter.

Let us investigate the statistical properties of the Beran estimator using the op-
timal bandwidth parameter (5). The investigation of the properties of the Beran
estimates is carried out by the Monte Carlo simulations. The following statistic is
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used as the distance between the Beran estimates and the true conditional reliability
function:

Dy, = sup |Sp(t|a;) — Se; (1)) - (6)
=1k, t<oco
It is obvious, that the quality of estimates (4) directly influences on that, how well
the bandwidth parameter will be chosen. So, let us compare different weights w?
for the kernel estimator g(p;|z;), as well as different methods of choosing smoothing
parameter from the point of view of the accuracy of the Beran estimation.
As the true reliability model we consider the parametric Cox proportional hazards
model [9]:
Se (1) = (S0 (£)"7, (7)

with the covariate function r(z; 3) = In(1 + €°*) and the lognormal baseline distri-
bution with the density function:

1 1 t
Pl® = ot P (‘2_9%1“2 (e‘)) |

We consider the case, when the covariate takes the values from the set
{0,0.11,0.22,0.33,0.44,
0.56,0.67,0.78,0.89, 1}, the sample size n = 100, 200, 300 and the number of obser-
vations corresponding to different values of the covariate is equal to each other. The
samples were generated according to the model (7) with parameters: 6; = 21.5,0, =
1.6, B = 2 or B = 5. The values of the distance (6) are given in Figure 1; the av-
erage values of chosen bandwidth parameter hopt and smoothing parameter byg are
presented in Figures 2 and 3, correspondingly.

In all figures the notation “PCh” indicates the Priestley-Chao weights and “NW”
indicates the Nadaraya-Watson weights.

0.4 - 1: Pch(Syppp), B = 2
033 | | 2:Pch(5Z) B=2
|

0.3
05 3NW(S,p5), B=2

02 4 NW(s2),B=2
0,15
01
0,05

1]

5: Pch(S,0p), B=5
6:Pch(s2),B=>5

7:NW(Spop), B=5

12345678 7
= 12385678 snw(sh), p=5

n=100

Figure 1: The distance D,, for different sample sizes

It is seen from Figure 1, that the Priestley-Chao weight function allows to get more
accurate Beran estimates. Thus, when the sample size is equal to 100, the value of
distance (6) in the case of using Prestly-Chao weights is less by 3% in comparison
with the case of using Nadaraya-Watson weights; if n = 200 the winning is 8% and
when n = 300 the winning is 11%. Moreover, the usage of robust estimator S,., in
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1: Pch(Syop), B =12
2:Pch(S2) p=2

B NW(Spp), B=2
4 NW(s2), B=2
5: Pch(S,p), B=5
6 Pch(52),B=5
T NW(S,05), B=5

12345678 12345678 12345578 B-NW(SZJBZS
: s

Figure 2: Average values of the bandwidth parameter h°"* for different sample sizes

045 1: Pch(S,pp), B=2

L4 2
2: Pch(s. =2
0,35 (4 ( 'n) B
03 3:NW(S,op), B=2
0,25 4 NW(s2), p=2
02 -
015 5: Pch(S,gp), B=5
01 6: Pch(SE),p=5
0,05
0 7:NW(Sp05), B= 5

123456?8 12345678 12345678 2y g—
Z=300 B NW(S7), B=5

Figure 3: Average values of the smoothing parameter b, for different sample sizes

calculation of the smoothing parameter b,, gives better accuracy, and accuracy of the
Beran estimates increases with the sample size growth.

Figure 2 shows the average values of the chosen bandwidth parameter h%". It is
seen, that when the sample size increases, the value of optimal bandwidth parameter
reduces; it is quite natural, since the number of observations in groups increases, and
hence the number of “bad” observations increases.

Figure 3 illustrates the average values of smoothing parameter b,. It is curious,
that the value of the smoothing parameter practically does not depend on the sample
size and the weight function.

It is necessary to note, that the results obtained by the cross-validation are not
presented in these figures by two reasons: firstly, the procedure of cross-validation
requires extremely large computational resources, for example, when n = 100 the
time of calculation increases in about 6 times; and secondly, the method of cross-
validation minimizes the function (6) according to parameter b,, but not to the
bandwidth parameter h,,.

