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Preface

The Second International Workshop “Applied Methods of Statisti-
cal Analysis. Applications in Survival Analysis, Reliability and Quality
Control” -
AMSA’2013 is organized by Novosibirsk State Technical University.
The purpose of our Workshop is to organize interesting meeting on dif-
ferent statistical problems of interest. This seminar aims to provide an
overview of recent research in the areas of survival analysis, reliability,
quality of life, and related topics, from both statistical and probabilistic
points of view. The great attention is paid to applications of statistical
methods in survival analysis, reliability and quality control.

The First International Workshop “Applied Methods of Statistical
Analysis. Simulations and Statistical Inference” - AMSA’2011 took
place in Novosibirsk State Technical University, Novosibirsk, Russia.
This city is very well known for its fundamental contributions to the de-
velopment of theory of the probability, mathematical statistics, stochas-
tical processes and statistical simulation. The meeting had focused on
recent results in applied mathematical statistics and primarily on test-
ing statistical hypotheses, statistical methods in reliability and survival
analysis, nonparametric methods, robust methods of statistical analy-
sis, statistical simulation of natural processes, simulation and research
of probabilistic regularities, application of statistical methods.

The Workshop proceedings would certainly be interesting and useful
for specialists, who use statistical methods for data analysis in various
applied problems arising from engineering, biology, medicine, quality
control, social sciences, economics and business.

Boris Lemeshko
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Application of Nonparametric Goodness-of-Fit

Tests for Composite Hypotheses

in Case of Unknown Distributions of Statistics

Alisa A. Gorbunova, Boris Yu. Lemeshko, Stanislav B. Lemeshko,
and Andrey P. Rogozhnikov

Department of Applied Mathematics, Novosibirsk State Technical University,
K.Marx pr., 20, Novosibirsk, Russia

e-mail: gorbunova.alisa@gmail.com, lemeshko@fpm.ami.nstu.ru

Abstract

While testing composite hypotheses when a scalar or vector parameter of
the probability distribution is calculated using the same sample, nonparametric
Kolmogorov, Cramer-von Mises-Smirnov and Anderson-Darling goodness-of-
fit tests lose their distribution freedom. When testing composite hypotheses
conditional distribution of the test statistic depends on several factors, even
the specific values of the distribution shape parameters.

An interactive method for investigating distributions of nonparametric goodness-
of-fit tests statistics, that allows us apply criteria for testing any composite
hypotheses using a variety of estimation methods, is implemented.

Keywords: goodness-of-fit test, testing composite hypothesis, Kolmogorov
test, Cramer-von Mises-Smirnov test, Anderson-Darling test, Kuiper test, Wat-
son test, Zhang test.

Introduction

Classical nonparametric tests were constructed for testing simple hypotheses: H0 :
F (x) = F (x, θ), where θ is known scalar or vector parameter of the distribution func-
tion F (x, θ). When testing simple hypotheses nonparametric criteria are distribution
free, i.e. the distribution G(S|H0), where S is the test statistic, does not depend on
the F (x, θ) when the hypothesis H0 is true.

When testing composite hypotheses of the form H0 : F (x) ∈ {F (x, θ), θ ∈ Θ},
where the estimate θ̂ of a scalar or vector parameter of the distribution F (x, θ) is
calculated from the same sample, nonparametric tests lose the distribution freedom.
Conditional distributions G(S|H0) of tests statistics for composite hypotheses depend
on a number of factors: the type of the distribution F (x, θ), corresponding to the
true hypothesis H0; the type of the estimated parameter and the number of esti-
mated parameters and, in some cases, the value of the parameter; the method of the
parameter estimation.
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1 Nonparametric goodness-of-fit criteria for

testing simple hypotheses

In Kolmogorov test statistic the distance between the empirical and theoretical
distribution is determined by

Dn = sup
|x|<∞

|Fn(x)− F (x, θ)| ,

where Fn(x) is the empirical distribution function, n is the sample size. When n→∞,
distribution of statistic

√
nDn for true hypothesis under test uniformly converges to

the Kolmogorov distribution [1]

K(S) =
∞∑

k=−∞

(−1)ke−2k2s2 .

While testing hypothesis using the Kolmogorov test it is advisable to use the
statistic with Bolshev correction [2] given by [3]:

SK =
6nDn + 1

6
√
n

, (1)

where Dn = max(D+
n , D

−
n ),

D+
n = max

1≤i≤n

{
i

n
− F (xi, θ)

}
, D−n = max

1≤i≤n

{
F (xi, θ)−

i− 1

n

}
n is the sample size, x1, x2, . . . , xn are the sample values in an increasing order. When
a simple hypothesis H0 under test is true, the statistic () converges to the Kolmogorov
distribution significantly faster than statistic

√
nDn.

The statistic of Cramer-von Mises-Smirnov test has the following form [3]:

Sω =
1

12n
+

n∑
i=1

{
F (xi, θ)−

2i− 1

2n

}2

, (2)

and Anderson-Darling test statistic [4], [5] is

SΩ = −n− 2
n∑
i=1

{
2i− 1

2n
lnF (xi, θ) +

(
1− 2i− 1

2n

)
ln(1− F (xi, θ))

}
. (3)

When testing simple hypotheses, statistic (2) has the following distribution [3]

a1(s) = 1√
2s

∞∑
j=0

Γ(j+1/2)
√

4j+1
Γ(1/2)Γ(j+1)

exp
{
− (4j+1)2

16s

}
×

×
{
I− 1

4

[
(4j+1)2

16s

]
− I 1

4

[
(4j+1)2

16s

]}
,

where I− 1
4
(·) and I 1

4
(·) are modified Bessel functions,
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Iν(z) =
∞∑
k=0

(z/2)ν+2k

Γ(k + 1)Γ(k + ν + 1)
, |z| <∞, |arg z| < π

The statistic (3) has the distribution [3]

a2(s) =
√

2π
s

∞∑
j=0

(−1)j Γ(j+1/2)(4j+1)
Γ(1/2)Γ(j+1)

exp
{
− (4j+1)2π2

8s

}
×

×
∞∫
0

exp
{

s
8(y2+1)

− (4j+1)2π2y2

8s

}
dy.

The Kuiper test [6] is based on the statistic Vn = D+
n +D−n . The limit distribution

of statistic
√
nVn while testing simple hypothesis is the following distribution function

[7]:

G(s|H0) = 1−
∞∑
m=1

2(4m2s2 − 1)e−2m2s2 .

The following modification of statistics converges faster to the limit distribution
[8]:

V = Vn

(√
n+ 0.155 +

0.24√
n

)
,

or the modification that we have chosen:

V mod
n =

√
n(D+

n +D−n ) +
1

3
√
n
. (4)

Dependence of the distribution of statistic (4) on the sample size is practically
negligible when n ≥ 30.

As a model of limit distribution we can use the beta distribution of the third kind
with the density

f(s) =
θθ02

θ3B(θ0, θ1)

(
s−θ4
θ3

)θ0−1 (
1− s−θ4

θ3

)θ1−1

[
1 + (θ2 − 1) s−θ4

θ3

]θ0+θ1
,

and the vector of parameters θ = (7.8624, 7.6629, 2.6927, 0.495)T , obtained by the
simulation of the distribution of the statistic (4).

Watson test [9], [10] is used in the following form

U2
n =

n∑
i=1

(
F (xi, θ)−

i− 1
2

n

)2

− n

(
1

n

n∑
i=1

F (xi, θ)−
1

2

)
+

1

12n
(5)

The limit distribution of the statistic (5) while testing simple hypotheses is given
by [9], [10]:
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G(s|H0) = 1− 2
∞∑
m=1

(−1)m−1e−2m2π2s.

The good model for the limit distribution of the statistic (5) is the inverse Gaussian
distribution with the density

f(s) =
1

θ2

 θ0

2π
(
s−θ3
θ2

)2


1/2

exp

−θ0

((
s−θ3
θ2

)
− θ1

)
2θ2

1

(
s−θ3
θ2

)


and the vector of parameters θ = (0.2044, 0.08344, 1.0, 0.0)T , obtained by the simula-
tion of the empirical distribution of the statistic (5). This distribution as well as the
limit one could be used in testing simple hypotheses with Watson test to calculate
the achieved significance level.

Zhang tests (Jin Zhang) were proposed in papers [11], [12], [13]. The statistics
of these criteria are:

ZK = max
1≤i≤n

((
i− 1

2

)
log

{
i− 1

2

nF (xi, θ)

}
+

(
n− i+

1

2

)
log

[
n− 1 + 1

2

n{1− F (xi, θ)}

])
,

(6)

ZA = −
∑
i=1

n

[
log {F (xi, θ)}
n− i+ 1

2

+
log {1− F (xi, θ)}

i− 1
2

]
, (7)

ZC =
∑
i=1

n

[
log

{
[F (xi, θ)]

−1 − 1(
n− 1

2

)
/
(
i− 3

4

)
− 1

}]2

. (8)

The author gives the percentage points for statistics distributions for the case of
testing simple hypotheses. The strong dependence of statistics distributions on the
sample size n prevents one from wide use of the criteria with the statistics (6) — (8).
For example, Figure 1 shows a dependence of the distribution of the statistics (7) on
the sample size while testing simple hypotheses.

Of course, this dependence on the sample size n remains for the case of testing
composite hypotheses.

2 Comparative analysis of the tests power

In papers [14], [15], [16] the power of Kolmogorov (K), Cramer-von Mises-Smirnov
(KMS), Anderson-Darling (AD) tests, and also χ2 criteria, was analyzed and com-
pared for testing simple and composite hypotheses for a number of different pairs of
competing distributions. In the case of testing simple hypotheses and using asymp-
totically optimal grouping [17] in χ2 criterion, this test has the advantage in power

11
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Figure 1: The distribution Gn(ZA|H0) of statistic (7) depending on the sample size
n for testing simple hypothesis

compared with nonparametric tests [14], [15]. When testing composite hypotheses,
power of nonparametric tests increases significantly, and they become more powerful.

In order to be able to compare the power of Kuiper (Vn), Watson (U2
n), and Zhang

tests (ZK , ZA, ZC) with the power of other goodness-of-fit tests, the power of these
criteria was calculated for the same pairs of competing distributions in the paper [18]
alike papers [14], [15], [16].

The first pair is the normal and logistics distribution: for the hypothesis H0 —
the normal distribution with the density:

f(x) =
1

θ0

√
2π

exp

{
−(x− θ1)2

2θ2
0

}
,

and for competing hypothesis H1 — the logistic distribution with the density:

f(x) =
π

θ1

√
3

exp

{
−π(x− θ0)

θ1

√
3

}/[
1 + exp

{
−π(x− θ0)

θ1

√
3

}]2

,

and parameters θ0 = 1, θ1 = 1. For the simple hypothesis H0 parameters of the
normal distribution have the same values. These two distributions are close and
difficult to distinguish with goodness-of-fit tests.

The second pair was the following: H0 — Weibull distribution with the density

f(x) =
θ0(x− θ2)θ0−1

θθ01

exp

{
−
(
x− θ2

θ1

)θ0}
and parameters θ0 = 2, θ1 = 2, θ2 = 0; H1 corresponds to gamma distribution with
the density

12
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f(x) =
1

θ1Γ(θ0)

(
x− θ2

θ1

)θ0−1

e−(x−θ2)/θ1

and parameters θ0 = 2.12154, θ1 = 0.557706, θ2 = 0, when gamma distribution is the
closest to the Weibull counterpart.

Comparing the estimates of the power for the Kuiper, Watson and Zhang tests
[18] with results for Kolmogorov, Cramer-von Mises-Smirnov and Anderson-Darling
tests [14], [15], [16], the nonparametric tests can be ordered by decrease in power as
follows:

• for testing simple hypotheses with a pair “normal — logistic”: ZC � ZA �
ZK � U2

n � Vn � AD � K � KMS;

• for testing simple hypotheses with a pair “Weibull — gamma”: ZC � ZA �
ZK � U2

n � Vn � AD � KMS � K;

• for testing composite hypotheses with a pair “normal — logistic”: ZA ≈ ZC �
ZK � AD � KMS � U2

n � Vn � K;

• for testing composite hypotheses with a pair “Weibull — gamma”: ZA � ZC �
AD � ZK � KMS � U2

n � Vn � K.

3 The distribution of statistics for testing

composite hypotheses

When testing composite hypotheses conditional distribution G(S|H0) of the statistic
depends on several factors: the type of the observed distribution for true hypoth-
esis H0; the type of the estimated parameter and the number of parameters to be
estimated, in some cases the parameter values (e.g., for the families of gamma and
beta distributions), the method of parameter estimation. The differences between
distributions of the one statistic for testing simple and composite hypotheses are
very significant, so we could not neglect this fact. For example, Figure 2 shows the
distribution of Kuiper statistic (4) for testing composite hypotheses for the different
distributions using maximum likelihood estimates (MLE) of the two parameters.

Figure 3 illustrates the dependence of the distribution of the Watson test statistic
(5) on the type and the number of estimated parameters having as an example the
Su-Johnson distribution with a density:

f(x) =
θ1√

2π
√

(x− θ3)2 + θ2
2

exp

−1

2

θ0 + θ1 ln

x− θ3

θ2

+

√(
x− θ3

θ2

)2

+ 1


2

Figure 4 shows the dependence of the distribution of Anderson-Darling test statis-
tics (3) for testing composite hypotheses using MLEs of the 3 parameters of the
generalized normal distribution depending on the value of the shape parameter θ0.
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Figure 2: The distribution of Kuiper statistic (4) for testing composite hypotheses
using MLEs of the two parameters

Figure 3: The distribution of Watson statistic (5) for testing composite hypotheses
using MLEs of different number of parameters of the Su-Johnson distribution
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The first work that initiates the study of limiting distributions of nonparamet-
ric goodness-of-fit statistics for composite hypotheses was [19]. Later, different ap-
proaches were used to solve this problem: the limit distribution was investigated by
analytical methods [20]–[21], [22]–[23], [24]–[26], [27], [28]–[30], the percentage points
were calculated using statistical modeling [31], [32]–[33], [34], the formulas were ob-
tained to give a good approximation for small values of the probabilities [35], [36].

In our studies [37]–[49], the distribution of nonparametric Kolmogorov, Cramer-
von Mises-Smirnov and Anderson-Darling tests statistics were studied using statistical
modeling.

Further, based on obtained empirical distribution of statistics, we construct an
approximate analytical model of statistics distributions.

Figure 4: The distribution of Anderson-Darling statistics (3) for testing composite
hypotheses using MLEs of 3 parameters of the generalized normal distribution,

depending on the value of the shape parameter θ0

The obtained models of limiting distributions and percentage points for Kuiper
and Watson test statistics, which are required to test composite hypotheses (using
MLEs) for the most often used in applications parametric distributions, listed in
Table 1, could be found in the paper [50].

Previously obtained similar models (and percentage points) for distributions of
Kolmogorov, Cramer-von Mises-Smirnov and Anderson-Darling test statistics (for
distributions from Table 1) could be found in papers [43], [44], [45], [48], [49].

The tables of percentage points and models of test statistics distributions were
based on simulated samples of the statistics with the size N = 106. Such N makes
the difference between the actual distribution G(S|H0) and empirical counterpart
GN(S|H0) that does not exceed 10−3. The values of the test statistic were calculated
using samples of pseudorandom values simulated for the observed distribution F (x, θ)
with the size n = 103. In such a case the distribution G(Sn|H0) practically equal to
the limit one G(S|H0). The given models could be used for statistical analysis if the
sample sizes n > 25.
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Table 1: Random variable distributions

Random variable Density function Random variable Density function
distribution f(x, θ) distribution f(x, θ)

Exponential 1
θ0
e−x/θ0 Laplace 1

2θ0
e−|x−θ1|/θ0

Seminormal 2
θ0
√

2π
e−x

2/2θ2
0 Normal 1

θ0
√

2π
e
− (x−θ1)2

2θ20

Rayleigh x
θ2
0
e−x

2/2θ2
0 Log-normal 1

xθ0
√

2π
e−(lnx−θ1)2/2θ2

0

Maxwell 2x2

θ3
0

√
2π
e−x

2/2θ2
0 Cauchy θ0

π[θ2
0+(x−θ1)2]

Random variable
distribution Density function f(x, θ)

Logistic π
θ0
√

3
exp

{
−π(x−θ1)

θ0
√

3

}/[
1 + exp

{
−π(x−θ1)

θ0
√

3

}]2

Extreme-value

(maximum) 1
θ0

exp
{
−x−θ1

θ0
− exp

(
−x−θ1

θ0

)}
Extreme-value

(minimum) 1
θ0

exp
{
x−θ1
θ0
− exp

(
x−θ1
θ0

)}
Weibull θ0xθ0−1

θ
θ0
1

exp

{
−
(
x
θ1

)θ0}
Sb- Johnson

Sb(θ0, θ1, θ2, θ3) θ1θ2
(x−θ3)(θ2+θ3−x) exp

{
−1

2

[
θ0 − θ1 ln x−θ3

θ2+θ3−x

]2
}

Sl-Johnson

Sl(θ0, θ1, θ2, θ3) θ1
(x−θ3)

√
2π

exp

{
−1

2

[
θ0 + θ1 ln x−θ3

θ2

]2
}

Su-Johnson

Su(θ0, θ1, θ2, θ3) θ1√
2π
√

(x−θ3)2+θ2
2

exp

−1
2

[
θ0 + θ1 ln

{
x−θ3
θ2

+

√(
x−θ3
θ2

)2
+ 1

}]2

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Unfortunately, the dependence of the nonparametric goodness-of-fit tests statistics
distributions for testing composite hypotheses on the values of the shape parameter
(or parameters) (see Fig. 4) appears to be for many parametric distributions imple-
mented in the most interesting applications, particularly in problems of survival and
reliability. This is true for families of gamma, beta distributions of the 1st, 2nd and
3rd kind, generalized normal, generalized Weibull, inverse Gaussian distributions,
and many others.

The limit distributions and percentage points for Kolmogorov, Cramer-von Mises-
Smirnov and Anderson-Darling tests for testing composite hypotheses with the family
of gamma distributions were obtained in paper [44], with the inverse Gaussian dis-
tribution — in papers [46], [47], with families of beta distributions — in paper [51],
with generalized normal distribution — in paper [52], with the generalized Weibull
distribution — in paper [53]. It should be noted that the data in these papers were
obtained only for a limited number of, generally, integer values of the shape parameter
(or parameters).

4 An interactive method to study distributions of

statistics

The dependence of the test statistics distributions on the values of the shape param-
eter or parameters is the most serious difficulty that is faced while applying nonpara-
metric goodness-of-fit criteria to test composite hypotheses in different applications.

Since estimates of the parameters are only known during the analysis, so the
statistic distribution required to test the hypothesis could not be obtained in advance
(before calculating estimates for the analyzed sample!). For criteria with statistics (6)
— (8), the problem is harder as statistics distributions depend on the samples sizes.
Therefore, statistics distributions of applied criteria should be obtained interactively
during statistical analysis [54], and then should be used to make conclusions about
composite hypothesis under test.

The implementation of such an interactive mode requires developed software that
allows parallelizing the simulation process and taking available computing resources.
While using parallel computing the time to obtain the required test statistic distri-
bution GN(Sn|H0) (with the required accuracy) and use it to calculate the achieved
significance level P{Sn ≥ S∗}, where S∗ is the value of the statistic calculated using
an original sample, is not very noticeable compared to a process of statistical analysis.

In the paper [55], an interactive method to research statistics distributions is im-
plemented for the following nonparametric goodness-of-fit tests: Kolmogorov, Cramer-
von Mises-Smirnov, Anderson-Darling, Kuiper, Watson, and three Zhang tests. More-
over, the different methods of parameter estimation could be used there.

The following example demonstrates the accuracy of calculating the achieved sig-
nificance level depending on sample size N of simulated interactively empirical statis-
tics distributions [55].

Example. You should check the composite hypothesis that the following sample
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with the size n = 100 has the inverse Gaussian distribution with the density (9):

0.945 1.040 0.239 0.382 0.398 0.946 1.248 1.437 0.286 0.987
2.009 0.319 0.498 0.694 0.340 1.289 0.316 1.839 0.432 0.705
0.371 0.668 0.421 1.267 0.466 0.311 0.466 0.967 1.031 0.477
0.322 1.656 1.745 0.786 0.253 1.260 0.145 3.032 0.329 0.645
0.374 0.236 2.081 1.198 0.692 0.599 0.811 0.274 1.311 0.534
1.048 1.411 1.052 1.051 4.682 0.111 1.201 0.375 0.373 3.694
0.426 0.675 3.150 0.424 1.422 3.058 1.579 0.436 1.167 0.445
0.463 0.759 1.598 2.270 0.884 0.448 0.858 0.310 0.431 0.919
0.796 0.415 0.143 0.805 0.827 0.161 8.028 0.149 2.396 2.514
1.027 0.775 0.240 2.745 0.885 0.672 0.810 0.144 0.125 1.621

f(x) =
1

θ2

 θ0

2π
(
x−θ3
θ2

)3


1/2

exp

−θ0

((
x−θ3
θ2

)
− θ1

)2

2θ2
1

(
x−θ3
θ2

)
 . (9)

The shift parameter θ3 is assumed to be known and equal to 0.
The shape parameters θ0, θ1, and the scale parameter θ2 are estimated using the

sample. The MLEs calculated using the sample above are the following: θ̂0 = 0.7481,
θ̂1 = 0.7808, θ̂2 = 1.3202. Statistics distributions of nonparametric goodness-of-
fit tests depend on the values of the shape parameters θ0 and θ1 [46, 47], do not
depend on the value of the scale parameter θ2 and can to be calculated using values
θ0 = 0.7481, θ1 = 0.7808.

The calculated values of the statistics S∗i for Kuiper, Watson, Zhang, Kolmogorov,
Cramer-von Mises-Smirnov, Anderson-Darling tests and achieved significance levels
for these values P{S ≥ S∗i |H0} (p-values), obtained with different accuracy of sim-
ulation (with different sizes N of simulated samples of statistics) are given in Table
2.

Table 2: The achieved significance levels for different sizes N when testing
goodness-of-fit with the inverse Gaussian distribution

The values of test statistics N = 103 N = 104 N = 105 N = 106

V mod
n = 1.1113 0.479 0.492 0.493 0.492
U2
n = 0.05200 0.467 0.479 0.483 0.482
ZA = 3.3043 0.661 0.681 0.679 0.678
ZC = 4.7975 0.751 0.776 0.777 0.776
ZK = 1.4164 0.263 0.278 0.272 0.270
K = 0.5919 0.643 0.659 0.662 0.662

KMS = 0.05387 0.540 0.557 0.560 0.561
AD = 0.3514 0.529 0.549 0.548 0.547

The similar results for testing goodness-of-fit of a given sample with Γ-distribution
with the density:
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f(x) =
θ1

θ3Γ(θ0)

(
x− θ4

θ3

)θ0θ1−1

e
−
(
x−θ4
θ3

)θ1
are given in Table 3. The MLEs of the parameters are θ0 = 2.4933, θ1 = 0.6065,
θ2 = 0.1697, θ4 = 0.10308. In this case the distribution of the test statistic depends
on the values of the shape parameters θ0 and θ1.

Figure 5 presents the empirical distribution and the two theoretical ones (IG-
distribution and Γ-distribution), obtained by the sample above while testing compos-
ite hypotheses.

Table 3: The achieved significance levels for different sizes N when testing
goodness-of-fit with the Γ-distribution

The values of test statistics N = 103 N = 104 N = 105 N = 106

V mod
n = 1.14855 0.321 0.321 0.323 0.322
U2
n = 0.057777 0.271 0.265 0.267 0.269
ZA = 3.30999 0.235 0.245 0.240 0.240
ZC = 4.26688 0.512 0.557 0.559 0.559
ZK = 1.01942 0.336 0.347 0.345 0.344
K = 0.60265 0.425 0.423 0.423 0.424

KMS = 0.05831 0.278 0.272 0.276 0.277
AD = 0.39234 0.234 0.238 0.238 0.237

Figure 5: Empirical and theoretical distributions (IG-distribution and
Γ-distribution), calculated using the given sample

Conclusion

The implemented interactive mode to study statistics distributions enables to cor-
rectly apply goodness-of-fit Kolmogorov, Cramer-von Mises-Smirnov, Anderson-Darling,
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Kuiper, Watson, Zhang (with statistics ZC , ZA, ZK) tests with calculating the
achieved significance level (p-value) even in those cases when the statistic distri-
bution for true hypothesis H0 is unknown while testing composite hypothesis. For
Zhang tests, this method allows us to test a simple hypothesis for every sample size.
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2 Université Victor Segalen Bordeaux 2, Bordeaux, France,

3 School of Management, Fudan University, Shanghai, China

Introduction

This paper describes the semiparametric dynamic regression or accelerated life mod-
els that are very important in econometric duration analysis in estimation of the
risk of defaults, which plays an important role in the pricing and hedging of credit
risk see Horowitz (1998), Mosler (2002), Duffie and Singleton (2003), Kiefer (1988),
Gouriéroux and Josiak (2005), etc... Dynamic regression models are applied often
in reliability and survival analysis, see, for example, Bedford and Cooke (2001),
Bagdonavicius and Nikulin (2002), Martinussen and Scheike (2006), Nikulin and
Wu (2007), Nikulin, Gerville-Reache, Couallier (2007), Bagdonavicius, Kruopis and
Nikulin (2011), etc. Evident that this approach can be very useful to modelling the
default probabilities. Accelerated life models relate lifetime distribution of the de-
fault time to the time varying explanatory variables, called in reliability stresses, it
terms of which is described the past performance of the firms, the information about
the current market conditions or about some important economic, political and social
factors which influence on the risk of default. These models are used for estimation
of the effects of covariates (stresses) over the time on survival and for estimation
of survival via its effects on default rates under given covariates values. In terms
of the time dependent covariates are described the possible direct and indirect eco-
nomic (financial) loss for firms, or as one can say, conditional on reasonable available
information, which have to be taken in consideration in business risk analysis. For
example, the time depending stresses can explain the influence of such characteristics
as quality, productivity, credibility, profitability of firms, or the dramatic decline in
oil price in the market, or the business cyclic effects on default rates. The reliability
approach based on applications of semiparametric dynamic regression models pro-
vides a basis for some suggestions for further research on statistical estimation and
prediction of the default risk and gives an interesting possibility approach to obtain a
statistical inference in dependence on situation in the market. The considered models
are very flexible and are applicable to estimate possible financial losses of different
types of firms in the real world economic, financial and politic situations, described
in terms of time dependent stresses. Using the terminology of Singpurwalla (1995)
we have the possibility to estimate the probability of default risk in dynamic envi-
ronments. The proportional hazards model is the most important model in duration
analysis. We consider some recent models based on the Cox model. The proportional
hazards model is generalized by assuming that at any moment the ratio of hazard
rates is depending not only on values of time-varying covariates (stresses) but also
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on resources used until this moment. Relations with generalized multiplicative, mod-
ified proportional hazards, frailty, linear transformation, Sedyakin are considered.
We consider semiparametric models for longitudinal studies the relations between a
longitudinal response process and a time-to-event. We consider also the models with
cross-effects of survival functions. These models are applied for longitudinal stud-
ies of the economic and industrial data by Hsieh (2001) , Wu (2007), Nikulin and
Wu (2007), Bagdonavicius and Nikulin (2002), Bagdonavicius, Kruopis and Nikulin
(2011) . We discuss also the applications of the so-called degradation models, which
are very useful in economics and business to make a comprehensive risk analysis when
economic damage grow. Such models allow assessing the probability of specific trau-
matic events and their impact on business (default) process. These models are well
adapted for statistical analysis of industrial firms, insurance companies, banks fail-
ure data ( bankruptcy) in dynamic environments, to qualitatively and quantitavely
estimate possible financial and economic losses and damage due to economic, social,
politic, etc changes over the time.

The explanatory variables (stress) may be modelled by stochastic processes, de-
terministic time functions or constants (possibly different for different individuals).
Denote by x(·) = (x1(·), ..., xm(·))T : [0,∞) → Rm, a deterministic time function
(possibly multidimentional) which is a vector of covariates itself or a realisation of a
stochastic process X(·) = (X1(·), ..., Xm(·))T when covariates (stresses) are modeled
by this stochastic process. We denote E = E{x(·)} a set of all possible or admissible
stresses. If a stress x(·) is constant in time, x(t) ≡ x, then we shall write x instead
of x(·). We denote E1 a set of all constant in time stresses, E1 ⊂ E.

The distribution of survival under covariates can be defined by the survival, cumu-
lative distribution, or probability density function. Nevertheless, the sense of models
is best seen if they are formulated in terms of so-called hazard rate function. This
notion is used widely in reliability and survival analysis. In econometrics , and in
particular in credit analysis, instead of the hazard rate function people use the term
forward default rate function or more simple term default rate function

Denote by T the time to default. Then the probability of surviving function given
stress x(·) is defined as

Sx(·)(t) = P{T > t | x(u), 0 ≤ u ≤ t}, t > 0, x(·) ∈ E,

with Sx(·)(0) = 1 for any stress x(·) from the set E of all admissible stresses. So for
any t > 0 the value Sx(·)(t) denote the probability that the firm will not default for
at least t years, if we measure the time in the years, for example,

The default rate function or intensity of default function under given stress x(·)
is defined as

λx(·)(t) = lim
h↓0

1

h
P{T ∈ [t, t+ h) | T ≥ t, x(u), 0 ≤ u ≤ t} = −

S ′x(·)(t)

Sx(·)(t)
.

From this definition it follows for any stress x(·) ∈ E and any t, t > 0, the value λx(·)(t)
is the rate of default arrival at time t conditional only on survival up to time t. The
default rate function is the most important reliability characteristics of survival and
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its value λx(·)(t) gives the instantaneous exit rate per unit of time evaluated at the
time t. It is evident also that if the function λx(·)(·) is continuous in t, then under
the stress x(·) the probability of default in the interval [t, t+ ∆] for small ∆,∆ > 0,
conditional on survival to t, is approximately equal to λx(·)(t)∆. We note here that
sometimes λx(·)(·) is called also the forward default rate, see Duffie and Singleton
(2003), the bankruptcy rate or failure rate of instruments, see Gouriéroux and Josiak
(2005). The default rate function is the most important reliability characteristics.

Denote by

Λx(·)(t) =

∫ t

0

λx(·)(u)du = − ln{Sx(·)(t)}, x(·) ∈ E,

the cumulative rate of default under stress x(·). For any x(·) ∈ E the function Λx(·)(·)
is increasing in t, with Λx(·)(0) = 0, and Λx(·)(+∞) = +∞.

Each specified model relates the hazard rate (or survival function) to the explana-
tory variable in some particular way. From this definition it follows immediately that

Sx(·)(t) = e−Λx(·)(t) = exp{−
∫ t

0

λx(·)(u)du}, x(·) ∈ E.

At the end of this section we note that we write Tx(·) instead of T to remind that we
study the time to default under the stress x(·), and hence the distribution of time to
default depends on x(·), x(·) ∈ E.

1 The Cox or the proportional default rate model

Under the proportional default rate model (traditionally PH model or Cox model)
on E the defaul rate under a stress x(·) has the form

λx(·)(t) = r{x(t)} λ0(t), x(·) ∈ E, (1)

where λ0(t) is a so called baseline default rate function, and r(·) is a positive function
on E.

The model implies that the ratio R(t, x1, x2) of default rates under different fixed
constant stresses x1 and x2 is constant over time:

R(t, x1, x2) =
λx2(t)

λx1(t)
=
r{x2}
r{x1}

= const.

In most applications the function r is parametrized in the form

r(x) = exp{βTx}, where β = (β1, · · · , βm)T

is the vector of regression parameters. Under this parametrization we obtain the
classical semiparametric Cox model with time-dependent covariables:

λx(·)(t) = eβ
T x(t)λ0(t), t > 0, x(·) ∈ E. (2)
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Usually the Cox model is considered as semiparametric: the finite-dimensional pa-
rameter β and the baseline hazard function λ0 are supposed to be completely un-
known. Nevertheless, non-parametric estimation procedures when the function r is
also supposed to be unknown are sometimes used. Parametric estimation procedures
when λ0 is taken from some parametric class of functions is scarcely used because
the parametric accelerated failure time model (see in the following sections) is also
simple for analysis and more natural. In parametric case we recommend to chose as
parametric family for the baseline function the so-called Power Generalized Weibull
(PGW) Family of Distributions, proposed by Bagdonavicius and Nikulin (2002). In
terms of the survival functions the PGW family is given by the next formula:

S(t, σ, ν, γ) = exp

{
1−

[
1 +

(
t

σ

)ν] 1
γ

}
, t > 0, γ > 0, ν > 0, σ > 0.

If γ = 1 we have the Weibull family of distributions. If γ = 1 and ν = 1 = 1, we
have the exponential family of distributions. This class of distributions has very nice
probability properties. All moments of this distribution are finite. In dependence
of parameter values the hazard rate can be constant, monotone (increasing or de-
creasing), unimodal or

⋂
-shaped, and bathtub or

⋃
-shaped. At the beginning of a

firm’s life, it has a great risk of failure because of bad market investigation, absence
of management experiences, etc. When this initial period known as birn in period is
passed, the firm has less risks of bankruptcy and win the market. It is a period of
prosperity. The hazard function λ(· · · ) is almost constant which corresponds to the
Exponential Distribution. In its end, the firm will undergo competing risks. In this
description of its life cycle, its hazard function is U-shaped. The PGW distribution
family corresponds to this kind of modelling needs. Another interesting family, is the
so-called the Exponentiated Weibull Family of distributions, which was proposed by
Mudholkar & Srivastava (1995).

The Cox model is not much used analysing failure time regression data in relia-
bility. The cause is that the model is not natural when subjects are aging. Indeed,
from (1) it follows that for any t the default rate function under the time-varying
stress x(·) at the moment t does not depend on the values of the stress x(·) before the
moment t but only on the value of it at this moment:

P(T ≤ t+ s | T > t) = 1− e−
∫ t+s
t eβ

T x(u)λ0(u)du,

where λ0 is the baseline hazard function which does not depend on stress. For this
reason we can say that PH model has the absence of memory property.

Nevertheless, in survival analysis the Cox model usually works quite well, because
the values of covariates under which estimation of survival is needed are in the range
of covariate values used in experiments. So the use of a not very exact but simple
model often is preferable to the use of more adequate but complicated model. It is
similar with application of linear regression models in classical regression analysis:
the mean of dependent variable is rarely a linear function of independent variables
but the linear approximation works reasonably well in some range of independent
variable values.
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In reliability, accelerated life testing in particular, the choice of a good model
is much more important than in survival analysis. For example, in accelerated life
testing units are tested under accelerated stresses which shorten the life. Using such
experiments the life under the usual stress is estimated using some regression model.
The values of the usual stress is not in range of the values of accelerated stresses, so
if the model is misspecified, the estimators of survival under the usual stress may be
very bad.

If on the bases of graphical analysis or goodness-of-fit tests the PH model is
rejected and one has a reason to suppose that the ratios of hazard rates are not
constant, other models should be used.

2 Accelerated Failure Time Model

The PH model has the absence of memory propriety: the hazard rate at any
moment does not depend on the values of the stress before this moment. It is more
natural to suppose that the default rate at any moment t should depend not only
on the value of stress at this moment but on the probability to survive up to this
moment. Under stress x(·) this probability is Sx(·)(t). It characterizes the summing
effect of values of stress (of the history) in the interval [0, t] on survival. The equality
Λx(·)(t) = − lnSx(·)(t) implies that the cumulative default rate also characterizes this
summing effect. So it can be supposed that the default rate at any moment t is a
function of the value x(t) of a stress and the value of the cumulative default rate
Λx(·)(t).

The generalized Sedyakin’s model namely supposes it (see Sedyakin (1966), Bag-
donavičius (1978), Bagdonavičius & Nikulin (1998)):

λx(·)(t) = g
(
x(t),Λx(·)(t)

)
. (3)

This model with g completely unknown is too general to do statistical inference. But
if we choose some regression model for constant covariates, the form of the function
g can be made more concrete.

Suppose that under different constant covariates x ∈ E0 the survival functions
differ only in scale:

Sx(t) = S0 (r(x)t) , (4)

If the GS model holds on a set E,E0 ⊂ E of covariates then (4) holds on E0 if and
only if the function g has the form g(x, s) = r(x)q(s) (see Bagdonavičius & Nikulin
(1998)).

We obtain the following model:

λx(·)(t) = r{x(t)} q{Λx(·)(t)}. (5)

Solving this differential equation with respect to Λx(·)(t), and using the relation be-
tween the survival and the cumulative hazard functions we obtain that the survival
function has the form

Sx(·)(t) = S0

(∫ t

0

r(x(u))du

)
, (6)
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where the function S0 does not depend on x(·). The function r changes locally the
time-scale.

The model (6) (or, equivalently, (5)) is called accelerated failure time (AFT)
model.

The function r is often parametrized in the following form:

r(x) = e−β
T x,

where β = (β1, · · · , βm)T is a vector of unknown parameters.
Under the parametrized AFT model the survival function is

Sx(·)(t) = S0

(∫ t

0

e−β
T x(u)du

)
, (7)

and the default rate is

λx(·)(t) = e−β
T x(t) λ0

(∫ t

0

e−β
T x(u)du

)
, (8)

and for constant covariates

Sx(t) = S0

(
e−β

T x t
)
.

So in the case of constant covariates the AFT model can also be written as a loglinear
model, since the logarithm of the failure time Tx under constant covariate x can be
written as

ln{Tx} = βTx+ ε, (9)

where the survival function of the random variable ε does not depend on x and is
S(t) = S0(ln t). In the case of lognormal failure-time distribution the distribution of
ε is normal and we have the standard linear regression model. The equality (8) im-
plies that if the survival function under any constant covariate belongs to parametric
families such as Weibull, loglogistic, lognormal, then the survival function under any
other constant covariate also belongs to that family.

Differently from PH model, the AFT model is mostly applied in survival analysis
as a parametric model: the function S0 (or the distribution of ε) is taken from some
parametric class of distributions and the parameters to estimate are the parameters
of this class and the regression parameters β.

In the case of semiparametric estimation the function S0 is supposed to be com-
pletely unknown and the regression parameters as the function S0 are the parameters
to estimate in the model (7). The semiparametric AFT model is much less used in
survival analysis then the Cox model because of complicated estimation procedures:
modified variants of likelihood functions are not differentiable and even not contin-
uous functions, the limit covariance matrices of the normed regression parameters
depend on the derivatives of the probability density functions, so their estimation is
complicated.

The parametric AFT model is used in failure time regression analysis and accer-
erated life testing. Under special experiment plans even non-parametric estimation
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procedures are used. In such a case not only the function S0 but also the function r
in the model (6) would be completely unknown.

The AFT model is a good choice when the lifetime distribution class is supposed
to be known. Nevertherless, it is as restrictive as the PH model. The assumption
that the survival distributions under different covariate values differ only in scale is
rather strong assumption. So more sophisticated models are also needed.

3 Generalized proportional hazards model

a Definitions

The AFT and PH models are rather restrictive.

Under the PH model lifetime distributions under constant covariates are from the
narrow class of distributions: the ratio of the default rates under any two different
constant covariates is constant over time.

Under the AFT model the covariate changes (locally, if the covariate is not con-
stant) only the scale.

Generalized proportional hazards (GPH) models allow the ratios of the default
rates under constant covariables to be not only constant but also increasing or de-
creasing. They include AFT and PH models as particular cases.

As was discussed in the previous section, the survival function Sx(·)(t) (or, equiv-
alently, the cumulative rate of default function Λx(·)(t)) characterizes the summing
effect of stress values in the interval [0, t] on survival. So suppose that the default
rate function at any moment t is proportional not only to a function of the covariate
applied at this moment and to a baseline default rate, but also to a function of the
probability of survival until t (or, equivalently, to the cumulative rate of default at
t):

λx(·)(t) = r{x(t)} q{Λx(·)(t)} λ0(t). (10)

We call the model (10) the generalized proportional hazards (GPH) model, see
Bagdonavičius V. and Nikulin M (1999). Particular cases of the GPH model are the
PH model (q(u) ≡ 1) and the AFT model (λ0(t) ≡ λ0 = const).

Under the GPH model the survival functions Sx(·) have the form

Sx(·)(t) = G

{∫ t

0

r(x(τ))dΛ0(t)

}
, (11)

where

Λ0(t) =

∫ t

0

λ0(u)du, G = H−1, H(u) =

∫ − lnu

0

dv

q(v)
.

We denote by H−1 the function inverse to G.
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b Relations with the linear transformations and frailty
models

Models of different levels of generality can be obtained by completely specifying q,
parametrizing q, or considering q as unknown.

Completely specifying q we obtain rather strict models which are alternatives to
the PH model and the field of their application is relatively narrow (see Bagdonavicius
and Nikulin (1994)). Under constant stresses such models are the linear transforma-
tion (LT) models. Indeed, if q is specified and r is parametrized by r(x) = eβ

T x then

under constant stresses the survival functions have the form Sx(·)(t) = G
{
eβ

T xΛ0(t)
}

with G specified. This implies that the random variable Tx can be transformed by
the function h(t) = ln{H(S0(t))} to the random variable of the form

h(Tx) = −βTx+ ε, (12)

where ε is a random error with the parameter-free distribution function Q(u) =
1 − G(eu). It is the linear transformation (LT) model of Dabrowska and Doksum
(1988). Examples of the LT models:

1) PH model (G is a Weibull survival function, ε has the extreme value distribu-
tion);

2) logistic regresion model (G is a loglogistic survival function, ε has the loglogistic
distribution):

1

Sx(t)
− 1 = r(x)

(
1

S0(t)
− 1

)
.

3) generalized probit model (G is a lognormal survival function, has the normal
distribution):

Φ−1 (Sx(t)) = log (r(x)) + Φ−1 (S0(t)) ,

where Φ is the standard normal cumulative distribution function.
The last two models are alternatives to the PH model. They are widely used

for analysis of dichotomous data when the probability of ”success” in dependence of
some factors is analyzed. If application of the PH model is dubious then better is to
use a (not very) wider GPH model which is obtained from the general GPH model
not by complete specification of the function q but taking a simple parametric model
for it.

Let us consider relations between the GPH models and the frailty models
(Hougaard(1986)) with covariates.

The hazard rate can be influenced not only by the observable stress x(·) but also
by a non-observable positive random covariate Z, called the frailty variable. Suppose
that the default rate given the frailty variable value is

λx(·)(t|Z = z) = z r(x(t))λ0(t).

Then

Sx(·)(t) = E exp{−Z
∫ t

0

r(x(τ)) dΛ0(τ)} = G{
∫ t

0

r(x(τ))dΛ0(τ)},
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where G(s) = Ee−sZ .
So the GPH model can be defined by specification of the frailty variable distribu-

tion.

c The GPH models with monotone hazard ratios

The following parametrizations of r and q give submodels of the GPH model with
monotone ratios of default rates under constant covariates. Using only one parameter
and power or exponential functions for function q parametrization several important
models are obtained.

c.1 The first GPH model

Suppose that q(0) = 1 (if it is not so, we can include q(0) in λ0, which is considered
as unknown). Taking a power function q(u) = (1 +u)−γ+1 and r(x) = eβ

T x we obtain
the first GPH model:

λx(·)(t) = eβ
T x(t)(1 + Λx(·)(t))

−γ+1λ0(t). (13)

It coincides with the PH model when γ = 1. The supports of the survival functions
Sx(·) are [0,∞) when γ ≥ 0 and [0, spx(·)) with finite right ends spx(·), spx(·) < ∞,
when γ < 0. Finite supports are very possible in accelerated life testing: failures
of units at different accelerated stresses are concentrated in intervals with different
finite right limits.

Suppose that at the point t = 0 the ratio R(t, x1, x2) of the default rates under
constant stresses x1 and x2 is greater then 1:

R(0, x1, x2) =
r(x2)

r(x1)
= c0 > 1.

The ratio R(t, x1, x2) has the following properties:

a) if γ > 1, then the ratio of the default rates decreases from the value c0 > 1

to the value c∞ = c
1
γ

0 ∈ (1, c0), i.e. the hazard rates approach one another when t
increases.

b) if γ = 1 (PH model), the ratio of the default rates is constant.

c) if 0 ≤ γ < 1, then the ratio of the default rates increases from the value c0 > 1

to the value c∞ = c
1
γ

0 ∈ (c0,∞), i.e. the default rates go away one from another when
t increases.

d) if γ < 0, then the ratio of the default rates increases from the value c0 > 1 to
∞, end the infinity is attained at the point spx2 = Λ−1

0 {−1/((γ)r(x2))}. The default
rates go away one from another quickly when t increases.

The first GPH model is a generalization of the positive stable frailty model with
explanatory variables: the GPH model with γ = 1/α > 0 is obtained taking the
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frailty variable Z which follows the positive stable distribution with the density

pZ(z) = − 1

πz
exp{−αz + 1}

∞∑
k=1

(−1)k

k!
sin(παk)

Γ(αk + 1)

zαk
, z > 0,

where α is a stable index, 0 < α < 1.

c.2 The second GPH model

Under the first GPH model the support of the survival functions is infinite when
γ ≥ 0 and finite when γ < 0. The limit is γ = 1. So it is interesting to take a model
with the following parametrization: q(u) = (1 + γu)−1. We obtain the second GPH
model:

λx(·)(t) = eβ
T x(t)(1 + γΛx(·)(t))

−1λ0(t), (γ ≥ 0). (14)

It also coincides with the PH model when γ = 0. The supports of the survival
functions Sx(·) are [0,∞).

The ratio R(t, x1, x2) = λx2(t)/λx1(t) has the following properties:

a) if γ > 0, then the ratio of the default rates decreases from c0 > 1 to the value√
c0 ∈ (1, c0), i.e. the default rates approach one another when t increases.

b) if γ = 0 (PH model), the ratio of the default rates is constant.
The second GPH model equivalent to the inverse gaussian frailty model with

explanatory variables: the GPH model with γ = (4σθ)1/2 > 0 is obtained taking the
frailty variable Z which follows the inverse gaussian distribution with the density

pZ(z) =
(σ
π

)1/2

e
√

4σθz−3/2e−θz−
σ
z , z > 0.

c.3 The third GPH model

Taking the exponential function q(u) = e−γu and r(x) = eβ
T x we obtain the third

GPH model:

λx(·)(t) = eβ
T x(t)−γΛx(·)(t) λ0(t). (15)

It coincides with the PH model when γ = 0. The supports of the survival functions
Sx(·) are [0,∞) when γ ≥ 0 and [0, spx(·)) with finite right ends when γ < 0.

Suppose that R(0, x1, x2) = r(x2)/r(x1) = c0 > 1.
The ratio R(t, x1, x2) has the following properties:

a) if γ > 0, then the ratio of the default rates decreases from the value c > 0 to
1, i.e. the default rates approach one another and meet at infinity.

b) if γ = 0 (PH model), the ratio of the default rates is constant.

c) if γ < 0, then the ratio of the default rates increases from the value c0 > 1 to
∞, end the infinity is attained at the point spx2 = Λ−1

0 {−1/(γr(x2))}. The default
rates go away one from another quickly when t increases.
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The third GPH model is a generalization of the gamma frailty model with ex-
planatory variables: the GPH model with γ = 1/k > 0 is obtained taking the frailty
variable Z which follows the gamma distribution with the density

pZ(z) =
zk−1

θkΓ(k)
e−z/θ, z > 0.

All the three GPH models are considered as semiparametric: finite-dimensional pa-
rameters β and γ and unknown baseline function Λ0 are the unknown parameters.

d Regression models with cross-effects of survival functions

Let us consider models for analysis of data with cross-effects of survival functions
under constant covariates.

e First model with cross-effects of survival functions

The first model with cross-effects of survival functions (CE model) can be obtained
from the first GPH model considered in the previous section replacing the scalar pa-
rameter γ by eγ

T x(t) in the formula (13), where γ is m-dimensional (see Bagdonavičius
and Nikulin (2002)):

λx(t) = eβ
T x(t){1 + Λx(t)}1−eγT x(t)

λ0(t), γ = (γ1, ..., γm)T . (16)

Suppose that at the point t = 0 the ratio of the default rates

R(t, x1, x2) = λx2(t)/λx1(t)

under constant covariates x1 and x2 is greater then 1:

R(0, x1, x2) = eβ
T (x2−x1) = c0 > 1 and γT (x1 − x2) < 0.

In this case the ratio R(t, x1, x2) decreases from the value c0 > 1 to 0, i.e. the
hazard rates intersect once. The survival functions Sx1 and Sx2 also intersect once in
the interval (0,∞) (more about see in Bagdonavičius and Nikulin (2002).)

Other CE models can be obtained using the same procedure for the second and
the third GPH models.

f Second CE-model

Hsieh (2001) considered the following model with cross effects of the survival functions
generalization of the PH model

Λx(t) = eβ
T x(t){Λ0(t)}eγ

T x(t)

. (17)

It is a generalization of the PH model taking the power eγ
T x(t) of Λ0(t) instead of the

power 1.
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Note that the difference between this second model and the first CE model is the
following. In the case of the second CE model the ratios of the default rates and even
the ratios of the cumulative rate of defaults go to ∞ (or 0) as t → 0. In the case of
the first CE model these ratios are defined and finite at t = 0. This property of the
first CE model is more natural and helps avoid complications when seeking efficient
estimators.

g Changing shape and scale models

Natural generalization of the AFT model (4) is obtained by supposing that dif-
ferent constant stresses x influence not only the scale but also the shape of survival
distribution, see Mann et al (1974):

Sx(t) = S0

{(
t

σ(x)

)ν(x)
}
,

where σ and ν some positive functions on E1. Generalization of this model to the
case of time-variale covariates is the changing shape and scale (CHSS) model, Bag-
donavičius and Nikulin (1999):

Sx(·)(t) = S0

(∫ t

0

r{x(u)}uν(x(u))−1du

)
. (18)

In this model the variation of stress changes locally not only the scale but also the
shape of distribution.

In terms of the default rate functions the model can be written in the form:

λx(·)(t) = r{x(t)} q(Λx(·)(t)) t
ν(x(t))−1, (19)

where q(u) = λ0(Λ−1
0 (u)), Λ0(t) = − lnS0(t), λ0(t) = A′0(t).

If ν(x) ≡ 1 then the model coincides with the AFT model with r(x) = 1/σ(x).
The CHSS model is not in the class of the GPH models because the third factor at
the right of the formula (19) depends not only on t but also on x(t).

The GHSS model is parametric, if S0 is taken from some parametric class of
survival functions and the functions r and ν are parametrized, usually taking r(x) =
eβ

T x, ν(x) = eγx. The model is semiparametric, if the function S0 is considered as
unknown and the functions r and ν are parametrized:

λx(·)(t) = eβ
T x(t) q(Λx(·)(t)) t

eγ
T x(t)−1, (20)

For various classes of S0 the CHSS model includes cross-effects of survival func-
tions under constant covariates. For example, it is so, if the survival distribution
under constant covariates is Weibull, loglogistic (Λ0(t) = t, ln(1 + t), respectively).

Parametric analysis can be done using the method of maximum likelihood. Semi-
parametric analysis is more complicated because the same problems as in the case of
AFT semiparametric model arise: modified variants of likelihood functions are not
differentiable and even not continuous functions, the limit covariance matrices of the
normed regression parameters depend on the derivatives of the probability density
functions.
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4 Models with time-dependent regression

coefficients

a PH model with time dependent regression coefficients

Flexible models can be obtained by supposing that the regression coefficients β
in the PH model (2) are time-dependent, i.e. taking

λx(·)(t) = eβ(t)T x(t)λ0(t), (21)

where

βT (t)x(t) =
m∑
i=1

βi(t)xi(t).

If the function βi(·) is increasing or decreasing in time then the effect of the ith
component of the explanatory variable is increasing or decreasing in time.

The model (21) is the PH model with time-dependent regression coefficients.
Usually the coefficients βi(t) are considered in the form

βi(t) = βi + γigi(t), (i = 1, 2, ...,m),

where gi(t) are some specified deterministic functions as t, ln t, ln(1 + t), (1 + t)−1, for
example, or realizations of predictable processes. In such a case the PH model with
time dependent coefficients and constant or time dependent explanatory variables can
be written in the usual form (2), where the role of the components of the ”covariables”
play not only the components xi(·) but also xi(·)gi(·). Indeed, set

θ = (θ1, · · · , θ2m)T = (β1, · · · , βm, γ1, · · · , γm)T ,

z(·) = (z1(·), · · · , z2m(·))T = (x1(·), · · · , xm(·), x1(·)g1(·), · · · , xm(·)gm(·))T . (22)

Then

βT (u)x(u) =
m∑
i=1

(βi + γigi(t))xi(t) = θT z(u).

So the PS model with time dependent regression coefficients of above given form can
be written in the form

λx(·)(t) = eθ
T z(t)λ0(t). (23)

We have the PH model with time-dependent ”covariables” and constant ”regression
parameters”. So methods of estimation for the usual PH model can be used. Note
that the introduced ”covariables” have time-dependent components even in the case
when the covariable x is constant over time.

Alternative method is to take βi(t) as piecewise constant functions with jumps
as unknown parameters. In such a case the PH model is used locally and the ratios
of the default rates under constant covariates are constant on each of several time
intervals.

37



Novosibirsk, 25-27 September, 2013

b AFT model with time dependent regression coefficients

Similarly as in the case of the PH model flexible models can be obtained by supposing
that the regression coefficients β in the AFT model (7) are time-dependent, i.e. taking

Sx(·)(t) = S0

{∫ t

0

e−β
T (u)x(u)du

}
, (24)

where

βT (t)x(t) =
m∑
i=1

βi(t)xi(t).

As in the case of the PH model with time-dependent coefficients, the model (24) with
βi(t) = βi + γigi(t) can be written in the form of the usual AFT model

Sx(·) = G

{∫ t

0

e−θ
T z(u)du

}
. (24)

where θ and z are defined by (22).
Alternative method is to take βi(t) as piecewise constant functions with jumps as

unknown parameters.

5 Additive hazards model and its generalizations

An alternative of the PH model is the additive defaults or hazards (AH) model:

λx(·)(t) = λ0(t) + βTx(t), (26)

where β is the vector of regressor parameters. If the AH model holds then the
difference of default rates under constant covariates does not depend on t. As the
PH model this model has the absence of memory property: the default rate at the
moment t does not depend on on the values of the covariate before the moment t.

Usually the AH model is used in the semiparametric form: the parameters β and
the baseline default rate λ0 are supposed to be unknown.

Both the PH and AH models are included in the additive-multiplicative hazards
(AMH) model (Lin and Ying (1996)) :

λx(·)(t) = eβ
T x(t)λ0(t) + γTx(t). (27)

Even this model has the absence of memory propriety so rather restrictive.
A modification of the AH model for constant covariates is the Aalen’s additive risk

(AAR) model (Aalen (1980)): the default rate under the covariate x is modeled by a
linear combination of several baseline rates with covariate components as coefficients:

λx(t) = xTα(t). (28)

where α(t) = (λ1(t), · · · , λm(t))T is an unknown vector function.
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Both AH and AAR models are included in the partly parametric additive risk
(PPAR) model (McKeague and Sasieni (1994)):

λx(t) = xT1 α(t) + βTx2, (29)

where x1 and x2 are q and p dimensional components of the explanatory variable x,
α(t) = (λ1(t), · · · , λq(t))T , β = (β1, · · · , βp)T are unknown.

Analogously as in the case of the PH model the AH model can be generalized by
the generalized additive hazards (GAH) model:

λx(·)(t) = q{Λx(·)(t)}(λ0(t) + βTx(t)), (30)

where the function q is parametrized as in the case of GPH models.
Both the GPH and the GAH models can be included into the generalized additive-

multiplicative hazards (GAMH) model (Bagdonavicius and Nikulin (1997)):

λx(·)(t) = q{Λx(·)(t)}
(
eβ

T x(t)λ0(t) + δTx(t)
)
. (31)

In both GAH and GAMH models the function q is parametrized as in the GPH
models: q(u) = (1 + u)−γ+1, (1 + γu)−1, e−γu, and the GAH1, GAH2, GAH3 or
GAMH1, GAMH2, GAMH3 models are obtained.

6 Remarks on parametric and semiparametric

estimation

The literature on parametric and non-parametric estimation for the above con-
sidered models is enormous. Methods of estimation depend on experiment plans,
censoring, covariate types, etc. We do not give here all these methods but give two
general methods of estimation (one for parametric and other for semiparametric case)
which work well for all models.

If the models are considered as parametric then the maximum likelihood estima-
tion procedure gives the best estimators.

Let us consider for simplicity right censored survival regression data which is
typical in survival analysis (more complicated censoring or truncating schemes are
considered similarly):

(X1, δ1, x1(·)), · · · , (Xn, δn, xn(·))),

where
Xi = Ti ∧ Ci, δi = 1{Ti≤Ci} (i = 1, · · · , n),

Ti and Ci and are the failure and censoring times, xi(·)-the covariate corresponding
to the ith object, Ti ∧ Ci = min(Ti, Ci), 1A is the indicator of the event A.

Equivalently, right censored data can be presented in the form

(N1(t), Y1(t), x1(t), t ≥ 0), · · · , (Nn(t), Yn(t), xn(·), t ≥ 0),
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where
Ni(t) = 1{Xi≤t,δi=1}, Yi(t) = 1{Xi≥t}.

In this case for any t, t > 0

N(t) =
n∑
i=1

Ni(t) and Y (t) =
n∑
i=1

Yi(t)

are the number of observed failures of all objects in the interval [0, t] and the number
of objects at risk just prior the moment t respectively.

Suppose that survival distributions of all n objects given xi(·) are absolutely
continuous with the survival functions Si(t, θ) and the default rates λi(t, θ), specified
by a common possibly multidimensional parameter θ ∈ Θ ⊂ Rs.

Denote by Gi the survival function of the censoring time Ci. We suppose that the
function Gi and the distributions of xi(·) (if they are random) do not depend on θ.

Suppose that the multiplicative intensities model is verified: the compensators of
the counting processes Ni with respect to the history of the observed processes are∫
Yiλidu. The likelihood function for θ estimation is:

L(θ) =
n∏
i=1

λδii (Xi, θ)Si(Xi, θ)

=
n∏
i=1

(∫ ∞
0

λi(u, θ) dNi(u)

)δi
exp

{
−
∫ ∞

0

Yi(u)λi(u, θ) du

}
The maximum likelihood (ML) estimator θ̂ of the parameter θ maximizes the

likelihood function. It verifies the equation:

U(θ̂) = 0,

where U is the score function:

U(θ) =
∂

∂θ
lnL(θ) =

n∑
i=1

∫ ∞
0

∂

∂θ
log λi(u, θ){dNi(u)− Yi(u)λi(u, θ)du. (32)

The form of the default rates λi for the PH, AFT, GPH1, GPH2, GPH3, CE, CHSS,
AH,AMH, AAR, PPAR, GAH, GAMH are given by the formulas (2),(7),(13),(14),
(15), (16),(20),(26),(27),(28), (29), (30), (31). The parameter θ contains the re-
gression parameter β, the complementary parameter γ (for some models) and the
parameters of the baseline rate function λ0, which is taken from some parametric
family.

Let us consider a general approach (Bagdonavičius and Nikulin (2002)) for semi-
parametric estimation in all given models when the baseline default function λ0 is
supposed to be unknown. The martingale property of the difference

Ni(t)−
∫ t

0

Yi(u)λi(u, θ)du (33)
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implies an ”estimator” (which depends on θ) of the baseline cumulative hazard Λ0.
Indeed, all the above considered models can be classified into three groups in depen-
dence on the form of λi(t, θ)dt. It is of the form

g(xi(s),Λ0(s), 0 ≤ s ≤ t, θ)dΛ0(t)

(for PH, GPH, CE models), and dΛ0(fi(t, θ)) (for AFT, CHSS models) or

g1(xi(s),Λ0(s), 0 ≤ s ≤ t, θ)dΛ0(t) + g2(xi(s),Λ0(s), 0 ≤ s ≤ t, θ)dt

(for AH, AMH, AR, PPAR, GAH, GAMH models), Λ0 possibly multi-dimensional
for the AR and PPAR models). We remind that the estimation for the PH and
AFT models with time-dependent regression coefficients and time-dependent or in-
dependent covariates is analogous to the estimation for the PH and AFT models with
constant regression coefficients and properly chosen time-dependent ”covariates”.

For the first group the martingale property of the difference (33) implies the
recurrently defined ”estimator”:

Λ̃0(t, θ) =

∫ t

0

dN(u)∑n
j=1 Yj(u)g(xj(v), Λ̃0(v, θ), 0 ≤ v < u, θ)

.

For the second group

Ã0(t, θ) =
n∑
i=1

∫ t

0

dNi(hi(u, θ))∑n
l=1 Yl(hl(u, θ))

,

where hi(u, θ) is the function inverse to fi(u, θ) with respect to the first argument.
For the third group (AH, AMH, GAH, GAMH models)

Λ̃0(t, θ) =

∫ t

0

dN(u)−
∑n

i=1 g2(xi(v),Λ0(v), 0 ≤ v < u, θ)du∑n
j=1 Yj(u)g1(xj(v),Λ0(v), 0 ≤ v < u, θ)

.

A little more complicated situation is with AR and PPAR models. The ”estimator”
Λ̃0 is obtained in the following way (McKeague and Sasieni (1994)): let us consider
a submodel

λ0(t) = α(t) + ηϕ(t),

in which η is a one-dimensional parameter and ϕ, α are m-vector of functions.
The score function obtained from the parametric likelihood function for the pa-

rameter η (AR model) is

U(η) =
n∑
i=1

∫ ∞
0

ϕT (t)x(i)(t)

λi(t)
(dNi(t)− Yi(t)(x(i)(t))TdΛ0(t)),

and the score functions for the parameters η and β (PPAR model) are:

U1(η, β) =
n∑
i=1

∫ ∞
0

ϕT (t)x
(i)
1

λi(t)
(dNi(t)− Yi(t)(x(i)

1 )TdΛ0(t)− βTx2Yi(t)dt) = 0,
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U2(η, β) =
n∑
i=1

∫ ∞
0

x
(i)
2

λi(t)
(dNi(t)− Yi(t)(x(i)

1 )TdΛ0(t)− βTx(i)
2 Yi(t)dt) = 0. (34)

If Λ0 is unknown and we want to estimate it, the estimator should be the same for
all ϕ. Setting U(η) = 0 (AR model) or U1(η, β) = 0 (PPAR model) for all functions
ϕ implies that for all t

x(i)(t)

λi(t)
(dNi(t)− Yi(t)(x(i)(t))TdΛ0(t)) = 0,

or
x(i)

λi(t)
(dNi(t)− Yi(t)(x(i)

1 )TdΛ0(t)− βTx(i)
2 Yi(t)dt) = 0,

which implies the ”estimators” (AR model):

Λ̃0(t) =
n∑
j=1

∫ t

0

(
n∑
i=1

x(i)(u)(x(i)(u))TYi(u)(λi(u))−1

)−1

x(j)(u) (λj(u))−1 dNj(u)

or (PPAR model)

Ã(t) =
n∑
j=1

∫ t

0

(
n∑
i=1

x
(i)
1 (x

(i)
1 )TYi(u)(λi(u))−1

)−1

x
(j)
1 (λj(u))−1 (dNj(u)−βTx(j)

2 Yj(u)du).

Note that for PH, GPH1, GPH2, GPH3 models

g(x(s),Λ0(s), 0 ≤ s ≤ t, θ) = eβ
T x(t), eβ

T x(t)(1 + γ

∫ t

0

eβ
T x(u)dΛ0(u))

1
γ
−1,

eβ
T x(t)(1 + 2γ

∫ t

0

eβ
T x(u)dΛ0(u))−

1
2 , eβ

T x(t)(1 + γ

∫ t

0

eβ
T x(u)dΛ0(u))−1,

respectively. For the CE model

g(x(s),Λ0(s), 0 ≤ s ≤ t, θ) = eβ
T x(t){1 + Λx(·)(t)}1−eγT x(t)

,

where the function Λx(·) is defined by the equation∫ t

0

eβ
T x(u){1 + Λx(·)(u)}1−eγT x(u)

dΛ0(u) = Λx(·)(t).

If x is constant in time then for the CE model

g(x,Λ0(s), 0 ≤ s ≤ t, θ) = eβ
T x{1 + e(β+γ)T xΛ0(t)}e−γ

T x−1.

For the AFT and CHSS models

fi(t, θ) =

∫ t

0

e−β
T x(u)du,

∫ t

0

e−β
T x(u)ue

γT x(u)−1du.
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For the AH, AMH, AR, PPAR, GAH and GAMH models

g1(xi(s),Λ0(s), 0 ≤ s ≤ t, θ) = 1, eβ
T x(t), xT , xT1

and
g2(xi(s),Λ0(s), 0 ≤ s ≤ t, θ) = βTx(t), βTx(t), 0, βT2 x(t),

respectively. For the GAMH1 model (formulas are analogous for the GAMH2,
GAMH3, GAH1, GAH2, GAH3 models):

g1(xi(s),Λ0(s), 0 ≤ s ≤ t, θ) = eβ
T x(t) g(xi(s),Λ0(s), 0 ≤ s ≤ t, θ),

g2(xi(s),Λ0(s), 0 ≤ s ≤ t, θ) = δTx(t) g(xi(s),Λ0(s), 0 ≤ s ≤ t, θ),

where

g(xi(s),Λ0(s), 0 ≤ s ≤ t, θ) =

(
1 + γ(

∫ t

0

eβ
T x(u)dΛ0(u) + δT

∫ t

0

x(u)du)

) 1
γ
−1

.

For the PH, GPH and CE models the weight ∂
∂θ

log λi(u, θ) in (32) is a function of
xi(·)(v),Λ0(v), 0 ≤ v ≤ u and θ. So the modified score function is obtained replacing
Λ0 by its consistent estimator Λ̃0 in the parametric score function (32).

In the case of the AFT, CHSS, AH, AMH, AR and PPAR models the weight
depends not only on Λ0 but also on λ0 and (or) λ′0. But the more important thing is
that λi(u)du do not depend on λ0 and λ′0. So construction of the modified likelihood
function can be done by two ways. The first way is to replace Λ0 by Λ̃0 and λ0 and
λ′0 by nonparametric kernel estimators which are easily obtained from the estimator
Λ̃0. The second, much more easy way is to replace λ by 1, λ′ by 0 and Λ0 by Λ̃0 in
the score function (32) (or (34) for the PPAR model, in the case of the AR model
there are no parameters left to estimate). The efficiency loses very slightly in this
case of such simplified weight.

Computing of the modified likelihood estimators is simple for the PH, GPH and
CE models. It is due to the remarkable fact that these estimators can be obtained
by another way: write the partial likelihood function

LP (θ) =
n∏
i=1

[∫ ∞
0

g{xi(v),Λ0(v), 0 ≤ v ≤ u, θ}∑n
j=1 Yj(u)g{xj(v),Λ0(v), 0 ≤ v ≤ u, θ}

dNi(u)

]δi
, (35)

and suppose at first that Λ0 is known. Replacing Λ0 in the score function by Λ̃0

exactly the same modified score function is obtained as going from the full likelihood!
So computing the estimator θ̂ the score equation is not needed. Better maximize
the modified partial likelihood function which is obtained from the partial likelihood
function (35) replacing Λ0 by Λ̃0. The general quasi-Newton optimization algorithm
(given in Splus) works very well seeking the value of θ which maximizes this modified
function (Bagdonavičcius, Hafdi, Himdi and Nikulin (2002)).

The most complicated case is the case of AFT and CHSS models: the modified
score functions are not differentiable and even continuous. So the modified maximum
likelihood estimators are the values of θ which minimize the distance of the modified
score function from zero. Computational methods for such estimators are given in
Lin and Geyer (1992).
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Abstract

Novel methods for estimating the depth of whole genome sequencing re-
quired for adequate coverage are presented. Employing the notion of r-spacing
existent results for the uniform coverage were extended for the large scope of
non-uniform distributions.

Keywords: coverage problem, spacings, uniform spacings.

Introduction

With next generation random shotgun sequencing and assembly of large eukaryotic
genomes, it is important to develop a robust and accurate estimation a priori of the
extent of fold coverage required to confidently sample the complete representation of
a sequenced genome.

Next generation sequencers (NGS) make use of the short reads (∼200 bp). To
assemble the entire genome, available sequence read should include all or nearly all
contiguous sequence of reads with overlaps. The last are needed for the correct
overlapping of reads and also for the error detection, which may be efficient only if
coverage reaches sufficient multiplicity, i. e. the every base pair is sequenced by not
less than a sufficient number of reads.

Thus one needs to obtain a full genome coverage with an adequate multiplicity
by reads of known minimum lengths (it also may be random, so its distribution is
assumed to be known in that case) with overlaps, The question posed here is how
many reads of minimum length would be required to achieve coverage
specified above with sufficiently large probability?

The partial answer was estimated in the pioneer paper [2], where an efficient
heuristic method was introduced. This result was extended in [4] employing the
notion of uniform spacings, which was employed in multiple subsequent studies. The
nonuniform coverage problem for the large scope of distributions was resolved in [1].
In this study we perform an extended analysis of the “Coverage Problem”, expanding
the notations and methods of the mentioned paper.

For the sake of consistency, we will remind the basic notations of [1]. The entire
genome is represented by an interval [0, 1]. The reads are the subintervals of small
fixed length l, 0 < l < 1, and assumed to be random.
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The problem of r-times covering of an interval [0, 1] can be expressed in the terms
of maximal r-spacings as follows. Let X1, . . . , Xn be i.i.d. random variables and n
the number of reads. Denote by X1,n ≤ . . . ≤ Xn,n the order statistics associated to

X1, . . . , Xn and introduce spacings S
(r)
0,n = Xr,n, S

(r)
i,n = Xi+r,n−Xr,n for i = 1, . . . , n−r,

and S
(r)
n−r+1,n = 1 − Xn−r+1,n. Let M

(r)
n−r+2,n ≤ . . . ≤ M

(r)
1,n be their associated order

statistics. Then the probability of r-times coverage of the interval [0, 1] by random

segments of length l is P(M
(r)
1,n < l).

The last statement can be rewritten in the “scale” of genome. Let L be a length
of single read in bp (base of pairs), N be a total length of genome, I be a minimal
required overlap of two random reads assembled in the sequence. Then obviously
l = (L− I)/N and P(Qr) = P(M

(r)
1,n < (L− I)/N), where Qr is an event in which the

existing reads containing at least r bases from all positions, taking into account only
reads with minimal intersection I bp with at least r neighbors.

1 Theoretical results

To summarize of results of [1], which are necessary for our further considerations, we
stipulate:

Uniform distribution In this case we assume, that Xi = Ui, i = 1, . . . , n, where
U1, . . . , Un are i.i.d. standard uniform random variables. Desired probability can be
efficiently estimated in the following way:

P(nM
(r)
1,n − b(r)

n,x ≤ x) ≥ e−e
−x
, (1)

where b
(r)
n,x can be obtained from the equation

b(r)
n,x − log n− log

( r∑
i=1

(b
(r)
n,x + x)i−1

Γ(i)

)
= 0.

Distributions with bounded support In this case we deal with a sample
X1, . . . , Xn from an absolutely continuous distributions with bounder support [A,B],

−∞ < A < B < ∞. For the sake of clarity we redefine S
(r)
0,n = Xr,n − A and

Sn−r+1,n = B − Xn−r+1,n. Fix r ≥ 1. Let {fn,r}n∈N be a sequence of uniformly
equicontinuous and nonnegative functions such that

sup
x>0
|P(nM

(r)
1,n < x)− exp(−nfn,r(x))| → 0 as n→∞.

Assume additionally that X1, . . . , Xn have a PDF p(x), satisfying 0 < δ ≤ p(x) ≤
M <∞, x ∈ [A,B] and the Hölder’s condition piece-wise

|p(x)− p(y)| ≤ C|x− y|α for all x, y ∈ Ti, i = 1, . . . , s
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with some C and α > 0, and some intreval partition {Ti}si=1 of the interval [A,B].
Then

sup
x>0

∣∣∣P(nM
(r)
1,n < x)− exp

(
−n
∫ B

A

fn,r(xp(u)) p(u) du
)∣∣∣→ 0 as n→∞. (2)

Extended class of distributions Some limit results, see theorem 4.1 from [1],
can be obtained for the classes of distributions related to the so called three extremal
types: Gumbel type, Fréchet type and Weibull type. Not going into a meticulous
formulation of the corresponding theorems and definitions, we only investigate their
particular cases.

This results can be applied for some symmetric distributions with p(1−) = p(0+) =
0. For instance, the trapezoidal distribution having PDF

p(x) =


(κ(1− κ))−1x, x ∈ [0, κ);

(1− κ)−1, x ∈ [κ, (1− κ));

(κ(1− κ))−1(1− x), x ∈ [1− κ, 1];

0, x /∈ [0, 1],

with some κ ∈ [0, 1/2] belongs to Weibull’s extremal type with a = 2 (see [3], Theorem
1.6.1). Then, by [1], Corollary 4.1 (iii),

P(M
(r)
k,n ≤ l) ≈

(
HW

1,r

(
l
√
n/
√

2κ(1− κ)
))2

,

where HW
1,r is a CDF of maxj≥0

{
(
∑r+j

s=1Es)
1/2 − (

∑j
s=1 Es)

1/2
}
, and E1, E2, . . . is a

sequence of i.i.d. random variables having the standard exponential E(1) distribu-
tion. Despite the fact this CDF can’t be easily obtained exactly, it can be efficiently
estimated via empiric simulations.

By [1], Lemma 6.3, the same approximation is valid for any PDF having the same
behavior near bounds 0 and 1 and separated from zero in other points of the interval
[0, 1].

Random read lengths The important extension to the coverage problem gives a
permission for reads to have random lengths.

Introduce a sample Y1, . . . , Yn from a positive distribution with CDF FY and
independent of X1, . . . , Xn. Denote by Nn,r(x) the number of of r-spacings greater

than xYi, i.e. Nn,r(x) = #{i ∈ {1, . . . , n∗} : S
(r)
i,n ≥ xYi}.

Under the independence assumption of the original sample of covering segments
left ends X1, . . . , Xn and the corresponding sample of their length Y1, . . . , Yn the
r-times coverage probability can be expressed as P(M

(r)
1,n < Y ), where Y has the

distribution of random length of the small segments concentrated on [0, 1] and in-

dependent of M
(r)
1,n. As a result the probability of r-times coverage of whole interval

[0, 1] is

P(M
(r)
1,n < Y ) =

∫ 1

0

P(M
(r)
1,n < s) dFY (s). (3)
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The desired probability can be obtained utilizing estimates and approximative for-
mulas for M

(r)
1,n. Similarly, the probability to have less then k regions without r-times

coverage is

P(Nn,r < k) = P(M
(r)
k,n < Y ) =

∫ 1

0

P(M
(r)
k,n < s) dFY (s).

2 Simulations and Applications

In this section we address the question stated in the Introduction: “how many reads
do we need to obtain coverage with sufficiently large probability?”. To assess numeric
results of the methods described above we performed simulations via R Project soft-
ware [5].

In the tables 1–2 we give a ratios between a total (expected) length of reads
and whole genome length required for full r-coverage of Human’s genome with 95%
probability. In our computations we assume N = 3.2 · 109 and I = 50.

Table 1: Total (expected) length of reads divided by whole genome length: uniform
distribution

Distribution Uniform
L 100 150 200 250 300 Random
r = 1 48 35 31 28 27 27
r = 2 55 40 35 33 31 31
r = 5 72 52 46 43 41 41
r = 10 94 69 61 56 54 54
r = 25 148 110 97 90 86 86
r = 50 227 168 149 139 133 133

Table 2: Total (expected) length of reads divided by whole genome length:
truncated normal distributions

Distribution Truncated N(1/2, 1) Truncated N(1/2, 1/4)
L 100 200 300 Random 100 200 300 Random
r = 1 49 31 27 27 173 109 95 95
r = 2 56 36 32 32 201 127 112 112
r = 5 73 47 42 42 268 171 151 151
r = 10 96 62 55 55 359 231 204 204
r = 25 154 100 89 89 586 381 338 338
r = 50 237 155 138 138 916 599 534 534

To fulfill table for the uniform case we used estimator (1). Truncated normal
distribution was estimated throughout formula (2). Formula (3) was applied in the
case of random length with Y ∼ N(300, 502).
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The results in the table demonstrate how much the total length of reads should
be greater then the length of genome. It is important to note that ‘random’ results
are equal to the corresponding ‘non-random’ ones due to the considerable length of
the entire genome.
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Abstract

Probabilistic estimation method of the average straight residual lifetime for
nuclear power plants (NPPs) systems and their constituent elements is consid-
ered. The mathematical model for calculating of this reliability characteristic
for the objects to be recovered from the initial data on failures censored interval
is presented. Besides, the issue of its accuracy estimating using the bootstrap
method is considered.

Keywords: residual lifetime, system, element, reliability characteristic,
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Introduction

Currently, increased attention of researchers in the reliability theory is given to the
analysis of technical object operation subject to the aging. This problem is particu-
larly relevant in the nuclear power industry. The most of power capacities in nuclear
power engineering were put into operation in the 70ies-80ies. Today operating or-
ganizations are oriented to extend the assigned lifetime of the NPPs, but for the
reasonable prolongation of the lifetime of power units as a whole and their individual
components, systems, parts, etc. reliability analysis of all the constitu-ent elements,
assemblies and systems is required.

In this paper the problem of estimating the residual operating time between fail-
ures of renewal objects is solved. It is assumed that the strategy of maintenance
facilities include monitoring for proper operation of functioning, as well as routine
preventive and emergency repairs. The proposed method for estimating the residual
operating time is based on building a stochastic model, which is mathematically de-
scribed by the Voltaire integral equation. One of the problems that appear during
the calculation of systems reliability characteristics is the problem of determining
the reliability of elements included in the structure of the system using operational
failure information. During the NPPs reliability characteristics calculations the relia-
bility characteristics is assessed as well as confidence estimation is required. It means
that the problem becomes to the task of assessing the accuracy of the calculated
parameters.
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1 Problem Definition

One of the conditions for the extension of equipment assigned lifetime is the substan-
tiation of its reliability. The present article is concerned with computational methods
for determining the reliability of renewal facilities, when repairs are possible and pro-
vided by regulatory, technical, repair and design documentation. In the capacity of
determinants of reliability a residual operating time of the object was selected by
the authors. A residual operating time is an operating time of the object from the
beginning of the operation or installation into the system to the recovery to date of
failure.

The general practice of calculating the reliability characteristics of renewal systems
is based on the application of the mathematical methods of the renewal theory under
the assumption that the system renewal time is small in comparison with the normal
operating time value and it can be neglected. As a result, in the capacity of the
computational model the model of regenerative processes is used, which suggests that
during the repairs carried out a complete restoration of all the original properties of
the system. This model describes well the practical situation when the renewal of
the system in operative condition after failure means the replacement of the failed
element by the same type element from repair kits or spare parts.

However, even with a simple model calculation of the residual operating time
is a very complicated mathematical problem, an analytic solution of which can be
obtained only in special cases with a parametric specification of the original data. In
addition, nuclear power has a large number of serviced systems and equipment, the
renewal time of which has the same order of magnitude that the operating time to
failure. During the operation diagnostic tests organized in a special way are carried
out, spare equipment sets are created that is installed into the system in case of
failure. Repair system including the current plan, secondary and capital repairs is
organized and planned. All these facts lead to the conclusion that the renewal time
can not be neglected. In this case, it is necessary to use the theory of alternating
processes for the description of models of equipment functioning.

Thus, the task of this paper is the construction of adequate and reliable models of
the residual lifetime estimating taking into account the different operation strategies,
service activities.

2 The Estimation of Straight Residual Time for

Renewal Objects

a The Strategy of the System Operation with a Built-in
Monitoring Efficiency and Low Renewal Time

In modern technical systems different devices of the equipment efficiency monitoring
are used. Early detection of failures and defects allows carrying out procedures for
their elimination and, consequently, exploit the technical facilities more effectively.
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The system which is characterized by the presence of elements with faultiness control
is going to be considered in this paper. In case of failure of a subsystem the operation
staff immediately become aware of the failure element (e.g., the alarm indication goes
off). Monitoring of performance is carried out constantly.

Lets consider the model of the objects operation, which has a built-in test system.
In the case of failure the system becomes inoperable and the emergency maintenance
work to renew functionality shall be started.

Lets suppose that in initial time t0 = 0 the object is in working condition. The
system operates until failure τi. Built-in monitoring system instantly and unambigu-
ously provides infor-mation about the place of failure to service staff, and system
renewals for a negligible time. After restoring the system continues to operate until
the next failure. The cycle of such states changing is repeated until a certain time t.
Denote time to failure at the i-th operating cycle ξi. Described strategy of functioning
is shown in Figure 1.

Figure 1: The strategy of the system with failure indication and a small recovery
time

In [1] a process {V t
i , t≥0, i = 1, 2, ...} called the straight residual time process is

described, where

V t
i = τi+1 − t. (1)

It should be noted that V t is the straight residual time, or the residual operating
time of system at time t.

Also in [1] showed that the average straight residual time can be defined as

MV t(t) = (H(t) + 1)

∫ ∞
0

ufξ(u)du− t. (2)

where fξ(t) is a failure density function, H(t) renewal function, which is determined
by solving of the equation

H(t) = Fξ(t) +

∫ t

0

H(t− u)dFξ(u).

However, in practice this analytical solution for the straight residual time is quite
difficult to be use even in special cases, because it is not always possible to calc an
estimation of the renewal function.

Its possible to find the average straight residual lifetime MV t(t) using the defi-
nition of the mathematical expectation of the time remaining until the next system
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failure, starting at time t in which the system was operable. According to this defi-
nition

MV t(t) = M

∞∑
i=0

(τi − t)·I{τi≤t < τi+1}, (3)

where τi - the failure time. Then

MV t(t) =
∞∑
i=0

M(τi − t)·I{τi≤t < τi+1} =
∞∑
i=0

ψi(t). (4)

Write down the expression under the summation sign

ψi(t) =

∫ ∞
0

∫ ∞
0

(s+ x− t)·I{s≤t < s+ x}fτi(s)fξ(x)dxds =

∫ ∞
0

xϕi(t;x)dx (5)

Lets make the Laplace transform of the inner integral ϕi(t;x) and obtain:

ϕi(p;x) = f τi(p)·g(p;x) = (f ξ(p))
i·g(p;x), (6)

where g(p;x) the image of the function g(t;x) = fξ(t+x). Then the Laplace function

of average straight residual lifetime MV t(p) will be determined by the expression

MV t(p) =
1

1− f ξ(p)
·
∫ ∞

0

xg(p;x)dx.

Turning to the originals, it obtains the Voltaire integral equation

MV t(t) =

∫ ∞
0

xfξ(t+ x)dx+

∫ t

0

MV t(u)fξ(t− u)du. (7)

Its solving allows estimating the value of the average straight residual lifetime.

b Calculation of the Characteristics Used in the Equation
for Average Straight Residual Time

In order to make calculations of reliability characteristics including average straight
residual time it is necessary to know the density function of operating time to the i-th
failure and renewal time. It should be note that information obtained from operating
experience should be used to estimate the density functions. It is important for the
described method that failure times of devices are unknown when the collection of
data on nuclear power systems (NPS) equipment failures is performed. There is
only data about the number of failures of the same-type elements, distributed at
intervals of efficiency. As the range of efficiency a calendar year is considered. In
other words, failures are grouped by the operating year and only the facts of failures
are known. Based on the analysis of such statistics it is quite difficult to determine
the distribution of failure time. In order to renew the density of failure time the
method of kernel estimates is used.
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Consider the observation period for the object operation as an array of observation
time intervals −→

LR = [(l1, r1); (l2, r2); ...; (ls, rs)]

, where the random number of failures

−→ν = [ν1, ν2, ..., νs]

has taken place. Note that the intervals are disjoint and the right border of the
considered interval is equal to the left border of the subsequent interval ri = li+1.