Similar results have been obtained in experiments for the parameter value beta = 5
(i.e. with a stronger covariate effect). As in the considered case, the application of
the robust method in conjunction with the usage of Priestley-Chao weights result in
better accuracy of Beran estimates. It is interesting to consider apart the behavior
of optimal bandwidth parameter h%*: when the influence of the covariate on the
reliability function increased, the average value of h" decreased almost twice in
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the case of using Priestley-Chao weights; however, in the case of Nadaraya-Watson

weights such a change is not observed.
Now, let us consider, what happens with the Beran estimates, when different
number of groups (the number of different values of the covariate) is taken.

1:Pch(S,o5), B=2

2:Pch(52), B=2
3 NW(S,0p), B=2

- 4:NW(s2),B=

5: Pch(S,,,), B=5

6:Pch(S2),B=5

7:NW(Spp), B=5
8:NW(5Z), B=5

12345678 12345678 123456738 12345678 12345678
m=4 m=10 m=20 m=40 m=100

Figure 4: The distance D,, for different numbers of groups

0.8 1: Pch(S,0), =2

0.7 2:Pch(S2), B=2
0,6 _
o5 3:NW(S,pp), B=2
0,4 4 NW(S2), B=2
0.3 5: Pch(S,0,), B=5
0,2 . 2y g =
0,1 6:Pch(S2),B=5
0 T:NW(Spop), B=5

12345573 12345675 12345678 12345678 12345678

2 —
=10 m=20 =100 B:NW(S;), p=5

Figure 5: Average values of the bandwidth parameter h?* for different numbers of
groups

1: Peh(Sppp), B = 2
2: Pch(52), B=2

04 3NW(S,pp), B=2
0.3 4 NW(s2), B=2
0,2 5:Pch(S0), B=5
0,1 6: Pch(52), =5
0 F:NW(S,05), B=5

12345578.12345678 12345678 12345678 12345678 )
m=10 m=20 m=100 8:NW(S;), p=5

Figure 6: Average values of the smoothing parameter b, for different numbers of
groups

As can be seen from Figure 4, when the number of groups increases for the fixed
sample size, the accuracy of the Beran estimator decreases, but this fall is not signif-
icant. This result can be explained as follows: the number of observations in a group
decreases, therefore, the amount of information for each covariate value also becomes
less, what leads to the loss of accuracy. However, the average values of bandwidth
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and smoothing parameters (see Figures 5 and 6, correspondingly) practically do not
change. Thus, we can assume, that the value of smoothing parameter byg doesn’t
depend on the sample size and number of groups. Similar result has been obtained in
the case of 8 = 5, when the degree of influence of covariate on the reliability function
was increased.

Similar investigation has been carried out for the Cox proportional hazards model
with exponential baseline distribution. The revealed regularities were almost the
same, so specific numerical results are not given here.

Conclusions

In this paper, we have investigated the selection method of the bandwidth parameter
for the Beran estimator, which is based on minimization of the distance between
failure times and the kernel estimator of the inverse reliability function. We have
examined different ways of calculation of the kernel estimator from the position of
accuracy of the Beran estimator. It has been shown, that it is preferable to use the
Priestley-Chao weight function and to calculate the value of smoothing parameter
by the method of minimal mean of integrated error with the robust estimator of
variance, when calculating the kernel estimator of the inverse reliability function.

During the investigation it has been found, that the parameter byg almost does
not depend on the experimental design, so it can be calculated only once for one
experimental design. This behavior of smoothing parameter can be explained by
the fact, that it is necessary to optimize the accuracy of the Beran estimator rather
than the kernel estimator of the inverse reliability function, so the accuracy of kernel
estimation is not so important.
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Abstract

The principal parts of mean square errors for kernel plug-in estimators of
the functions defining ARX-process are found. We use simulation to com-
pare parametric and nonparametric identification algorithms and to study also
nonparametric control algorithms. To investigate the dependence of Russian
Federation’s Industrial Production Index on the dollar exchange rate, direct
investments, and export for the period from September 1994 to January 2013,
the proposed algorithms of identification and forecasting are applied.

Keywords: Kernel plug-in estimator, conditional mean, mean square er-
ror (MSE), ARX-process, nonparametric identification, forecasting algorithm,
control.