Lets consider that n is the total number of failures, m the number of similar
objects forming this failure flow. Suppose that in case of failure the failed element
is replaced by another analog with the same characteristics. In this case, there is a
complete renewal of the system. Consequently, the failure flow parameter ω(t) can
be determined. If there are data about failures censored intervals for the failure flow
parameter following kernel estimation is obtained

ω̂(t) =
s∑
i=1

νi
m(ri − li)

(
G(
t− li
h

)−G(
t− ri
h

)
+ ε(t), (8)

where

G(x) =
1√
(2π)

∫ x

−∞
exp

(
−u

2

2

)
du

- Gaussian kernel; h is the locality parameter (the measure that depends on the
standard deviation of the failure time); ε(t) is the estimated systematic errors of the
failure flow parameter which should be obtain as

ε(t)≈ 1

2a

[
erfc

(
an/m− t√

2nσ2/m

)
+ exp

(
2at

σ2

)
·erfc

(
an/m+ t√

2nσ2/m

)]
.

As it is known from renewal theory, the failure flow parameter is related with the
density distribution of failure time through the Voltaire integral equation

fξ(t) = ω(t)−
∫ t

0

f(τ)ω(t− τ)dτ . (9)

Thus, having sufficient statistical data, it is possible to estimate the density distribu-
tion of the failure time, solving the equation (9), and then estimate the mathematical
expectation of straight residual lifetime (7). Lets consider the example of calculation.
Suppose it is known that the system consists of m = 4 the same elements. The vector
of failures is

ν = (1, 9, 3, 4, 3, 2, 1, 0, 3, 0, 3, 0, 0, 0, 0, 1, 0, 6, 1, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0).
(10)

Data are grouped by operating years, the total number of failures amounted to n = 42
for s = 34 years. Using formula (8) for these elements lets estimate the failure flow
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Figure 2: The kernel estimation of failure time density

parameter and then solving the equation (9), define the density of failure. The result
of the density distribution calculation is shown in Figure 2.

Now the mathematical expectation of straight residual lifetime can be estimated
using formula (7). Solving the equation (7) and taking into account these initial data,
the following estimate of the average straight residual lifetime for the element can be
obtained (Figure 3).

Figure 3: The mathematical expectation of average straight residual time

Thus, the presented methodology allows to obtain the estimation of the straight
residual lifetime and to predict the residual lifetime of the technical objects.
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3 The Estimations Accuracy Determination for the

Average Straight Residual Lifetime

Determining the accuracy estimation of the mathematical expectation of straight
residual lifetime is a quite difficult task in the set of initial conditions. In the case
of nonparametric estimation for the moment it is not yet decided how to obtain
estimation for the variance of the straight residual time. Therefore, the authors
suggest carrying out estimation of the accuracy using bootstrap method.

Bootstrap method was described in [2], and its essence is that one-sample statis-
tics of observations is transformed into many samples with the same sample size. The
transformation is carried out on basis of the primary sample and taking into account
its distribution law.

Thus, the main idea of the bootstrap method is in the multiplication of the avail-
able data. The task is to simulate random samples with the same size as the primary
sample. In addition, each simulated sample is generated by random selection with
the returning of one of the events from the primary sample. This procedure allows to
build the sampling distribution of the estimated feature without any additional as-
sumptions and to make nonparametric confidence intervals. Lets explain the essence
of the accuracy estimating of the bootstrap method applied to the sample paragraph
2.2, where a vector of element failures grouped by operating years is defined.

In the contrast to the classical application of the bootstrap method, in our case,
the available data are grouped by operating year and failure times are unknown.
Therefore, if in case of the classical bootstrap method implementation a random
uniformly distributed variable is played on the axis of the probability (interval [0, 1])
and then it is projected to the axis of failure times, but in our case it is necessary
to map the simulated random uniformly distributed variable on the axis of failures
events implementation.

Lets consider the sequence of action in determining the accuracy of the estimated
feature with bootstrap method.

Step 1. Each failure event is assigned to an ordinal index i and determine to
the observation time interval when happened. There are n failures distributed in k
observation time intervals. For our example (n = 42, k = 34), there are 1st failure in
1st observation time interval, 2nd-10th failures in 2nd interval, 11th-13th failures in
3rd interval, etc.

Step 2. The axis of the probability is divided to n equal disjoint intervals [0, y1),
[y1, y2), ..., [yn−1, yn]. Simulate a random uniformly distributed variable U [0, 1] on the
axis of the probability. Determine which of the n observation time intervals contains
this variable. If [yi−1, yi), then it means that the event with index i is realized.
Repeat the operation of modeling n times, thereby a sample of the event numbers of
the failures is built. Finding events should be assigned to observation time intervals
according to the partition, in step 1. Using the obtained bootstrap sample as input
data, lets calculate the expectation of straight residual lifetime MV t

1 .

Step 3. Repeat step 2 many times independently. Thus a lot of ratings MV t
i are

got.
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Step 4. For nonparametric estimation performance limits of the confidence inter-
vals are defined as follows. First, set the significance level α in accordance with the
confidence level of 1 − 2α. Secondly, define the boundaries of intervals that satisfy
the following relations for the given α.

α =
d(MV t

i ≤MV t
low)

r
; (11)

1− α =
d(MV t

i ≤MV t
high)

r
; (12)

where r the amount of bootstrap repetitions; d(MV t
i ≤MV t

high) the number of pa-
rameter MV t bootstrap repetitions which took values less than MV t

high. In this case,
evaluation MV t

low and MV t
high defined by expressions (10) and (11) will character-

ize the approximate confidence interval, corresponding to a confidence probability
1− 2α. The results of MV t

low and MV t
high calculations according to initial data of the

represented example and formulas (10) and (11) are shown in figure 4.

Figure 4: The construction of confidence intervals for estimating of average straight
residual lifetime

The advantage of the represented method is the possibility to build the confidence
interval for estimation besides the estimation of the reliability features on the basis
of initial censored sample of small size.

Conclusions

In this paper the method of estimating the average straight residual lifetime is con-
sidered and the algorithm for estimating the calculations accuracy is described. The
distinctive feature of the presented method is the possibility of using non-parametric
methods of estimation. The considered method allows carrying out practical research,
taking into account the quality of available basic statistical data. This method can
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be used to estimate the reliability characteristics of systems with complex service
strategies.
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Abstract

A new method for solving the pattern recognition problems is proposed.
Unlike artificial neural networks it does not utilize concepts of an the artifi-
cial neuron and the neural network. The Monte Carlo method is applied for
modeling the training signals. A numerical example is considered.
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Introduction

The pattern recognition theory studies methods of classification/identification of ob-
jects with a finite number of numerical parameters. To solve these problems artificial
neural networks (ANN) were proposed. ANN’s replaced humans in many tasks. The
simplest networks (perceptrons) were able to solve simple problems; the training the-
orem was proved for perceptrons [2]. But perceptrons were unable to solve some
important problems. Then powerful and complicated multilayer ANN’s were devel-
oped. But theoretical study of these ANN’s is too difficult; the training theorem
has not been proved for them and there are still theoretical/practical difficulties and
unsolved issues related to them.

A new method is introduced in this paper which can replace ANN. It does not
use concepts of the neuron, the network, the layer. Its work is based on another
principle. Methods of mathematical analysis and probability theory can be applied
to study it. As a result, the training theorem was formulated and proved.

1 Brief description of the work of ANN

Here we briefly consider the main phases in the work of ANN.
1) First, the ANN works in the training mode. A long sequence of training signals
z = (z1, . . . , zn) is supplied to the input of the ANN. Coordinates zk are properties of
the studied object. For example, these may be results of a medical test of a patient:
the blood pressure, body temperature and so on. The so-called �teacher� gives cor-
rect answers to a stated question (the main question) for each training signal. Using
these answers ANN adjusts its weights wk.
2) When the training process is over, the ANN resumes the work in an operating
mode. Working signals z with unknown answers are supplied to the input, and the
ANN performs two successive operations:
2.1) z =⇒ net = w · z (w is the weight vector),
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2.2) net =⇒ out = F (net) (F : R→ R is the activation function [3]),
Finally, ANN produces the answer:
2.3) If out > 1/2 we assume that the ANN puts out 0 and the object under exam-
ination is related to the first group, otherwise it is related to the second group (the
patient can be attributed to the sick group or to the healthy one).

2 Geometric description of the ANN

Let ANN be in the operating mode and z = (z1, . . . , zn) be a signal. ANN checks
whether the components zi satisfy the system of inequalities (1) (each inequality has
the form (2)) [3]:

{inequality 1} & {inequality 2} & {inequality 3} ∨ {inequality 4} . . . , (1)∑
j

wmjzj < 1
∑
j

wmjzj > 1. (2)

(the order of the logical signs &, ∨ is determined by the complex topology of the
graph of the ANN). From geometric viewpoint, each inequality (2) determines a half-

Figure 1: Approximation of the required set X by the polyhedron Sk.

space in Rn bounded by a hyperplane. The whole system (1) determines a polyhedron
Sk (possibly nonconvex), or a union of separated polyhedra. The signal z satisfies
system of inequalities (1) if and only if the point z ∈ Sk. Thus, the geometric event
{ z ∈ Sk } is equivalent to the logical event { the numbers zi, i = 1, . . . , n satisfy the
system of inequalities (1) }.

Denote by X (X ⊂ Rn) the set of signal points corresponding to the positive
answer 1. Solving problem for ANN means finding the set X. Therefore, we may call

61



Novosibirsk, 25-27 September, 2013

the sets Sk and X approximate and ideal correspondingly. At each step, the ANN
determines the approximate set Sk corresponding to the weights, and thus forms the
sequence of sets S1, 2, . . .. In terms of the set theory, the learning capability of the
ANN means that the sequence S1, S2, . . . converges in a way to the ideal set X (see.
Fig.1). We give an exact definition of this convergence below. From the geometric
viewpoint, the process of ANN training may be reduced to approximating the ideal
set X by the polyhedra Sk (each Sk is a composition – unions, intersections, or
supplements – of half-spaces).

If the set X is not a union of polyhedra, then certainly Sk 6= X for any k and a
finite number of training steps cannot produce the exact solution to the problem.

The perceptrons can form only simply connected convex sets. Therefore, many
problems cannot be solved using perceptrons. Multilayer networks only are able to
construct complex sets for solving complicated problems. Note that the nonconvexity
and disconnectedness of the ideal set X do not make any obstacle to solving problems
by the proposed method.

3 Description of ANN in terms of functions

Describe the work of an ANN in the language of functions. ANN can be identified
with a function ANN : Rn → {0; 1} which is defined by the logical algorithm of
the ANN and the weights wk are its parameters: ANN(z) ≡ ANNw(z). In the same
way we can define a fuzzy neural network [3]. In this case the value domain of the
function f is the whole segment [0, 1] (not the two numbers 0, 1): ANN : Rn → [0, 1].
There is one-to-one correspondence between the sets S ⊂ Rn and their characteristic
functions χS(z), z ∈ Rn:

χS(z) =

{
1, z ∈ S,
0, z /∈ S

We have defined X,Sk as the ideal and approximate sets. Now define the ideal
decision function f(z) ≡ χX(z) and approximate decision functions fk(z) ≡ χSk(z).
In terms of 01, the correct answer to the signal z is equal to χX(z). From the
viewpoint of of functions, the ANN training process is the process of approximating
the ideal decision function f(z) by approximate decision functions fk(z). Now we
can give a rigorous definition of the convergence Sk → X. This limiting relation is
equivalent to lim

k→∞
χSk = χX

4 The new decision algorithm of competition

In this section we introduce some auxiliary functions and finally the new algorithm.

a Requirements for approximate decision functions fk

First, We list some natural conditions for the functions fk and then construct func-
tions satisfying those conditions.
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(1) The new algorithm is fuzzy and its action in the working mode can be identified
with the mapping f : Rn → [0; 1]. The value domain of f is the segment [0; 1],
the number f(z) gives the empirical probability of the event z ∈ X after the whole
training course. Similarly, fk(z) gives the same probability after the k-th training
step. So, the value domain of the function fk is the segment [0; 1].
(2) Consider the new algorithm in the training mode. Let z1 = (z1

1 , . . . z
1
n) be the

first input training signal. Let the point z1 ∈ X. Then f1(z1) = 1. Now, if a signal
z falls into a small neighbourhood of the point z1, then the probability of the event
z ∈ X should be close to 1. Similar rules with the corresponding corrections should
hold in the case z1 /∈ X as well. This gives the requirement for the continuity of fk.
(3) Each function fk must be constructed according to all previous training signals
z1, z2, . . . , zk. Its values at the points z1, z2, . . . , zk must remain equal to 1 or 0 when
subsequent training signals come in.
(4) The same training signals z1, z2, . . . , zN may come to the input in a different or-
der. Obviously, the result of this training , i.e. the function fN , should not depend
on the order of the incoming signals.
Now we briefly formulate these requirements:

• 0 ≤ fk(z) ≤ 1.

• The functions fk must be continuous;

• fk(z
i) =

{
1, zi ∈ X
0, zi /∈ X , i = 1, . . . , k

• the functions fk do not depend on the incoming order of training signals.

Constructing functions of a simple form satisfying thess conditions is the main goal
of the paper.

b Influence function

Let Z be a set where all possible signals lie. Divide the set Z into the subset X, Y of
the positive and the negative signals: X ∪ Y = Z, X ∩ Y = Ø.
Let z1 = (z1

1 , . . . , z
1
n) be the first training signal and, as the teacher told, z1 ∈ X.

We are absolutely sure (our confidence is infinite) that z1 ∈ X. If the point z lies in
a small neighbourhood of z1, then it most likely falls into the set X too. This time
our confidence is not infinite but still is big. As the point z moves away from z1, this
confidence decreases to zero since the system forgets what has occurred at z1. In the
same way, we assign the value −∞ to our confidence if the point z1 falls into the
negative set Y and so on. We can imagine that each training signal creates a scalar
influence field (positive or negative) around itself.

Specify an analytic expression for the intensity of the scalar influence field of a
signal. First, determine the the indicator ε(z) of the signal z:

ε(z) =

{
+1, z ∈ X
−1, z /∈ X
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The function h(z)

h(z) =


1

|z|m
, z 6= 0

+∞, z = 0

defines the intensity of the elementary influence field. Here n is the dimension of the
space Z, m ≥ n is an arbitrary number.

Let the next training signal zk be supplied to the input. The number

ε(zk) · h(z − zk) =
ε(zk)

|z − zk|m
, z 6= zk (3)

may be called a heuristic value of our confidence in the fact that the z-sign coincides
with the sign of the training signal zk (recall that the zk-sign has been prompted by
the teacher). Really, values of the function (3) are large in a small neighbourhood of
zk, which corresponds to a large confidence in the sign of z in this neighbourhood. If
the point z goes away from zk, absolute value of the function (4.1) decreases to zero
which corresponds to the decrease of the confidence in the z-sign.

Expression (4.1) resembles the formula of Coulombs law for the interaction of
point charges. The difference is that the influence field is scalar here. Besides, the
exponent m in the formula can exceed 2. Each training signal creates the influence
field around itself, which spreads onto surrounding test points. We call the function
ε(zk) ·h(z−zk) (the argument z and parameter zk) the elementary influence function
of the signal zk. This function determines the influence field of a particular signal
zk taking into account the sign of the signal and the point of its location. Further
we use the notation hk(z) ≡ ε(zk) · h(z − zk). Thus, each training signal creates the
scalar field of positive or negative influence on all the other points around it. The
elementary influence function determines the intensity magnitude of this field. The
set {z1, z2, . . . , zN} of several training signals also induces the influence field. This
field is a superposition of elementary fields of the signals zk, k = 1, 2, . . . , N . We
define the intensity magnitude of this field at the point z as the sum h1(z)+. . .+hN(z)
of the values of the elementary influence functions of the training signals zk.

All the training signals influence the signs of other point signals. So the positive
and the negative groups of training signals compete with each other in their �strug-
gle� for the influence on a particular signal z 6= z1, z2, . . .. So, the new algorithm can
be called competition algorithm (CA). The idea of the competition lies at its basis,
as well as the idea of an artificial neuron lies at the basis of the ANN algorithm.

Fig. 2 shows the effect of the influence functions of negative (black) and positive
(white) training signals. As the color of the points of the space continuously changes
from pure black to pure white, the values of the influence function grow from −∞ to
+∞. The points distant from the training signals are colored neutral grey and the
values of the influence function are close to zero at this points.
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Figure 2: Influence function diagram.

c The approximate decision functions and the new algorithm

Introduce a few auxiliary functions.
(1) F (t) : (−∞, +∞)→ (0, 1) is a function variable with a typical s-shaped graph.
This function is intended for transforming a function R1 → R1 with an unbounded
value domain into a function with the required value domain [0, 1] and can be defined
by the formula

F (t) =
1

2

[
t√
t2 + 1

+ 1

]
lim
t→−∞

F (t) = 0, lim
t→+∞

F (t) = 1

(2) HN(z) =
N∑
k=1

hk(z) is the influence function for the set {z1, z2, . . . , zN}.

(3) Define the decision functions fk. Let f0(z) ≡ 1/2 and

fN(z) = F (HN(z)), z 6= zk, fN(zk) = lim
z→zk

F (HN(z)) =

{
1, zk ∈ X
0, zk /∈ X

The function Hk is not defined at the points z = zk, k = 1, . . . N and we define fk
at these points. Figure 5 presents the graph of the decision functions for n = 2. It is
easy to see that the constructed functions fk satisfy the predesigned properties.

Write down a sequence of operations for solving the problem which make the
competition algorithm.

• Specify the influence function H0(z) ≡ 0, z ∈ Z.

• Simulate the training signal zk uniformly in Z (X ⊂ Z ⊂ Rn).

• Change the influence function: Hk−1(z)→ Hk(z) = Hk−1(z) + hk(z).
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Figure 3: Graph of the decision function, n = 2.

• Construct the decision function fk.

• Choose the step number N for finishing, stop the training process and pass to
its working mode. In the working mode, the value fN(z) is calculated for each
point z ∈ Z. If fN(z) ≤ 1/2, we hold that the event does not occur; otherwise,
we assume the event takes place.

5 Numerical experiment

Let A be a 3 × 3 matrix with known coefficients and unknown determinant det(A).
We want to separate the matrices A : det(A) < 0 from those A : det(A) > 0.

Write down the matrix A as a set of its columns: A = (a·1, a·2, a·3). The set of all
3×3 matrices is unbounded. Therefore, solving the problem, we reduce consideration
to the bounded subset

{
A
}

of matrices A composed of the normed column vectors

a·k. Just consider association A → A and notice that the sign of det(A) coincides
with the sign of det(A).

Each normed column vector is a point on the two-dimensional sphere S2, so the
matrix A ∈ S2 × S2 × S2. The training process consists of modeling uniformly dis-
tributed training signals, which should be densely distributed in the set Z =

{
A
}

. We
use the following Monte Carlo formulas for modeling the vector coordinates [1]: x1 =
1 − 2α1, x2 =

√
1− (2α2 − 1)2 cos(2πα3), x3 =

√
1− (2α4 − 1)2 cos(2πα5),.

After finding the fraction of correct answers in the group of working signals, we use
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Figure 4: Graph of the frequency p (the number of training samples in thousands).

these signals for further training. We can track how the frequency of the correct
answers depends on the number of training samples. Divide the matrices sequence
A1, A2, . . . into groups: G1 = {A1, . . . , A100}, G2 = {A101, . . . , A200}, . . ., and calcu-
late the number nk of the correct answers for each group Gk: p(k) = (nk/100) ·100%.
The graph in Fig. 6 shows: at the start p = 1/2 (the absence of information), the
value of p grows quickly, then the growth rate decreases, at the end the value of p is
close to one.
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Abstract

The Smoluchowski equation with linear coagulation coefficients depending
on two parameters is considered. We construct weight algorithm for estimating
various linear functionals in ensemble, which is governed by the equation under
study. Numerical results show that constructed algorithm simultaneously es-
timate both the functionals for various parameters and parametric derivatives
on the same trajectories of the simulated Markov chain.

Keywords: Monte Carlo method, coagulation, linear functional, weight
estimator.

Introduction

In this paper we consider pure coagulation Smoluchowski equation, which describes
a wide class of coalescence processes in physical systems consisting of particles with
positive integer sizes. For given coagulation coefficients Kij let the probability of
interaction (or collision) for particles with sizes i and j during a time interval ∆t
be equal to Kij∆t. Call a particle of size l an l-mer. Under these notations, a
concentration of l-mers nl(t) at the instant t in spatially homogeneous case satisfies
the following kinetic equation:

∂nl(t)

∂t
=

1

2

∑
i+j=l

Kijni(t)nj(t)−
∑
i≥1

Kilni(t)nl(t), l ≥ 1. (1)

This equation gives the rate of change of the l-mer concentration with respect to
time as the sum of two terms: the first one is the rate at which l-mers form from the
coagulation of smaller particles (the factor of 1/2 ensures that each of such coagulation
is counted once); the second one is the rate of l-mer coagulation with other particles,
causing l-mer disappearance. Adding the initial data

nl(0) = n0(l), l > 0,

to the equation (1), we obtain a Cauchy problem for the nonlinear Smoluchowski
equation. Further we will develop weight modifications of statistical simulation for
estimating the linear functionals of the function nl(t).

68



Applied Methods of Statistical Analysis

For numerical estimation of linear functionals we are going to consider evolution of
a many-particle system [4]. For this purpose we will simulate a homogeneous Markov
chain, which transitions are due to elementary pair interactions. Further we will use
the following notations:

◦ N0 is the initial number of particles in the system, be given at time t = 0;

◦ li is the size of the particle with number i;

◦ N ≤ N0 is the current number of particles in the system;

◦ number $ = (i, j) is the interacting pair;

◦ X = (N,LN) = (N, l1, · · · , lN) describes the phase state of the system;

◦ A(X) =
∑
$

a(N, li, lj), where for N > 1 we have

a($) ≡ a(N, li, lj) =
∞∑
l=1

N−1
0 Kli,ljδli+lj ,l, here δm,n is a Kronecker delta (and

a(1, li, lj) ≡ 0);

◦ P (X, t) is the set of probabilities, which determines the state distribution of
the system at the time t;

◦ Z = (X,$), dZ = dXdµ0($). Integration with respect to the measure µ0

implies summation over all possible pairs $, and integration over dX means
summation over all values of N and LN .

Under molecular chaos assumption one can obtain in the limit (see [7] for details)

1

N0

∞∑
N=1

∞∑
l2=1

· · ·
∞∑

lN=1

NP (N, l, l2, . . . , lN , t)→ nl(t), when N0 →∞.

This limit allows us to estimate solution to the equation (1) with the help of linear
integral equation in the way described as follows.

We construct weight modifications of the Monte Carlo algorithms on the basis of
the technique suggested in [6], which introduces the pair number $ responsible for a
collision in the system to the set of phase coordinates. This approach allowed in [6] to
derive a special integral equation for the function F (Z, t) = F (X,$, t) = a($)P (X, t)
in the transformed phase space Z× [0, T ]:

F (Z, t) =

t∫
0

∫
Z

F (Z ′, t′)K(Z ′, t′ → Z, t) dZ ′ dt′ + F0(Z)δ(t).

Here δ(·) is a Dirac delta function. The latter equation can be used to construct
standard weight modifications of the Markov chain simulation for a many-particle
system due to multiplicative structure of its kernel:

K(Z ′, t′ → Z, t) = K1(t′ → t|X ′) ·K2($|X ′) ·K3(X ′ → X|$).
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The distribution density of the time between elementary interactions is exponential:

K1(t′ → t|X ′) = A(X ′) exp{−A(X ′)(t− t′)}.

The probability that a pair of particles $ = (i, j) interacts in the N ′-particle system
is

K2($|X ′) ≡ K2(i, j|X ′) =
a($)

A(X ′)
=
a(N ′, li, lj)

A(X ′)
.

Finally, the function K3(X ′ → X|$) defines the transformation of the system after
an interaction of the pair $, which results in replacement of two interacting particles
i and j by a single particle of the size l = li + lj, so N = N ′ − 1.

Thus, the simulation process of the next interaction in the Markov chain includes
two successive elementary transitions: first we choose the time interval between in-
teractions, and then we choose two particles for interaction.

Usually the following functionals are of interest:

JH(T ) =

∫
X

H(X)P (X,T ) dX.

For the function

H̃(X, t) = H(X) exp{−A(X)t}, H(X) ∈ L∞, (2)

the following equality was derived in [6]:

JH(T ) =

T∫
0

∫
Z

H̃(X,T − t′)F (Z, t′) dZ dt′ ≡ (F, H̃),

which we will make use of later.

1 Problem statement

In this work we consider the case of linear coefficients depending on two parameters
a and b

Kij = a + b
(i+ j)

2
. (3)

These coefficients can be found, for example, in the classical polymer model
A—R—Bf−1 (see [1]). In this model the molecules with (f − 1) chemically ac-
tive units of one kind (B), and a single unit of another kind (A), are regarded as
monomers. Chemical bonds could be formed between A and B units, regardless of
ring formation (i. e. cyclization), and reactions between units of the same kind are
forbidden. This leads to branched molecules if f ≥ 3 (see Figure 1). As the number
of unreacted A’s per j-meric molecule is one and the number of unreacted B’s is
(f − 2)j + 1, for this model the coagulation (or polymerization) rate is proportional
to (i+ j)(f − 2) + 2, i. e. has a form (3).

In this paper we are interested in construction of new algorithms for two problems:
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Figure 1: An example of 5-mer for f = 3

1. estimation of functionals JH(T ) ≡ JH(a,b, T ) for various parameters a and b
using simulation of the many-particles ensemble for a given a∗ and b∗;

2. estimation of parametric derivatives
∂JH
∂a

(a∗,b∗, T ) and
∂JH
∂b

(a∗,b∗, T ). with

respect to a and b.

These problems were stated in our previous work [3], in which we suggested value
algorithms for reduction in computational cost. For the considered case of linear
coefficients Kij we have

a(a,b, $) =
2a + b(li + lj)

2N0

, A(a,b, X) =
(N − 1)

2

[
a
N

N0

+ b

]
,

K1(a,b, t′ → t|X ′) = A(a,b, X ′)e{−A(a,b,X′)(t−t′)},

K2(a,b, i, j|X ′) =
2a + b(li + lj)

aN(N − 1) + bN0(N − 1)
.

2 Weight simulation of Markov chain for integral

equation

To solve the first problem stated in the previous section we suggest to simulate
ensemble evolution for parameters a∗ and b∗ and estimate the functionals for another
parameters with the help of the weight simulation. For this purpose we define the
simulated Markov chain {Zn, tn}κn=0; κ = max

n
{n : tn < T} with a transition density

P ∗(Z ′, t′ → Z, t) = P1(t′ → t|X ′) · P2($|X ′) ·K3(X ′ → X|$)
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and a distribution density F0(Z)δ(t) of the initial state (Z0, t0). Then we can define
random weights by the formulas:

Q0 = 1, Qn = Qn−1Q(Zn−1, tn−1;Zn, tn); Q(Z ′, t′;Z, t) =
K1(t′ → t|X ′)
P1(t′ → t|X ′)

·K2($|X ′)
P2($|X ′)

.

We propose to use for simulation the following probability density function P1 and
probabilities P2:

P1(t′ → t|X ′) = K1(a∗,b∗, t′ → t|X ′); P2($|X ′) = K2(a∗,b∗, i, j|X ′).

Using the forms of K1 and K2 we obtain the set of weights Q(a,b) in the following
form:

Q(a,b, Zn−1, tn−1;Zn, tn) =
2a + b(li + lj)

2a∗ + b∗(li + lj)

∣∣∣∣
t=tn

×e

{
−Nn−1−1

2

[
Nn−1
N0

(a−a∗)+(b−b∗)
]
(tn−tn−1)

}
.

In order to estimate the functional JH(a,b, T ) = (F (a,b), H̃), the “weight” col-
lision estimator ξ and absorption estimator η could be used (see [8]):

ξ(a,b) =
κ∑

n=0

QnH̃(Xn, T − tn), η(a,b) =
QκH̃(Xκ, T − tκ)

q(Xκ, tκ)
,

q(X ′, t′) = 1−
T∫
t′

P1(t′ → t|X ′) dt.

Taking into account the representation (2), we can show that η = Q̃κH(Xκ) with

Q̃κ(a,b) =
κ∏
k=1

[
2a + b(li + lj)

2a∗ + b∗(li + lj)

∣∣∣∣
t=tk

]
×

κ+1∏
k=1

e

{
−
Nk−1−1

2

[
Nk−1
N0

(a−a∗)+(b−b∗)
]
(tk−tk−1)

}
,

where t0 ≡ 0 and tκ+1 ≡ T . Using the results of [5], we can obtain the following
theorem.

Theorem 1. Let Q(Z ′, t′;Z, t) < +∞, for Z ′, Z ∈ Z, and t′, t < T , then Eξ = JH(T ).
If q(X, t′) > 0, for t′ < T , then also Eη = JH(T ). Moreover, if the weights are
uniformly bounded and H ∈ L∞, then there exists T ∗, that for T < T ∗ the variances
of the estimators are finite. �

Taking into consideration the form of weights Qn(a,b), we can show that The-
orem 1 is valid for our problem for some intervals a∗ − εa ≤ a ≤ a∗ + εa and
b∗ − εb ≤ b ≤ b∗ + εb.

For solving the second stated problem we suggest to use the following theorem,
which is valid for our problem due to the forms of the integral operator K with the
kernel K and the integral operator KP with the kernel K2/P ∗.
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Theorem 2. Under conditions of the Theorem 1 let also the spectral radii ρ(K) < 1,
ρ(KP ) < 1, and the value of ||K ′c|| be uniformly bounded in some interval c∗ − εc ≤
c ≤ c∗ + εc for c = a or c = b. Then for ζ = ξ or ζ = η we have:

E

(
∂ζ

∂c

)
=
∂JH
∂c

(a∗,b∗, T ), Var

(
∂ζ

∂c

)
< +∞. �

For example, for the absorption estimator we have

∂JH
∂a

(a∗,b∗, T ) = E
[
Q̃a
κH(Xκ)

]
,
∂JH
∂b

(a∗,b∗, T ) = E
[
Q̃b
κH(Xκ)

]
,

where the weights are the following:

Q̃b
κ =

κ∑
k=1

(li + lj)

2

[
a∗ +

b∗

2
(li + lj)

]−1

t=tk

−
κ+1∑
k=1

[
(Nk−1 − 1)

2

]
(tk − tk−1),

Q̃a
κ =

κ∑
k=1

[
a∗ +

b∗

2
(li + lj)

]−1

t=tk

−
κ+1∑
k=1

[
Nk−1(Nk−1 − 1)

2N0

]
(tk − tk−1).

3 Results of the numerical experiments

Without loss of generality we present numerical results for estimation of two function-
als: the monomer concentration JH1(T ), and the total polymer concentration JHµ(T )
with

H1(X) =
1

N0

N∑
i=1

δ(li − 1); Hµ(X) =
1

N0

N∑
i=1

1 ≡ N

N0

.

These functionals estimate the solution to the initial equation (1): JH1(T ) = n1(T )+

O(N−1
0 ), JHµ(T ) = µ(T ) + O(N−1

0 ). Here µ(T ) =
∞∑
i=1

ni(T ) is the total polymer

concentration. The deterministic error of order O(N−1
0 ) occurs due to the finiteness

of N0 (see [7] for details).
Further in this section the simulation results according to the suggested algo-

rithms are presented and compared to the analytic solution of the test problem. As
a test problem for implementation of the algorithms described above, we take the
problem (1) with the coagulation coefficients (3) and the initial data n0(l) = δl,1
(monodisperse equation). This problem has an exact solution in the form (see [9]):

nl(t) = µ(t)(1− µ(t))l−1

(
aµ(t) + b

a + b

)1+lb/a

, µ(t) =
b

(a + b) exp{bt/2} − a
.

We used the following data in the algorithm: N0 = 200, T = 1.2, a∗ = 1.3, b∗ = 1.1,
a = a∗ ± 10%, b = b∗ ± 10%, and M = 107 is the number of simulated trajectories.
Note that the statistical error is of order O(M−1/2) (see, e. g., [8]). We also used
the following notations in the tables: σ̄ is the mean square error (square root of the
estimate variance); and PE% is the percent error. You can find some results in the
Tables 1-3.
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Table 1: Estimation of JH1(T ).

a b exact solution estimator ± σ̄ PE%

1.3 1.1 1.429 · 10−1 1.436 · 10−1 ± 8.1 · 10−6 0.46
1.43 1.1 1.340 · 10−1 1.347 · 10−1 ± 1.8 · 10−5 0.50
1.43 1.21 1.247 · 10−1 1.253 · 10−1 ± 5.1 · 10−5 0.45
1.3 1.21 1.328 · 10−1 1.333 · 10−1 ± 2.6 · 10−5 0.40
1.17 1.21 1.416 · 10−1 1.422 · 10−1 ± 1.6 · 10−5 0.37
1.17 1.1 1.527 · 10−1 1.534 · 10−1 ± 3.7 · 10−5 0.43
1.17 0.99 1.648 · 10−1 1.656 · 10−1 ± 1.2 · 10−4 0.49
1.3 0.99 1.539 · 10−1 1.547 · 10−1 ± 4.6 · 10−5 0.49
1.43 0.99 1.441 · 10−1 1.449 · 10−1 ± 1.8 · 10−5 0.53

Table 2: Estimation of JHµ(T ).

a b exact solution estimator ± σ̄ PE%

1.3 1.1 3.290 · 10−1 3.315 · 10−1 ± 9.1 · 10−6 0.76
1.43 1.1 3.175 · 10−1 3.201 · 10−1 ± 4.6 · 10−5 0.83
1.43 1.21 3.005 · 10−1 3.031 · 10−1 ± 1.3 · 10−4 0.85
1.3 1.21 3.112 · 10−1 3.137 · 10−1 ± 6.2 · 10−5 0.78
1.17 1.21 3.228 · 10−1 3.251 · 10−1 ± 2.9 · 10−5 0.71
1.17 1.1 3.414 · 10−1 3.438 · 10−1 ± 7.3 · 10−5 0.70
1.17 0.99 3.610 · 10−1 3.636 · 10−1 ± 2.4 · 10−4 0.70
1.3 0.99 3.477 · 10−1 3.502 · 10−1 ± 9.8 · 10−5 0.73
1.43 0.99 3.352 · 10−1 3.379 · 10−1 ± 4.2 · 10−5 0.80

Table 3: Estimation of
∂JH
∂a

(T ) and
∂JH
∂b

(T ).

functional exact solution estimator ± σ̄ PE%
∂JH1

∂a
(T ) −7.170 · 10−2 −7.156 · 10−2 ± 1.9 · 10−4 0.18

∂JH1

∂b
(T ) −9.589 · 10−2 −9.687 · 10−2 ± 2.9 · 10−4 1.02

∂JHµ
∂a

(T ) −9.198 · 10−2 −9.093 · 10−2 ± 4.2 · 10−4 1.14

∂JHµ
∂b

(T ) −1.654 · 10−1 −1.659 · 10−2 ± 6.5 · 10−4 0.28

Conclusions

We have constructed algorithm to estimate the functionals for various parameters (a,
b) as well as parametric derivatives using the same set of trajectories. This algorithm
could be useful for solving the interpolation problem. We would like to point out that
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we used the monodisperse pure coagulation equation as test problem due to the fact
that there exists an analytic solution only for this problem. The algorithm works
for polydisperse case (initial particles of varying size) as well. The reduction of the
computational cost for estimation of various functionals for large values of T is a
challenging problem. It could be solved by the combination of the weight parametric
simulation (suggested in this work) and the value simulation (see [2, 3]).
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Abstract

In this paper, degradation models are considered. We suppose, that the
degradation process is a stochastic process with independent increments (in
this case increments of the degradation index). We propose the algorithm
for identification of the distribution of degradation increments, as well as the
algorithm for estimation of the reliability at some given moment of time. We
have investigated the operation of these algorithms using computer simulations.
In this paper, we also give an example of the application of proposed algorithms
for the GaAs lasers data.

Keywords: degradation process, stochastic process with independent in-
crements, reliability, distribution of degradation increments, GaAs lasers data.

Introduction

There are many scientists, who carry out the research in area of degradation. The
topic of degradation processes is considered, for example, in papers [1-5]. In theory,
the degradation process is often supposed to be a stochastic process with independent
increments. Many researchers use gamma-distribution (for example, Nikulin and
Bagdonavicius (2001)) or normal distribution (for example, Bordes (2010) and Tang,
Yang and Xie (2004)) as the distribution of degradation increments. And it can be
explained by repeatability of these distributions (the sum of random variates has the
same distribution as each variate). But in practice, there are many cases, when the
goodness-of-fit hypothesis with the gamma and normal distributions is not confirmed.

The aim of this research work is to develop the identification algorithm for distri-
bution of degradation increments and estimation algorithm for reliability basing on
the degradation data.

1 Identification of the degradation model

Suppose that an increasing stochastic process Z(t) describes the degradation level of
an item. The failure occurs, when the degradation level reaches the critical value z0

[4]:
T = sup{t : Z < z0} = inf{t : Z ≥ z0}, .

In this paper, the mean degradation m(t) = E (Z(t)) is refered to as the trend
function. Let we know values of the degradation Zi

j, i = 1, n, j = 1, k for n items at
moments tj. We suppose that the initial value of the degradation level is zero.
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We introduce some assumptions.
Assumption 1. The degradation process is a stochastic process with independent

increments. We denote the increment as

X i
j = Zi

j − Zi
j−1, i = 1, n, j = 1, k (1)

Assumption 2. Let the distribution of the degradation increments has the follow-
ing form:

F

(
x

m(t; γ)−m(s; γ)
; θ

)
(2)

where m(t; γ) is the known trend function of the degradation level, θ is the vector
parameter of the distribution (shift and shape parameters). The main assumption is
that the difference between the trend functions at time t = tj and time s = tj−1 is
the scale parameter of the distribution of increments.

Assumption 3. Let the distribution 2 of increments X i
j belongs to the collection

of distributions F = {F1, F2, ..., FL}.
The identification algorithm for the distribution of the degradation increments

can be written as following:

1. calculate the degradation increments 1 basing on degradation data;

2. set i = 1;

3. select the distribution Fi from the collection of distributions F;

4. estimate the distribution parameters by the sample of increments with maxi-
mum likelihood method: trend function parameters are always estimated, shift
and shape parameters are estimated if it is necessary;

5. standardize the sample of increments: X̃ i
j =

Xi
j

m(tj ;γ̂)−m(tj−1;γ̂)
, because degrada-

tion increments X i
j can be not identically distributed;

6. calculate the p-value by one of the goodness-of-fit tests, for example, Kol-
mogorov, Cramer-von Mises-Smirnov or Anderson-Darling tests, basing on the
standardized sample of increments X̃ i

j and the distribution Fi with the scale
parameter equal to 1;

7. if i = L, go to step 8, otherwise set i = i+ 1 and go to step 3;

8. choose the distribution, which has the biggest p-value αn > α , where α is the
significance level.

The most difficult stage of the algorithm is the calculation of p-values of the
Kolmogorov, Cramer-von Mises-Smirnov and Anderson-Darling tests, which is based
on the distribution of the test statistics under true null hypothesis. Here, the values of
test statistics are calculated after estimation of unknown parameters of the model. In
this case the distribution of the test statistic is affected by a number of factors, such
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as the form of the distribution Fi, the type and the number of estimated parameters,
the method of parameter estimation used, and so on. Approximations for the limiting
distributions of the test statistics for testing various composite hypotheses have been
discussed in works of Lemeshko, for example, [6].

In this paper, we have investigated the distributions of Kolmogorov, Cramer-von
Mises-Smirnov and Anderson-Darling statistics by means of Monte-Carlo simulations.
It has been shown, that on step 6 of the algorithm, it is possible to use approximations
of limiting distributions of considered statistics, obtained in [6], for calculation of p-
values.

To check the assumption, that the degradation process is a stochastic process
with independent increments, it is possible to test the lack of trend hypothesis by the
sample of increments, ordered according to the time of measurements. In [6], it is
recommended to use the Foster-Stuart and Cox-Stuart tests as they have rather high
power comparing to the Wald-Wolfowitz, Bartlett and Hsu tests. The assumption of
independence of increments for the constructed degradation model can not be held,
if the trend function is not appropriate. In this case, the lack of trend hypothesis
will be rejected. It has been shown, that the Foster-Stuart and Cox-Stuart tests have
rather high power in such situations.

The aim of degradation data analysis is to calculate the probability of no-failure
lifetime for a given period of time, that is the value of reliability function, which is
defined as

S(ts) = P (T > ts) = P (Z(ts) < z0) , (3)

where z0 is the critical value of the degradation level.

The value of reliability function at the given moment ts can be estimated on the
basis of the obtained distribution of degradation increments F (t; γ̂, θ̂) by means of
computer simulations using the following algorithm:

1. calculate the moments of time from the initial point till the moment ts with the
time step equal to the arithmetic mean of original time steps;

2. generate the sample of degradation increments for N objects in accordance with
the distribution F (t; γ̂, θ̂);

3. summing obtained increments for each item, get the sample of values of degra-
dation level at the moment ts;

4. estimate the reliability 3 basing on the empirical distribution function FN ob-
tained at step 3:

S(ts) = FN(z0).

The amount of simulations N should be chosen according to the desired deviation
of the empirical distribution FN from the distribution of degradation level at the
moment ts. For example, if we want to get the deviation not more than 0.01 with
the probability 0.99, then we need to set N not less than 16590.
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2 The analysis of the degradation processes based

on the data of the GaAs lasers testing

To analyze the work of identification and estimation algorithms, we have considered
the data on degradation of gallium arsenide (GaAs) lasers [3]. Gallium arsenide
(GaAs) lasers are used in telecommunication systems. During the operation, they
consume more and more current to maintain a fixed level of light output. They
are provided with feedback devices that support the consistency of luminous flux.
A device fails, when it consumes a current on 10% higher than the nominal value.
15 lasers have been tested under ambient temperature, increased to 80 degrees of
Celsium. During the test 3 lasers had failed. Failures had occurred at 3374, 3521 and
3781 hours.

In accordance with the requirements, these lasers must operate at least 200 thou-
sand hours under ambient temperature equal to 20C. Basing on the previous expe-
rience, the engineers supposed that the increase of ambient temperatures up to 80
degrees accelerates the failure in 40 times (conservative estimate). In other words,
we have to estimate the reliability at the moment of 200000/40 = 5000 hours (that
is equivalent to two decades of operation).

There are a lot of papers devoted to the analysis of these data. However, in
most of them, authors made an assumption on the distribution of increments, and
all following conclusions are based on this assumption. For example, in paper [2],
authors considered Wiener degradation process for these data, in papers [5] authors
compared Wiener and gamma degradation models. In this paper, we question of
the normal and gamma distributions for the degradation increments. In accordance
with the steps of the identification algorithm of the distribution of increments, we
included normal and gamma distributions, as well as the Weibull, Maxwell, exponen-
tial and inverse Gaussian distributions into the collection of distributions F. Then,
we estimated parameters of the degradation models for each distribution from F.
Following the steps of the proposed algorithm, we used the Kolmogorov test to cal-
culate p-values for all considered distributions. The results are given in Table 1. As
it is seen from this table, the best distribution for these data is the inverse Gaussian
distribution. Moreover, the hypothesis of goodness-of-fit with this distribution is not
rejected for α = 0.05. Thus, it is seen that the normal and gamma distributions are
not appropriate for increments of GaAs lasers degradation.

Table 1: The estimates of parameters of considered degradation models for the
GaAs lasers data

Name of the distribution Shift parameter µ Form parameter θ Trend parameter γ Value of the statistics p-value αk
Normal 0.5135 — 0.0008 1.6651 5.4086e− 6

Inverse Gaussian — 0.7276; 0.1122 0.0183 0.6774 0.383
Maxwell — — 0.0013 1.2558 0.0107
Weibull — 2.6525 0.0023 1.4127 0.0001
Gamma — 7.0911 0.0002 1.0696 0.0082
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Then, in accordance with the algorithm for estimation of reliability and the se-
lected inverse Gaussian distribution we simulated the distribution of degradation level
at moment of time 5000 hours. The fixed value of the critical level is 10. So, the
estimate of reliability at moment 5000 hours is S(5000) = 0.6252. We can say, that
engineers suppositions on the reliability of lasers were incorrect: about 40% of lasers
will fail during the 5000 hours of operation under temperature 80 degrees of Celsium
(engineers predicted no-failure operation during this period).

Conclusions

In this paper, we proposed the algorithm for identification of the distribution of
degradation increments, as well as the algorithm for estimation of the reliability at
some given moment of time under assumptions. On the example of the analysis of
the GaAs lasers data, it was shown that Wiener and gamma degradation processes,
which are commonly used in the analysis of degradation, can be inadequate for the
data and, hence, they will provide the wrong prediction of reliability. The most ap-
propriate model among considered is the inverse Gaussian distribution of degradation
increments. It was shown, that about 40% of lasers would fail during the 5000 hours
of accelerated tests although engineers have predicted no-failure operation during this
period.

This research has been supported by the Russian Ministry of Education and Sci-
ence as part of the state task (project 8.1274.2011) and the Federal Target Program
“Research and scientific-pedagogical personnel of innovative Russia” (contract num-
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Abstract

The most popular approach for nonparametric estimation of a regression
reliability model, proposed by Beran, is considered in this paper. In this pa-
per, we give the detailed analysis of the selection method for the bandwidth
parameter, which is based on minimization of the distance of failure times from
kernel estimate of the inverse reliability function. The accuracy of the Beran
estimator is studied depending on the plan of experiment (the sample size and
the number of values of the explanatory variable) and the way of calculating
kernel estimates of the inverse reliability function. We formulate some conclu-
sions on the choice of smoothing parameter and kernel function for the kernel
estimates of the inverse reliability function, which give the best accuracy of
Beran’s estimator.

Keywords: reliability function, the regression model, nonparametric Beran
estimator, smoothing parameter, bandwidth parameter.

Introduction

In problems of the statistical analysis of lifetime data, such as failure time of technical
devices in reliability theory or time of death in medical studies, the most common
task is the analysis of the dependence of the reliability (survival) function on the
observed explanatory variables. In reliability theory, such factors as temperature,
pressure, voltage, mechanical and other are usually taken as explanatory variables or,
as they are usually called in the lifetime data analysis, covariates. The most popular
parametric regression models in reliability are the AFT (Accelerated Failure Time)
model and the proportional hazards model. The construction of any parametric
model requires knowledge of the lifetime distribution and the kind of dependence of
reliability function on the observed covariates. In practice, however, this information
is usually absent. In such a situation it is advisable to use nonparametric methods,
which enable not only to estimate the reliability function for different values of the
covariate, but also can be used to construct a goodness-of-fit test for some parametric
reliability model.

One of the most popular approaches to nonparametric estimation of the regres-
sion reliability model is the estimator, proposed by Beran [1]. The investigation of
statistical properties of this estimator in the case of random plans, when the value
of covariates are not fixed, are presented in [2-5]. In [6], the properties of Beran’s
estimator are studied, when the values of covariate are defined in advance.
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Today, a great number of publications is devoted to the problem of the kernel
smoothing; the main attention is usually paid on the problem of selecting the optimal
smoothing parameter. In the context of this problem, it is important to understand,
that such methods as reference heuristic methods, substitution methods and cross-
validation are not applicable for the nonparametric Beran estimator, as in this case
the kernel function determines only the weight of each observation according to the
value of the covariate.

However, it is known that the quality of the Beran estimator essentially depends on
the chosen value of the bandwidth parameter. In [6], a theoretical method of selection
of the optimal bandwidth parameter is suggested, however, it is extremely difficult
to implement this method in practice, as it uses several functions, which are usually
unknown. In [7], the method of selection of the optimal bandwidth parameter, based
on the bootstrap procedure is offered, however, this approach is applicable only to the
case of the random plan. Thus, it is necessary to develop the method of calculation
of the optimal value of the bandwidth parameter for the Beran estimator. In [8],
we have proposed the idea of selecting the optimal bandwidth parameter, which is
based on the minimization of the distance of failure times from kernel estimate of
the inverse reliability function. So, the purpose of this paper is to investigate the
statistical properties of the Beran estimator and to give some recommendations on
the way of application of the proposed method.

1 Nonparametric Beran estimator

Denote by Tx the lifetime of considered technical product, which depends on scalar
covariate. The reliability function is denoted by

S(t|x) = P (Tx ≥ t) = 1− F (t|x), (1)

where F (t|x) is the conditional distribution function of a random variable Tx.
The main feature of the lifetime data is the presence of right censored observations,

which can be represented as

(Y1, x1, δ1), (Y2, x2, δ2), . . . , (Yn, xn, δn),

where n is the sample size, xi is the value of covariate for i-th object, Yi is the failure
time or censoring time and δi is the censoring indicator, which is equal to 1, if the
i-th observation is complete, and 0 if it is censored.

The Beran estimator is defined as follows [1]

S̃hn (t|x) =
∏
Y(i)≤t

{
1− W i

n (x;hn)

1−
∑i−1

j=1W
j
n (x;hn)

}δi

, (2)

where x is the value of the covariate, for which reliability function is estimated,
W i
n (x;hn) , i = 1, . . . , n are the Nadaraya-Watson weights, which are defined as fol-
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lows [5]:

W i
n (x;hn) = K

(
x− xi
hn

)/ n∑
j=1

K

(
x− xj
hn

)
,

where K
(
x−xi
hn

)
is the kernel function, satisfying to the regularity conditions: K(y) =

K(−y), 0 ≤ K(y) <∞,
∫∞
−∞K(y)dy = 1; hn > 0 is the bandwidth parameter, which

satisfies to the conditions: lim
n→∞

hn = 0, lim
n→∞

nhn =∞.

It should be noted, that in the case of the values of the Nadaraya-Watson weights
W i
n (x;hn) = n−1, the Beran estimator is led to the Kaplan-Meier estimator [5]. As

it was shown in [9], the accuracy of the Beran estimates essentially depends on the
values of the bandwidth parameter and is almost independent of the type of kernel
function. The optimal bandwidth parameter depends primarily on the degree of
influence of the covariate on the reliability function, while the effect of sample size is
not so significant.

2 The choice of bandwidth parameter

The choice of the bandwidth parameter determines the values of the weightsW i
n(x;hn),

which in turn determine, which observations will participate in the construction of
the estimate of the conditional reliability function (1). Thus, varying the bandwidth
parameter, in a certain way, it is possible to drop “bad” observations.

In this paper, we consider the method for selecting an optimal parameter, which
is based on the minimization of the mean deviation failure times Y1, Y2, ..., Yn from
nonparametric estimation of the inverse reliability function S−1

x (p) [8]. We denote
the inverse reliability function through g(p|x). Then, the model (1) can be rewritten
in the form:

Tx = g (p|x) + ε, (3)

where p ∈ (0, 1), ε is the error of observation, which, in general, may depend on p
and x.

Kernel estimator for the model (3) can be written as

ĝ (p̂i|xi) =
1

n

n∑
j=1

ωjn (p̂i) · Yj, (4)

where ωjn is a certain weight, which can be calculated using various weighting func-
tions. In particular, we consider the Nadaraya-Watson weights of the first order

ωjn (p̂i) = K

(
p̂i − p̂j
bn

)/ n∑
k=1

K

(
p̂i − p̂k
bn

)
and the Priestley-Chao weights of the second order [1]:

ωjn (p̂i) =
{
p̂(i) − p̂(i−1)

}
K

(
p̂i − p̂j
bn

)
,
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where the smoothing parameter bn can be selected using one of the methods proposed
for kernel smoothing [1,10]. Probabilities p̂i are calculated using the Beran estimates:
p̂i = S̃hn (Yi|xi).

Thus, the optimal value of the bandwidth parameter can be obtained by solving
the following optimization problem:

hoptn = arg min
hn

1

n

n∑
i=1

δi · |ĝ (p̂i|xi)− Yi|. (5)

3 Choice of weights and smoothing parameter

As we consider the problem, involving the use of kernel smoothing, we can use pre-
developed approaches for the optimal bandwidth parameter for the kernel estimator
of regression. Let us consider the following methods:

1. The method of cross-validation, which is often regarded as the most accurate;
however, it requires significant computational resources.

2. Method of minimal mean of integrated error according to the smoothing pa-
rameter, which is calculated as:

bNS =

[
8π1/2R(K)

3µ2(K)2n

]1/5

σ̂,

where µ2(K) =
∫
x2K(x)dx, R(K) =

∫
K2(x)dx, σ̂ is the estimate of the

variance, which can be calculated in various ways, most often used for this
purpose, for example, the sample variance:

σ̂2 = S2
n =

1

n− 1

n∑
i=1

(
p̂i −¯̂p

)2
.

However, firstly, this estimate is not robust, and secondly, has “good” properties
only if the distribution is close to normal. Therefore, in this paper we shall also
consider the robust estimate of the variance:

σ̂ = Srob = med
i=1..n

∣∣∣∣p̂i − med
j=1..n, k=j..n

(
p̂j + p̂k

2

)∣∣∣∣ .
This estimate is a combination of the well-known robust estimate of Hodges-
Lehmann for the shift parameter and the robust estimate of Rousseeuw, and it
is called the median absolute deviation for the scale parameter.

Let us investigate the statistical properties of the Beran estimator using the op-
timal bandwidth parameter (5). The investigation of the properties of the Beran
estimates is carried out by the Monte Carlo simulations. The following statistic is
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used as the distance between the Beran estimates and the true conditional reliability
function:

Dhn = sup
j=1..k, t<∞

∣∣∣S̃h(t|xj)− Sxj(t)∣∣∣ . (6)

It is obvious, that the quality of estimates (4) directly influences on that, how well
the bandwidth parameter will be chosen. So, let us compare different weights ωjn
for the kernel estimator ĝ(p̂i|xi), as well as different methods of choosing smoothing
parameter from the point of view of the accuracy of the Beran estimation.

As the true reliability model we consider the parametric Cox proportional hazards
model [9]:

Sx (t) = (S0 (t))r(x;β) , (7)

with the covariate function r(x; β) = ln(1 + eβx) and the lognormal baseline distri-
bution with the density function:

f0(t) =
1√

2πθ1t
exp

(
− 1

2θ2
1

ln2

(
t

θ2

))
.

We consider the case, when the covariate takes the values from the set
{0, 0.11, 0.22, 0.33, 0.44,
0.56, 0.67, 0.78, 0.89, 1}, the sample size n = 100, 200, 300 and the number of obser-
vations corresponding to different values of the covariate is equal to each other. The
samples were generated according to the model (7) with parameters: θ1 = 21.5, θ2 =
1.6, β = 2 or β = 5. The values of the distance (6) are given in Figure 1; the av-
erage values of chosen bandwidth parameter honpt and smoothing parameter bNS are
presented in Figures 2 and 3, correspondingly.

In all figures the notation “PCh” indicates the Priestley-Chao weights and “NW”
indicates the Nadaraya-Watson weights.

Figure 1: The distance Dn for different sample sizes

It is seen from Figure 1, that the Priestley-Chao weight function allows to get more
accurate Beran estimates. Thus, when the sample size is equal to 100, the value of
distance (6) in the case of using Prestly-Chao weights is less by 3% in comparison
with the case of using Nadaraya-Watson weights; if n = 200 the winning is 8% and
when n = 300 the winning is 11%. Moreover, the usage of robust estimator Srob in
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Figure 2: Average values of the bandwidth parameter hoptn for different sample sizes

Figure 3: Average values of the smoothing parameter bn for different sample sizes

calculation of the smoothing parameter bn gives better accuracy, and accuracy of the
Beran estimates increases with the sample size growth.

Figure 2 shows the average values of the chosen bandwidth parameter hoptn . It is
seen, that when the sample size increases, the value of optimal bandwidth parameter
reduces; it is quite natural, since the number of observations in groups increases, and
hence the number of “bad” observations increases.

Figure 3 illustrates the average values of smoothing parameter bn. It is curious,
that the value of the smoothing parameter practically does not depend on the sample
size and the weight function.

It is necessary to note, that the results obtained by the cross-validation are not
presented in these figures by two reasons: firstly, the procedure of cross-validation
requires extremely large computational resources, for example, when n = 100 the
time of calculation increases in about 6 times; and secondly, the method of cross-
validation minimizes the function (6) according to parameter bn, but not to the
bandwidth parameter hn.

Similar results have been obtained in experiments for the parameter value beta = 5
(i.e. with a stronger covariate effect). As in the considered case, the application of
the robust method in conjunction with the usage of Priestley-Chao weights result in
better accuracy of Beran estimates. It is interesting to consider apart the behavior
of optimal bandwidth parameter hoptn : when the influence of the covariate on the
reliability function increased, the average value of hoptn decreased almost twice in
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the case of using Priestley-Chao weights; however, in the case of Nadaraya-Watson
weights such a change is not observed.

Now, let us consider, what happens with the Beran estimates, when different
number of groups (the number of different values of the covariate) is taken.

Figure 4: The distance Dn for different numbers of groups

Figure 5: Average values of the bandwidth parameter hoptn for different numbers of
groups

Figure 6: Average values of the smoothing parameter bn for different numbers of
groups

As can be seen from Figure 4, when the number of groups increases for the fixed
sample size, the accuracy of the Beran estimator decreases, but this fall is not signif-
icant. This result can be explained as follows: the number of observations in a group
decreases, therefore, the amount of information for each covariate value also becomes
less, what leads to the loss of accuracy. However, the average values of bandwidth
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and smoothing parameters (see Figures 5 and 6, correspondingly) practically do not
change. Thus, we can assume, that the value of smoothing parameter bNS doesn’t
depend on the sample size and number of groups. Similar result has been obtained in
the case of β = 5, when the degree of influence of covariate on the reliability function
was increased.

Similar investigation has been carried out for the Cox proportional hazards model
with exponential baseline distribution. The revealed regularities were almost the
same, so specific numerical results are not given here.

Conclusions

In this paper, we have investigated the selection method of the bandwidth parameter
for the Beran estimator, which is based on minimization of the distance between
failure times and the kernel estimator of the inverse reliability function. We have
examined different ways of calculation of the kernel estimator from the position of
accuracy of the Beran estimator. It has been shown, that it is preferable to use the
Priestley-Chao weight function and to calculate the value of smoothing parameter
by the method of minimal mean of integrated error with the robust estimator of
variance, when calculating the kernel estimator of the inverse reliability function.

During the investigation it has been found, that the parameter bNS almost does
not depend on the experimental design, so it can be calculated only once for one
experimental design. This behavior of smoothing parameter can be explained by
the fact, that it is necessary to optimize the accuracy of the Beran estimator rather
than the kernel estimator of the inverse reliability function, so the accuracy of kernel
estimation is not so important.
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Abstract

The principal parts of mean square errors for kernel plug-in estimators of
the functions defining ARX-process are found. We use simulation to com-
pare parametric and nonparametric identification algorithms and to study also
nonparametric control algorithms. To investigate the dependence of Russian
Federation’s Industrial Production Index on the dollar exchange rate, direct
investments, and export for the period from September 1994 to January 2013,
the proposed algorithms of identification and forecasting are applied.

Keywords: Kernel plug-in estimator, conditional mean, mean square er-
ror (MSE), ARX-process, nonparametric identification, forecasting algorithm,
control.

Introduction

Suppose that a sequence (Yt)t=...,−1,0,1,... is generated by ARX(m, p, d)-process

Yt = Ψ (Yt,m, Xt,s) + ξt, (1)

where Yt,m = (Yt−i1 , ..., Yt−im) , Xt,s =
(
X1
t−j1 , ..., X

1
t−jr , ..., X

p
t−j1 , ..., X

p
t−jk

)
, s = r +

. . . + k, d = max(r, . . . , k), 1 ≤ i1 < . . . < im � n, 0 ≤ j1 < . . . < jr � n, . . . , 0 ≤
j1 < . . . < jk � n are known subsequences of natural numbers, (ξt) is a sequence of
i.i.d. random variables with zero mean, finite variance, zero third, and finite fourth
moments, Ψ (Yt,m, Xt,s) is an unknown non-periodic function bounded on compact.

Models (1) are used on identification of economic systems and financial time
series analysis. By identifying model (1) we mean the problem of parametric or
nonparametric estimation of the function Ψ. In this paper, we assume that the process
(Yt)t=...,−1,0,1,... is a strictly stationary process and satisfies the strong mixing (s.m.)
condition with s.m. coefficient ([10], [11], [3], [4])

α(τ) ≈ e−δτ , δ > 0, τ →∞. (2)

Let Y1, Y2, . . . , Yn be observations generated by the process (1). As a model of the
structure of Ψ in (1), we take the conditional expectation

b(y, x) = E(Yt|Yt,m = y,Xt,s = x) = E(Y |y, x), (y, x) ∈ Rm+s.
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According to [1] the integrals ag(y, x) =

∫
qgf(q, y, x)dq, g = 0, 1, are basic func-

tionals, where f(q, y, x) is an unknown probability density function (p.d.f.) of a ran-

dom vector (Yt, Yt,m, Yt,s) in stationary conditions. Since a0(y, x) =

∫
f(q, y, x)dq =

p(y, x), where p(y, x) is p.d.f. of (Yt,m, Yt,s), then the conditional expectation can be
written as

b(y, x) =
a1(y, x)

a0(y, x)
=
a1(y, x)

p(y, x)
=

∫
Ytf(Yt|y, x)dYt.

We take the kernel estimators of basic functionals ag(y, x) at the point (y, x) in the
form

agn(y, x) =
1

n−Q

n∑
i=Q+1

Y g
i

m∏
j=1

hj

Km

(
y − Yi,m
hy

) Ks

(
x−Xi,s

hx

)
r∏
j=1

h1j · · ·
k∏
j=1

hpj

,

where Q = max(im,max(jr, . . . , jk)), h
y = (h1, . . . , hm), hx = (hx1 , ..., h

x
p), h

x
1 =

(h11, ..., h1r), . . . , h
x
p = (hp1, ..., hpk) are suitable bandwidths (positive numbers), Km

and Ks are m- and s-dimensional kernels. Thus, the kernel plug-in estimator of con-
ditional functional b(y, x) at the point (y, x) and, hence, the function Ψ(y, x) in (1)
is the ratio

bn(y, x) = Ψn(y, x) =

n∑
i=Q+1

YiKm

(
y − Yi,m
hy

)
Ks

(
x−Xi,s

hx

)
n∑

i=Q+1

Km

(
y − Yi,m
hy

)
Ks

(
x−Xi,s

hx

) . (3)

The problem of identifying model (1) is a problem of estimating function (cf. [3],
[1])

H(A) = H(a0, a1)) =
a1

a0

, a0 > 0, (4)

where A = (a0, a1), ag = ag(u) =

∫
qgf(q, u)dq, g = 0, 1, f(q, u) = f(z), z ∈ Rm+s+1,

is p.d.f. of the random vector (Yt, Ut) = (Yt, Yt,m, Xt,s) = Zt in stationary conditions.
In this paper, we study the mean square convergence of estimator (3) to the

function Ψ determining ARX-process (1).

1 The MSE for Plug-in Estimator of Ψ

We introduce the following notation: f1(i+1)(i+j+1)(i+j+k+1)(z, υ, u, w) is 4(m+ s+ 1)-
dimensional p.d.f. of sample vectors Z1, Z(i+1), Z(i+j+1), Z(i+j+k+1),
a+

1(i+1)(i+j+1)(i+j+k+1),p(z, y, z
′, y′) =∫

R4

|νυν ′υ′|pf1(i+1)(i+j+1)(i+j+k+1)(ν, z, υ, y, ν
′, z′, υ′, y′)dνdυdν ′dυ′, Q+1 ≤ i, j, k < n,
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i+j+k ≤ n−1; a1(1+j)(i+j+k),p(z, y, z
′) =

∫
R3

|νυν ′|pf1(1+j)(i+j+k)(ν, z, υ, y, ν
′, z′)dνdυdν ′,

a+
1(i+1),p(z, z

′) =

∫
R2

|νυ|pf1(1+j)(ν, z, υ, z
′)dνdυ, a+

p (z) =

∫
|ν|pf(ν, z)dν, g = 0, 1, L =

m+ s.

Definition 1. A function K(u) belongs to the class of one-dimensional ker-

nels K(·) ∈ Aν if

∫
|K(u)|du < ∞,

∫
K(u)du = 1,

∫
|uνK(u)|du < ∞, Tj =∫

ujK(u)du = 0, j = 1, . . . , ν − 1, Tν 6= 0, and K(u) = K(−u).

Below, to study convergence of estimators, we use the same bandwidth hn for
each variable from m + s variables in Theorem and the product of one-dimensional
kernels as multidimensional kernels of proper dimensions.

Denote ωgν(u) =
Tν
ν!

L∑
j=1

∂ νag(u)

∂uνj
, Hg =

∂H(A)

∂(ag)
, sup
u∈RL

= sup
u
.

Definition 2. A function H(·) : RL → R1 belongs to the class Nν(z) (H(·) ∈
Nν(z)) if it is continuously differentiable up to the order ν at the point z ∈ RL. A
function H(·) ∈ Nν(R) if it is continuously differentiable up to the order ν for any
z ∈ RL.

Theorem. Assume that for the function H(A) in (4) and integers g, p = 0, 1,
β = 0, 4, l, . . . , q = 1, L, the following conditions hold:

1) (Zi) satisfies the s.m. condition,

∫ ∞
0

τ 2[α(τ)]
δ

2+δ dτ <∞, 0 < δ <∞;

2) ag+p(·) ∈ N0(R), a+
g(2+δ)(·) ∈ N0(z); sup

u
a+
g+p(u) <∞, sup

u
a+
gβ(u) <∞;

3) K(·) ∈ Aν , sup
u∈R1

|K(u)| <∞;

4) a0(u) > 0, ag(·) ∈ Nν(R), sup
u
|ag(u)| <∞, sup

u

∣∣∣∣ ∂νag(u)

∂ul . . . ∂uq

∣∣∣∣ <∞;

5) a non-increasing sequence (hn) is such that (dn) =

(
hn +

1

nhLn

)
↓ 0;

6) sup
u
a+

1(i+1)(i+j+1)(i+j+k+1),g(u, u, u, u) <∞,

sup
u
a+

1(i+1)(i+j+1),g(2+δ)(u, u, u) <∞, sup
u
a+

1(i+1),g(2+δ)(u, u) <∞,

sup
u,u′

a+
1(i+1),g+p(u, u

′) <∞ for any i, j, k ≥ 1;

7) for all possible values of Y1, . . . , Yn, X
1
1 , . . . , X

1
n, . . . , X

p
1 , . . . , X

p
n the sequence

{|H(An)|} is dominated by the sequence of numbers (C0d
−γ
n ), where C0 is a con-

stant, 0 ≤ γ ≤ 1/4.

Then

E[H(An)−H(A)]2 =
1∑

g,p=0

HgHp

[
at+p(x)

nhLn

(∫
K2(u)du

)L
+ ωgν(z)ωpν(z)h2ν

n

]
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+ O

([
h2ν
n +

1

nhLn

] 3
2

)
.

Note that in this formula according to (4) H0 = −a1

a2
0

, H1 =
1

a0

. The proofs of

Theorem is based on the results, presented in [10], [1], [4]–[6].

2 Comparison of Parametric and Nonparametric

Algorithms

Computer modeling is started by generation sequences of dependent observations,
using the following processes:
M(1) : Yn = 0.2Yn−1 + 0.11X1

n + 0.15X1
n−1 + 0.3X2

n + 0.2X3
n−2 + ξn,

M(2) : Yn = e0.1Yn−1+0.2X1
n+0.1X1

n−1+0.01X2
n−1+0.03X3

n + ξn.

Here, variables X1, X2, and X3 take values from uniform distributions on the
corresponding intervals [2, 2.5], [5, 6], [8, 10], and random variables ξn are distributed
according to normal distributions with zero mean and variances, calculated for models
M(1), M(2) by the formula

σ2 =
Ymax − Ymin

6
· a, (5)

where the multiplier a is a level of noise ξn, which takes the values 0.01, 0.05, 0.1,
0.15, 0.2, 0.5. In simulation we use the following sizes of observations: 50, 100, 200,
and 500.

Note that condition (2) holds for model M(1) (see subsection 3.5.9 in [1]).
Identification algorithms for functions Ψ in (1) were obtained by the least squares

method (LSM), by iterative weighted least squares method (WLSM), and by non-
parametric approach. The LSM and WLSM estimators are computed by making use
of MATLAB built-in functions.

Simulation of nonparametric algorithms is also based on MATLAB. As a kernel
K(u), we use the standard Gaussian density. The bandwidths are defined in two
ways. In accordance with [13], [2], [9], [8], the bandwidths are calculated by the
cross-validation (CV) method. The second method of finding the bandwidths use the
estimate Y n, based on the following empirical criteria:

hj,Empiric = C0σjn
− 1

4+L , C0 = argmin0<C<∞

∣∣∣∣∣∣∣∣∣∣∣
Yn−1 −

n−1∑
i=Q

YiKL

(
Un − Ui

h

)
n−1∑
i=Q

KL

(
Un − Ui

h

)
∣∣∣∣∣∣∣∣∣∣∣
,

j = 1, L, where L is the dimension of function Ψ, σ2
j is the sample variance of

observations for the j-th variable, h = (hy, hx).
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Figure 1: Averaged identification
errors for M(1), n = 50

Figure 2: Averaged identification
errors for M(2), n = 50

Figure 3: Dependence of the
identification quality of M(1) on
the size of observations for the

noise level 0.15

Figure 4: Dependence of the
identification quality of M(2) on
the size of observations for the

noise level 0.15

For models M(1) and M(2) the values of the relative identification errors

An,j =
1

n−Q

n∑
i=Q+1

∣∣∣∣Yi − Y i

Yi

∣∣∣∣ , j = 1, 2,

n = 50, are presented in Figures 1 and 2. The results for other sizes of observations
are shown in Figures 3 and 4. All the simulation results are averaged over 20 samples
of the same size.

According to Figures the identification quality for the two models and all the
methods decrease with increasing the level of noise. Further, for non-linear model
M(2) nonparametric algorithms have advantages over parametric algorithms because
of their adaptability. There is a tendency of reduction of identification errors for all
models by increasing sizes of observations.

3 Real data processing

We examine the dependence of Russian Federation’s Industrial Production Index
(IPI) Y (see Figure 5) on the dollar exchange rate X1, import X2, and direct in-
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vestments X3 from September 1994 to January 2013. The data are available from
http://www.gks.ru and http://sophist.hse.ru/. Apply (3) under Ui = (Yi,1, Xi,4) =

Figure 5: IPI for the period from January 1995 to January 2013

(Yi−1, X
1
i , X

2
i , X

3
i , X

3
i−1). Due to the fact that the classification principles of economic

activities were changed in 2002, we consider two series of the data from September
1994 to December 2002 and from January 2003 to January 2013. We take the Gaus-
sian density as the kernel K(u), the bandwidths hj = 1.1σjn

−1/9 for the data from
September 1994 to December 2002, and hj = 1.23σjn

−1/9 for the data from January
2003 to January 2013, j = 1, 2, 3, 4, 5, where the constants 1.1 and 1.23 are obtained
by the above empirical criteria.

To compare the nonparametric algorithms (3) with the LSM-estimators, we have
calculated the relative errors An and the relative average annual errors A(t),

t = 1994, . . . , 2013, for both the approaches: An =
1

n

n∑
i=1

∣∣∣∣∣Yi − ŶiYi

∣∣∣∣∣ ,
A(t) =

1

12

12∑
i=1

∣∣∣∣∣Yi(t)− Ŷi(t)Yi(t)

∣∣∣∣∣ , where Yi is the true value of the IPI and Ŷi is its

estimate. The results of such a comparison are given in Figure 6 and Figure 7.

The results of 1998 and 2009 can be explained by Russian financial crisis (”Ruble
crisis”) in August 1998 and Global financial crisis in 2009.

To predict the IPI Y for the data from 2002 to 2013 (cf. [12]), we apply (3) under

Ui = (Yi,1, Xi,4) = (Yi−1, X
1
i−1, X

2
i−1, X

3
i−1, X

3
i−2).

Here the bandwidths are equal to hjt = 0.94σ̂jt
−1/9, where σ̂j, j = 1, 2, 3, 4, 5.

The similarity of identification algorithms and forecasting algorithms leads one to
expect the both should behave similarly. For the relative average annual errors A(t),
seen in Figure 7 and Figure 8, one indeed observed that.
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4 Control

Let the outputs Y of models M(1) and M(2) should be levelled to the given values
Y∗(k), k = 1, . . . , 5 (see Figure 9 and 10) by making use of the controlled inputs X2

and X3 for the corresponding models.
For instance, outputs can be some qualities of produced goods and inputs – certain

parameters of technology of production. Note, we can take direct investments as the
controlled input in Section 3.

There is a problem of finding X2
∗ , X

3
∗ for M(1), M(2), and X3

∗ for the case of
real data in Section 3. The variables X1, X2, and X3 take values from uniform
distributions on the corresponding intervals [2,2.1], [5,6], and [0,0.2] for M(1), and
[2,2.1], [0,0.2], and [0,2] for M(2). Random variables ξn were generated from normal
distributions with zero mean and variances, calculated by the formula (5).

The wanted outputs Y∗(k) were taken as Y∗(1) = min{Y3, . . . , Y50}, Y∗(2) =

1

48

50∑
i=3

Yi,

Y∗(3) = max{Y3, . . . , Y50}, Y∗(4) = (Y∗(1) + Y∗(2))/2, Y∗(5) = (Y∗(2) + Y∗(3))/2.
In the case of model M(1), for example, analogously to (3) in accordance with

[7], from the sequence of (Yi, Yi−1, X
1
i , X

1
i−1, X

2
i , X

3
i−2), i = 3, n, using the given value

Y∗(1n) = Y∗(1), n = 51, . . . , 70, one can construct the corresponding estimates of
X2
∗ (1n) :

X2
∗ (1n) =

n∑
i=3

X2
iK2

(
Y∗,2(1n)− Yi,2

hy

)
K2

(
X1
n,2 −X1

i,2

h1x

)
K

(
X3
n−2 −X3

i−2

h33

)
n∑
i=3

K2

(
Y∗,2(1n)− Yi,2

hy

)
K2

(
X1
n,2 −X1

i,2

h1x

)
K

(
X3
n−2 −X3

i−2

h33

) , (6)

where Y∗,2(1n) = (Y∗(1n), Yn−1), Yi,2 = (Yi, Yi−1), X1
i,2 = (X1

i , X
1
i−1), hy = (h1, h2),

h1x = (h11, h12).
Here, we use the Gaussian kernel and bandwidths founded on the base of the

empirical criteria as in Section 2. The relative control errors are defined by the
formula

A(k) =
1

20

70+(k−1)20∑
i=51+(k−1)20

∣∣∣∣∣ Ŷi − Y∗(k)

Y∗(k)

∣∣∣∣∣ , k = 1, . . . , 5,

where, for example, Ŷi = 0.2Yi−1 + 0.11X1
i + 0.15X1

i−1 + 0.3X2
∗ (1i) + 0.2X3

i−2, i =
51, . . . , 150. The results are also obtained for model M(2) (see Table 1).
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Table 1: Errors of Control

Models M(1) M(2)
A1 0.024 0.021
A2 0.014 0.012
A3 0.024 0.026
A4 0.011 0.009
A5 0.020 0.015

Figure 6: Identification relative errors A(t)

Figure 7: Identification relative
errors A(t)

Figure 8: Forecasting relative
errors A(t)

Figure 9: Control model M(1) Figure 10: Control model M(2)
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Abstract

Two algorithms for numerical modeling of piecewise constant periodically
correlated non-Gaussian processes are proposed in this paper. Using first al-
gorithm it is possible to obtain a process with time-independent distribution
function. Second algorithm lets us to model a process with density of dis-
tribution that is a mixture of given densities and parameters of mixture are
periodical functions of time.

Keywords: Inhomogeneous Markov chains, periodically correlated pro-
cesses, piecewise constant random processes.

Introduction

In solution of various applied problems related to the study of actual time series (for
example, meteorological or oceanologic) arises necessity of simulation of random pro-
cesses with different periodical properties. Usually correlation function is periodic.
There are two main approaches to modeling of periodically correlated processes. Vec-
tor autoregression processes are most often used for this purpose [1]. Second approach
is based on some kind of point processes [3]. A new method for modeling of binary
periodically correlated sequences is suggested in [2]. Such time series are simulated
as inhomogeneous Markov chains with special type of inhomogeneity.

In this paper we suggest two algorithms for modeling of piecewise constant peri-
odically correlated time series with given distribution densities. Both algorithms are
based on inhomogeneous Markov chains studies in [2].

1 Modeling of processes with time-independent

distribution function

Let ξt, t = 0, 1, 2, . . .be a binary inhomogeneous Markov chain with range space
M = {0, 1}, initial distribution vector

A = {a1, a0} = {a, 1− a}
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and transition probability matrix Π (t) , that possesses 2 properties: Π (t) is periodic
function of discrete argument t, takes on a value

Pk =

(
p11[k] p10[k]
p01[k] p00[k]

)
=

(
pk 1− pk
1− qk qk

)
when t = un+k > 0, where n ≥ 2 is a length of period. Here pfg[k] is a probability of
transition from state f into state g (f, g ∈ {0, 1}) when t = un+ k, af is initial
probability of state f .

Let’s consider a process ηt, constructed via
Algorithm 1.

1. We simulate defined above Markov sequence ξt, t = 0, 1, 2, . . .

2. Random variable ω with distribution function F (x) is independently simulated,
η0 = ω.

3. For t ≥ 1:

if ξt = ξt−1: ηt = ηt−1;
if ξt 6= ξt−1: we independently simulate ω with distribution F (x), ηt = ω.
This process ηt is piecewise constant. It is obvious that distribution function of

ηt is F (x).
Example 1. Figure 1 shows a realization of Markov chain ξt and corresponding

realization of ηt, in case if

n = 2, a = 0.5, P0 =

(
0.6 0.4
0.1 0.9

)
, P1 =

(
0.7 0.3
0.5 0.5

)
, F (x) = N0,1.

Equality
corr(ηt, ηt+h) = P (ξt = ξt+1 = . . . = ξt+h) .

holds for correlation function corr(ηt, ηt+h) of the process ηt. It means that correlation
function corr(ηt, ηt+h) is completely specified by parameters of process ξt and is in-
dependent of F (x). Due to Markov property of ξt value of P (ξt = ξt+1 = . . . = ξt+h)
can be easy found, for example,

corr(ηmn, ηmn+(un+v)) = (bn + (a− bn) dmn )

(
n−1∏
j=0

puj

)(
v−1∏
f=0

pf

)
+

+ (1− bn − (a− bn) dmn )

(
n−1∏
j=0

quj

)(
v−1∏
f=0

qf

)
,

where
0 ≤ v < n, bn = ck−q0tn

1−dn ,

tn = det

(
n−1∏
i=1

Pi

)
, dn = det

(
n−1∏
i=0

Pi

)
, cn =

{
n−1∏
i=1

Pi

}
11

.

Function corr(ηt, ηt+h), as function of t, is oscillating. Since |dn| < 1, then corr(ηt, ηt+h)
converges to its limiting value, and this value is a periodic function of argument t.

Example 2. Correlation coefficients, as functions of time and shift, of the process
ηt, defined in Example 1, are shown on Fig. 2.
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Figure 1: a) – realization of process ξt; b) – corresponding realization of ηt.

Figure 2: Correlation coefficients of process ηt as function of a) – shift; b) – time.
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2 Modeling of processes with periodic distribution

density

Now we are going to consider one more type of piecewise constant processes, based on
described above Markov chains. Let f0 (x) , f1 (x) , . . . , fn−1 (x) be one-dimensional
densities of distribution.

Algorithm 2.

1. We simulate defined above Markov sequence ξt, t = 0, 1, 2, . . .

2. Random variable ω with distribution densityfn−1 (x) is independently simu-
lated, υ0 = ω.

3. For t ≥ 1:

if ξt = ξt−1, then υt = υt−1;
if ξt 6= ξt−1, then we independently simulate ω with density fi (x), where i ≡

t (modn), υt = ω.
For process υt next statement can be proved.
Statement. Process υt has one-dimensional distribution density that can be

described as mixture of f0 (x) , f1 (x) , . . . , fn−1 (x). Weights in his mixture are oscil-
lating functions of time. When t → ∞ weights converge to periodic functions and
the period is equal to n. Correlation function, as function of time, oscillates and
converges to periodic function with period n.

Proof of this statement is based on theory of covering runs in inhomogeneous
Markov chains.

Example 3. It is possible to obtain theoretical formulas that describe distribu-
tion density of process υt for every t. Figure 3 shows these densities for 4 different
momentst, when n = 2, f0 = ϕ0,1, f1 = ϕ5,1 and

a = 0.5, P0 =

(
0.9 0.1
0.8 0.2

)
, P1 =

(
0.2 0.8
0.1 0.9

)
.

Example 4. Figure 4 shows correlation coefficients corr(ηt, ηt+1) of process υt
when f0 = ϕ0,1, f1 = ϕ5,1 (normal distribution) and parameters of ξt are showed
below:

n = 2, a = 0.5, P0 =

(
0.6 0.4
0.1 0.9

)
, P1 =

(
0.7 0.3
0.5 0.5

)
.

Conclusion

Discussed algorithms let us to model piecewise constant processes with given prop-
erties of correlation function and one-dimensional density of distribution. Such pro-
cesses can be used, for example, during investigation of meteorological time-series.
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Figure 3: Probability density f(x) of process υt when: 1 – t = 20, 2 – t = 21, 3 –
t = 24, 4 – t = 25.

Figure 4: Correlation coefficients corr(υt, υt+1) of process υt.
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Abstract

The problem of nonlinear dynamical systems of Wiener and Hammerstein
type identification is considered. The linear dynamical part of the system is
in nonparametric uncertainty conditions. The common type of nonlinearity is
assumed to be known with the set of parameters. Presented algorithm allows to
create the adequate in the sense of mean-square criterion models. The proposed
method of dynamic objects modeling is based on the nonparametric estimation
of linear and nonlinear parts of the system.

Keywords: nonlinear system, nonparametric, Wiener and Hammerstein
models.

Introduction

The problem of nonlinear dynamical system identification is one of the most im-
portant one in the theory of control. In spite of the existing a lot of methods for
dynamical systems identification, there is no universal theory that allows to design
the models of such systems.

Most of the methods of nonlinear system identification are difficult to apply in
practice or they do not take into account all the properties of the investigated object.
Besides, the task of identification in the most methods is considered ”in the narrow
sense”, it is corresponds to the case when the object structure is known with a vector
of parameters. In this paper the dynamic systems identification ”in the broad sense”
is considered. In this case the parametrization of the investigated object model is not
available or one can partially parameterized the model on the base of available a priori
information. We consider the nonlinear systems in the form of a sequence connected
linear dynamic and nonlinear static blocks. A structure and parameters of linear
dynamic block of such system is unknown, but the type of the nonlinear element is
known with the set of parameters. Thus, we consider the problem of modeling of the
nonlinear dynamical processes under conditions of partial parameterization of model
structure.