Introduction

Suppose that a sequence (Y;)i— 101, is generated by ARX(m, p, d)-process

Y;S - \Ij ()/;f,m7Xt,S) + Sta (]‘>
where Yy = (Yieiy, o Yicin, ), Xow = (X1, X o XP 0 XD ) s =1+

coot by, d=max(r,... k), 1< <...<ip,<n0<j<...<j<Ln,...,0<
J1 < ... < jr < n are known subsequences of natural numbers, (&) is a sequence of
i.i.d. random variables with zero mean, finite variance, zero third, and finite fourth
moments, ¥ (Y;,, X¢s) is an unknown non-periodic function bounded on compact.

Models (1) are used on identification of economic systems and financial time
series analysis. By identifying model (1) we mean the problem of parametric or
nonparametric estimation of the function V. In this paper, we assume that the process
(Yi)i=. —101,. is a strictly stationary process and satisfies the strong mixing (s.m.)
condition with s.m. coefficient ([10], [11], [3], [4])

alr)~=e®, §>0, T 0. (2)

Let Y7, Y5, ..., Y, be observations generated by the process (1). As a model of the
structure of W in (1), we take the conditional expectation

b(y,z) = E(Yi|Yim =y, Xos =2) = E(Y|y, %), (y,2) € R™"".
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According to [1] the integrals a,(y, z) = /qgf(q, y,x)dq, g = 0,1, are basic func-
tionals, where f(q,y, ) is an unknown probability density function (p.d.f.) of a ran-
dom vector (Y, Yim, Yis) in stationary conditions. Since ag(y,x) = /f(q,y,x)dq =
p(y, x), where p(y, z) is p.d.f. of (Yim, Yis), then the conditional expectation can be

written as ( ) ( )
a\y,xr a1 \y,xr

b(y,x) = = :/Y Yily, )dY;.

(y ) ao(y’x) p(y’x) tf( t|y ) t

We take the kernel estimators of basic functionals a,(y, ) at the point (y,z) in the
form

xr — Xz',s
a (y i Yg ( Y;’m) s ( h* )
agn y L n _ m hy r k )
QzQ-HHh 1 hyy- T by
j= j=1 j=1

where Q = max(iy,, max(j,,...,jx)), ¥ = (h1,....hp), B* = (b, ..., h3), hi =
(ha1y -y hap)s oy B = (Bypa, ..., hpi) are suitable bandwidths (positive numbers), K,
and K are m- and s-dimensional kernels. Thus, the kernel plug-in estimator of con-
ditional functional b(y, z) at the point (y,z) and, hence, the function ¥(y,x) in (1)

is the ratio
YK ( l m) KS ( h 178)

i=Q+1
bn(y,fﬁ) = \I’n(y,{lﬁ) = n '
y_Y;m x_Xis
E K,|———— K, | ——=
, hy h*
i=Q+1

The problem of identifying model (1) is a problem of estimating function (cf. [3],
[11)
a
H(A) = H(ag, 1)) = a—l ag >0, (4)
0
where A = (g, a1), ay = ay(u) = /qgf(q,U)dq, 9="0,1, f(g;u) = f(2),z € R"+,

is p.d.f. of the random vector (Y;,U;) = (Y, Yim, Xts) = Z; in stationary conditions.
In this paper, we study the mean square convergence of estimator (3) to the
function ¥ determining ARX-process (1).

1 The MSE for Plug-in Estimator of ¥

We introduce the following notation: fi(41)(itj41)@itj+k+1)(2, U, u, w) is 4(m + s+ 1)-
dimensional p.d.f. of sample vectors Z1, Z(i+1), Z(i+j+1)s L (it+j+k+1)

+ A
a1(i+1)(i+j+1)(i+j+k+1),p(Zay7 2 y) =

. ’VUV/U,|pf1(i+1)(i+j+1)(i+j+k’+1) (V7 2,0, Y, Vla 2/7 Ula y/)dydvdy/dvl’ Q+1 < i7 ja k< n,
R
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i+jt+k < n=1; a4 ik p(2, Y5 2) = / lwov' P fraggyrgan (v, 20,9,V 2 dvdody/,
R3

linalen?) = [ WP fiay (v, v, af(2) = [ WP Fw g =01, L=
m + s.
Definition 1. A function K(u) belongs to the class of one-dimensional ker-

nels K(-) € A, if /]K(u)|du < 00, /K(u)du =1, /|u”K(u)|du < oo, T =

/qu(u)du =0,j=1,...,v—1,T,#0, and K(u) = K(—u).