1 Identification problem

We consider the nonlinear system in the form of a sequence connected linear dynamic
and nonlinear blocks. Such systems are called a models of Wiener or Hammerstein
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type [1]. It is required to design the mathematical model of the stochastic object
according to the measures of process. That would describes objects behavior at
arbitrary input effects and additive noise the presence on the output. The total
scheme of nonlinear dynamical system identification is shown in Fig. 1.

Figure 1: The general scheme of the identification problem

where u(t) and x(t)- input and output variables of the object, uξt , x
ξ
t appropriate

observation of process variables, ξ(t) - unobserved random effects, εu(t), εx(t) - ran-
dom noise in measure channels, x̂(t) - output of the object model. Available priory
information is uneven sample of input and output variables of the objects measures
of s size.

The structure of the linear dynamical part of the system is unknown. The common
type of the nonlinear function is assumed to be known with the set of parameters.
The following nonlinear elements are considered in the paper:

- quad

x(t) = aw(t)2. (1)

- link saturation (with saturation parameter b1):

x(t) =


w(t), if w(t) < b1;

b, if w(t) > b1;

−b, if w(t) < −b1.

(2)

Problem of nonlinear system identification can be divided into two tasks. At first
part we consider the identification of a linear element.
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2 Nonparametric model of linear dynamical

system

The reaction of linear dynamical system x(t) to the input signal u(t) is described
with the Duhamel integral[2]:

x(t) = k(0)u(0) +

∫ t

0

h(t− τ)u(τ)dτ = k(0)u(0) +

∫ t

0

k′(t− τ)u(τ)dτ (3)

where h(t)-impulse response (weight function) of the system, and k(t)-step response
of this system (transient function).

In this case we can calculate the output value of object x(t) only if its weight
function h(t) is known. But in practice, as a rule, it is impossible to get the weight
function of the object. Therefore we can write the estimation of step response of the
system as a stochastic approximation of regression as follows:

ks(t) =
1

sCs

s∑
i=1

kiH

(
t− ti
Cs

)
(4)

where ki - sample values of step response of linear dynamical system (LDS), H() -
Kernel function and cs - bandwidth parameter are satisfied the conditions of conver-
gence[4].

cs > 0, s = 1, 2..., lims→∞ cs = 0, lims→∞ ccs =∞

∫
Ω(u)

H′(u)du = 0, cs

∫
Ω(u)

H′(u)udu = −1, u =
τ − t
cs

(5)

lims→∞ c
−1
s H

(
τ−t
cs

)
= δ(τ − t)

The weight function of the system h(t) is a time derivative of the step response
function k(t), i.e. h(t) = k′(t). Therefore the nonparametric estimation of the impulse
function can be described as follows:

hs(t) = k′(t) =
1

sCs

s∑
i=1

kiH′
(
t− ti
Cs

)
(6)

Linear dynamic system can be described with the following mathematical formula:

xs(t) =
1

sCs

s∑
i=1

t/∆τ∑
j=1

kiH′
(
t− ti − τj

Cs

)
u(τj)∆τ (7)

Then consider the algorithm of nonlinear system identification.
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Figure 2: Wiener model, LE linear dynamical and NE - nonlinear parts of the
system, u(t), x(t)- input and output action, w(t) - intermediate part output(is not

measured)

3 Nonparametric model of Wiener type

Lets consider the system that can be represented as a model of Wiener type (Fig.
2.)[5]

If the structure of the nonlinear element in the model is known with a set of
parameters, then the object output is calculated as a function of the Duhamel integral:

x(t) = f(w(t), α) (8)

where w(t) - the linear part output (is not measured); f() - nonlinear function.
The mathematical model of the nonlinear object can be represented as a set of

equations (7), (8), in that, instead of the weight function h(t) and the parameters
α are used their statistical estimations. To obtain this estimation it is necessary to
generate the sample {ui, wi, i = 1, s} . In the case when for some classes of nonlinear
elements, the equation (8) can be solved for w(t),we have [4]:

w(t) = f−1(x(t), α) (9)

In this case, the nonparametric model of nonlinear object is the following:

x̂(t) = f(ŵ(t), α) (10)

ŵ(t) =

∫ t

0

k̂′(t− τ)u(τ)dτ (11)

Thus, we get the algorithm for modeling of Wiener type nonlinear dynamical systems.

a Identification of nonlinear systems with a quad

Let’s consider a system that is represented as the Wiener model. The nonlinear
part of the system is a quad. The object output is calculated as follows: x(t) =
aw(t)2, a− const. If the value of input action u(t) = 1, then the output of nonlinear
system x(t) = ak(t)2.

That is, the step response of a linear element can be represented by the output
of the process as follows:

k̂(t) =
√
x(t)/a) (12)
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For an arbitrary input action the output of linear part of the system is described by
the equation (7). Considering (12) the output of the linear element is:

w(t) =
1

sCs

s∑
i=1

t/∆τ∑
j=1

√
x(t)/aH′

(
t− ti − τj

Cs

)
u(τj)∆τ (13)

Then the model of the nonlinear dynamic object of Wiener type is:

x̂(t) =

 1

sCs

s∑
i=1

t/∆τ∑
j=1

√
x1(t)H′

(
t− ti − τj

Cs

)
u(τj)∆τ)

2

(14)

where x1i - the reaction of a nonlinear system (if u(t) = 1), u(t) - a test input action.
Example. Consider a nonlinear dynamical system consisting of a quad (parameter

a = 0.7) and the differential equation (simulating object):

2x′′(t) + 0.3x′(t) + 1.5x(t) = u(t)

Figure 3: The model of system: xmodel(t) - a model of a nonlinear system, x(t) -
the system output, sample size s = 250, sampling interval h = 0.2, noise 5%, input

action u(t) = 2 cos(0.4t), error 1.7%

b Identification of a system with link saturation nonlinearity

We consider the system with a nonlinear element is described by the function of link
saturation type (2). In this case if w(t) < b, then the object output is equal to the
output of its linear dynamic part. Otherwise, the output of the object is a constant,
which can be determined experimentally by several static experiments [4]. We get
the following algorithm to construct the model:

1. to carry out some experiments (m) under the following conditions: input
actions uij = cj, cj = const. The result is a sample {uij, xij}, i = 1, s, j = 1,m.

2. to find the distance between two consecutive measurements: h1j = |xij −
xi−1j|/h, where h - sampling interval.
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3. b̂ = xij , if h1k < ε,ε > 0 .

4. if xij = b̂, then xj = yi−1j, â = M{a}
- to get a step response (apply to the object input a step function, the amplitude

of that is less than b) and then construct a linear part model in the form of the
Duhamel integral.

- to build a model of the object, the output of which is calculated as the value of
the function describing the nonlinear element, whose argument is the output of the
linear model of the object.

Example. Consider a nonlinear dynamical system consisting of a link saturation
(with parameters b=1.34, b1=1.5) and the differential equation (simulating object):

7.4x′′(t) + 2.5x′(t) + 2.43x(t) = u(t)

Figure 4: The model of system: xmodel(t) - a model of a nonlinear system, x(t) -
the system output, sample size s = 250, sampling interval h = 0.15, noise 5%, input

action u(t) = 0.9 sin 2(0.6t), the relative average error of simulation 5.2%

4 Nonparametric model of Hammerstein type

Lets consider the system that can be represented as a model of Hammerstein type
(Fig. 5.)

Figure 5: Hammerstein model, LE linear dynamical and NE - nonlinear parts of
the system, u(t), x(t)- input and output action, w(t) - intermediate part output(is

not measured)

In this case the results of the nonlinear element output measurement are not
available. It is assumed that the parameterized structure of linear element (LE)
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is unknown, and the nonlinear characteristic is known with a set of parameters.
According to Figure 5 the relationship between the input u(t) and output x(t) of
the object with zero initial conditions can be described by equations of the following
form [1,4]

w(t) = f(u(t)) (15)

x̂(t) =

∫ t

0

ĥ(t− τ)w(τ)dτ (16)

Or, excluding variable w(t),

x̂(t) =

∫ t

0

ĥ(t− τ)f(α, u(τ))dτ (17)

where h(t)-impulse response of the dynamic element, f(α, u) - nonlinear function
with unknown parameters.

Let x1(t)- response of nonlinear object to the input signal in the form of the
Heaviside function u(t) = 1(t), x(t) - the reaction of the object on some test signal.
The measurements of signals x1(t) and x(t) in discrete time are formed in samples
of observations {1, x1i} and {ui, xi}, i = 1, s respectively. The reaction of nonlinear
element to the step input u(t) = 1 is also a step function, but the amplitude of signal
is changed. In this case w1(t) = f(α, 1(t)) = c1 , where c1-constant. The nonlinear
system output x1(t) =

∫ t
0
h1(t− τ)1(τ)dτ can be regarded as a transfer function of a

linear system with the impulse function h1(t). The estimation of the impulse function
can be obtained from the sample {x1i, ti}, i = 1, s.

The nonlinear system model (17) according to the estimation ĥ1(t) can be written
as:

x̂(t) =

∫ t

0

ĥ(t− τ)f(α, u(τ))dτ (18)

The parameters α are estimated on the base of the sample {ui, xi}, i = 1, s of the
input and output objects measurements as a solution of the extremal problem. Then
the nonparametric model of Hammerstein system can be described with the following
formula:

x̂(t) =
1

sCs

s∑
i=1

t/∆τ∑
j=1

k1iH′
(
t− ti − τj

Cs

)
f(u(τj))∆τ (19)

where k1 - step response of the linear element, f̂(t) - estimation of the nonlinear
element.

Example. Consider a nonlinear dynamical system of Hammerstein type that con-
sisting of a link saturation (with parameters a = 1, b = 2) and the differential equation
(simulating object):

2x′′(t) + 0.3x′(t) + x(t) = u(t)
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Figure 6: The model of system: xmodel(t) - a model of a nonlinear system, x(t) -
the system output, sample size s = 150, h = 0.2, noise 5%, u(t) = ecos(0.2t), error of

simulation 4.1%

Having made the analysis of the nonparametric model of the nonlinear dynamic
object with the quad and link saturation nonlinearity, we can say that the model
adequately describes systems in terms of noise communication channels at different
sample sizes and different input actions.

Conclusions

In this paper we consider the problem of nonlinear dynamical systems identification.
The investigated objects are presented as a consequent combination of linear dynamic
and nonlinear static blocks (Wiener and Hammerstein model). In this case a structure
and parameters of linear dynamic block of such system is unknown, but the type of
the nonlinear element is assumed to be known with the set of parameters.

The problem of nonlinear system identification can be divided into two tasks. At
first the nonparametric model of linear dynamical element is considered. Presented
methods of the nonlinear system identification are based on the combining the models
of linear dynamic and nonlinear static processes in the overall model of the system.
These techniques do not require the presence of full a priori information about the
structure of the object.

The practical part presents the results of numerical experiments, in that were
designed the models nonlinear dynamical processes of Wiener and Hammerstein type
in the cases of quad and link saturation nonlinearity.
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Abstract

In this paper a new class of stochastic processes with components depen-
dence of the input (H-processes) is discussed. Standard modeling approach
may not be effective in conformity to the H-process. Therefore, a new class of
models is introduced. They differ from the well-known by indicator functions.
Numerous computational experiments show the high efficiency of simulation of
discrete-continuous processes ”tubular” type.
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Introduction

Discrete and continuous processes prevail in industry and manufactures with contin-
uous technological types of the process. This type of processes is typical for objects
of ferrous and non-ferrous metallurgy, construction, power engineering, refining and
etc.

Certainly the problem of modeling and identification remains one of the central
problems of cybernetics for a long time. While formulating the identification and
control problems the level of a priori information is of the special emphasis. It depends
on both a priori knowledge of the process, available control tools and the technology
of variable measurement.

Another peculiarity of building adaptive and learning models while developing
systems of automation and control by technological processes is stochastic dependence
of the vector component of input variables. It leads to the fact that in the space of
”input-output” variables determined by the technological regulations a real process
has a ”tube” structure. It is necessary to enter an indicator of a special form to build
adaptive models of discrete and continuous processes. The investigations showed that
even in the case of a great number of variables describing a manufacturing process it
is possible to build a learning model with samples existence of a small volume.

1 Problem Formulation

The general scheme of the researched process is shown in Fig.1.
On Fig.1 the table of symbols are accepted: A is an unknown object operator,

x(t) ∈ Ω(x) ⊂ R1 is an output variable of the process, u(t) = (u1(t), u2(t), ..., um(t)) ∈
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Figure 1: The General Scheme of the Researched Process and Tools of Control

Ω(u) ⊂ Rm is a control action, ξ(t) is a vector random action, (t) is continuous
time, Hu, Hx are channels of connection corresponding to different variables and
including control tools, hu(t), hx(t) are random noises of measurements corresponding
to variables of the process with zero means and limited variance.

2 Identification in the “Narrow” and “Wide”

Senses

When modeling of various discrete-continuous processes the identification theory in
the ”narrow” sense [1] dominates now. Its essence is that at the first stage the para-
metric class of operators Aα is defined on the basis of available a priori information,
for example:

x̃α(t) = Aα(u(t), α). (1)

where Aα is a parametric structure of the model, and α is a vector of parameters. At
the second stage the estimation of parameters is realized on the basis of an available
sample {xi, ui, i = 1, s}, s is a sample volume. The estimation of parameters can
be executed with numerous recurrent procedures, in particular with a method of
stochastic approximations or ordinary least squares [2]. In this case the success of
the identification problem solution essentially depends on that how ”successfully”
the operator Aα is defined. Now the theory of parametric identification is the most
developed [2].

The identification in the ”wide” sense assumes the absence of a choice of a para-
metric class of the operator. Often it is much more simply to define a class of operators
on the basis of qualitative character data, for example, linearity of the process or type
of nonlinearity, etc. In this case the identification problem consists of the estimation
of this operator on the basis of a sample {xi, ui, i = 1, s} in the shape:

x̃s(t) = As(u(t),−→xs,−→us). (2)
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where −→xs = (x1, x2, ..., xs),
−→us = (u1, u2, ..., us) are temporary vectors. The estimation

of the operator As can be realized with means of nonparametric statistics [3]. It is
remarkable that there is no stage of a choice of parametric. Thereby it is possible to
affirm that in this case the identification (and it is the identification in the ”wide”
sense) is more adequate for real problems.

3 Nonparametric Estimates of the Regression

Function on Observations

Let us assume that observations {xi, ui, i = 1, s} of random values x, u distributed
with the unknown density of probability p(x, u), p(u) > 0∀u ∈ Ω(u) Nonparametric
estimates [4] are used for the backing up x̃ = M{x|u}

xs(u) =
s∑
i=1

xi

m∏
j=1

Φ(c−1
s (uj − uji ))/

s∑
i=1

m∏
j=1

Φ(c−1
s (uj − uji )), (3)

where the kernel function Φ(c−1
s (uj − uji )), i = 1, s , j = 1,m and the smoothing

factor c−1
s have convergence properties [4]. In this case the triangular kernel was used

as the bell-shaped function Φ(c−1
s (uj − uji )), i = 1, s , j = 1,m :

Φ(c−1
s (uj − uji )) =

{
1− |c−1

s (uj − uji )|, ifc−1
s (uj − uji ) ≤ 1,

0, ifc−1
s (uj − uji ) > 1.

(4)

The smoothing parameter is defined as a solution of minimization of a square
criterion which shows the equivalence between object and model outputs compliance
and it is based on the method of sliding examination, i.e. the i-observation isnt
considered in the model:

R(cs) =
s∑

k=1

(xk − xs(uk, cs))2 = min
cs
, k 6= j. (5)

If every component of a vector cs corresponds to every component of a vector u
then in many real problems it is possible to accept that cs is a scalar if components
of a vector u are transformed into the same interval, for example, with centering and
rationing operations.

4 H-models

In practice we often deal with the processes having the stochastic dependence among
components of input variables. Let’s say that objects with this feature have ”tubular”
structure. Let’s consider a process with ”tubular” structure presented on Fig. 2. As
we can see on the figure, the range of the process progress Ω(u, x) corresponds to the
unit hyper cube where u ∈ R2, x ∈ R1.
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Figure 2: The Object with the ”Tubular” Structure

However if the researched process has a ”tubular” structure, the range of the
process progress is limited not only in the hyper cube space Ω(u, x) but also its
subrange ΩH(u, x) ∈ Ω(u, x) which is never known to us. As ΩH(u, x) is never known,
the existence of the ”tubular” structure isn’t known to us also. And it is necessary
to notice that the hyper cube volume, as we can see on the figure above, exceeds
the ”tube” volume appreciably. Let’s consider the modeling of processes having
this structure. Usually in the problem of the inertia less object identification some
parametric model, representing a surface in the space of ”input-output” variables, is
supposed to be available:

x̂(u) = f̂(u, αs). (6)

where αs is a vector of parameters. In that case when components of the input
vector are statistically dependent, i.e. we deal with ”tubular” structure object, it is
necessary to set the indicator Is(u). The model (1) should be corrected as follows:

x̂(u) = f̂(u, αs)Is(u), (7)

where the indicator is identified according to the rule:

Is(u) = sgn(scs)
−1

s∑
i=1

Φ
(
c−1
s (xs(u)− xi)

) k∏
j=1

Φ
(
c−1
s (uj − uji )

)
, (8)

where

xs(u) =
s∑
i=1

xi

m∏
j=1

Φ
(
c−1
s (uj − uji )

)/ s∑
i=1

m∏
j=1

Φ
(
c−1
s (uj − uji )

)
, (9)

where the kernel function Φ
(
c−1
s (uj − uji )

)
and the smoothing parameter have some

convergence properties [2].
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The logic of this indicator is that at any chosen value of the current variable
u = u′ indicator Is(u) takes the value of one if the value u′ belongs to the ”tubular”
structure defined by the available sample

{
xi, ui, i = 1, s

}
and if u′ taken to a value

outside the ”tube”, the indicator is zero. Note that if a process is described by the
surface in space, the model (1) and (2) are the same. If the process has a tubular
structure in this space, you need to use the model (2).

5 The Computing Experiment of H-Model

Let’s consider results of the numerical experiments. Let the researched object be
described by the system of the equations:{

x = 0.7u1 + 0.3u2 + ξ,

u2 = u1 + ψ,
(10)

where ξ and ψ are random numbers uniformly distributed over on a symmetric interval
[−0.05, 0.05], u1, u2 ∈ [0; 3]. In this case the equation of the object is specified to
identify initial samples of ”input-output” variables. When building the model on the
basis of the samples, the structure of the dependence of the output variable x from
the input variables u is accepted with parameters. In the parameters estimating
the method of least squares is used. So, the sample of statistically independent
observations

{
xi, ui, i = 1, s

}
is discovered, where x is the measured output variable,

u = (u1, u2) is the vector control action, s is the sample size. We build the parametric
model (1) of the object. The modelling results are shown on the Fig.3 (s = 100).

Figure 3: The Object with a ”Tubular” Structure and its Parametric Model

On the Fig. 3 the red dots denote the researched object, blue - the resulting
parametric model and the black cube variables values determined by the technological
regulations. As we can see on the figure, the researched object is a ”tube.” The model
(1) is the plane lying on the object. As we know, a straight, in this case, ”tube” can
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be approximated by an infinite number of planes. Suppose there are 5 samples of
statistically independent measurements {xi, u1i, u2i, i = 1, s} of size s = 100. For
each case model (7) was used. So we have 5 models. Modelling results are shown on
Fig. 4.

Figure 4: The Set of Parametric Models of the Object With a ”Tubular” Structure

Now, for the object (10) will be used the model (8) containing the indicator. Type
of indicator is described by (9). The results of numerical simulation of the object (8)
for the sample size s = 1000 are shown in Fig. 5.

Figure 5: Sample Measurements of the ”Input-Output” Variables

As we see, when constructing the model, the indicator function took into account
only those points which belong to the space of the ”tubular” process progress, i.e.
Is(u) = 1. In other points of the sample the output value wasn’t recovered, i.e.
Is(u) = 0. In particular, only 20 points from the total sample size s = 1000 belong
to the tube space.

In some cases, a point xs = 0 can belong to ”tubular” object, so it is advisable
to assume that the points at which the value of the indicator is zero, the value of the
model output is not reconstructed at such points.
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Let’s change the system of equations, which describes the researched object, on
the following one: {

x = 2 sinu1 + 0.5u2 + ξ,

u2 = u1 + ψ,
(11)

The results of similar experiments are shown on the following figures:

Figure 6: Parametric Model of the ”Tubular” Process

Figure 7: Parametric Model with Indicator of the ”Tubular” Process

In fig. 6 the object is described by the system (11). It has the ”tubular” structure
(black dots on the color graph). The plane (Fig. 6) shows the parametric model
recovered using OLS.

Also the parametric model with the indicator function (8) is shown (figure 7). As
in the previous experiment it shows that the indicator considers only those points
that belong to the ”tube” space (Is(u) = 1), in other points the indicator equals to
zero and in future, these points are not considered in the model construction.
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Conclusions

We offer H-models with dependent input variables (“tubular”). The domain of these
processes is always unknown but it must be defined while modelling. H-models differ
from the generally excepted models of noninertial systems by the indicator func-
tion existence which defines the domain of the ”tubular” process progress. The of-
fered method of data analysis and adaptive H-models can be applied while designing
and developing different computer systems of automation processes in manufacturing
branches..
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Abstract

We construct and test a regression model for prices of second-hand cars Toy-
ota Camry in Novosibirsk, Russia. Data are from a local internet site ngs.ru.
The single significant factor for cars with right wheel is a year of production.
Our statistical criterium is based on an empirical bridge of regression resid-
uals. It proves different model parameters for 1991-99 and 2000-08 years of
production. This approach gives an algorithm of estimation of car price.

Keywords: regression model, significant factor, empirical bridge.

Introduction

We suggest a linear model for logarithms of car price against regressors. Kuiper
[5] used a similar model for data from www.kbb.com. Unlike of [5], our approach
contains correspondence analysis on a base of an empirical bridge approach [3], [4].
Statistical test is based on weak convergence of the empirical bridge to a gaussian
process in C(0, 1) (see [1]).

Section 1 contains empirical analysis. We introduce and use the statistical test in
Section 2.

1 Empirical Data Analysis

We analyse ads about sales of Toyota Corolla cars at www.ngs.ru on 02.06.2012.
There are 525 ads. We explore a regression of logarithm of a sale price against a date
of the ad, a steering wheel position (left or right), a year of production, an engine
volume, gearboxes type, milage. Standard regression analysis gives p-values lesser
than 0.01 only for a steering wheel position and a year of production. The number of
cars with a left wheel is relatively small, so we choose right-wheeled cars (382 ads).
We investigate dependence of production year Yi against production year Xi. Ads
are ordered by the year. The order is random for cars of a same year.

The model is (see Pic. 1)

lnYi = aXi + b+ εi, i = 1, . . . , n. (1)

Here εi are independent and identically distributed, have zero mean and non-zero
finite variance. Estimations of a and b are approximately (all values are up to 4
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Figure 1: Dependence of lnYi against Xi for right wheels, 382 ads

numbers)

â = 0.1089, b̂ = −205.3.

We estimate Yi and calculate regression residuals. The sample standard deviation
of regression residuals is S = 0.2469.

Then we delete consequently ads with regression residuals that are absolutely
greater then 3-multiplied sample standard deviation (which is recalculated after each
ad deletion). 364 ads remains after deletion, parameters estimations for it

â = 0.09558, b̂ = −178.7, S = 0.1291.

We have decreased S almost twofold.
We calculate an empirical bridge of regression residuals as in [3], [4]. It is in Pic.

2. There are years at the absciss axis for clarity.
The basic hypothesis is model (1). As distribution of an empirical bridge is close

to distribution of a standard brownian bridge under this hypothesis, we neglect the
basic hypothesis on level 0.01 on a base on maximal deviation of the empirical bridge
on Pic.2 from an absciss axe. Therefore we propose a new hypothesis: model (1) for
each of intervals between sharp peaks of the empirical bridge, that is, for intervals
from 1 to 16, from 17 to 154, from 155 to 364. We don’t analyse points from 1
to 16 due to a small number of points. We slightly correct intervals to correspond
production years. Interval from 17 to 148 corresponds to years from 1991 to 1999,
and interval from 149 to 364 corresponds to years from 2000 to 2008.

We analyse each of these two intervals. For the first one

â = 0.06484, b̂ = −117.3, S = 0.1356.
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For the second one

â = 0.07144, b̂ = −130.3, S = 0.08699.

We analyse the suggested models in the next section.

Figure 2: The empirical bridge for regression residuals (364 ads)

2 Statistical Testing of Models

Let Ŷi = â+ b̂Xi, ε̂i = Yi − Ŷi, ∆̂0
i = ε̂1 + . . .+ ε̂i.

The empirical bridge is a random polygon Ẑn with nodes(
k

n
,

∆̂0
k − k

n
∆̂0
n√

σ̂2n

)
=

(
k

n
,

∆̂0
k√
σ̂2n

)

where σ̂2 = ε̂2 − (ε̂)2 = ε̂2

Denote by GLF (t) =
t∫

0

F−1(s) ds a theoretical general Lorenz curve (see [2]) where

F−1(s) = sup{x : F (x) < s} be a quantile function (a generalized inverse function)

of a distribution function F (x). Denote by GLn(t) = 1
n

∑[nt]
i=1 ξi:n an empirical Lorenz

curve. Goldie [2] proved a fundamental fact: an empirical Lorenz curve converges to
a theoretical one in a uniform metric almost surely. Let GL0

F (t) = GLF (t)− tGLF (1)
be a centered theoretical general Lorenz curve.
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By =⇒ we denote a weak convergence (a convergence in distribution) in an ap-
propriate space. So, we write =⇒ in theorems below to indicate a weak convergence
in the space C(0, 1) with the uniform metric ([1], p. 82).

We use the next theorem from [3].

Theorem 1 Let Xi = ξi:n be order statistics generated by sample (ξ1, . . . , ξn) with
distribution function F , sequences {εi} and {ξi} are independent. If 0 < Varξ1 <∞
then

Ẑn =⇒ Z0
F where Z0

F is a centered Gaussian process with a covariance kernel
K0
F (t, u), given by

K0
F (t, u) = min{t, u} − tu− GL0

F (t)GL0
F (u)

Varξ1

, t, u ∈ [0, 1].

We change GL0
F (t) by its estimation GL0

n(t) = GLn(t)− tGLn(1). We substitute
sample variance S2 for variance Varξ1. Let

K0
n(t, u) = min{t, u} − tu− GL0

n(t)GL0
n(u)

S2
, t, u ∈ [0, 1].

Then K0
n(t, u)→ K0

F (t, u) uniformly on t, u ∈ [0, 1] as n→∞.

Our statistical test use values of the empirical bridge in d points: let

a = (a1, . . . , ad) =

(
1

d+ 1
, . . . ,

d

d+ 1

)
,

G =
(
K0
F (ai, aj)

)d
i,j=1

, Gn =
(
K0
n(ai, aj)

)d
i,j=1

,

q = (Ẑn(a1), . . . , Ẑn(ad))
T .

If G−1 exists then qTG−1q is a quadratic form, that is, a continuous functional of
Ẑn. Therefore we have

Corollary 1 Let conditions of Theorem 1 be satisfied. If G−1 exists then qTG−1
n q

converge weakly to χ2-distribution with parameter d.

P-value for the test is α∗ = 1− Fχ2
d
(qTG−1

n q).

We choose d = [n1/3] + 1. We have n = 364, d = 8 for all the sample, n1 =
132, d1 = 6, n2 = 216, d2 = 7 for its 1st and 2nd parts (corresponding years
1991–1999 and 2000–2008).

Caculations give α∗ << 10−4 for all the sample, α∗1 = 0.1677 for its 1st part and
α∗2 = 0.07505 for its 2nd part. Therefore the test rejects the basic hypothesis in all the
time interval at the 10−4 level and accepts it in intervals 1991–1999 and 2000–2008
at the 0.07 level.

So one can calculate estimated prices of cars in these intervals using models with
corresponding coefficients (see Table 1). There is a gap between 1999 and 2000.
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Table 1: Estimated prices in thousands of roubles

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999
Price 130 139 148 158 169 180 192 205 219

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008
Price 290 312 335 360 386 415 446 479 514

Conclusions

We suggest the statistical test for analysis of correspondence of the simple regression
model to data that is ordered by a regressor. We have constructed and tested the
linear regression model for logarithms of car prices. The model works in intervals
1991–1999 and 2000–2008. The price difference is about 6% per year in 1991–1999
and about 7% per year in 2000–2008. Cars of 1999 cheaper than cars of 2000 approx-
imately 1.32 times.
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Abstract

During the exploratory phase of a typical statistical analysis it is natural
to look at the data in order to narrow down the scope of the subsequent steps,
mainly by selecting a set of families of candidate models (parametric, for ex-
ample). One needs to exercise caution when using the same data to assess the
parameters of a specific model and deciding how to search the model space,
in order not to underestimate the overall uncertainty, which usually occurs by
failing to account for the second order randomness involved in exploring the
modelling space. In order to rank the models based on their fit or predic-
tive performance we use practical tools such as Bayes factors, log-scores and
deviance information criterion. Price for model uncertainty can be paid auto-
matically when using Bayesian nonparametric (BNP) specification, by adopting
weak priors on the (functional) space of possible models, or in a version of cross
validation, where only a part of the observed sample is used to fit and validate
the model, whereas the assessment of the calibration of the overall modelling
process is based on the as-yet unused part of the data set. It is interesting to
see if we can determine how much data needs to be set aside for calibration in
order to obtain an assessment of uncertainty approximately equivalent to that
of the BNP approach.

Keywords: model uncertainty, Bayesian non-parametric specification, cross
validation, model choice

Introduction

When faced with a task of analyzing a data set, statisticians usually take a standard,
data-analytic (DA), approach to model specification. In DA approach we explore the
space of models in search for the ‘right’ model, using all of the available data and
then using the same data to draw inferential or predictive conclusions conditional
on the results of the search. This amounts to using the data twice and often yields
poorly calibrated (too narrow) predictive intervals.

There seem to be only two principled solutions to this problem: (1) Bayesian
nonparametric (BNP) modelling (with enough data) in which prior distributions are
specified on the entire model space, therefore avoiding some of the search and the
use of data to specify error distributions, response surfaces, etc., and (2) A version of
Bayesian cross-validation (we call it 3-way out-of-sample predictive cross-validation,
or 3CV, in a manner somewhat related to a method used in machine learning; 3CV is a
modification of DA search in which the data are partitioned into 3 subsets (S1;S2;S3),
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rather than the usual 2, and where a DA search is undertaken iteratively, modeling
with S1 and predictively validating with S2; S3 is not used in quoting final uncer-
tainty assessments, but is instead used to evaluate predictive calibration of the entire
modeling process. It looks as if the approach (2) resolves the problem by paying the
“right” price for shopping around in the modelling space in terms of setting aside a
part of the data.

BNP modeling is often characterized as providing “insurance” against mis-specified
parametric models for the following reason: (a) You can generate data from a known
(“true”) parametric model M1 and fit M1 and a BNP model to the simulated data
sets; both will be valid (both will reconstruct the right answer averaging across sim-
ulation replications) but the BNP uncertainty bands will typically be wider. (b)
You can also generate data from a different model M2 and fit M1 and BNP to the
simulated data sets; often now only BNP will be valid. People refer to the wider
uncertainty bands for BNP in (a) as the “insurance premium” you have to pay with
BNP to get the extra validity of BNP in (b). But this is not a fair comparison: the
simulation results in (a) and (b) were all conditional on a known “true” model, and
don’t immediately apply to a real-world setting in which you don’t know what the
“true” model is. However, when you pay an appropriate price for shopping around for
the “right” parametric model (as in 3CV), the discrepancy between the parametric
and BNP uncertainty bands vanishes.

The approach described above begs the question – can we quantify in a general way
(and how exactly) the price of model uncertainty? One idea involves a comparison of
how much data Bayesian parametric and nonparametric models need to achieve the
same inferential accuracy about the main quantity of interest. In order to quantify
the price of model uncertainty we may proceed as follows: specify a BNP model
centered at an a priori plausible parametric model using all n data values and perform
the inference; then find out how many data points nDA < n are needed by the
best parametric model, discovered with a DA search, to achieve the same inferential
accuracy as the BNP model; the difference (n − nDA) is how much data should be
reserved in 3CV subset S3.

The plan of the paper is as follows: in the first section we describe the simulation
setup with a parametric (Poisson based) model and its BNP counterpart and explain
differences in estimated inferential and predictive uncertainty. Section 2 describes an
attempt to gauge out what fraction of the data set should be used in the calibration
stage of a DA model that results in an assessment of uncertainty approximately
equivalent to that of the BNP approach.

1 Bayesian parametric Poisson based model vs. a

BNP model

Assume that we have a data set (of size n) consisting of counts coming from an
unknown data generating mechanism. The first thing to try parametrically with
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count data is usually a fixed-effects Poisson (FEP) model (for i = 1, . . . , n):

(yi|θ)
ind∼ Poisson[exp(θ)]

(θ|µ, σ2)
iid∼ N(µ, σ2)

(µ, σ2) ∼ p(µ, σ2).

(1)

This specification uses a Lognormal prior for λ = eθ rather than conjugate Gamma
choice; the two families are similar, and the Lognormal generalizes more readily.
In practice data often exhibit heterogeneity resulting in (extra-Poisson variability),
manifesting as variance-to-mean ratio, V TMR > 1. A natural parametric extension
to FEP would be to try a random effects Poisson model (REP):

(yi|θi)
ind∼ Poisson[exp(θi)]

(θi|G)
iid∼ G

G ≡ N(µ, σ2)
(µ, σ2) ∼ p(µ, σ2),

(2)

Here, i = 1, ..., n, and we assume a cumulative distribution function (CDF) of
latent variables (random effects), θi, to be parametric (Gaussian).

The problem is that the mixing distribution, G, in the population to which it
is appropriate to generalize may be multimodal or skewed, which a single Gaussian
can’t capture. If so, this REP model can fail to be valid. Moreover, this would
usually be diagnosed with something like a density trace of posterior means of θi,
looking for need to use mixture of Gaussians instead of single one, but choosing G
to be Gaussian will tend to make diagnostics support Gaussian model even when it’s
not right.

Therefore, it would be good to remove the assumption of a specific parametric
family (Gaussian) for the mixing distribution G of the random effects, by allowing G
to be random and specifying a prior model on the space of {G}. This BNP model may
be centered on a Gaussian model, N(µ, σ2), but would permit adaptation/learning.
Specifying a prior for an unknown distribution requires a stochastic process with
realizations (sample paths) that are CDFs. We use the Dirichlet process (DP): G ∼
DP (αG0), where G0 is the center or base distribution of the process and α is a
precision parameter, see [3]. DP mixture Poison model (DPMP: this paper’s BNP
model):

yi | G
ind∼
∫

Poisson(yi; e
θ)dG(θ), (3)

where G is a random mixing distribution. For a data set y = (y1, ..., yn) the BNP
model is:

yi | θi
ind∼ Poisson(eθi)

θi | G
iid∼ G

G ∼ DP(α,G0(ψ)),

(4)
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where ψ = (µ, σ2), G0 ≡ N(·;µ, σ2) and i = 1, ..., n. Additional model stages are
introduced by placing priors on α and ψ. MCMC implemented for a marginalized
version of DP mixture. Key idea: G is integrated out over its DP prior, resulting in
a marginalized version of (4) that follows Pólya urn structure, as shown in [2].

Further references and details of DP mixture modelling along with the description
of the simulations with a number of data sets can be found in [4]. Here, it suffices
to say that the sample sizes were n = 300 and that the data sets were generated
based on a variety of unimodal (symmetric and skewed) and bimodal distributions of
latent variables (random effects) resulting in data samples with increased variability,
nontrivial tails, and densities which were unimodal or with a slight to a noticeable
bimodality.

Figure 1: Prior (blue) and posterior (red) predictive distribution from REP model
(top) and BNP model (bottom).

Figure 1 shows the posterior predictive distributions obtained from the parametric
REP model and a BNP model with a DP prior, where the data set of counts was gener-
ated by a model with a bimodal distribution of latent variables (random effects). (The
posterior predictive distribution is always obtained as p(y∗|y) =

∫
Θ
p(y∗|θ)p(θ|y)dθ)

It is obvious from the graphs that the REP model can’t adapt to bimodality or skew-
ness without remodelling (say) as a mixture of Gaussians on the latent scale, whereas
the BNP modelling smoothly adapts to the data-generating mechanism. A formal
comparison of the parametric and the BNP model (using log-scores and deviance in-
formation criterion, DIC) showed clear preference for the BNP model when the data
were generated with non-Gaussian distribution of random effects.
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It is interesting to analyze what is happening on the scale of latent variables
which come from random mixing distribution G. We can do this since the BNP
model permits obtaining posterior draws of G, P (G | data ). Based on these draws
we can compute estimates such as the mean functional, E[y | G)], and in fact,
obtain the entire distribution of E[y | G)]. [1] derived an important result for the
posterior distribution of the random mixing distribution G. It turns out that for
G ∼ DP (α,G0(ψ)), the posterior of G is as follows:

(G|data) ∼
∫
P (G|θ, α, ψ)dQ(θ, α, ψ | data ), (5)

where P (G | θ, α, ψ) is also a DP with parameters α
′
= α + n and

G
′

0(·|ψ) =
α

α + n
G0(·|ψ) +

1

α + n

∑n

i=1
1(−∞,θi](·), (6)

and Q(θ, α, ψ | data ) is the joint posterior distribution. Using (5), (6) along with
the definition of DP we obtain posterior sample paths from P (G | data) in a compu-
tationally efficient way.

2 Parametric vs BNP models: the price of model

uncertainty

Posterior estimates of the means of random effects distribution G along with the
90% point-wise uncertainty bands are shown in Figure 2. It is obvious that the REP
model can’t capture the skewness and bimodality of the CDF (of the distribution of
random effects, G), what is not surprising since REP assumes a Gaussian here. Yet,
what is somewhat remarkable in a negative way is the very narrow uncertainty bands.
On the other hand, the BNP model captures well both non-standard shapes of the
CDF-s as expected, albeit with wider uncertainty bands around the mean estimate.

We have seen that when REP is incorrect model, it continues to yield narrower
uncertainty bands that fail to include the truth, whereas BNP model adapts success-
fully to the data-generating mechanism, as is illustrated in Figure 2. However, the
Gaussian assumption on the latent variables scale in the REP model, although wrong,
can make the model look plausible when it’s not: Diagnostic checking of REP model
would make it look appropriate when it’s not; by contrast BNP correctly captures
the bimodality or skewness of the random effects distribution.

One way to pay the right price for conducting a data-analytic search to arrive at
a final parametric model is three-way cross-validation (3CV) which proceeds along
the following lines: (1) Partition data at random into three subsets Si, of size ni
(respectively). (2) Fit tentative {likelihood + prior} to S1. Expand initial model in
feasible ways suggested by the data exploration using S1. Iterate until fit is good (for
example). (3) Use final model (fit to S1) from (2) to create predictive distributions
for all data points in S2. Compare actual outcomes with these distributions, checking
the predictive performance. Go back to (2), change likelihood or re-tune the prior as
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Figure 2: Posterior MCMC estimates of the means of random effects distributions
G, with 90% uncertainty bands. REP model, first row; BNP model, second row.
Data sets generated using a model with skewed (left panels) and bimodal (right

panels) distributions of random effects. The CDF-s of these (true) distributions are
represented with thick dashed lines.

134



Applied Methods of Statistical Analysis

Table 1

REP DPMP
n Area rA MaxDiff rD Area rA MaxDiff rD

200 0.2256 1.403 0.11510 1.440 0.5556 1.160 0.3910 1.415
400 0.1608 1.433 0.07992 1.372 0.4788 1.141 0.2763 1.007
800 0.1122 1.427 0.05827 1.456 0.4195 1.090 0.2745 1.123

1600 0.0786 0.04002 0.3849 0.2445

necessary, to get good calibration. Iterate until the predictive performance is OK (for
example). (4) Announce final model (fit to S1 ∪ S2) from (3), and report predictive
calibration of this model on data points in S3 as an indication of how well it would
perform with new data.

In practice, with large n we probably only need to do this once, whereas with small
and moderate n it may be necessary to repeat (1–4) several times and (perhaps)
combine results in some way (for example, through model averaging). Note again
that n3 observations in S3 are not to be used in summarizing inferential uncertainty
about the quantities of interest but are instead used to estimate calibration of the
data-analytic modeling process.

We need to find a way to determine or estimate sizes ni of three data subsets
(S1, S2, S3). In order to approach this task of quantifying the price of model uncer-
tainty it is useful (a) to regard Bayesian parametric models as just BNP models with
a stronger prior. For example: REP model takes G ≡ N(µ, σ2) while DP mixture
model takes G ∼ DP (αG0), G0 ≡ N(µ, σ2). Notice that larger sample sizes and
stronger prior information often lead to narrower uncertainty bands.

Therefore, it is natural that a BNP model, on account of its vague prior on a large
space of distribution functions, would require more data (sample size nBNP ) to achieve
(about) the same inferential or predictive accuracy as the best-fitting (best-predictive)
parametric model (in terms of sample sizes, nBNP > sample size = n = nParam. It
is then reasonable to recommend n3 = n(1 − n/nBNP ) as the size of the calibration
subset S3. Combining this with the typical cross-validation practice that you should
put about twice as much data in the modeling subset as in the validation subset
yields

(n1, n2, n3) =

[
2n2

3nBNP
,

n2

3nBNP
, n

(
1− n

nBNP

)]
. (7)

Therefore, for a data set with n = 1000 observations, if it takes about nBNP =
1200 observations to achieve BNP accuracy equivalent to that of the best para-
metric model on the main quantities of interest, the subsets Si should have about
(550, 275, 175) observations in them.