Below, to study convergence of estimators, we use the same bandwidth h,, for
each variable from m + s variables in Theorem and the product of one-dimensional
kernels as multidimensional kernels of proper dimensions.

H(A
8ag() H—a (4) sup = sup.

l/' J=1 Ou y ’ T 8(%) 7ueRL u

Definition 2. A function H() : RY — R! belongs to the class N, (2) (H(-) €
N, (2)) if it is continuously differentiable up to the order v at the point z € RE. A
function H(-) € N, (R) if it is continuously differentiable up to the order v for any
z € RE.

Theorem. Assume that for the function H(A) in (4) and integers g,p = 0,1,
=0,4, 1,...,g=1, L, the followingogonditions hold:

1) (Z;) satisfies the s.m. condition, / TQ[Q(T)]ﬁdT <00, 0<§ < o0;

Denote wg, (u) =

2) i) € No(R), () € No(2): sup s, (u) < oo, supafy(w) < o
3) K(-) € A,, sup |K(u)| < oo;

ueR!

4) ap(u) > 0,a,(-) € J\/'V(R),sgp lag(u)| < oo Sup 0"ay(u)

8ul 6
5) a non-increasing sequence (h,,) is such that (d,) = (h + ) 1 0;

< 00;

Jr
6) SUD @15 1) i 1) oo 1), (1 Us Uy ) < 00,
u
+ +
SUD 1 1) 1) g 2-8) (1 1o 1) < 00, SUD Ay 5.5 (U ) < 00,
u u

sup af(
w,u’

Hl)’gﬂ;(u,u') < oo for any 1, j, k > 1;

7) for all possible values of Yi,...,Y,, X{ ..., X! .. XV ... XP the sequence
{|H(A,)|} is dominated by the sequence of numbers (Cod,”), where Cy is a con-
stant, 0 <~y < 1/4.

Then

PUI(A) ~ A =3 o1 [* N[ du)L+wg,,< Yo (2 )h2”]

9,p=0
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1
2v -
+O({hn . )
3]

1
Note that in this formula according to (4) Hy = ——;, Hy = —. The proofs of
Q Qo

0
Theorem is based on the results, presented in [10], [1], [4]-]6].

e

2 Comparison of Parametric and Nonparametric
Algorithms

Computer modeling is started by generation sequences of dependent observations,
using the following processes:

M(1):Y,=02Y,; + 011X} +0.15X! | +0.3X2+0.2X3 , +&,,

M(2):Y, = e0-1Yn140.2X,+0.1X 11 +0.01X7_; +0.03X3 + &,

Here, variables X!, X2, and X? take values from uniform distributions on the
corresponding intervals [2, 2.5], [5, 6], [8, 10], and random variables &, are distributed
according to normal distributions with zero mean and variances, calculated for models
M(1), M(2) by the formula

0:+-a, (5)

where the multiplier a is a level of noise &,, which takes the values 0.01, 0.05, 0.1,
0.15, 0.2, 0.5. In simulation we use the following sizes of observations: 50, 100, 200,
and 500.

Note that condition (2) holds for model M (1) (see subsection 3.5.9 in [1]).

Identification algorithms for functions ¥ in (1) were obtained by the least squares
method (LSM), by iterative weighted least squares method (WLSM), and by non-
parametric approach. The LSM and WLSM estimators are computed by making use
of MATLAB built-in functions.

Simulation of nonparametric algorithms is also based on MATLAB. As a kernel
K(u), we use the standard Gaussian density. The bandwidths are defined in two
ways. In accordance with [13], [2], [9], [8], the bandwidths are calculated by the
cross-validation (CV) method. The second method of finding the bandwidths use the
estimate Y, based on the following empirical criteria:

n—1
U,—-U;
MEACS
_1 . i=Q
hj,Empz'ric = COan L, C10 = argminy o« Ynfl o )
>k (P
P\
i=Q
j = 1,L, where L is the dimension of function ¥, ajz is the sample variance of

observations for the j-th variable, h = (hY, h?).
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Figure 1: Averaged identification Figure 2: Averaged identification
errors for M(1), n = 50 errors for M(2), n = 50
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Figure 3: Dependence of the Figure 4: Dependence of the
identification quality of M(1) on identification quality of M(2) on
the size of observations for the

noise level 0.15

the size of observations for the
noise level 0.15

For models M(1) and M(2) the values of the relative identification errors

n

1
Amj:n_Q‘Z

n = 50, are presented in Figures 1 and 2. The results for other sizes of observations
are shown in Figures 3 and 4. All the simulation results are averaged over 20 samples
of the same size.