Implementing this idea (obviously) requires estimating nBNP . As a data-generating
mechanism we use a REP model (with Gaussian G); and generate four samples of
sizes
n = (200, 400, 800, 1600). To quantify the effect of (doubling) sample size, we com-
pute (1) the areas between the 0.05 and 0.95 point-wise quantiles of the posterior
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Figure 3: 95% point-wise uncertainty bands of posteriors of G, produced by the
REP model (smooth & black) REP, and DPMP model (jagged & red).

realization of the CDF-s of G, and (2) the maximum differences between two quan-
tiles. The results are summarized numerically in Tables 1 and 2. Figure 3 shows
estimates of the 90% uncertainty bands of the posterior distribution of the CDF of
G for parametric and BNP model and different sample sizes.

We see that the REP model learns about G at a substantially faster rate than the
DPMP model. Noting the values of rA and rD, the ratios of the consecutive values
of“Area” and “MaxDiff” it appears that the REP learning rate follows a square root
law, but the DPMP rate does not. However, if the data-generating mechanism was
non-REP the REP model would continue to “learn” the wrong CDF at a same

√
n

rate, whereas the DPMP model would (somewhat slower) learn the right G.
Besides looking at the scale of latent variables, a similar comparison can be made

on the data scale and for that purpose we use the mean functional:

E(y | G) =
∞∑
y=0

yF (y;G) =
∞∑
y=0

y

∫
Poisson(y; θ)G(dθ) =

∫
eθG(dθ).

The mean functional has a closed form in case of REP model, whereas for the DPMP
model we use MCMC draws from the joint posterior distribution of all parameters to
compute it. The results for E(y | G) are summarized in Table 2. It was unexpected
to see that DPMP appears to learn about the posterior mean on the data scale at
a faster rate than REP, although the difference between the two decreases for larger

136



Applied Methods of Statistical Analysis

Table 2

90% Interval Width
For E(y|data)

n REP DPMP
200 1.793 1.433 1.679 1.424
400 1.251 1.564 1.179 1.483
800 0.800 1.396 0.795 1.438

1600 0.573 0.553

sample sizes. The result is counterintuitive, but an explanation may be given based
on how the standard MCMC estimate of the posterior mean on the data scale is
computed:

uj =
K∑
k=1

exp(tk)
[
Gj(tk)−Gj(t

−
k )
]

(8)

for each MCMC iteration j, where {t1, . . . , tK} is a grid of points at which Gj(·), the
current MCMC iteration estimate of G, is evaluated; the many flat segments in Gj

when the sample size is small can result in the uncertainty assessment on the low
side.

Conclusion

To summarize the results, we can say that BNP models adapt well at latent and data
levels and have superior predictive performance. It is interesting to see that a weaker
prior information (provided by specifying priors on space of distributions in BNP)
does not necessarily lead to weaker inferential statements on the data scale. Stronger
prior information (when wrong, but difficult to diagnose) can lead to wrong inference
in a somewhat striking manner.

Inferential uncertainty measured on the latent scale was smaller for parametric
models and decreased with sample size, however, the uncertainty on the data scale was
smaller for the BNP model. It means that this search for data equivalence between
parametric and BNP models leads eventually in oposite directions and cannot be
used to estimate the desired amount of data to use for calibration in DA approach.

The concept of data equivalence, if it worked, could lead to a fairly general way
of quantifying the price of uncertainty for a data-driven search of the model space.
However, the structure of the space of latent variables in BNP models changes non-
trivially with the sample size and also reflects the features of the data set (such as
skewness and multimodality), making the comparison with parametric problems a
challenge. In general, p(y | x) =

∫
p(y | x,M)p(M | x)dM , where M is a space of

models, p1(M) may be a weaker prior than p2(M), and yet p1(M) may concentrate
on models with better predictive accuracy, p(y | x,M) than p2(M | x) does, leading
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to stronger inference from p1(y | x) than from p2(y | x).
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Abstract

In paper earlier developed theory of an optimum estimation of unknown pa-
rameters of statistical model in the presence of multivariate nonhomogeneous
data is applied to a case of regression models with responses of the mixed
type (polytomous quantal and continuous). The theory is based on use of the
weighted L2-norm of Hampel’s influence function. Estimators provide a robust-
ness to a deviation of observations distribution from postulated distribution.
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Introduction

The classical statistic procedures are based on a number of assumptions which can’t
be fulfilled in practice. Under such conditions a lot of widespread statistic procedures
lose their positive qualities. For instance, the procedures, which rest on the maximum
likelihood method. But this problem can be solved by using robust estimators [2,
7]. For example, Shurygin’s approach [7] based on use of the weighted L2-norm of
Hampel’s influence function (see [5]) allows to get the estimators possessing a high
robustness and efficiency.

Generally robustness theory has been developed for the quantitative random vari-
ables modeling. Qualitative and mixed variables modeling are paid much less at-
tention. Originally the estimators within Shurygin’s approach were formed only for
continuous random variables models.

Shurigin’s approach has been extended in [5] to a case of multivariate nonhomoge-
neous outcomes represented in numerical form, but not necessarily are numerical, for
example, they can be qualitative or mixed; the separate consideration is given to a
case of the incomplete data; conditions that make the missing-data mechanism ignor-
able are obtained. Cases of the scalar count and qualitative outcomes are investigated
earlier [1, 3].

The purpose of our study is application of the theory from [5] to regression mod-
els with polytomous quantal and continuous responses. Further the case of scalar
polytomous variable is considered. Case of a vectorial polytomous variable can be
always reduced to the previous case.

Our model is the general location model introduced in [6] and extended in [4] to
a case of regression model with polytomous quantal and continuous responses.
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1 Model specification and method of estimation

Assume that polytomous quantal response variable ζ has a fixed number of acceptable
values {1, 2, ..., J}. Distribution of ζ is set of probabilities

Pr {ζ = j|x, α} = πj(x, α),

where x is a vector of input variables, α is a vector of parameters.
Given that ζ = j, the vector of n continuous response variables has a conditional

distribution with density gj(y, x, φ), where φ is a vector of parameters, gj(y, x, φ) > 0
for y ∈ Rn.

Define the sample as (yt, zt, xt), t = 1, . . . , N , where yt is the tth observation of
continuous response variables, zt is the tth observation of quantal response variable,
and xt is the tth observation of input variables.

M -estimate Φ̂ of parameter vector Φ = (αT , φT )T is obtained by solving system
of equations

N∑
t=1

ψ(yt, zt, xt, Φ̂) = 0,

where ψ(yt, zt, xt, Φ̂) is a vectorial score function satisfying further condition for all t:

Eψ(yt, zt, xt,Φ) = 0, (1)

E is an expectation operator.

2 Optimal estimation

One of the major indicators of estimator’s robustness is Hampel’s influence function
[2] which in the case under some regularity conditions takes the form

IF(y, z, xt,Φ) = M−1ψ(y, z, xt,Φ),

where

M = −
N∑
u=1

∂

∂Φ̃T
Eψ(yu, zu, xu, Φ̃)

∣∣∣∣
Φ̃=Φ

=

=
N∑
u=1

J∑
j=1

∫
Rn
ψ(y, j, xu,Φ)

∂

∂ΦT
[πj(xu, α) gj(y, xu, φ)] dy.

Indicator of estimation badness can be written as square of the weighted L2-norm
of an influence function, namely,

Ψs(ψ) =
N∑
t=1

J∑
j=1

∫
Rn

IFT (y, j, xt,Φ)W IF(y, j, xt,Φ)s(y, j, xt,Φ) dy,
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where W = W (Φ) is some symmetric positive definite weight matrix, s(y, j, x,Φ) is
a weight function, s(y, j, x,Φ) > 0 for y ∈ Rn.

Note that function s can be interpreted on the basis of Bayesian point-mass
contamination model [7]. In this case two first argument of influence function are
the random variables (contamination variables). Assume that their distribution is
formed on the basis of the general location model in sample series when probabili-
ties σj(xt, α), j = 1, ..., J , for quantal contamination variable and conditional density
sj(yt, xt, φ) for vector of continuous contamination variables are defined. Then func-
tion s and functional Ψs are of the form represented

s(y, j, x,Φ) = σj(x, α) sj(y, x, φ), (2)

Ψs(ψ) =
N∑
t=1

EstIF
T (yt, zt, xt,Φ)W IF(yt, zt, xt,Φ),

where Est is an expectation with use of contamination variable distribution under
observation t.

Optimal score function is a solution of minimization problem:

ψ∗s = arg min
ψ

Ψs(ψ).

Function ψ∗s is represented as follows:

ψ∗s(y, z, x,Φ) = C

{
∂

∂Φ
ln [πz(x, α) gz(y, x, φ)] + β

}
πz(x, α) gz(y, x, φ)

s(y, z, x,Φ)
, (3)

where C = C(Φ,W ) is some nonsingular matrix, vector β = β(x,Φ) provides fulfill-
ment of the condition (1).

Generalized radical estimator is an example corresponding to the case

s(y, z, x,Φ) = [πz(x, α) gz(y, x, φ)]1−λ /∆,

where λ is estimator parameter (λ ≥ 0), ∆ is additional weight function with suitable
arguments, it can be used for a normalisation of densities s, σj, and gj. Note that
the case of λ = 0 matches maximum likelihood estimation.

The case of λ = 1, ∆ = 1 with weight function s(y, z, x,Φ) = 1 strictly corresponds
to concepts of the robustness theory. It is use of unweighted L2-norm of an influence
function, but function s is not interpreted as a probability density.

Generalized radical score function is represented as follows:

ψ∗λ(y, z, x,Φ) = C

{
∂

∂Φ
ln [πz(x, α) gz(y, x, φ)] + β

}
[πz(x, α) gz(y, x, φ)]λ ∆.

Conditional optimal score function is a solution of minimization problem min
ψ

Ψs1(ψ)

under condition
Ψs2(ψ) ≤ D(Φ) (4)

141



Novosibirsk, 25-27 September, 2013

or
Ψs2(ψ) = D(Φ) (5)

(s1 6= s2).
Corresponding optimum score functions under some regularity conditions are

given by (3) with

s(y, z, x,Φ) = s1(y, z, x,Φ) + γ(Φ)s2(y, z, x,Φ) > 0,

where γ(Φ) provides fulfillment of the condition (4) (together with conditions γ(Φ) ≥
0 and γ(Φ) [Ψs2(ψ)−D(Φ)] = 0) or (5) respectively.

3 Example

Assume that under the condition zt = j regression model for continuous modelling
variables and continuous contamination variables is of the form represented

yt = ηj(xt, θ) + et,

where ηj is a response function, θ is a vector of parameters, et is the tth error.
Assume that function s(y, z, x,Φ) can be written in the form (2) and errors have

a distribution with null location and a density g(e, τ) (s(e, τ)), where τ is a vec-
tor of parameters, for all values j and continuous modelling variables (continuous
contamination variables). In addition following condition is fulfilled:∫

Rn

∂g(e, τ)

∂e

g(e, τ)

s(e, τ)
de = 0.

It is easily shown that optimal score functions for α and φ are of the form repre-
sented

ψ∗s,α(y, z, x,Φ) = ψ∗s,α(z, x, α)
g(y − ηz(x, θ), τ)

s(y − ηz(x, θ), τ)
,

ψ∗s,φ(y, z, x,Φ) = ψ∗s,φ,z(y, x, φ)
πz(x, α)

σz(x, α)
,

where ψ∗s,α(z, x, φ) is optimal score function for estimation of parameter α with use of
observed quantal responses only, ψ∗s,φ,j(y, x, φ) is optimal score function for estimation
of parameter φ with use of observed continuous responses for subsample with zt = j
only.

Such property allows to construct score functions for a case of the mixed re-
sponses, knowing score functions for a case of the quantal responses and a case of the
continuous responses.

Let’s continue our example. For modeling dependence of nominal response from
input variables polytomous logistic regression is often used. Corresponding probabil-
ities are of the form
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πj(x, α) = exp
[
fT (x)αj)

]{
1 +

J−1∑
k=1

exp
[
fT (x)αk

]}−1

,

where f(x) is a vector of regressors, αj is a subvector of α (subvectors αj, j =
1, 2, ..., J − 1, are not intersected), αJ is a null vector.

For model of continuous variables we consider ηj(xt, θ) = Fj(xt)θj and et ∼
Nn(0,Ω), where Fj(xt) is a matrix of regressors, θj is a subvector of θ (subvectors θj,
j = 1, 2, ..., J , are not intersected), 0 is a null vector, Ω is a covariance matrix. Thus,
g(e, τ) = g(e, vech Ω) = (2π)−n/2|Ω|−1/2 exp(−1

2
eTΩ−1e), where vech is a half-vec

operator.
Generalized radical estimates of αj, θj, and Ω obtain by solving system of equa-

tions

N∑
t=1

ŵt

{
δjzt − [πj(xt, α̂)]1+λ/

∑J
k=1[πk(xt, α̂)]1+λ

}
f(x) = 0,

θ̂j =

[ ∑
t:zt=j

ŵtF
T
j (xt)Ω̂

−1Fj(xt)

]−1 ∑
t:zt=j

ŵtF
T
j (xt)Ω̂

−1yt,

Ω̂ =
1 + λ∑N
t=1 ŵt

N∑
t=1

ŵt

[
yt − Fzt(xt)θ̂zt

] [
yt − Fzt(xt)θ̂zt

]T
,

where ŵt = w(yt, zt, xt, Φ̂) =
[
πzt(xt, α̂) g(yt − Fzt(xt)θ̂zt , vech Ω̂)

]λ
∆, δ is Kronecker

delta. Note that two last subsystems define some modification of Meshalkin’s esti-
mator [7].
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Abstract

This paper deals with the numerical simulation of formation and develop-
ment of the extreme ocean waves by using specific models of random processes
and fields. The estimates of the frequency of extreme wave occurrence are
studied based on the random fields outliers theory.
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Introduction

The extreme waves, known as rogue or freak waves, represent a poorly understood
natural phenomenon whose existence was distrusted because of the absence of reli-
able evidence. In contrast to tsunami waves, the solitary extreme waves are of 20
m, 30 m, or ever higher, thus essentially exceeding the heights of other waves, oc-
curring suddenly, and vanishing far from the shore without visible causes; sometimes
this occurs in a quiet sea with a relatively light wind. For the first time the rogue
wave was instrumentally detected only in 1995, and nowadays strenuous efforts are
aimed at observing the extreme waves and studing the rogue wave phenomenon both
theoretically and experimentally.

In this paper conditional spectral models of random fields proposed in [3] are
used for the numerical simulation of extreme waves. It is assumed that the sea
surface roughness is sufficiently well described by a spatial-temporal random Gaussian
field, which is stationary with respect to time and homogeneous in space. Numerical
models of the sea surface based on this assumption were used, in particular, for the
solution of applied ocean optics problems by Monte Carlo method [1]. Along with the
spectrum of the extreme wave, the simulation of the extreme wave requires additional
information concerning the wave profile, i.e., the field of the sea surface elevation
should be specified at certain points at given time moments. Numerical experiments
have established an extreme high sea level at the points on the wave crest. The
results of these experiments are presented here. Conditional numerical models allow
us to simulate numerically the set of independent spatial-temporal implementations
of the sea level passing through given points and hence to study typical features of
the development and propagation of extreme waves.

An autoregressive model is well known among the most common models of Gaus-
sian stationary processes to obtain a time series. To estimate the autoregressive
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parameters we made use of real data. Autoregressive model provides a wave such
that it’s height is 2 times greater than the height of a typical wave.

In this paper stochastical algorithms are used for the simulation of the sea rough-
ness, the results obtained are presented, and the estimates of the frequency of extreme
wave occurrence are studied based on the random fields outliers theory.

1 Calculation of the mean number of extreme waves

over a fixed time period

The results of the outliers theory of random processes and fields allow us to calculate
the mean number of extremely high waves above a given level in a specified region
or for a known time interval according to the sea roughness model considered here.
The corresponding formulas have the form (see, e.g., [6]):

Nxy(C) =
C

2π
√

2πσ2
0

√
K22K33 −K2

23

σ2
0

exp
(
− C2

2σ2
0

)
∆S, (1)

Nt(C) = (2π)−1(σ1/σ0) exp
(
− C2/(2σ2

0)
)
∆T, C > 0. (2)

Here Nt(C) is the mean number of waves above the level C in the time interval ∆T ,
Nxy(C) is the mean number of waves above the level C on the rough area ∆S (at a
fixed time moment), σ2

0 is the variance of the random field

K22 =

∞∫
0

∞∫
−∞

λ2
1f(λ1, λ2)dλ1dλ2, K33 =

∞∫
0

∞∫
−∞

λ2
2f(λ1, λ2)dλ1dλ2,

K23 =

∞∫
0

∞∫
−∞

λ1λ2f(λ1, λ2)dλ1dλ2,

σ2
1 =

∞∫
0

µ2S(µ)dµ.

Here f(λ1, λ2) is the spatial spectral density and S is the frequency spectrum. The
level C means the height above the fixed level of the rough surface.

In this section, we consider the spectrum of the wind driven sea surface undulation,
which is represented in [5]. Statistical properties of the sea roughness are determined
within this model by the two parameters: the wind velocity v and the frequency of
spectral maximum µmax. Some values of Nt(C) and Nxy(C) for the model of the sea
roughness with the spectrum and parameters

µmax = 0.3sec−1, v = 10m/sec. (3)

146



Applied Methods of Statistical Analysis

Table 1: The mean number Nt(C) of waves above the level C within a year and the
mean number Nxy(C) of waves above the level C on the area of 100 square
kilometers (at a fixed time moment) for parameters (3)

C (m) Nt(C) Nxy(C)
5.0 2.162× 103 1.306× 101

5.5 4.799× 102 3.162× 100

6.0 9.230× 101 6.571× 10−1

6.5 1.538× 101 1.174× 10−1

7.0 2.221× 100 1.805× 10−2

7.5 2.778× 10−1 2.391× 10−3

8.0 3.011× 10−2 2.730× 10−4

8.5 2.828× 10−3 2.687× 10−5

9.0 2.301× 10−4 2.282× 10−6

9.5 1.622× 10−5 1.673× 10−7

10.0 9.911× 10−7 1.058× 10−8

are presented in Table 1. Table 2 contains the values for a stronger roughness with
the parameters

µmax = 0.4sec−1, v = 7m/sec. (4)

We can give the following interpretation of the values of Nt(C) for C = 13, 14,
and 15m from Table 2. Suppose that 100 sea vessels navigate sufficiently far from
each other with the sea roughness with the spectrum and parameters (4). Then the
average number of meetings with the extreme wave per a year is 1 for the wave height
exceeding 30 m (the wave height h corresponds to the level C = h/2), 11 - for the
waves higher than 28 m, and 109 for waves higher than 26 m.

2 Modeling of giant waves on the basis of

autoregressive schemes

In statistics and signal processing, an autoregressive model is a representation of
a type of a random process; as such, it describes certain time-varying processes in
nature. The autoregressive (AR) model specifies that the output variable depends
linearly on its own previous values. The AR model is defined as

w(tn) =
P∑
j=1

ajw(tn−j) + εn, (5)

where P is order of an autoregressive model, aj, j = 1, ..., P are autoregressive
coefficients, εn is white noise.
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Table 2: The mean number Nt(C) of waves above the level C within a year and the
mean number Nxy(C) of waves above the level C on the area of 100 square
kilometers (at a fixed time moment) for parameters (4)

C (m) Nt(C) Nxy(C)
5 2.484× 105 7.439× 102

6 9.681× 104 3.475× 102

7 3.179× 104 1.330× 102

8 8.795× 103 4.200× 101

9 2.050× 103 1.099× 101

10 4.027× 102 2.395× 100

11 6.663× 101 4.351× 10−1

12 9.291× 100 6.604× 10−2

13 1.091× 100 8.385× 10−3

14 1.081× 10−1 8.915× 10−4

15 9.009× 10−3 7.944× 10−5

16 6.329× 10−4 5.936× 10−6

The Draupner wave or the New Year’s wave was the first rogue wave to be detected
by a measuring instrument, occurring on the Draupner platform in the North Sea off
the coast of Norway on 1 January 1995. This wave is shown in Figure 1. Record of
the New Year’s wave is often used in the simulation of extreme waves. We used this
recording of the waves to estimate autocorrelation function and the spectral density
of the process (see Figure 2).

Figure 1: The Draupner wave or the New Year’s occurring on the Draupner
platform in the North Sea off the coast of Norway on 1 January 1995

Several methods are available to estimate an autoregressive model. In this paper,
the Yule-Walker method is employed. The sector of the recording of the Draupner
wave that does not contain an extreme wave was chosen to estimate autoregression
coefficients. The autoregressive scheme of order 1990 was used to simulate a Gaussian
random process. Figure 3 shows the implementation of the freak waves, which were
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Figure 2: The autocorrelation function (left) and the spectral density (right)
estimated from real data

obtained experimentally.

Figure 3: Elevation of the sea surface related to the mean level depending on time
(at a fixed point of the plane). The maximal values correspond to the passage of

extremely high waves

We calculated the mean number of extremely high waves above a given level
according to the sea surface roughness autoregressive model considered here. Some
values of Nt(C) are given in Table 3. The result obtained can be interpreted as
follows. Assume that a platform is located at a fixed point of the ocean with stationary
undulation during 1 year. Then on average 92 waves exceeding 26 m, 18 waves higher
then 28 m and 3 waves can reach a height of 30 m will fall on this platform.
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Table 3: The mean number Nt(C) of waves above the level C within a year for the
sea surface model (5) that were tuned according to the parameters of a real wave

C (m) Nt(C)
5 6.2479× 105

6 3.1865× 105

7 1.4379× 105

8 5.7407× 104

9 2.0278× 104

10 6.3378× 103

11 1.7526× 103

12 4.2879× 102

13 9.2810× 101

14 1.777× 101

15 3.0126× 100

3 Conditional spectral models and spatial-temporal

simulation of extreme waves

In this Section we present a method of constructing random spatial-temporal imple-
mentations of the sea surface with waves of abnormal height. The method proposed
is based on the conditional spectral models developed in [3, 4].

Consider a real homogeneous random Gaussian field w(x), x ∈ Rk, with zero mean
and unit variance. The spectral representations of a random field can be written in
the form:

w(x) =

∫
P

cos < x, λ > ξ(dλ) +

∫
P

sin < x, λ > η(dλ), (6)

where ξ(dλ), η(dλ) are real orthogonal stochastic Gaussian measures of the spectral
space P (i.e., P is a measurable set in Rk such that P ∩P = 0), η(dλ) is the spectral
measure of the random field w(x), and < . , . > , denotes the scalar product in Rk.

The main idea underlying the spectral models is to use an approximation of
stochastic integral (6) for the simulation of a random field w(x). In particular, a
spectral model can be constructed in the following way. Let us fix some splitting of
the spectral space:

P =
n∑
j=1

Qj, Qj ∩Qi = ∅ for i 6= j.

For approximating (6) consider

wn(x) =
n∑
j=1

aj [ξj cos < λ(j), x > +ηj sin < λ(j), x >] , aj = ν1/2(Qj) (7)
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Here n is the number of harmonics of the spectral model, ξj, ηj are independent
standard normal variables, the vectors λ(j) ∈ P belonging to the corresponding sets
of the partitioning Qj. A particular numerical algorithm is determined by the parti-
tioning of the spectral space P and by the choice of λ(j) ∈ Qj. In [2], randomized
spectral models were developed so that the vectors λ(j) are chosen randomly accord-
ing to the distribution induced by the spectrum. The randomization allows one to
exactly reproduce the spectrum of a random field, however, in this case the numerical
model is Gaussian only asymptotically. Non-randomized spectral models (such that
the vectors λ(j) are not random) have Gaussian finite-dimensional distributions and
a discrete spectrum. The information concerning different modifications of spectral
models, their properties and convergence can be found, e.g., in [4].

Assume we have to construct a numerical model of a Gaussian random field w(x)
with zero mean and the additional condition

w(xm) = bm,m ∈ {1, 2, ...,M}. (8)

A conditional spectral model is a numerical approximation of (7) constructed in
the following way. At the first stage we determine the values aj and simulate the
vectors λ(j) according to the chosen spectral model. At the second stage we simulate
the Gaussian random vector with the components ξ(j),η(j), j = 1, ..., n, and the
conditional distribution generated by equalities (8).

The spectral model of freak waves was constructed using the temporal spectrum
and the value of the highest elevation of the New Year’s wave with an additional
assumption about the angular spectrum. A realization of a spectral model of the
freak wave is presented in Figure 4.

Conclusion

It is worth noting that autoregressive and spectral models can be constructed for
different types of the sea wind roughness and swell. It is important that the infor-
mation concerning the roughness spectrum of the sea surface should be as complete
as possible. Moreover, conditional spectral models can take into account additional
data on the form of an extreme wave if this information is available. In this paper
we have described the numerical experiments where the extreme height of the water
surface was specified at a single point. In the general case, the conditional spectral
model allows us to fix a set of points on the sea surface.

The adequacy of the estimates of the mean number and the probability of ex-
tremely high waves obtained on the basis of the outliers theory of random fields is of
particular interest. However, one needs extensive statistical data concerning the oc-
currence of extreme waves in the ocean and the sea roughness spectrumbthat resulted
in these waves have been observed in this case.
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Figure 4: An example of the simulated topography of the freak wave (a spectral
model). The wind direction is parallel to the horizontal axis
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Abstract

We suggest and experimentally investigate a method to construct forecast-
ing algorithms based on universal measure and decision trees. By the example
of predicting currency exchange rates, consumer price index and producer price
index we show that the precision of thus obtained predictions is relatively high.

Keywords: universal measure, decision trees, forecasting, prediction, R-
method, time series.

Introduction

Tasks of prediction during the modern time had important application-oriented char-
acter. Prediction of various processes allowed to solve a wide spectrum of tasks in the
modern science and technique. To them the number can carry the analysis of social,
economic, geophysical events, a prediction of the natural phenomena and economic
events.

Methods of prediction served for research of system communications and reg-
ularities of operation and development of objects and processes with usage of the
modern methods of information processing and was important means in the analysis
of difficult application-oriented systems, operation with the information, purposeful
influence of the person on objects of research, for the purpose of increase of effective-
ness operation are more their. Most widespread setting of the task of prediction are
the task of prediction of time series, . . functions, particular time for axes. The g
type of prediction are very significant owing to that the class of tasks correspond to
it are widely connect with many problems of economy, geophysics and other areas.
These methods played a key role in increases of effectiveness, reliability and quality
of technical, economic, biological, medical and social systems.

In the last 2nd decades there were a set of methods of the prediction which had
show the extra enough efficiency. In particular, models of machine tutoring [6] who
beg to represent a serious competition to classical statistical models in community of
experts in prediction [1,2,3].

Despite presence of considerable enough quantity of effective and various methods
the predictions connect with power mathematical apparatus (the spectral analysis,
the auto regression analysis, Monte Carlo’s methods and many other things) and
the algorithms connect with creation of expert estimations (the so-called recursive
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strategy, which description can be found in [4, 5]), many problems were still far from
the resolution.

In this article the new approach to prediction of the one-dimensional and mul-
tidimensional time series, bas on particular models of the information theory and
methods of data analysis are described. Also, new approaches to a combination of
various mathematical methods of prediction, and also methods of acceleration of any
mathematical methods of prediction without loss of exactitude of the forecast was
offer. Results of experimental researches were described.

1 Setting of the task of prediction

In a general view, the task of prediction of time series could be formulate as follows.
Let there are some source generates sequence x1x2 of elements from some set A,
called alphabet. The alphabet could be the discrete or represent some finite sequence
of the continuous interval. Capacity of the alphabet we will designate, as N . It
are supposed that allocation of probabilities of characters of this source did not
change in due course and did not depend on specific implementation of process (the
source are stationary and ergodic). Let the source generated the message of a type
x1x(t − 1)xt, xi ∈ A∀i, i = 1, 2, , t, also are required n following elements. Posteriori
deflection amount of the forecast from the real state of object are called as an error of
the forecast. Hereinafter under an error of prediction n elements we will understand
an average error of the forecast of each of n elements separately. It are clear that the
error of the forecast characterized quality of prediction.

It are obvious that if allocation of probabilities of outcomes of process are known in
advance the task of prediction of the following values dared simply enough. However
in the majority of practical tasks similar prior convergence missed, and not always
the given allocation explicitly existed. In the g operation we will consider such case.
In the present state of affairs for the decision of the task of prediction it are possible
to use the precise estimations of the specified values received by means of statistical
techniques, the correlations of serial outcomes of process construct on the basis of
the analysis and detection of regularities.

In more common setting of the task of prediction elements xi could be not only
specific numbers (whole or real), and vectors of dimensionality k, where the first
element of a vector - value of the predict characteristic of a row, and remain (k − 1)
attributes - any characteristics of process known for all elements of a row. Give an
example. Let there are a row of values of gross national product of the country with
an interval in a month. Gross national product was influenc by such parameters, as a
rate of inflation, a consumer price index, objyoma of industrial production and many
other things. Values of all such characteristics also, as well as value of gross national
product, will be known for every month of a row.

Thus, the task of prediction could be, as one-dimensional, and it are a lot of
attributive.
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2 Method of prediction which is based on the

universal measure

In operations [4,7] as the approach for the decision of the task of prediction of time
series it are offered to use the methods bas on the general-purpose measure.

Let’s result determination of the general-purpose measure, and also we will explain
communication between g and described in the previous point approaches. On de-
termination a measure µ are called general-purpose, if for any stationary and ergodic
source P the following equalities was true:

lim
t→∞

1
t

(− log2 P (x1...xt)− log2 µ (x1...xt)) = 0

with probability 1, and

lim
t→∞

1
t

∑
u∈At

P (u) log2 (P (u)/µ(u)) = 0

The g equalities shown that, somewhat, a measure µ are a nonparametric estima-
tion for (unknown) measure P . For this reason the general-purpose measures could
be us for an estimation of statistical characteristics of process and prediction.

Now we will describe the universal measure R, which were used as the basis for a
method of prediction in our work. The choice of this measure are connect with that
it are based on asymptotically optimum universal code of R that are proofed in [8].

Generally, as the general-purpose measure the measure of Krichevsky were t
Km ≥ 0, which are general-purpose for set of Markov sources with storage, or com-
pendency, m, m ≥ 0; if m = 0, that are a source independent and equally the
distributed characters. Somewhat this measure are optimal for this set (see [53]). On
determination,

Km (x1...xt) =


1
|A|t , t ≤ m,

1
|A|m

∏
ϑ∈Am

∏
a∈A

(Γ(νx(ϑa)+1/2)/Γ(1/2))

(Γ(νx(ϑ)+|A|/2)/Γ(|A|/2))
, t > m;

(1)

where νx(ϑ) - number of sequences ϑ, me in x, νx (ϑ) =
∑
a∈A

νx (ϑa), x = x1...xt, and

Γ () - gamma-function.
Let’s define also allocation of probabilities {ω = ω1, ω2, ...} for whole 1, 2, ... as

ωi = 1/log(i+ 1)−1/log(i+ 2) (2)

Let’s use further it are allocation.
Measure R it are define as

R(x1...xt) =
∞∑
i=0

ωi+1Ki(x1...xt) (3)

To count the infinite total in actual algorithms it will not be possible, therefore
all calculations we will do according to that each following item in the total (3)
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imported all the smaller contribution to total value R. It are possible to prove the g
fact without effort how theoretically, and to check up empirical by. Owing to the g
property we will use the first m the compos totals, and number m called a depth of
the analysis.

So, value of a measure R calculate on the basis of the formula (3), could serve as
an estimation of probability of an outcome of process and be us for the decision of
the task of prediction.

Let’s consider now the circuit of prediction on the basis of the general-purpose
measure both for sources on the discrete, and on the continuous alphabet the contin-
uous.

In the beginning we will consider a source generates values from the finite alpha-
bet. In this case the circuit of actions are sufficient are simple. Let x1xt - available
sequence. For everyone a ∈ A let’s construct sequence x1xt a also we will calculate
the conditional probability on the basis of a measure of R:

R (a|x1...xt) = R (x1...xta) /R (x1...xt)

It are possible to use received by thus way elements a ∈ A values as estimations of
appropriate unknown probabilities P (x1xta). Value a, has the maximum estimation
also will be look-ahead value.

Let’s consider now the circuit of prediction for a source from the continuous
interval. Let there are the continuous interval [A,B]. Then let {Πn}, n ≥ 1 - increas
sequence of finite partitions of an interval [A,B] on n parts. In our case the partition
of intervals were produced uniformly on equal subintervals, i.e. the size of each
subinterval are defined, how h = (B − A)/n. The substantiation of a choice of such
method will be g further.

Let’s define now an estimation of density of probabilities r as:

r(x1...xt) =
∞∑
s=1

ωsR
(
x

[s]
1 ...x

[s]
t

)
(4)

As shown in [4,8], density r(x1xt) are an estimation of unknown density p(x1xt),
and appropriate conditional density

r (a|x1...xt) = r (x1...xta) /r (x1...xt) (5)

are a suitable estimation p(a|x1xt). The amount of items in the total (4) at imple-
mentation of the algorithm described further, as well as in the discrete case, are equal
to depth of the analysis m.

3 A method of prediction on the basis of decision

trees

In a general view setting of the task for decision trees looked as follows. Let there’s a
set of objects A (set A consists of N the objects ma so-called learning sequence), which
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possess particular independent characteristics (attributes with finite set of values; all
are available (M+1) attributes). Set of the first M attributes we will designate, as Q.
For the given set A all (M+1) attributes was known. For other (new) elements on
known to the first M attributes need to find target (M+1)-th attribute. Thus on an
input number N (elements in learning sequence), number M, parameter m ∈M .

As a rule, the described method are applicable to tasks of classification and clus-
tering. In the g operation the approach who showed a method of data application
of trees to prediction of time series are offer. The tree of decision-making are under
construction on the algorithm described more low.

Firstly, let’s define some important definitions.

Definition 1. Entropy: S – target attribute. H(A, S) = −
Sn∑
i=1

|Ai|
|A| log2

|Ai|
|A| where

Ai – elements from A, at which the attribute of S are equal to i (and |A| = N).
Definition 2. The increase of the information – are define for each attribute from

Q in relation to target attribute of S and showed, what of attributes of Q gives
the maximum increase of the information concerning value of attribute of S (i.e.
concerning a class of an element). The increase of the information are defined by the
following formula:

Gain(A,Q) = H(A, S)−
Qn∑
i=1

|Ai|
N
H(Ai, S).

Further, we will describe immediately one of most effective algorithms of creation
of the decision tree, called ID3, dependent on set A, target attribute S and sets of
attributes Q:

1. To create a root of a tree.

2. If S are equal to any q on all elements from A, to mark in a root q and to quit.

3. If Q = {∅} , than select such q from the set S, which is the number, which is
equal to the greatest quantity of elements from A, and to deliver q in a root
and than quit.

4. To select q ∈ Q, for which Gain(A, q) it are maximum.

5. To mark in a root of a tree of q.

6. For each value qi attribute of q:

(a) To add the new descendant and to mark a proceed edge with a label qi.

(b) If in A there was no elements for whom value of q are equal to qi, that to
arrive according to item 3.

(c) Else launch ID3 (Aqi, S, Q\q) and to add it result, as the subtree with a
root in this offspring.
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The tree are under construction before exhaustion of learning set or to emptiness
of set of Q. Also, in offer implementation of the g algorithm it are possible to restrict
depth of a tree artificially – separate parameter. After the maximal depth of a tree
are achieved, we go to the step 3 of the ID3 algorithm.

4 The results

Both described a method implement on a supercomputer and test on forecasts of
the actual data. Results of the g forecasts was result in following tables. It are
necessary to note that at implementation of algorithm ID3 there restrictions on the
maximum depth of a tree about whom it were t in chapter 3. It are restriction it
are showed in the table by the first in a third column. After a sign ”/” there are
a parameter m methods R and decision tree, which shows the depth of a sequence
analysis (see chapter 2 and 3). Thus all researches it were le in two modes: on-
line, which meant prediction for 1 step forward on 10 different sequences with the
subsequent averaging of an error and prediction for 10 steps forward on 10 different
sequences with the subsequent averaging of an error. Thus prediction for 10 steps
forward were considered as follows: the next value and sequence were predict were
replenish by look-ahead value and so we continued to a 10th look-ahead element
then we considered an error. It are important to mark that prediction were fulfill
not absolute values of sequence, and a difference between adjacent elements: such
approach allowed to lower essentially the necessary size of the continuous interval in
whom look-ahead values lain; and also allowed to reveal the linear trends (and the
periods on them). It were impossible at prediction of absolute values of a temporary
row.

In each of the following below tables parameters was result: size of sequence,
amount of parts of a partition of the continuous interval and size of an error of a
method.

In the Table 1 the data of the forecast of exchange currency rates of euro/dollar
with a time interval (timeframe) one day (D1) and the period are cit 6/20/2012 -
7/11/2012. The graph of this time series are contained in a Figure 1.

In the following two tables the data of the forecast of the common overall consumer
price index on territory of the USA during the period are reflect 01.1990-02.2013 with
a time interval 1 month. Values predict with 02.2012 to 02.2013. Thus in Table 2
results of the forecast of the last part of a row in which the dispersion of sequence
are explicit more than in the middle (it are visible from a figure 2) was reflect. In
Table 3 results of the forecast of the central part of the schedule which looked more
smooth was show. Apparently from tables, results of the forecast of a row with more
low dispersion (table 3) are notable more better (despite the smaller size of sequence)
that are quite natural.

.

In Table 4 the data of the forecast of the common index of the industrial prices
for territories of the USA during 03.2002 - 02.2013 are cit.
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Table 1

Size
of se-
quence
L

Partitioning
n

Max.
depth of
tree/ m

Decision
tree
On-line

R-measure
On-line

Decision
tree
10 steps

R-measure
10 steps

500 10 2/2 0,0079 0,0084 0,0103 0,0299
5/5 0,0095 0,0084 0,0151 0,0299

20 2/2 0,0088 0,0083 0,0105 0,0159
5/5 0,0084 0,0083 0,0105 0,0159

50 2/2 0,0089 0,0083 0,0119 0,0187

Table 2

Size
of se-
quence
L

Partitioning
n

Max.
depth of
tree/ m

Decision
tree
On-line

R-measure
On-line

Decision
tree
10 steps

R-measure
10 steps

277 5 2/2 0,628 0,733 1,670 1,671
10 2/2 0,602 0,602 0,572 0,573

2/5 0,825 0,602 1,717 0,573
20 2/2 0,551 0,701 0,718 0,884

2/5 0,609 0,701 1,075 0,884
100 2/2 0,615 0,655 0,753 1,497

2/5 0,812 0,655 1,858 1,497

Table 3

Size
of se-
quence
L

Partitioning
n

Max.
depth of
tree/ m

Decision
tree
On-line

R-measure
On-line

Decision
tree
10 steps

R-measure
10 steps

157 5 2/2 0,495 0,364 1,684 1,684
10 2/2 0,394 0,328 1,255 1,255

2/5 0,394 0,328 1,255 0,255
20 2/2 0,408 0,310 0,424 0,424

2/5 0,403 0,310 0,522 0,424
100 2/2 0,408 0,310 0,715 0,715

2/5 0,408 0,310 0,715 0,715
240 2/5 0,337 0,297 0,397 0,853
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Figure 1: Exchange currency rates EUR/USD (timeframe: D1)

Figure 2: Producer price index

Conclusions

Apparently from the results described above, the both method demonstrate rather
high degree of accuracy on the actual data. It is also true speaking about comparison
to other methods of prediction that explicitly are show in [4]. Besides, more effective
implementation of a method were invented for R, which allows to reduce complexity
determine of various variants of look-ahead values from the alphabet. Complexity
decreasing to constant concerning length of the alphabet (early, it were linear) that
allowing reach the same work speed of the algorithm that earlier were reach only
using a supercomputer.

Besides, the method based on the universal measure gives about the same accu-
racy, as decision trees, but thus it allows to generalize easily the forecast to multidi-
mensional time series, where each element had not only value, but still other known
attributes.
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Table 4

Size
of se-
quence
L

Partitioning
n

Max.
depth of
tree/ m

Decision
tree
On-line

R-measure
On-line

Decision
tree
10 steps

R-measure
10 steps

277 5 2/2 0,954 0,978 1,87 3,276
10 2/2 0,996 0,978 1,363 3,276

2/5 1,322 0,978 1,793 3,276
20 2/2 1,07 0,910 0,935 1,363

2/5 1,125 0,910 1,076 1,363
100 2/2 1,013 0,910 1,204 1,122

2/5 1,296 0,910 1,488 1,122
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Abstract

In this paper, the approximation of a “slow-simulated” probability density
by a special “fast-simulated” density is considered. It is possible when the bias
caused by the approximation is sufficiently smaller than a statistical error. For
a one-dimensional case, the usefulness of finite elements is demonstrated. As
an example, the simulation algorithms, using different approximation methods
for the Makeham distribution density, are tested.
Keywords: random variates, simulation, approximation, B-splines, Makeham.

Abbreviations and Notations
BF - Basic Function, DF - Distribution Function,
BRV - Basic RV: independent RV U,U1, U2, . . . with PDD pu(x) = 1, 0 < x < 1,
DRV - Discrete RV, PD - Probability Distribution,
PC - Piecewise Constant, PL - Piecewise Linear,
PDD - Probability Distribution Density, RV - Random Variate,
ξ ∼ p(x) - RV ξ has PDD p(x), or ξ is simulated according to p(x),
< f(x)|X >=

∫
X dxf(x), χ(x|a, b) = 1 for a < x < b, else = 0.