According to Figures the identification quality for the two models and all the
methods decrease with increasing the level of noise. Further, for non-linear model
M(2) nonparametric algorithms have advantages over parametric algorithms because
of their adaptability. There is a tendency of reduction of identification errors for all
models by increasing sizes of observations.

3 Real data processing

We examine the dependence of Russian Federation’s Industrial Production Index
(IPT) Y (see Figure 5) on the dollar exchange rate X', import X2, and direct in-
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vestments X3 from September 1994 to January 2013. The data are available from
http://www.gks.ru and http://sophist.hse.ru/. Apply (3) under U; = (Y1, X;4) =

170 T T T

Changing the
160 B classification-of
economic
activities of the
Russian

Fedel

1501

ration

140 |-

130

IPI

The global

120 financial crisis |

10

100

«—— Russian financial crisis

an L L 1 | 1 L L 1 | L L L 1 | L L L 1

95 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Years

Figure 5: IPI for the period from January 1995 to January 2013

(Y1, X}, X2, X2, X? 1). Due to the fact that the classification principles of economic
activities were changed in 2002, we consider two series of the data from September
1994 to December 2002 and from January 2003 to January 2013. We take the Gaus-
sian density as the kernel K (u), the bandwidths h; = 1.16;n71/? for the data from
September 1994 to December 2002, and h; = 1.230;n~ /9 for the data from January
2003 to January 2013, j = 1,2, 3,4, 5, where the constants 1.1 and 1.23 are obtained
by the above empirical criteria.

To compare the nonparametric algorithms (3) with the LSM-estimators, we have
calculated the relative errors A,, and the relative average annual errors A(t),

LYY
t =1994,...,2013, for both the approaches: A, = - ;Zl v |
12 -~
1 Yi(t) = Yi(t : ST
Alt) = — g Yit) = ¥it) , where Y; is the true value of the IPI and Y; is its
12 = Yi(t)

estimate. The results of such a comparison are given in Figure 6 and Figure 7.

The results of 1998 and 2009 can be explained by Russian financial crisis (”Ruble
crisis”) in August 1998 and Global financial crisis in 2009.

To predict the IPT Y for the data from 2002 to 2013 (cf. [12]), we apply (3) under
Ui = (Y;,l? Xi,4) = (}/i—lv Xilflv Xz'2717 Xi3717 XziQ)'
Here the bandwidths are equal to hj; = O.94€fjt*1/9, where 65, j =1,2,3,4,5.
The similarity of identification algorithms and forecasting algorithms leads one to

expect the both should behave similarly. For the relative average annual errors A(t),
seen in Figure 7 and Figure 8, one indeed observed that.
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4 Control

Let the outputs Y of models M(1) and M(2) should be levelled to the given values
Y.(k), k =1,...,5 (see Figure 9 and 10) by making use of the controlled inputs X?
and X? for the corresponding models.

For instance, outputs can be some qualities of produced goods and inputs — certain
parameters of technology of production. Note, we can take direct investments as the
controlled input in Section 3.

There is a problem of finding X2, X3 for M(1), M(2), and X2 for the case of
real data in Section 3. The variables X!, X2 and X3 take values from uniform
distributions on the corresponding intervals [2,2.1], [5,6], and [0,0.2] for M(1), and
[2,2.1], [0,0.2], and [0,2] for M(2). Random variables &, were generated from normal
distributions with zero mean and variances, calculated by the formula (5).

The wanted outputs Yi(k) were taken as Y,(1) = min{Y3,..., Y5}, Yi(2) =

50
3w
18
V(3) = max{Ys,. .., Yao, Va(d) = (V1) + Ya(2))/2, Va(5) = (%(2) + Va(3))/2.

In the case of model M(1), for example, analogously to (3) in accordance with
[7], from the sequence of (V;,Y;_1, X}, X} |, X2 X2 ,), i = 3, n, using the given value
Y.(1n) = Yi(1), n = 51,...,70, one can construct the corresponding estimates of

X2(1n) :
3 Y, 2(1n) = Y; X!, — X} X3 - X3
S (S0 () (5
- hy hflaz hdd

n = — )
" a Y*2(1n) —Yio X%2_Xz‘12 X3—2_X'3—2
K 5 ) K 3 ) K n 2
Z ? ( hy ? hlx h33

where Y;,?(ln) = (Y;(ln),Yn,l), }/;,2 = (Y;?Y;*l)’ Xil,Q = (Xilei171)> hy = (hh h2)7
hiz = (h11, haa).

Here, we use the Gaussian kernel and bandwidths founded on the base of the
empirical criteria as in Section 2. The relative control errors are defined by the
formula

(6)

70+(k—1)20 | &~
1 Vi — Y.(k)
A(k) = — E —, k=1,.
( ) 20 A Y;(k/‘) Y ) ) 5’
i=514(k—1)20

where, for example, Y; = 0.2Y;_; + 0.11X! + 0.156X% | + 0.3X2(14) + 0.2X3 ,, i =
51,...,150. The results are also obtained for model M(2) (see Table 1).
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Table 1: Errors of Control

Models | M (1) | M(2)
Ay 0.024 | 0.021
A, 0.014 | 0.012
As 0.024 | 0.026
Ay 0.011 | 0.009
As 0.020 | 0.015
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Figure 6: Identification relative errors A(t)
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Abstract

Two algorithms for numerical modeling of piecewise constant periodically
correlated non-Gaussian processes are proposed in this paper. Using first al-
gorithm it is possible to obtain a process with time-independent distribution
function. Second algorithm lets us to model a process with density of dis-
tribution that is a mixture of given densities and parameters of mixture are
periodical functions of time.

Keywords: Inhomogeneous Markov chains, periodically correlated pro-
cesses, piecewise constant random processes.

Introduction

In solution of various applied problems related to the study of actual time series (for
example, meteorological or oceanologic) arises necessity of simulation of random pro-
cesses with different periodical properties. Usually correlation function is periodic.
There are two main approaches to modeling of periodically correlated processes. Vec-
tor autoregression processes are most often used for this purpose [1]. Second approach
is based on some kind of point processes [3]. A new method for modeling of binary
periodically correlated sequences is suggested in [2]. Such time series are simulated
as inhomogeneous Markov chains with special type of inhomogeneity.

In this paper we suggest two algorithms for modeling of piecewise constant peri-
odically correlated time series with given distribution densities. Both algorithms are
based on inhomogeneous Markov chains studies in [2].

1 Modeling of processes with time-independent
distribution function

Let &, t = 0,1,2,...be a binary inhomogeneous Markov chain with range space
M = {0, 1}, initial distribution vector

A=A{a, ap} ={a, 1—a}
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and transition probability matrix II (¢) , that possesses 2 properties: II(¢) is periodic
function of discrete argument ¢, takes on a value

P, = <P11[7€] pio[K] ) _ (Pk 1 —px )
poilk]  poolk] L—ar @
when ¢ = un+k > 0, where n > 2is a length of period. Here py,[k] is a probability of
transition from state f into state g (f,g € {0, 1}) when t = un+k, ay is initial
probability of state f.
Let’s consider a process 17, constructed via
Algorithm 1.

1. We simulate defined above Markov sequence &, t=0,1,2,...

2. Random variable w with distribution function F' (x) is independently simulated,

T = W.
3. Fort > 1:

W& =8 1 m=m1;

if & # &_1: we independently simulate w with distribution F'(x), n, = w.

This process 7, is piecewise constant. It is obvious that distribution function of
n is F (z).