1 Introduction

It is well known that efficient random number generation algorithms are the key
technical elements in the large-scale statistical simulation. The tutorials describe five
methods for simulation of a RVs (see, for example, [2], [3]):

1. The inversion method: if for one-dimensional PDD p(x) with DF F (x)
there exists a computer algorithm for the inversion F−1(y), y ∈ [0, 1], then RV
η = F−1(U) ∼ p(x).

2. The rejection method: assume that for a multi-dimensional PDD p(x) there
exists a majorant g+(x) such that 1) n̄ =< g+|X > < ∞, 2) there exists the
efficient algorithm for the simulation of a RV ξ ∼ p+(x) = g+(x)/n̄. Then
the Markov process Repeat ξ ∼ p+(x) Until U · g+(ξ) ≤ p(ξ); η := ξ
generates the RV η ∼ p(x).

3. The composition method: assume that a PDD can be represented in the
form p(x) =

∑M
i=1 Πipi(x), where Πi ≥ 0,

∑M
i=1 Πi = 1, and {pi(x)}Mi=1 is a set

of conditional densities. Then the algorithm DRV j ∼ {Πi}Mi=1; η ∼ pj(x);
generates the RV η ∼ p(x).
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4. The approximation method: the main idea of this method is the approxima-
tion of a given ”hard” PDD p(x) by PDD p̂(x) with a more efficient simulation
algorithm. The only one example, represented in the published works (see [3]),
is the approximation of a standard normal RV by the sum of BRVs

η̂m =
√

12/m
[∑m

i=1(Ui − 1/2)
]
.

The second example of the approximation method is the Metropolis–Hastings
algorithm [4]. In this algorithm, for the simulation of RV η ∼ p(x) one uses
the Markov process: ξ0 ∼ p0(x), for k = 1, 2, . . . ξk ∼ q(x; ξk−1). A special
selection of p0 and q ensures the convergence: for k → ∞ ξk → η ∼ p(x). In
practice, one stops the Markov process at a sufficiently large step K, using a
certain empirical stopping rule. Thus, RV ξK ∼ pK is the approximation of RV
η ∼ p.

5. The method of special transformations: in this method, one obtains a
realization of m-dimensional RV η by m× n by transformation of BRVs: ηi =
gi(U1, . . . , Un), i = 1, . . . ,m. The most known example is 2× 2 transformation
(the Box–Muller algorithm)

η1 =
√
−2 ln(U1) sin(2πU2), η2 =

√
−2 ln(U1) cos(2πU2),

which gives two independent RVs with a standard normal distribution.

2 Statement of the problem

It is well known that every non-negative function p(y) ≥ 0, y ∈ Y ⊂ Rn with∫
Y
p(y)dy = 1 can be considered as PDD. The distance between two PDDes p(y), g(y)

can be defined as

L = ||p− g|| =
∫
Y
|p(y)− g(y)|dy.

Only this distance is invariant under the reversible transformations of the independent
variables y = f(x):

||p(y)− g(y)|| =
∫
Y

|p(y)− g(y)|dy =

∫
X(Y )

|J(x)| · |p(f(x))− g(f(x))|dx =

=

∫
X(Y )

|p(x)− g(x)|dx = ||p(x)− g(x)||,

where X(Y ) is the image of the set Y , and J(x) is the Jacobian of transformation.
Is it possible, in principle, in some statistical problems to use a sample of approx-

imate RV ξ̂ ∼ p̂ instead of a sample of exact RV ξ ∼ p ? Two examples below show
that it is possible.
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1. Let us consider the estimation of the integral I =
∫
X
f(x)p(x) using Monte

Carlo method. If we use the sample {ξ̂i ∼ p̂(x)}Ni=1, then the mean-value
estimator

η̂ =
∑N

i=1 f(ξ̂i)/N

will be biased:

Î = Mη̂ =
∫
X
f(x)p̂(x) = I +

∫
X
f(x)(p̂(x)− p(x)) = I + b.

If c ≤ f(x) ≤ d, then |b| ≤ (d − c)L/2. For L = δ � 1, a relative bias will
also be small: |Î − I|/|I| < δ(d− c)/(2|I|)� 1. The mean-square error of η̂ is
equal to

M(η̂ − I)2 = M(f(ξ̂)− Î)2/N + b2 = σ̂2/N + b2.

If |b| ≤ δ∗σ̂/
√
N , where δ∗ is an admissible bias level, then using approximate

RVs do not considerably increase a common error.

2. The Scheffe theorem [6] states that

||p̂(x)− p(x)|| = 2 supB |
∫
B
p̂(x)dx−

∫
B
p(x)dx| = 2 supB |P̂ (B),−P (B)|,

where supremum is taken over all the Borel sets B ⊂ X. We cannot use
an approximate RV for the estimation of P (B) if L/2 ≥ |P̂ (B) − P (B)| ≥
δPP (B). So, only the probability of an event which satisfies the inequality
P (B) ≥ L/(2δP ) will be estimated with a relative error δP .

State of the problem: for every PDD p(x), x ∈ X construct an approximate
PDD p̂m(x) with the properties :

1. For every error level δ it is possible to find m such that ||p̂m(x)−p(x)|| ≤
δ.

2. There exists an efficient algorithm for the simulation of RV η̂ ∼ p̂m(x)
with run-time complexity, practically, independently of m.

3 Solution of the problem

It is well known that the one-dimensional RVs have the most diverse set of PDDes.
Thus let us consider in detail the approximation of one-dimensional PDD p(x), defined
on a standard interval X = [0, 1]. Other intervals on the real line can be transformed
to a standard one. The following transformations can be used:

1. Y = (a, b) : y = a+ (b− a)x.
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2. Y = (0,+∞) : y = x/(1 − x); y = tg(π · x/2). These transformations can
be used for the gamma distribution.

3. Y = (−∞,+∞) : y = z/(1 − |z|), z = 2x − 1; y = tg(π · (2x − 1)/2)).
These transformations can be used for the normal distribution.

4. The best transformation is y = F−1(x), where F (y) is the DF for p(y). It
transforms p(y)→ pu(x) = 1 for 0 < x < 1.

For creating an efficient simulation algorithm, we should find the approximation of
p(x) by the sum of the BFs {ϕi(x), x ∈ X}:

p̂(x) =
M∑
i=1

ciϕi(x). (1)

The following conditions must be implemented:

1. ci ≥ 0, i = 1, . . . ,M .

2. For i = 1, . . . ,M ϕi(x) ≥ 0, < ϕi(x)|X >= Wi < ∞.

3. For the every M , the conditional PDDes pi(x) = ϕi(x)/Wi must have a simu-
lation algorithm with the run-time complexity O(1) with respect to M .

If these conditions are fulfilled, then sum (1) can be transformed to a weighted sum
of a partial PDDes

p̂(x) =
M∑
i=1

ciϕi(x) =
M∑
i=1

[ciWi][ϕi(x)/Wi] =
M∑
i=1

Πipi(x). (2)

The superposition algorithm for the simulation of RV with PDD (2) has the form:

η ∼ p̂(x) =
M∑
i=1

Πipi(x) : DRV j ∼ {Πi}Mi=1; η := (ηj ∼ pj(x)). (3)

a Properties of B-splines

The investigations carried out, have been shown that one-dimensional finite elements
are the best choice for the approximation of PDDes. On the uniform grid Xm = {xi =
h · i, h = 1/m}mi=0 they can be represented as uniform B–splines [1] Bj,k(x), j =
1, . . . ,M = m + k − 1, k ≥ 1. These splines are defined on the extended grid
Tn = {tj = h(j − k), j = 1, . . . n = m+ 2k − 1} so Bj,k(x) > 0 for tj < x < tj+k.
The B–splines have the useful properties:

1) Bj,k(x) = Bl,k(x− tj + tl), 2) < Bj,k(x)|[0, 1] >= Wj,k,

Wj,k = h, j = k, . . . ,m, Wj,k = WM−j+1,k, j = 1, . . . , k − 1.

3) Bj,k(x|Tn) = Bk(y(x)|Ek+1), y(x) = (x− tj)/h, j = 1, . . . ,M.

166



Applied Methods of Statistical Analysis

Here Bk(y(x)|Ek+1) means standard uniform B–splines defined on the grid Ek+1 =
{0, 1, . . . , k}. In [5], it has be shown that Bk(y|Ek+1) is the PDD of RV ξk = U1 +
. . . + Uk. The RV ηj,k ∼ Bj,k(x)/h for j = k, . . . ,m− 1 can be simulated as ηj,k :=

tj + h
∑k

l=1 Ul. For the boundary conditional PDDes, pj,k(x) = Bj,k(x)χ(x|0, 1)/Wj,k

with j = 1, . . . , k−1 and j = M−k, . . . ,M , one needs special simulation algorithms.
For example, for k = 2, there are two boundary PDDes: p1,2(x) = 2(h − x)/h
and pm,2(x) = 2(x − xm−1)/h. The boundary RVs can be simulated by algorithms1

η1,2 := h|U1 − Ũ2|, ηm,2 := 1 − h|U1 − Ũ2|. For M = m + 1 � 1, there are only
2 boundary RVs with non-standard simulation algorithms, other m − 1 RVs can be
simulated by a single standard algorithm.

b Examples of non-suitable basic functions

Two counter-examples show that the positivity of the BFs is not sufficient for the
existence of efficient simulation algorithms.
Counter-example 1: the Bernstein polynomials are the polynomials

Bn(x) =
∑n

k=0 f(k/n)Ck
nx

k(1− x)n−k =
∑n

k=0 f(k/n)bk,n(x),

where {bk,n(x)}nk=0 form the basis for the vector space of polynomial of degree at
most n. For PDD p(x) ∈ C1[0, 1] and n → ∞ p̂B(x) = Bn(x)/ < Bn(x) > → p(x).
Computer-aided experiments show that for sufficiently large n ||p̂B(x) − p(x)|| =
O(1/n). But the conditional PDDes pk = (n + 1)bk,n(x)) = γk(x), k = 1, ldots, n −
k+1) have no standard representation, so the complexity of the simulation algorithms
grows with increasing n.
Counter-example 2: p̂r(x), the rational approximation of PDD p(x) on the in-
tervals [xi, xi+1], uses a local BFs ψ1(t) = (1 − t)/(1 + t), ψ2(t) = 2t/(1 + t),
where t = (x − xi−1)/h. These functions also approximate a continuous PDD p(x)
on [0, 1]: for sufficiently large m ||p̂r(x) − p(x)|| = O(1/m). But RVs with PDDes
p1(t) = ψ1(t)/ < ψ1 >, p2(t) = ψ2(t)/ < ψ2 > can be simulated only by the rejection
method. For the majorants g1,+(t) = 1 − t, g2,+(t) = 2t the mean numbers of steps
until success equals n̄1 = 1/ < 2ψ1 >= 1.29 and n̄2 = 1/ < ψ2 >= 1.63.

c The efficient algorithms for simulation of DRV

The simplest algorithm for the simulation of DRV j in (3) – the sequential search,
uses the auxiliary array Fi =

∑i
k=1 Πk, i = 1, . . .M, F0 = 0:

j := 0; U ∼ pu(x) : Repeat j := j + 1 Until (U ≤ F (j));

The mean number of comparisons n̄ =
∑

i iΠi. For Πi = 1/M n̄ = (M+1)/2. A more
realistic discrete distribution gives the PL-approximation of test PDD ps(x) = (1 +
s)xs, s > 0. The mean number of comparisons n̄ = (s+ 1)h1+s

∑m
i=1 i

1+s− (1 + s)/2.

1Ũ means BRV, used in the algorithms instead of RV 1− U .
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Calculation of the sum using the Euler-Maclaurin formula gives n̄ = [(s+ 1)/(C(s+
2))]m+O(1), where C = O(1).

A more efficient algorithm gives the index search, in which a second auxiliary
integer array MG[0..mi] is used: MG[0] := 0, values of MG[k], k = 1, . . . ,mi are
defined as solutions of the inequalities F (MG(k − 1)) < k/mi ≤ F ((MG(k)), k =
1, . . .mi .

Index search algorithm:
k := [mi ∗ U ]; j := MG(k); Repeat j := j + 1 Until (U ≤ F (j));

Values of n̄ were estimated for the PL-approximations of the test PDD ps(x) =
(s + 1)xs, s > 0. The samples of N = 1000 DRVs were used. The results are
presented in Table 1.

Table 1: Mean comparison numbers for index search.

m 10 20 40 80 160 320
mi 4 8 16 32 64 128

s = 0.5 n̄ 2.03 2.25 2.17 2.22 2.29 2.26
s = 3.5 n̄ 2.59 2.55 2.52 2.50 2.85 2.59

For s = 0.5, m = 10, mi = 10, the value n̄ = 1.46 was obtained.
The Walker method gives the fastest algorithm for the simulation of DRVs. In this
algorithm, two additional arrays are constructed for a given PD {Πi}Mi=1: the real
array F (1..M), 0 ≤ F (i) ≤ 1, and the integer array ia(1..M), 1 ≤ ia(i) ≤ M(see [8]
for details). The simulation algorithm uses these two arrays:

s := M ∗ U1; j := 1 + Trunc(s); U2 := Frac(s); If (U2 ≥ F (j)) Then j := ia(j);

Here the function Trunc(s) gives the integer part of s, while Frac(s) – the fractional
part. The comparison of (CPU-time(N)/N) (sec) for 4 simulation methods is pre-
sented in Table 2: SS - Sequential Search, BS - Binary Search, IS - Index Search, WS -
Walker Simulation. Computer Characteristics: Intel Pentium 4 , ω = 2.0 GHz, Bor-
land Pascal , the sample volume N=50000. The test PD were: ai := Ui, i = 1, . . . ,m
, Πi := ai/

∑m
l=1 al.

Table 2: Comparison of different methods for simulation of DRV.

M SS BS IS mi WS
40 6.70E-6 2.53E-6 1.86E-6 10 1.27E-6
80 1.28E-5 2.86E-6 1.92E-6 20 1.26E-6
160 2.45E-5 3.29E-6 1.98E-6 40 1.26E-6
320 5.07E-5 3.63E-6 1.97E-6 80 1.27E-6
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d Approximation methods

There are two methods for constructing the approximation of PDD p(x): optimal
and non-optimal.
The optimal PDD approximation: coefficients in approximate PDD are found
as solution the following extremal problem( Wi =< ϕi(x) >)

Criteria: L(c) =
∫ 1

0
|
∑M

i=1 ciϕi(x)− p(x)|dx → minc, (4)

Constrains: ci ≥ 0, i = 1, . . . ,M ;
∑M

i=1Wici = 1.

The optimization problem has always a solution(perhaps, not only one). The computer-
aided solution of (4) needs special algorithms because values of L(c) and its gradient
can be calculated only by the numerical integration.
Non-optimal PDD approximation:

p̃(x) =
M∑
i=1

aiϕi(x), x ∈ X.

Approximation methods: for j = 1, . . . ,M

Interpolation:
M∑
i=1

aiϕi(yj) = p(yj).

Projection: < ϕj(x) · [
M∑
i=1

aiϕi(x)− p(x)]|X >= 0.

Normalization: di = max[0, ai], S =
M∑
i=1

diWi,

p̂(x) =
M∑
i=1

di
S
ϕi(x) =

M∑
i=1

ciϕi(x).

4 Simulation of RV with the Makeham

distribution

The Makeham probability distribution density(W.M. Makeham, 1889) has the form

p(y) = µ(y) exp(−ψ(y)), y ≥ 0, (5)

µ(y) = A+Hy +B exp(αy), µ(y) ≥ 0,

ψ(y) =

∫ y

0

µ(z) dz = Ay +
H

2
y +

B

α
(exp(αy)− 1).

The change of the argument x = y/Y∗ transforms the density (5) again to the interval
(0,∞) : p(x) = Y∗p(Y∗x). The transformed PDD p(x) again has the form (5)

p(x) = µ̄(x) exp(−ψ̄(x)), (6)

F (x) =

∫ x

0

p(r)dr = 1− exp(−ψ̄(x)), x ≥ 0.
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where µ̄(x) = Y∗µ(Y∗x)), ψ̄(x) =
∫ x

0
dr µ̄(r)).

The approximation p̆(x) = p(x)/F (1), 0 ≤ x ≤ 1, F̆ (x) = F (x)/F (1) gives PDD
on a standard interval (0, 1). The inversion method for the simulation of RV with
PDD p̆ needs the solution of the nonlinear equation ψ̄(x)) = S(U) = − ln(1−F (1)U).

The following four methods for the approximation of the Makeham PDD were
investigated:

1. PC approximation of µ̄(x) on a uniform grid with m intervals. One needs to
invert the PL function ψ̃PL(x) =

∫ x
0
µ̃PC(r)dr .

2. PL approximation of µ̄(x). One needs to invert the piecewise quadratic function
ψ̃PQ(x).

3. PC approximation of PDD p̆(x). One needs to invert the PL DF F̂PC(x) =∫ t
0
p̂PC(r)dr.

4. PL approximation of PDD p̆(x). One needs to invert the piecewise quadratic
DF F̂PQ(x).

The distance between the PDD p̆(x) and its approximation is calculated as L =∫ 1

0
|p̆(x)− g(x)|dx, where g(x) = µ̃(x) exp(−ψ̃(x))) for cases 1,2 and g(x) = p̂(x) for

cases 3,4. Table 3 presents the distance L(m) as the function of m - number of grid
intervals. The PDD (5) was used with parameters A = 6.0e− 2, H = −4.0e− 3, B =
8.0e − 3, α = 0.08 The distances were calculated by the 2-point compound adaptive
Gauss quadrature with the relative error 1.0e-5. In the last row of Table 3, the least
square approximations of L(m) are presented.

Table 3: Errors of different methods for approximation of test PDD.

m 1 2 3 4
8 1.75e-1 4.33e-2 2.03e-1 7.14e-2

16 8.75e-2 1.10e-2 1.03e-1 1.87e-2
32 4.37e-2 2.77e-3 5.15e-2 4.84e-3
64 2.18e-2 6.92e-4 2.57e-2 1.21e-3

128 1.09e-2 1.73e-4 1.29e-2 3.03e-4
Lapr(m) 1.41m−1.00 2.74m−1.99 1.61m−0.995 4.38m−1.97

a The run–time complexity of simulation algorithms

The following 7 algorithms for the simulation of RV with the Makeham distribution
were tested:

A1: inversion of DF

F̆ (x) = (1− exp(−ψ̄(x))/F (1), F (1) = 1− exp(−ψ̄(1)).
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The equation ψ̄(ξ) = S(U) was sold by the Newton method with a stabilization
parameter δ = 1.0e−6. The initial state ξ0 was found as solution of the equation
ψ̃(t) = S(U), ψ̃(t)) = B(exp(αY∗t)− 1)/α with B > 0, α > 0.

A2: PC approximation of µ(x) on a uniform grid with m intervals. For the inver-
sion of the PL function ψ̃(t) =

∫ t
0
µ̃(r)dr, the equation ψi−1 + µi(t − ti) =

S(U), ψi−1 < S(U) ≤ ψi was solved with respect to i, t.

A3: PL approximation of µ(x) on uniform grid. For the inversion of the piecewise
quadratic function ψ̃(t) =

∫ t
0
µ̃(r)dr the equation

ψi−1 + h
2
w(µi−1(2− w) + µiw), ψi−1 < S(U) ≤ ψi.

was solved with respect to i, w.

A4: PC approximation of the PDD p̆(x) on a uniform grid with m intervals. The
DF F̂ (x) =

∫ x
0
p̂(r)dr is piecewise linear.

A5: PL approximation of the PDD p̆(x). The DF F̂ (x) is piecewise quadratic. For
the search in the tables, the index method was used with mi = mdiv 4.

A6: PC approximation of the PDD p̆(x). The superposition method was used for the
simulation of RV η ∼ p̂(x) =

∑m
i=1 Πipi(x). The DRV j ∼ {Πi} was simulated

with the Walker algorithm, the conditional RVs was simulated by the algorithm
ξj := h ∗ (j − Ũ).

A7: PL approximation of the PDD p̆(x). The superposition method was used for he
simulation of RV η ∼ p̂(x) =

∑m
i=0 Πipi(x). The DRV j ∼ {Πi} was simulated

with the Walker algorithm, the conditional RVs was simulated by the algorithm

η1 := h|U2 − Ũ3|; ηm := 1− h|U2 − Ũ3|.
ηj := h(j + U2 − Ũ3), j = 1, . . . ,m− 1.

The calculations were conducted on a computer with the tact frequency 1.68 Ggz.
The PDD (6) was used with parameters A = 6.0e − 2, H = −4.0e − 3, B = 8.0e −
3, α = 0.08, Y∗ = 70. Table 4 shows that the PC approximation of p̆(x) gives the

Table 4: Comparison of 7 simulation algorithms for the Makeham PDD.

Algorithm 1 2 3 4 5 6 7
tCPU , sec 3.03e-5 2.58e-6 3.08e-6 9.80e-7 1.65e-6 6.00e-7 8.20e-7

fastest simulation algorithm, but it needs sufficiently more memory. For obtaining
L = 1.0e−4, we need the PC and PL approximations with m(A4) = 1.6e4, m(A5) =
2.1e2 and for L = 1.0e− 6 – with m(A4) = 1.6e6, m(A5) = 2.1e4.

171



Novosibirsk, 25-27 September, 2013

5 Conclusion

In the paper, presented, author tried to show that the approximation of PDDes allows
the researcher to create very fast algorithms for the simulation of RVs. This is due to
the possibility to use long additional tables in the algorithms. In this paper, the one-
dimensional case was considered in detail. However, the same approach is applicable
to the two- and three-dimensional probability densities.
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Abstract

We consider methods of categorical data analysis applicable for the sur-
vival experimental design. Categorical tests for right censored survival data
with applications to epidemiology and AIDS research are discussed. We intro-
duce Wald’s type homogeneity tests based on Kaplan–Meier and Nelson–Aalen
estimators for categorical null hypothesis in right censored survival data case.
Classical tests for contingency tables and the survival Wald’s type tests are
examined to assess their validity to use them for different kinds of statistical
conclusions.

Keywords: survival data, right censoring, independent censoring, hypoth-
esis testing, categorical tests, contrasts, Wald’s test, Nelson–Aalen estimator,
Kaplan–Meier estimator, cohort analysis, AIDS research, genome wide associ-
ation study (GWAS).

1 Introduction

A common experimental design for gene association studies of disease progression is to
screen a cohort of individuals for disease endpoints during some time interval. Study
participants are disease free at baseline (time point zero). The goal is to quantify
difference in rate of disease progression among a population of study participants .

Let T is a failure time random variable or time of appearance symptoms of dis-
ease. Distribution of T depends on covariate z and can be given by a distribution
function Fz(x) = P (T ≤ x|z) or by survival function Sz(x) = 1 − Fz(x). Assume
that the covariate z is a categorical variable having d levels. We are interesting
to compare distributions of failure time under different values of covariate. Let
γT = mini∈1,...,d sup{x : Fi(x) < 1}. The null hypothesis is

H∗0 : S1(x) = . . . = Sd(x) for all x ∈ [0, γT ].

To formulate the problem in terms of categorical data analysis set 0 < t1 < . . . < ts <
γT . Consider p1|z = P (T ∈ [0, tj]|z) and pj|z = P (T ∈]tj−1, tj]|z), j = 2, . . . , s + 1,
where ts+1 =∞. We formulate weaker null hypothesis

H0 : pj|1 = . . . = pj|d for all j = 1, . . . , s

or in terms of the survival function

H0 : S1(tj) = . . . = Sd(tj) for all j = 1, . . . , s.
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It is clear that H0 is closing to H∗0 if pj|z → 0 as s→∞.

Let (Ti, zi), i = 1, . . . , n, be the survival times and covariates of participants
involved into research project. If all participants are followed up to ts we may classify
them by failure time into s groups, by z into d groups and construct contingency
table. Classical methods of categorical data analysis like chi-square or likelihood
ratio categorical tests are valid in this case. Unfortunately, failure time for missed
at follow up before ts participants is not specified. Classification observations of this
kind to some group as well as just removing them from the analysis leads to some bias
of the corresponding expected frequencies relatively to the true value of parameters
in the contingency table.

The right censored survival data model is commonly used for such kind of exper-
imental design. Let (T, U, z) be the failure time, censoring time and the covariate.
The observed variables are (X, δ, z), where X = T ∧ U , δ = 1I{T≤U}. Associate the
corresponding variables (Ti, Ui, δi), i = 1, . . . , n, to all participants. Then, the ob-
served data are given by (Xi, δi, zi), where Xi = Ti∧Ui and δi = 1I{Ti≤Ui}, i = 1, . . . , n.
The right censored survival data model will be used in sections 2 and 3. An extended
model including unobserved random left truncation variable will be considered in
section 4.

A contingency table experimental design is universal for wide number of applica-
tions. There are examples of application of classical categorical tests in right censored
data case [5, 9, 10]. In section 2 we discuss several problems in application classical
methods of categorical data analysis for right censored survival data.

Categorical tests using grouping for right censored survival data case are presented
widely in literature. Likelihood ratio tests with grouped right censored survival data
were investigated in [12]. A chi-square type test for survival data due to Habib &
Thomas [4]. Advanced properties of chi-square type tests are obtained in [2, 3].
Hollander & Pena [7] consider chi-square test statistic for simple null hypotheses in
censored data case and its limit behaviour. We consider contrasts based categori-
cal tests on independence for survival data in section 3. The results are obtained
immediately from limit theorems for Nelson–Aalen and Kaplan–Meier estimators.

A common problem in application of survival analysis in epidemiology is that
the precise time of initiation for an individual into ”at risk” group (time zero) is
typically unknown and can’t be estimated. One strategy involves using recruitment
time as time zero. However, some of statistical conclusions on failure time may
be incorrect or inaccurate in this case. In AIDS research the time of initiation for
an individual into ”at risk” group is the HIV infection time and it is observed for
seroconverters (patients with an accurate date of HIV infection (the midpoint between
a patients clinical visit that is HIV negative and the next visit which is HIV positive)).
Seroprevalent participants (patients who enter the study already HIV positive) are
also included into analysis and can be used to improve efficiency of the analysis.
Problems of applications of survival methods in epidemiology and AIDS research will
be discussed in section 4.

Clearly, the interval censored data models are more appropriate in the consid-
ered experimental design. Conversely, if the intervals of grouping are much larger
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then times between visits, categorical type inference should not be sensitive on im-
preciseness of failure times, because the Kaplan–Meier estimator in a fixed point is
dependent on order of failures and censorings observed before this time point, but
not on the exact values.

2 Classical categorical tests and their applications

to survival data analysis

The categorical experimental design based on classification of individuals to groups
by one or several characteristics is very universal. Methods of the categorical data
analysis are commonly using asymptotic normality of cell quantities as estimators
of cell probabilities. It is important to take into account true cell probabilities for
correct interpretation results of categorical analysis.

Consider cohort experimental design with failure time T as the response variable
and categorical covariate z as the exposure variable. Assume for simplicity that two
categories are specified for failure time: T ≤ t1 and T > t1. In AIDS research partic-
ipants are classified to rapid and slow progressors by failure time is smaller of larger
then the breakpoint t1 respectively. Participants censored before the breakpoint can
not be classified correctly because we can’t say definitely whether individual of such
kind is rapid or slow progressor. Different kinds of strategies for participants censored
before the breakpoint t1, including removing them from the analysis, lead to bias of
the observed cell probabilities (expected frequences by the observed data) from target
cell probabilities. Consider three possible strategies: all individuals censored before
the breakpoint t0 are removed from the analysis; all censored individuals including in-
dividuals without symptoms of disease at the endpoint are removed from the analysis
and all individuals are classified by event time. Denote the expected cell probabilities
q

(k)
i|z , i = 1, 2, k = 1, 2, 3.

The observed cell probabilities in this case are given by

q
(1)
1|z = P (T ≤ t0|{T ≤ U} ∪ {U > t0}; z) = P (T ≤ U ∧ t0|z)

/ (
1−P (U < T ∧ t0|z)

)
;

q
(2)
1|z = P (T ≤ t0|T ≤ U ; z) = P (T ≤ U ∧ t0|z)/P (T ≤ U ; z); q

(3)
1|z = P (T ∧U ≤ t0|z)

and q
(k)
2|z = 1−q(k)

1|z . Assume that the distribution of censoring time U is not dependent

of z and have a survival function G(x) = P (U > x) with G(0) = 0. Then under
independence of T and U ,

q
(1)
1|z =

∫ t

0

G(x) dFz(x)
/ (

Sz(t0)G(t0) +

∫ t0

0

G(x) dFz(x)
)

;

q
(2)
1|z =

∫ t0

0

G(x)dFz(x)
/ ∫ ∞

0

G(x)dFz(x); q
(3)
1|z = 1−G(t0)Sz(t0).

The corresponding biases are

q
(1)
1|z−p1|z=Sz(t0)

(
G(t0)(Sz(t0)−1)+

∫ t

0

G(x) dFz(x)
)/(

Sz(t0)G(t0)+

∫ t0

0

G(x) dFz(x)
)

=
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=Sz(t0)

∫ t0

0

(1− Sz(x)) dG(x)
/ (

Sz(t0)G(t0) +

∫ t0

0

G(x) dFz(x)
)

=

=Sz(t0)
P (T ≤ U < t0)

1−P (U ≤ T ∧ t0)
,

where p1|z = Fz(t0) and G(x) = 1−G(x);

q
(2)
1|z − p1|z =

∫ t0

0

(G(x)− C)dFz(x)
/
C, where C =

∫ ∞
0

G(x)dFz(x)

and
q

(3)
1|z − p1|z = Sz(t0)G(t0).

Remark that classical categorical tests are valid if to change true null hypothesis
H0 by

H̃0 : q1|1 = . . . = q1|d.

In most of cases the problem is to find difference between groups of individuals with
different values of covariates. In this sense changing H0 by H̃0 has no fundamental
importance, but classical categorical approach is not applicable for interpretation
results in terms of selected categories (rapid and slow progressors in AIDS research).

On the other hand, contamination of the estimated parameters by nuisance pa-
rameter caused by censoring may leads to missing efficiency of the test.

3 Categorical survival tests

Let 0 < t1 < . . . < ts < γT are such that Si(tk1)−Si(tk2) > 0 for all 1 ≤ k2 < k1 < γT ;

H0 : S1(tl) = . . . = Sd(tl), for all l = 1, . . . , s.

Denote, θij = Si(tj). Introduce the parameters θi = (θi1, . . . , θis)
′. Let ψi = Aθi,

where A = ‖aij‖ is (d − 1) × d -matrix of linearly independent contrasts, i. e.∑d
j=1 aij = 0 for all i and rk(A) = d − 1. Then, H0 can be rewritten in terms

of contrasts
H0 : ψ1 = . . . = ψd−1 = 0.

Let θ̂ij = Ŝi(tj) be the estimator for θij, where Ŝi is the Kaplan–Meier estimator
for Si, i = 1, . . . , d. Using the convergence

√
n(Ŝi(t)/Si(t)− 1)⇒ Wσ2

i (t),

where Wt is the standard Wiener process and σ2
i (t) is some positive nondecreasing

function we obtain convergence

√
ni(θ̂i1 − θi1, . . . , θ̂is − θis)′ ⇒ N(0,Σi),

and the asymptotic covariance matrix Σi = ‖σi:qr‖ is such that σi:qr = θiqθirσ
2
i (tq∧tr),

q, r = 1, . . . , s. We are using Σ̂i with σ̂i:qr = θ̂iqθ̂irσ̂
2
i (tq∧tr), where σ̂2

i (t) is a consistent
estimator of σ2

i (t).
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Introduce the random vector θ = (θ11, . . . , θ1s, . . . , θd1, . . . , θds)
′ and the corre-

sponding estimator θ̂ = (θ̂11, . . . , θ̂1s, . . . , θ̂d1, . . . , θ̂ds)
′. Then,

√
n(θ̂ − θ)⇒ N(0,Σ), (1)

and Σ = diag(l1Σ1, . . . , lnΣd) is the block-diagonal matrix, li = n/ni for i = 1, . . . , d.
Associate with any aij diagonal matrix Aij = aijIs, where Is is the identity matrix

of size s and construct matrix B of size (d− 1)s× ds from blocks Aij in appropriate
order. It is obviously that B is a matrix of linearly independent contrasts and the
null hypothesis can be rewritten in vector form

H0 : Bθ = 0.

Taking into account (1) we obtain that under null hypothesis

n θ̂
′
Q̂−1θ̂ ⇒ χ2

(d−1)s,

where Q̂ = B′(BΣ̂B′)−1B.
Analogous test can be based on Nelson–Aalen estimator of cumulative intensities

Λi(t) and Λi(t) = − logSi(t) under continuous Si(t), i = 1, . . . , d. Introduce param-
eters κi = (κi1, . . . , κis)

′, where κij = Λi(tj). In terms of φi = Aκi, i = 1, . . . , d,
where A is the contrasts matrix, the null hypothesis can be rewritten as

H0 : φ1 = . . . = φd−1 = 0.

Using martingale asymptotic result for the Nelson–Aalen estimators we obtain that
√
ni(Λ̂i(x)− Λi(x))⇒ Wτ2

i (x),

where τ 2
i (x) is the corresponding variance function, i = 1, . . . , d. Then,

√
ni(κ̂i1 − κi1, . . . , κ̂is − κis)′ ⇒ N(0,Υi),

and the asymptotic covariance matrix Υi = ‖τi:qr‖ is such that τi:qr = τ 2
i (tq ∧ tr),

q, r = 1, . . . , s. We are using Σ̂i with τ̂i:qr = τ̂ 2
i (tq ∧ tr), where τ̂ 2

i (x) be a consistent
estimator of τ 2

i (x), i = 1, . . . , d.
Introduce the random vector κ = (κ11, . . . , κ1s, . . . , κd1, . . . , κds)

′ and the corre-
sponding estimator κ̂ = (κ̂11, . . . , κ̂1s, . . . , κ̂d1, . . . , κ̂ds)

′. Then,
√
n(κ̂− κ)⇒ N(0,Υ), (2)

and Υ = diag(l1Υ1, . . . , lnΥd) is the block-diagonal matrix, li = n/ni for i = 1, . . . , d.
The null hypothesis can be written now in the following form:

H0 : Bκ = 0.

By (2), we obtain that under null hypothesis

n κ̂′R̂−1κ̂⇒ χ2
(d−1)s,

where R̂ = B′(BΥ̂B′)−1B.
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4 Applications in Epidemiology and AIDS research

General problem in application of survival methods in epidemiology is that the true
failure time T is mostly unobserved and investigators are replace it by the recruitment
time. Denote V is the time period from initiation of an individual into ”at risk” group
and recruitment time. It is reasonable to take into account two kinds of censoring:
censoring associated with the individual and censoring associated with experimental
conditions. We note them U1 and U2 respectively. We assume that (T, U1, U2) and V
are independent. The response failure and censoring times (T ∗, U∗) are identical in
distribution to (T − V, U1 − V ∧ U2) conditionally on X1 ≥ V , where X1 = T ∧ U1.
Then, (X∗, δ∗, z) are observed for any participant, where X∗ = T ∗∧U∗, δ∗ = 1I{T≤U}.
Remark that

P(T ∗ ∈ [t, t+ ε)|X∗ ≥ t) = P(T − V ∈ [x, x+ dx)|T − V ≥ x, U1 − V ≥ x, U2 ≥ x) =

=

∫ ∞
0

P(T ∈ [x+ v, x+ v + dx)|T ≥ x+ v, U1 ≥ x+ v, U2 ≥ x) dH(v).

Under

P(T ∈ [y, y + ε)|T ≥ y, U1 ≥ y, U2 ≥ y − v) = P(T ∈ [y, y + ε)|T ≥ y, U1 ≥ 0)

for y > v > 0 a.s. we obtain the independent censoring condition for the observed
data

P(T ∗ ∈ [t, t+ε)|X∗ ≥ t)=P(T−V ∈ [t, t+dt)|T−V ≥ t,X1≥0)=P(T ∗∈ [t, t+ε)|T ∗ ≥ t).

Then, methods of survival analysis are applicable to the observed data with the orig-
inal theoretical distribution of failure time T changed by the conditional distribution
of T − V conditionally on X1 ≥ V . Under independence of T, U1 and V we have the
following survival function of T ∗

S∗(x|z) = P(T − V > x|T − V > 0) =

∫ ∞
0

S(x+ v|z) dH(v)
/ ∫ ∞

0

S(v|z) dH(v).

The remarkable property of the exponential distribution is a constant hazard rate
function. By this property left truncated exponential distribution coincides with the
original one, i. e. S∗(·|z) ≡ S(·|z). This property remains correct under independent
random left truncation. Then, statistical conclusions obtained under the exponential
distribution of survival time assumption can be applied correctly for T . On the
other hand, for Weibull’s parametric model, including exponential distributions as
a particular cases, obtained statistical conclusions should be interpreted in terms of
distribution of T ∗. The exponential model is acceptable for HIV epidemic model, but
for AIDS progression it is not acceptable at all.

Consider categorical design in AIDS progression study with binary classification of
individuals by distribution of failure time to rapid and slow progressors. The contrasts
framework discussed in section 3 as well as other methods of survival analysis are
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valid for seroconverters. Seroprevalent participants can be used to increase power of
homogeneity test of the original (non categorical) hypothesis H∗0 . Results obtained by
using seroconverters only can be interpreted in terms of slow and rapid progressors,
and results obtained by using seroconverters and seroprevalents can be interpreted in
terms of differences between populations with different values of covariates. In spite
of the distribution of V is not identifiable in general, comparative analysis of the
estimated distributions of survival times in group of seroconverters and seroprevalents
can be used to get partial information on the distribution of V in some special cases.

The methods and conclusions presented here have applications for performing
more statistically robust analyses of genome wide association studies (GWAS) in
AIDS research and in other complex diseases [1, 5, 8, 11]. They also bear on genome-
wide statistical correction required for multiple SNPs and test hypotheses used in
GWAS . Clearly the most optimal genetic epidemiological analytical methods are
required to uncover the genetic determinants of disease heterogeneity in complex
chronic and infectious diseases.
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Abstract

Inspired by the multiple decrement problem in actuarial mathematics, we
consider how to estimate of unconditional distributions from data obeying con-
ditional distributions. We show three such methods. The first one is nonpara-
metric and according to a standard idea of actuarial mathematics. The second
one is based on nonparametric density estimation. The last one, the main part
of this paper, is parametric based on maximum likelihood estimations. Various
examples are shown.

Keywords: multiple decrements, actuarial mathematics, estimation, con-
ditional distribution, unconditional distribution.

Introduction

One of main topics in actuary mathematics is “multiple decrements”. For example,
life insurance contracts may be finished by two random causes, death of contractants
or cancellation of contracts. Let X and Y be the time of cancellation and the time
of death of contractants from a certain stating period respectively. Life insurance
companies are interested in the probability distribution P {X ≤ x}, but X is ob-
served only if X ≤ Y . That is, what is actually observable is a cancellation data
obeying conditional distribution P {X ≤ x | X ≤ Y }. How can we estimate the
unconditional probability distribution function P {X ≤ x} from data obeying the
conditional distribution function P {X ≤ x | X ≤ Y }? Similar problems sometimes
occur. For example, authors studied previously “life tables of marriages”, that is,
rates of Japanese married couples who will divorce eventually. In this problem, what
can be observed are cases both of couple are alive. A widow might divorce if his or
her partner would live longer.

In this paper, we consider three methods of estimating the unconditional distri-
bution from data obeying the conditional distribution.

1 Basic formulations

Let X, Y be two mutually independent random variables with P {X < Y } > 0. We
have the following relation:

P (X ≤ x) = P (X ≤ x | X ≤ Y ) + P (Y < X)[P (X ≤ x | Y < X)− P (X ≤ x | X ≤ Y )].
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Let f(s) and F (s) (resp. g(s) and G(s)) be the density and the CDF of X (resp. Y ).
If we let M =

∫
f(s)[1−G(s)]ds, then

P (X ≤ x & X ≤ Y ) =

∫∫
s≤x,s≤t

f(s)g(t)dsdt =

∫ x

−∞
f(s)[1−G(s)]ds,

P (X ≤ Y ) =

∫
f(s)[1−G(s)]ds = M,

P (X ≤ x & Y < X) =

∫∫
s≤x,t≤s

f(s)g(t)dsdt =

∫ s

−∞
f(s)G(s)ds,

P (Y < X) = 1−M.

Therefore the conditional CDF H(x) = P (X ≤ x | X ≤ Y ) has the density function

h(s) =
f(s)[1−G(s)]

M
. (1)

In the following, we consider three methods of estimating the unconditional distribu-
tion F form data obeying the conditional distribution H. Another distribution G is
assumed to be known in the first two methods. It may be unknown and is estimated
together with F in the last method.

Remark 1. Although it is not always necessary, we assume X, Y ≥ 0 in the sequel
unless otherwise stated. F and G may be discrete distributions with appropriate
modifications.
Also it is seen that we can recover f from h only if G(s) < 1 whenever f(s) > 0.

Remark 2. C. R. Rao already noticed (1) and called it “Calcutta blackout distribu-
tion” (probably a joke), see [5]. If X and Y be the time necessary to complete a
laboratory experiment and the the time where electric power blackout happens from
a certain starting time respectively, X can be observed only if X < Y .

Remark 3. We can also consider the conditional distribution P {X ≤ x | X > Y }. It
is a kind of truncated distributions and its density function is

h(s) =
f(s)G(s)

1−M
.