Example 1. Figure 1 shows a realization of Markov chain & and corresponding
realization of 7, in case if

06 04 0.7 0.3
n/::2, a 230.5, [% = ( 0.1 0.9 ) s }%7:: ( 05 0.5 ) s }7($) ::]VbJ-

Equality
corr(Ne, Nen) = P (§ = &1 = ... = &yn) -
holds for correlation function corr(n;, n.+n) of the process n;. It means that correlation
function corr(n, ni4n) is completely specified by parameters of process & and is in-
dependent of F' (z). Due to Markov property of & value of P (& = &1 = ... = &1p)
can be easy found, for example,

n—1 v—1
COTT(nmna 77m7z-|-(1m-i-1))) = (bn + ((l - bn) d?) (H p?) (H pf) +

Jj=0

H(1= by (b, d) (H qy) (f qf> ,

O§U<n’ bn:m’

n—1 n—1 " n—1
tn:det<H H), dn:det(H H),Cn:{HPZ}
i=1 i=0 i=1 11

Function corr(ng, ni+n), as function of ¢, is oscillating. Since |d,,| < 1, then corr(ng, ni+n)
converges to its limiting value, and this value is a periodic function of argument ¢.

Example 2. Correlation coefficients, as functions of time and shift, of the process
n:, defined in Example 1, are shown on Fig. 2.

where
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Figure 1: a) — realization of process &; b) — corresponding realization of 7.
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Figure 2: Correlation coefficients of process 7, as function of a) — shift; b) — time.
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2 Modeling of processes with periodic distribution
density

Now we are going to consider one more type of piecewise constant processes, based on
described above Markov chains. Let fo(x), fi (z),..., fun_1 (x) be one-dimensional
densities of distribution.

Algorithm 2.

1. We simulate defined above Markov sequence &, t=0,1,2,...

2. Random variable w with distribution densityf,_1 () is independently simu-
lated, vy = w.

3. Fort > 1:

if § = &1, then v, = v;_y;

if & # &1, then we independently simulate w with density f; (z), where i =
t (modn), v; = w.

For process v; next statement can be proved.

Statement. Process v; has one-dimensional distribution density that can be
described as mixture of fy (x), fi (x),..., fa_1 (). Weights in his mixture are oscil-
lating functions of time. When ¢ — oo weights converge to periodic functions and
the period is equal to n. Correlation function, as function of time, oscillates and
converges to periodic function with period n.

Proof of this statement is based on theory of covering runs in inhomogeneous
Markov chains.

Example 3. It is possible to obtain theoretical formulas that describe distribu-
tion density of process v; for every ¢t. Figure 3 shows these densities for 4 different
momentst, when n = 2, fo = @01, fi = 51 and

0.9 0.1 0.2 0.8
a =05, PO_(O.8 0.2)’ P1_<0.1 0.9)'

Example 4. Figure 4 shows correlation coefficients corr(n;, m:.41) of process vy
when fo = o1, fi = ps1 (normal distribution) and parameters of & are showed

below:
0.6 0.4 0.7 0.3
n=2, a=0.5, PO_(().I 0'9)’P1_<0.5 0.5>'

Conclusion
Discussed algorithms let us to model piecewise constant processes with given prop-

erties of correlation function and one-dimensional density of distribution. Such pro-
cesses can be used, for example, during investigation of meteorological time-series.
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Figure 3: Probability density f(x) of process vy when: 1 —¢=20,2 -t =21, 3 —
t=24,4—-1t=25.
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Figure 4: Correlation coefficients corr(vy, vi11) of process vy.
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Abstract

The problem of nonlinear dynamical systems of Wiener and Hammerstein
type identification is considered. The linear dynamical part of the system is
in nonparametric uncertainty conditions. The common type of nonlinearity is
assumed to be known with the set of parameters. Presented algorithm allows to
create the adequate in the sense of mean-square criterion models. The proposed
method of dynamic objects modeling is based on the nonparametric estimation
of linear and nonlinear parts of the system.

Keywords: nonlinear system, nonparametric, Wiener and Hammerstein
models.

Introduction

The problem of nonlinear dynamical system identification is one of the most im-
portant one in the theory of control. In spite of the existing a lot of methods for
dynamical systems identification, there is no universal theory that allows to design
the models of such systems.

Most of the methods of nonlinear system identification are difficult to apply in
practice or they do not take into account all the properties of the investigated object.
Besides, the task of identification in the most methods is considered ”in the narrow
sense”, it is corresponds to the case when the object structure is known with a vector
of parameters. In this paper the dynamic systems identification ”in 