2 Nonparametric method (1) – Piecewise linear

interpolations

The idea of interpolating F and G piecewise linearly is standard in actuarial mathe-
matics, see [3]. If G(x) is known and we can approximate F (x) and G(x) linearly in
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an interval x ∈ (a, b]:

F (s) ≈ F (a) +
F (x)− F (a)

x− a
(s− a) a < s < x (≤ b),

G(s) ≈ G(a) +
G(x)−G(a)

x− a
(s− a) a < s < x (≤ b),

then, from integrations in parts,∫ x

a
sf(s)ds = xF (x)− aF (a)−

∫ x

a
F (s)ds

≈ xF (x)− aF (a)−
∫ x

a

[
F (a) +

F (x)− F (a)

x− a
(s− x)

]
ds

=
x+ a

2
[F (x)− F (a)],∫ x

a
f(s)G(s)ds =

∫ x

a
f(s)G(s)ds

≈
∫ x

a
f(s)

[
G(a) +

G(x)−G(a)

x− a
(s− x)

]
ds =

G(x) +G(a)

2
[F (x)− F (a)].

Therefore, for a < x ≤ b,

F (x)− F (a)− P (a < X ≤ x | X ≤ Y ) =

∫ x

a

[
M − 1

M
f(s) +

1

M
f(s)G(s)

]
ds

≈ M − 1

M
[F (x)− F (a)] +

1

M

G(x) +G(a)

2
[F (x)− F (a)]

=
2(M − 1) +G(x) +G(a)

2M
[F (x)− F (a)]

and, finally, we can get an approximation

F (x) ≈ F (a) +
2M

2−G(x)−G(a)
P (a < X ≤ x | X ≤ Y ), a < x ≤ b.

Let F̂ (a) be an estimate of F (a) (of course, F̂ (0) = 0), P̂ (a < X ≤ x | X ≤ Y )
and M̂ be estimates of the conditional probability P (a < X ≤ x | X ≤ Y ) and M
respectively, we can estimate F (x) for x ∈ (a, b] by

F̂ (x) = F̂ (a) +
2M̂

2−G(x)−G(a)
P̂ (a < X ≤ x | X ≤ Y ), a < x ≤ b.

In practice, let x0 = 0 < x1 < x2 < · · · be a fine division of [0,∞) and let

F̂ (x) = F̂ (xn−1) +
2M̂

2−G(x)−G(xn−1)
P̂ (xn−1 < X ≤ x | X ≤ Y ) xn−1 < x ≤ xn.

If a = min{x;G(x) = 1} < ∞, the preceding recurrence relation can be applied till
the interval with xn−1 < a ≤ xn. F̂ (x) is monotone increasing if P̂ (X ≤ x | X ≤ Y )
is monotone increasing. If M ′ = limx↑∞ F̂ (x) 6= 1, then we should replace M̂ by

M̂/M ′.
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3 Nonparametric method (2) – Density estimation

The relation (1) can be rewritten as

f(s) = M
h(s)

1−G(s)
∝ h(s)

1−G(s)
. (2)

Therefore, if we have an estimate ĥ(s) of the density function h from data and if G
is known, we can get the estimate f̂(s) of f by

f̂(s) = C
ĥ(s)

1−G(s)
.

The normalizing constant C can be determined by the condition

C

∫
ĥ(s)

1−G(s)
ds = 1.

As to nonparametric density estimation, kernel-type density estimators are well-
known, see [6].

4 Parametric method – Maximum likelihood

estimation

Consider parametric families fθ(s) and gξ(s). The conditional density is

h(s) = hθ,ξ(s) =
fθ(s)[1−Gξ(s)]

M(θ, ξ)
,

where

G(s) = Gξ(s) =

∫ s

−∞
gξ(t)dt, M = M(θ, ξ) =

∫
fθ(s)[1−Gξ(s)]ds.

Its log-likelihood is

LL(θ, ξ) =
n∑
i=1

log hθ,ξ(Xi) =
n∑
i=1

log fθ(Xi) +
n∑
i=1

log[1−Gξ(Xi)]− n logM(θ, ξ)

and its log-likelihood equations are

∂LL

∂θj
=

n∑
i=1

1

fθ(Xi)

∂fθ(Xi)

∂θj
− n

M(θ, ξ)

∂M(θ, ξ)

∂θj

=
n∑
i=1

1

fθ(Xi)

∂fθ(Xi)

∂θj
− n

M(θ, ξ)

∫
∂fθ(s)

∂θj
[1−Gξ(s)]ds = 0,

∂LL

∂ξk
= −

n∑
i=1

1

1−Gξ(Xi)

∂Gξ(Xi)

∂ξk
− n

M(θ, ξ)

∂M(θ, ξ)

∂ξk

= −
n∑
i=1

1

1−Gξ(Xi)

∂Gξ(Xi)

∂ξk
+

n

M(θ, ξ)

∫
fθ(s)

∂Gξ(s)

∂ξk
ds = 0. (3)
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ξ is fixed if g is known. In order to solve log-likelihood equations (3), it is necessary
to be able to compute functions M and their derivatives. Usually functions M are
fairly complex, but can be sometimes expressed in terms of higher transcendental
functions. In the sequel, we list seven such examples among others. As to higher
transcendental functions and their basic properties, see, e.g., [1, 2]. For various
univariate distributions, we refer to [4].

In the following, const stands for a term which is independent of relevant param-
eters. Notations such as r(X) mean 1/n ·

∑n
i=1 r(Xi).

(1) Exponential and Exponential distributions. Let fθ(x) = θe−θx and gξ(x) = ξe−ξx

(x > 0). Then Gξ(x) = 1− e−ξx, LL(θ, ξ) = n log(θ + ξ)− n(θ + ξ)X̄ and, therefore,
we can only estimate θ + ξ. On the other hand, if ξ is known,

1

n

∂LL(θ, ξ)

∂θ
=

1

θ + ξ
−X = 0

and the MLE of θ is θ̂ = 1/X̄ − ξ.
(2) Gamma and Exponential distributions. Fix k > 0.

fα(s) =
αk

Γ(k)
sk−1e−αs, gλ(s) = λe−λs, M = (α/(α + λ))k.

Hence

1

n
LL(α, λ) = const+ k log(α + λ)− (α + λ)X,

1

n

∂LL

∂α
=

1

n

∂LL

∂λ
=

k

α + λ
−X = 0.

It is seen that we can estimate only α + λ.
(3) Exponential and Gamma distributions. Fix k > 0. Let γ(a, x) is the incomplete

gamma function of the first kind.

fλ(s) = λe−λs, gβ(s) =
βk

Γ(k)
sk−1e−βs,

Gβ(s) =
γ(k, βs)

Γ(k)
, M(β, λ) = 1− (1 + λ/β)−k.
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Hence

1

n
LL(β, λ) = const+ k log(β + λ) + log λ− λX − log((β + λ)k − βk)

+
1

n

n∑
i=1

log(Γ(k)− γ(k, βXi)),

1

n

∂LL

∂λ
=

k

β + λ
+ λ−1 −X − k(β + λ)k−1

(β + λ)k − βk
= 0,

1

n

∂LL

∂β
=

k

β + λ
− k (β + λ)k−1 − βk−1

(β + λ)k − βk
− 1

n

n∑
i=1

Xi(βXi)
k−1e−βXi

Γ(k)− γ(k, βXi)
= 0.

(4) Gomperz and Exponential distributions. Let Γ(z, p) be the incomplete gamma

functions of the second kind.

fα,β(s) = βα · exp(βs− α(eβs − 1)), gλ(s) = λe−λs, M = αλ/βeαΓ(1− λ/β, α).

Hence

1

n
LL = (β − λ)X − α

n

n∑
i=1

eβXi − log Γ(1− λ/β, α) + (logα + log β − (λ/β) logα),

1

n

∂LL

∂α
= −eβX +

α−λ/βe−α

Γ(1− λ/β, α)
+ (1− λ/β)/α = 0,

1

n

∂LL

∂β
= X − αXeβX + β−1 −

λ
∫∞
α
t−λ/βe−t log t dt

β2Γ(1− λ/β, α)
= 0,

1

n

∂LL

∂λ
= −X − logα

β
+

∫∞
α
t−

λ
β e−t log t dt

βΓ(1− λ/β, α)
= 0.

(5) Beta and Exponential distributions. Let B(x, y), 1F1(α, γ;x) and ψ(x) be the

beta, Kummer’s confluent hyper-geometric and the digamma function respectively.

fα,β(x) =
1

bB(α, β)

(
x

b

)α−1(
1− x

b

)β−1

0 ≤ x ≤ b

gξ(x) = ξe−ξx, M = 1F1(α, α + β;−bξ).
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Hence

1

n
LL = const− ξX̄ + αlogX + βlog(1−X/b)− logB(α, β)

− log 1F1(α, α + β;−bξ),
1

n

∂LL(θ, ξ)

∂α
= X̄ − ψ(α) + ψ(α + β)− (ψ(α + β)− ψ(α))× 1F1(α, α + β;−bξ)

− (α− 1)1F1(α− 1, α + β − 1;−bξ) = 0,

1

n

∂LL(θ, ξ)

∂β
= Ȳ − ψ(β) + ψ(α + β)− (ψ(α + β)− ψ(β))× 1F1(α, α + β;−bξ)

− (β − 1)× 1F1(α− 1, α + β − 1;−bξ) = 0,

1

n

∂LL(θ, ξ)

∂ξ
= −X̄ +

bα

α + β
× 1F1(α + 1, α + β + 1;−bξ) = 0.

(6) Pareto and Exponential distributions Fix b > 0. Let Wk,µ(z) be Whittaker func-

tion.

fa(s) =
a/b

(s/b)a+1
, gλ(s) = λe−λx, M = a(bλ)a(λb)−(a+1)/2e−(λb)/2W−(a+1)/2,−a/2(λb).

Hence

1

n
LL = const+

(1− a) log λ

2
+
a log b

2
− logW−(a+1)/2,−a/2(λb)− λX +

bλ

2
− alogX,

1

n

∂LL

∂a
= − log λ

2
+

log b

2
− logX +

eλb/2(λb)(a+1)/2
∫∞
λb

e−t

ta+1 log t dt

W−(a+1)/2,−a/2(λb)
= 0,

1

n

∂LL

∂λ
=

(1− a)

2λ
−X +

b

2
+
λ−(a+1)/2b−(a−1)/2e−λb/2

W−(a+1)/2,−a/2(λb)
= 0.

(7) Exponential and Normal distributions. Let erf(z) and erfc(z) be the error func-

tion and the complementary error function respectively.

fλ(s) = λe−λs, gσ2(s) = (2πσ2)−1/2e−s
2/(2σ2), −∞ < s <∞,

G(s) =
1

2

(
1 + erf(s/

√
2σ2)

)
, M =

1

2

[
1− eλ2σ2/2erfc(λ

√
2σ2/2)

]
.
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Hence

1

n
LL = log λ− log

(
1− eλ2σ2/2erfc(λ

√
2σ2/2)

)
− λX +

1

n

n∑
i=1

log

(
1− erf(Xi/

√
2σ2)

)
,

1

n

∂LL

∂λ
= λ−1 − 1

1− 2eλ2σ2/2(1− Φ(λσ)

[
(2σ2/π)−1/2 − λσ2eλ

2σ2/2erfc(λ
√

2σ2/2)
]
−X

= 0,

1

n

∂LL

∂σ2
=

1

1− 2eλ2σ2/2(1− Φ(λσ))

[
λ2eλ

2σ2/2(1− Φ(λσ))− λ/
√

2πσ2

]
+

1

n

n∑
i=1

[
Xie

−X2
i /(2σ

2)

√
π(2σ2)3/2(1− Φ(Xi/σ))

]
= 0

Conclusions

There are many data which obey some conditional distributions. Although we con-
sider one particular conditioning and and a few examples, the used ideas will be useful
to discuss such data.
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Abstract

A lot of numerical algorithms to simulation of random variables and vectors
and besides to functional numerically-statistical analysis, in which elaboration
the author has took the part, are considered. Practically important specifica-
tions and explanations of the algorithms formulation and substantiations are
given. Keywords: base random number, probability density function, discrete
superposition method, Gaussian vector, generalized exponential distribution ,
branching of trajectories, histogram.

Introduction

Now there are a lot of computing programs complexes for solving the applied prob-
lems by the Monte Carlo method. But sometimes new actual problems appear so
that it is expedient to obtain rapidly the first numerical results by statistical sim-
ulation. For this purpose there are convenient, may be computationally expensive,
but technically simple and easy programing algorithms. In the paper a lot of those
algorithms are presented with practically important remarks related to their substan-
tiation, specification and explanation.

1 Simulation of uniformly distributed pairs of

numbers

Let

ξ, η ∈ 1, n, ξ 6= η.

Those equally probable pairs of numbers are simulated, for example, when solving
non-linear kinetic equations by the Monte Carlo method (see, for example, [1]).

The next algorithm is known:
α1 := rand; α2 := rand;
ξ := entier(α1 × n) + 1; η := entier(α2 × (n− 1)) + 1;
if η ≥ ξ then η := η + 1.
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The substantiation of this algorithm followes from the relation

P (ξ = i, η = j) = P (ξ = i)P (η = j|ξ = i) =

=
1

n− 1
P (ξ = i), j = 1, ..., i− 1, i+ 1, ..., n,

which is related to the fact that the conditional distribution on any fixed subset of
considering pairs is so uniform. It is interesting to remark, that the change: α2 =
nα1 − ξ + 1 is admissible here (see further sect. 5).

Here and further symbol rand denotes the procedure of generating the next, i. e.
every time new, pseudo-random number. Symbol α with different indexes denotes
independent realizations of the based random number uniformly distributed in (0,1).

The additional remark: the random numbers

entier[n(nk−1α− entier(nk−1α))] + 1, k = 1, 2, 3, ...,

are independent and uniformly distributed in 1, n.

2 Simulation of “gamma” and “beta”-distributions

2.1. Here we consider the distribution with the density

fν,λ(x) =
xν−1e−λx

Γ(ν)
, x > 0, λ > 0

for 0 < ν < 1. It is known that the case of arbitrary ν is reduced to considered above
on the base of the “gamma”-distributions composition rule.

The representation holds:

ξν,λ =
ξν
λ
,

where ξν is distributed with the density

fν(x) =
xν−1e−x

Γ(ν)
, x > 0,

because P ( ξν
λ
< x) = Fν(λx) = Fν,λ(x). Simulation of ξν is realized by “majorant

rejection method” [2] based on the relation

g(x) = xν−1e−x ≤ g1(x) =

{
xν−1, x ≤ 1,

e−x, x > 1,

Here the random variable ξ1 with the density (ν−1 + e−1)−1g1(x) is simulated by the
“inverse function method”, i. e. by solving the equation

1

ν−1 + e−1

ξ1∫
0

g1(x) dx = α.

190



Applied Methods of Statistical Analysis

If α < ν−1

ν−1+e−1 = 1
1+νe−1 , then

1

ν−1 + e−1

ξ1∫
0

xν−1 dx = α, ξ1 = [α(1 + νe−1)]1/ν , (3.1)

else

1

ν−1 + e−1

ξ1∫
1

e−x dx = α− ν−1

ν−1 + e−1
, ξ1 = − ln[(e−1 + ν−1)(1− α)]. (3.2)

In the rejection algorithm, which is realized by verification of the inequality α1g1(ξ1) <
g(ξ1), it is possible to decrease the computational cost by cancelling one of factors in
the expression of g(ξ1), i. e. in the case (3.1) ξ = ξ1, if α1 < e−ξ1 , and in the case
(3.2) ξ = ξ1, if α1 < ξν−1

1 .
It is known that the average number of cycles in this rejection algorithm is

proportional to S(ν) = (ν−1 + e−1)/Γ(ν), while S(0) = 1, S(1) = 1 + e−1 and
S ′ν(ν) > 0, 0 < ν < 1 .

Remark, that simulation of “gamma”-distribution is widely used when solving
stochastic problems of meteorology and financian mathematics.

2.2. The density of “beta”-distribution is determined by the formula:

fp,m(x) =
xp−1(1− x)m−1

B(p,m)
, 0 < x < 1,

where p,m > 0 are parameters.
For the case of integer m the following simulating formula is known [2]:

ξp,m = exp

( m∑
k=1

lnαk
p+ k − 1

)
. (3.3)

The derivation of this formula given in textbooks is nonstandard and technically
complex. That derivation is difficult and in this connection formula (3.3) is used
wrongly seldom. But it is possible to verify this formula by transition to the random
variable - ln ξp,m. The corresponding density function is obtained by induction over
m with using the convolution formula:

C0

x∫
0

e−zp(1− e−z)m−1e−(p+m)(x−z)dz =

= C0e
−(p+m)x

x∫
0

ez(ez − 1)m−1dz =

= Ce−(p+m)x(ex − 1)m = Ce−px(1− e−x)m.
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For noninteger p,m it is possible to use the rejection method using as majorant for
xp−1(1− x)m−1 one of the functions:

x[p]−1(1− x)m−1, xp−1(1− x)[m]−1,

exept of the case: p, m < 1, for which the superposition algorithm is premilinarilly
used (see section 5) on the base of the representation:

fp,m(x) =
p

p+m
fp+1,m(x) +

m

p+m
fp,m+1(x).

3 The “majorant (maximal) cross-section method”

for simulating the generalized exponential dis-

tribution

The Poisson random point flux {τi} i = 0, 1, ... with intensity σ(t) is characterized
by the fact that random variables τi − τi−1(i = 1, 2, ...) are distributed accordingly
with the densities

fi(t|τi−1) = σ(t+ τi−1) exp(−T (t; τi−1)), t > 0,

where T (t; τi−1) =
t∫

0

σ(t′ + τi−1) dt′; τ0 = 0.

It is supposed that T (∞; τi−1) = +∞. The distribution of the random variable
ξ = τ1 with the density

f(t) ≡ f1(t|0) = σ(t) exp

(
−

t∫
0

σ(t′) dt′
)
, t > 0,

is named generalized (or nonhomogeneous) exponential distribution.

Let σ(t) ≤ σm(t), while Poisson flux {τ (m)
i } with intensity σm(t) is enough simple

simulated. The majorant cross-section method followes directly from the rejection
property of the flux {τ (m)

i } (see, for example, [3]):

if the points τ
(m)
i (i = 1, 2, ...) are conditionally independly rejected with the probabil-

ities 1 − σ(τi)/σ
(m)(τi) , i. e. are selected with probabilities p(τi) = σ(τi)/σ

(m)(τi),
then the selected points {τj} realize the point flux with intensity σ(t).

On the base of above-stated it is possible to formulate the algorithm of majorant
cross-section:
the flux {τ (m)

i } is realized, while ν = min{i : αi < σ(τ
(m)
i )/σm(τ

(m)
i )} is determined;

in result ξ = τ
(m)
ν .

Corresponding to the variant σm(t) ≡ σm the Coleman algorithm of “maximal
cross-section” can be formulated in especially simple way:

ξ := 0; L : ξ := ξ − ln(rand)/σm; if rand > σ(ξ)/σm(ξ) then go to L.
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Here E(ν) < +∞, in particular, if σ(t) ≥ ε > 0. More real criteria for unequality
E(ν) < +∞ is obtained by considering the probability of “selection after one point”

of the flux τ
(m)
i [3].

The majorant cross-section method is widely used while solving kinetic equations
for geometrically complex radiation models. It is known also the randomized (with
respect to items of the cross-section) variant of this method under the name “method
of majorant frequency” (see, for example, [1]).

4 The modified method of discrete superposition

4.1. Let {pi} are probabilities, {fi(x)} are probability densities, {ψi(α)} are cor-
responding simulating functions and

f(x) =
∑
i

pifi(x), i = 1, 2, ....

According to the discrete superposition method the random variable ξ with the prob-
ability density f(x) is simulated so:

if α1 ∈ ∆k =

[ k−1∑
i=1

pi,
k∑
i=1

pi

)
then ξ = ψk(α2).

The value α2 can be here changed on

(
α1 −

k−1∑
i=1

pi

)
/pk, since under the condition

α1 ∈ ∆k the value α1 −
k−1∑
i=1

pi is uniformly distributed in the interval [0, pk).

So the modified algorithm is obtained.

4.2. Further the practically important example of using the modified algorithm is
considered.

Let f(x) ≡ f(x; s), ξ ≡ ξs, where s - is a parameter and

f(x; s) =
s− s1

s2 − s1

f(x; s2) +
s2 − s
s2 − s1

f(x; s1), s1 ≤ s ≤ s2,

i. e. f(x; s) in the interval s1 ≤ s ≤ s2 is determined by the linear interpolation
with respect to the parameter. Let (s − s1)/(s2 − s1) = p2, f(x; s1) = f1(x),
f(x; s2) = f2(x), then the corresponding modified algorithm of discrete superposition
is so:

if α < p1 then ξ := ψ1(α/p1) else ξ := ψ2

(
(α− p1)/p2

)
.

It is expedient to use that algorithm for simulation of a particle scattering if the
indicatrix linearly depends on the parameter. If 0 ≤ ξs ≤ s, then here it is expedient
to simulate the random variable ξs/s.
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5 Simulating the Gaussian random vector

The Gaussian vector η = (ηi, ..., ηl)
T with zero average (Eη = 0) and the correlation

matrix K =
{
Kij

}
i, j = 1, ..., l is simulated by the formula: η = Aξ, where

ξ = (ξ1, ..., ξl)
T is the vector with independent standard normal components and

A = {aij} (1 ≤ j ≤ i ≤ l) is the lower-triangular matrix . Let matrix K is positive
and its principal minors are positive respectively. Since EξξT = diag(1, ..., 1), then
the relation holds:

EAξ(Aξ)T = EAξξTAT = AEξξTAT = AAT = R.

From the last equality it is easy to obtain the known (see, for example, [2]) recurrent
representation of the values aij:

ajj =

√√√√Rjj −
j−1∑
k=1

a2
jk, aij =

Rij −
j−1∑
k=1

aikajk

ajj
.

Entier the square root here is the j-th principal minor of matrix K. If the values
Kij are approximated statistically then the principal minors may be nonpositive and
matrix K must be modified. The simplest modification is obtained by the change:
Kij → Kij + ε. More exact modification relates to reducing to zero the nonpositive
eigenvalues of matrix K by using rotation of the coordinat sistem.

Now let us consider the Wiener formulae:

ξ1 =
√
−2 lnα1 cos(2πα2), ξ2 =

√
−2 lnα2 sin(2πα2). (6.1)

The random variables ξ1, ξ2 are independent and standard normal. But, when using
pseudo-random numbers , here the two-dimensional distribution of the point (α1, α2)
must be sufficiently uniform in the unit square.

The vector determined by the formulae (6.1) is isotropic on the plane. It is known
the more general statement:
the random vector (ξ1, . . . , ξn) with independent equally normal distributed compo-
nents is isotropic in Rn.

On the other hand the following expression of the l-th component of the n-
dimensional isotropic vector ωn is obtained in [4]:

Fl(t) = P (xl < t) =
Sl−1

Sl

arc sin t∫
−π

2

cosl−2(Θ) dΘ,

where Sl is the surface area of the unit sphere in Rl. The corresponding algorithm is
especially useful for realization only a subset of vector ωn components.
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6 Algorithms with trajectories branching and the

problem of minimizing the variance of an integer

random variable with given averge

The effective coefficient kef of particle multiplication over generations of branching
trajectories can be estimated by direct simulation which gives numbers {ni} of par-
ticles appearing in the corresponding generations. In result the following statistical
estimate is constructed:

kef ≈ k̃ =
n1 + n2 + . . .+ nm
n2 + n3 + . . .+ nm+1

=
L(2,m)

L(1,m− 1)
.

To improve the estimate some number N of initial generations is neglected, i. e. the
change nN → n1 is performed.

It is known the following asymptotically exact (while N, n1 →∞) estimate of the
variance (see, example, [5]):

Dk̃ ≈
kef (1− kef

Ẽν
) +

kef
Eν
Dν

L(1,m− 1)
, (7.1)

where ν is the random number of particles per one branching. Remark that previously
the item with Dν was neglected, possibly, because the models with the fixed ν were
usually considered. The quantity kef according to given particle transfer model is
totally determined by the values q = Eν independently to the distribution of ν. So
according to (7.1), the problem of minimizing the value Dν arises.

Lemma 6.1. The value Dν is minimal in the class Σq of integer random variables
ν with given value Eν = q, while Dν = (q − [q])(1− q + [q]), if

P (ν = [q]) = 1− (q − [q]), P (ν = [q] + 1) = q − [q]. (7.2)

Proof of the lemma followes directly from well-known “centre” representation of
the variance:

Dν = E(ν − ([q] + 1/2))2 − (Eν − ([q] + 1/2))2,

since the first item here for the distribution (7.2) equals to 1/4, and for any another
distribution from Σq it is less than 1/4.

7 The elementary histogram-type functional

estimate

In the particle transfer problems with branching and intersection of trajectories (see
sect. 7, 4) statistical simulation gives the realization of the point field of N par-
ticles (or collision) arrangement in the l-dimensional phase space X. Further the
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corresponding density ϕ(x) is estimated usually as histogram by determining the
frequencies {ni/N}, where ni is the random points number in the cell ∆i (of the
domain D ⊂ X) with the phase volume hl, i = 1, 2, . . .. Consider the problem of
the uniform (with respect to i) minimizing the histogram -estimate error by choosing
of h relativily to N . It is clear that the practically sufficient solution of this prob-
lem is obtained in the case when the probabilistic error approximately equals to the
deterministic one:

D
( ni
Nhl

)
≈ sup

x∈∆i

(
ϕ(x)− E(

ni
Nhl

)
)2
. (8.1)

Under the assumption about weak the values ni dependency it is possible for
optimizing the histogram to consider the above-mentioned point field as the Poisson
one with the intensity ϕ(x). Because of that

E(ni) = D(ni) = N

∫
∆i

ϕ(x) dx,

D(
ni
Nhl

) ≈

∫
∆i

ϕ(x) dx

Nh2l
≈ ϕ̃i
Nhl

,

where ϕ̃i = h−l
∫
∆i

ϕ(x) dx is the middle-integral value of ϕ(x) in ∆i. Therefore it is

possible to rewrite (8.1) in the form:

ϕ̃i
Nhl

≈ cih
2,

where ci ≈ sup
x∈∆i

|gradϕ(x)|2.

So, the approximately optimal (for the i-th cell) value h is expressed by the
formula

h ≈
( ϕ̃i
Nci

) 1
l+2 .

For uniform optimizing the histogram it is necessary to average this value with
respect to i. Here the weak fluctuating the value ϕ̃i/ci is desirable. In particular it
is fulfilled for exponential densities ϕ(x).

Remark, that the above-mentioned approach was used in [1] for optimizating the
global statistical estimate of the solution of a nonlinear kinetic equation.

8 The distributive method of using the

pseudo-random numbers

It is expedient to determine different pseudo-random numbers subsequences for real-
izing the corresponding statistical trials, i. e. trajectories of the investigating random
process. It is possible to name this method as distributive one, because it is especially
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convenient for distributed computating (see, example, [6]). To realize this method
it is possible to use an auxiliary generator, which gives initial numbers for above
basic subsequences totally determining them [2]. If the basic generator is multiplica-
tive congruent one with the factor M then it is expedient to use as auxiliary one
the similar generator with the factor Mµ, where µ is the necessary length of a ba-
sic subsequence. So the partition of the basic congruent pseudo-random sequence is
realized.

The distributive method correlates statistical estimates for different versions of
computations, improving the parametrical analysis of results.
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Abstract

Some aspects of usage and substantiation of standard vectorial algorithm of
statistical modeling of polarized radiation transfer are considered. Due to the
fact that the appropriate statistical estimates can have the infinite variance,
the method of “`-fold polarization”, in which recalculation of a Stokes vector on
a “scalar” trajectory is carried out no more, than ` times, is offered deprived
of this deficiency. Dual representation of mean squares of the Monte Carlo
estimates of studied functionals and an evaluation of vector estimates variances
are considered also.

Keywords: transfer of polarized radiation, statistical simulation, variance
of a standard vector Monte Carlo estimate

Introduction

Light propagation can be treated as a random Markov chain of photon-substance
collisions that lead to either photon scattering or photon absorption. In the Monte
Carlo method, the trajectories of this chain are simulated on a computer and statis-
tical estimates for the desired functionals are computed. The construction of random
trajectories for a physical model of the process is known as direct simulation. No
weights are used, and the variances of Monte Carlo estimates are always finite (see
[2]). In the case of considered polarized radiation, a general matrix-weighted algo-
rithms for solving systems of radiative transfer integral equations with allowance for
polarization were constructed and preliminarily studied in [2, 5].

This paper is devoted to additional researches of the variant of the matrix-weight
algorithm based on direct simulation of scalar transfer process. Due to the fact that
the appropriate statistical estimates can have the infinite variance, the method of
“`-fold polarization”, in which recalculation of a Stokes vector on a scalar trajectory
is carried out no more, than ` times, is offered deprived of this deficiency. Thus
polarization is not exactly taken into account, but errors of required estimates can
be quite small.

Also this paper examines the finiteness of the variance of corresponding standard
vector Monte Carlo estimates, which is required for constructing the correct confi-
dence intervals. To this end, in [5] is considered the system of integral equations
defining the covariance matrix of a weighted vector estimate. Numerical estimates
based on the iteration of the resolvent showed that the spectral radius of the corre-
sponding matrix-integral operator is fairly close to the product of the spectral radius
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for an infinite medium, which is calculated analytically, and the easy-to-estimate
spectral radius of the scalar integral operator associated with an identity scattering
matrix. In the purpose of enhancement of analytical study of this practically impor-
tant factorization, in this paper is given obtained at [4] dual (to the one which is
considered in [3]) representation of the mean square error of the estimates of consid-
ered functionals.

1 General information

Various methods are available for describing the polarization properties of light. The
most widespread and convenient method is that proposed by Stokes in 1852, who
introduced four parameters I, Q, U, V with the dimension of intensity, which deter-
mine the intensity, degree of polarization, polarization plane, and degree of ellipticity
of radiation. In what follows, we consider the corresponding components of the Stokes
vector function of light intensity:

I(r, ω) =
(
I1(r, ω), I2(r, ω), I3(r, ω), I4(r, ω)

)T
.

The simplest phenomenological Markov model of polarized radiative transfer arises
when the medium is assumed to be isotropic. The only difference from the standard
scalar model is that the scattering phase function is replaced with a scattering matrix,
which transforms the Stokes vector associated with a given photon at a scattering
point (see [2, 6]).

We used the following notations: x = (r, ω) is a point of the phase space, r is a
point of R3 space, ω = (a, b, c) is a unit direction vector aligned with the run of the
particle (a2 + b2 + c2 = 1); µ = (ω, ω′) is the cosine of the scattering angle, ϕ is the
azimuthal scattering angle, r11(µ) is the scattering phase function, σ(r) is the extinc-
tion coefficient, q(r) is the probability of scattering, l is the free path, pχ(l; r′, ω) is
the sub-stochastic distribution density of the free path l from the point r′ in the di-
rection ω: pχ (l; r′, ω) = σ (r′ + ωl) exp (−τop (l; r′, ω)) , l ≤ l∗ (r′, ω) ; τop(l; r

′, ω) =

τop(r
′, r) =

l∫
0

σ (r′ + sω)ds is the optical length of the interval [r′, r′ + lω = r] , and

l∗ (r′, ω) is the distance from the point r′ in the direction ω up to the boundary of the
medium, which may be assumed to be convex. Here, the trajectory can terminate
since the particle escapes from the medium.

Let F (x), H(x) are the column vectors of the functions f1(x), ..., f4(x) and
h1(x), ..., h4(x), respectively, and

Φ(x) = (ϕ1(x), ϕ2(x), ϕ3(x), ϕ4(x))T = σ(r)I(x)

is the vector density of collisions.
The system of integral equations describing radiative transfer with allowance for

polarization has the following matrix kernel:

K(x′, x) =
q(r′)e−τop(r′,r)σ(r)P (ω′, ω, r′)

|r− r′|2
× δ
(
ω − r− r′

|r− r′|

)
.
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Thus, we have a vector-integral equation of transfer with allowance for polarization
with respect to the vector function Φ:

Φ(x) =

∫
X

K(x′, x)Φ(x′)dx′ + F (x), Φ = KΦ + F. (1)

Lets call the operator K the matrix-integral transfer operator. Monte Carlo al-
gorithms are based on a representation of the solution of the Eq. (1) in the form of
a Neumann series. Such a representation holds if the norm of the operator K (or of
its power Kn0) is less than unity [2, 5].

Linear functionals of the solution of the integral equation are usually estimated
by applying Monte Carlo methods. In the case of a system of second-kind integral
equations, the general Monte Carlo algorithm for estimating such functionals can be
described as follows.

Suppose that we want to calculate the functional

IH = (Φ, H) =
m∑
i=1

∫
X

ϕi(x)hi(x)dx =
∞∑
n=0

(KnF,H) .

Here, H is a vector function with absolutely bounded components; i.e., H ∈ L∞. A
homogeneous Markov chain {xn} in the phase space X is defined by the probability
density π(x) of the initial state x0, by the transition probability density r(x′, x) from
x′ to x, and by the probability p(x′) that the trajectory terminates in the transition
from the state x′. The function p(x′, x) = r(x′, x)[1 − p(x′)]) is called the transition
density.

An auxiliary random vector Q of weights is defined by the formulas

Q0 =
F (x0)

π(x0)
, Qn = [K(xn−1, xn)/p(xn−1, xn)]Qn−1, Q(i)

n =
4∑
j=1

Q
(j)
n−1

kij(xn−1, xn)

p(xn−1, xn)
.

We assume that the weight factors are limited, i.e.

kij(x
′, x)

p(x′, x)
< C < +∞ ∀ x, x′ ∈ X; i, j ∈ 1, 4.

By analogy with a single integral equation, it is shown ( see [2, 3]) that IH =
(Φ, H) = Eζ, where

ζ =
N∑
n=0

QT
nH(xn) =

N∑
n=0

4∑
i=1

Q(i)
n Hi(xn). (2)

Here, N is the random index of the last state of the chain. Relation (2) describes
the Monte Carlo algorithm for estimating IH . The substantiation of this relation
essentially relies on the expansion the solutions of equations in the Neumann series
(see [2]). Since the first component in (2) is nonnegative, it can be averaged term by
term. The remaining components can be averaged because of the majorant property
of the first component (see [2]).
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Consider the Monte Carlo algorithm for computing the intensity and polariza-
tion of multiply scattered light. The simplest part in this problem is the transition
probability density r(x′, x), which is defined by the kernel k11(x′, x) corresponding
to radiative transfer without allowance for polarization. Obviously, in the simulation
of such process, the vector of “weights” after scattering has to be transformed by a
matrix with the elements kij(x

′, x)/k11(x′, x).
As was mentioned above, a light ray is characterized by the Stokes vector I =

(I,Q, U, V ). The unscattered solar light I0 is assumed to be natural; i.e., I0 =
(I0, 0, 0, 0)T.

After scattering, the Stokes vector I is transformed according to the formula

I(r, ω) = P (ω′, ω, r) · I(r, ω′),

where P (ω′, ω, r) = L(π − i2)R(ω′, ω, r)L(−i1)/2π,

L(i) =


1 0 0 0
0 cos 2i sin 2i 0
0 − sin 2i cos 2i 0
0 0 0 1

 .

Here, i1 is the angle between the plane ω′, s and the scattering plane ω′, ω; i2 is the
angle between the scattering plane ω′, ω and the plane ω, s; and s is a vector of the
local spherical system of coordinates [2].

For an anisotropic medium, all 16 components of the scattering matrix R(ω′, ω, r)
are generally different. For an isotropic medium, the scattering matrix simplifies to

R(ω′, ω, r) =


r11 r12 0 0
r21 r22 0 0
0 0 r33 r34

0 0 −r43 r44

 , rij ≡ rij(µ, r).

If the scattering particles are homogeneous spheres, then r11 = r22, r12 = r21, r33 =

r44, r34 = r43. The matrix R is normalized so that
1∫
−1

r11(µ) dµ = 1.

New photon’s direction ω after scattering is defined by the scattering angle θ and
the azimuthal angle ϕ. The cosine µ of the angle θ is simulated according to the r11,
i.e., according to the scattering phase function. The angle ϕ ∈ (0, 2π) is assumed
to be isotropic and is equal to that between the planes ω′, s and ω, ω′ measured
counterclockwise when viewed against the incident ray ω′. Thus, the azimuthal angle
is equal to i1. After the new direction was chosen, i1 and i2 can be found using
spherical trigonometry formulas.

The procedure for updating the Stokes vector after scattering includes the formu-
las

I(r, ω) = r11 · I(r, ω′) + r12 · A,
Q(r, ω) = (r21I(r, ω′) + Ar22) cos 2i2 − (r33B − r34V (r, ω′)) sin 2i2,
U(r, ω) = (r21I(r, ω′) + Ar22) sin 2i2 + (r33B − r34V (r, ω′)) cos 2i2,

V (r, ω) = r43B + r44V (r, ω′),

(3)

whereA = Q(r, ω′) cos 2i1−U(r, ω′) sin 2i1, B = Q(r, ω′) sin 2i1+U(r, ω′) cos 2i1.
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2 Method of `-fold polarization

The “scalar” integral equation ϕ = Kϕ+f [2] corresponding to the base scalar model
of radiation transfer can be written in the vector form:

Φ0 = K0Φ0 + F0,

where Φ0 = (ϕ, 0, 0, 0)T, F0 = (f, 0, 0, 0)T and K0 is matrix-integral operator corre-
sponding to the diagonal scattering matrix: R = diag(r11, r11, r11, r11).

After ` iterations of the equation (1) beginning with Φ0, we get such approximation
to the solution Φ:

Φ` = K`Φ0 +
`−1∑
n=0

KnF =
∞∑
n=0

K`Kn
0F0 +

`−1∑
n=0

KnF. (4)

We designate the usage of formula (4) for the approximate computation as “the
method of `-fold polarization” (see, also, [1]).

For constructing the corresponding estimate we should use instead of ζ from (2)
the following random variable:

ζ` =
∞∑
n=0

δnqnQ̃
T
nH(xn+`) +

min(`−1,N)∑
n=0

QT
nH(xn).

Here qn are scalar weights, i.e.

q0 =
f(x0)

π(x0)
, qn = qn−1

k11(xn−1, xn)

p(xn−1, xn)
,

and the vector weight Q̃n corresponding to `-fold polarization is calculated by the
formula

δn+`
K(xn+`−1, xn+`)

p(xn+`−1, xn+`)
· . . . · δn+1

K(xn, xn+1)

p(xn, xn+1)
I0,

where I0 = (1, 0, 0, 0)T ; δn is an indicator that a trajectory doesn’t terminate before
the state xn.

The point of special interest for the solution of atmospheric optics problems (see,
for example, [7]) is the estimate of an influence of polarization on the intensity of

radiation, i.e. the difference ∆p(x) = ϕ1(x) − ϕ(0)
1 (x), where ϕ

(0)
1 (x) corresponds to

approximate scalar model.
Quantity ∆p(x) is an error in intensity estimate ϕ1(x) caused by non-account of

polarization. We denote the value ∆p(x) produced by `-fold polarization as ∆
(`)
p (x).

If a source of radiation is non-polarized, i.e. F0 = (f, 0, 0, 0)T, then we have, due

to (3), ∆
(1)
p (x) = 0. Hence, “in first approximation” for estimate of ∆p(x) we should

use value ∆
(2)
p (x), whose statistical estimate is easy to find from formulas (3).

Let’s denote xn, xn+1, xn+2 as x′′, x′, x and let ID be an indicator of domainD ⊂ X.
In case F ≡ F0 and H = (ID, 0, 0, 0)T, which corresponds to the estimate of the
integral

∫
D

ϕ1(x)dx for non-polarized source, we have from (3):

qnQ̃
T
n = qn∆′∆I′0(r11r

′
11 + r21(µ′)r12(µ) cos 2i′2 cos 2i1 − r22(µ′)r12(µ) sin 2i′2 sin 2i1),
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where ∆′,∆ are indicators that trajectory doesn’t terminate with transition to points
x′, x. Due to finiteness of weight multipliers the vector norm ‖Q̃‖ of auxiliary weight
is uniformly bounded and Dζ` < ∞ if Dζ0 < ∞. The last inequality holds in case
of direct simulation for basic scalar model and also when absorption or escape from
medium are not simulated and instead are accounted by weight multipliers, which
are equal to probabilities of these events.

3 Criterion for the finiteness of the Eζ2

Consider the space L1 of matrix functions Ψ(x) with norm ||Ψ|| =
∫
X

m∑
i,j=1

|Ψi,j(x)|dx

and define the linear functional

(Ψ,Ψ∗) =
∫
X

tr[Ψ(x)Ψ∗T(x)]dx =
∫
X

m∑
i,j=1

Ψi,j(x)Ψ∗i,j(x)dx,

Ψ∗ ∈ L∞, ‖Ψ∗‖L∞ = vrai sup
i,x
‖Ψ∗i (x)‖ [4].

Define also a linear operator Kp by

[KpΨ](x) =

∫
X

KT(y, x)Ψ(y)K(y, x)

p(y, x)
dy

and, accordingly to [3], linear operator K∗p:

[K∗pΨ
∗](x) =

∫
X

K(x, y)Ψ∗(y)KT(x, y)

p(x, y)
dy.

Since tr(AB) = tr(BA), then tr(ΨKΨ∗TKT) = tr(KTΨKΨ∗T), and therefore
(Ψ,K∗pΨ

∗) = (KpΨ,Ψ
∗). Moreover, we have |(Ψ,Ψ∗)| ≤ ||Ψ||L1||Ψ∗||L∞ .

Hence ||Kp||L1 = ||K∗p||L∞ and ρ(Kp) = ρ(K∗p).
Note also that the operator Kp leaves invariant the cone L+

1 ⊂ L1 of symmetric
nonnegative definite matrix functions, because the transformation KTΨK preserves
the nonnegative definiteness of matrices Ψ.

The following statement is proved in [4].
Theorem. Suppose that ρ(Kp) < 1, FFT/π0 ∈ L1, H ∈ L∞.
Then

Eζ2 = (Ψ, H[2Φ∗ −H]T),

where Φ∗ = K∗Φ∗ +H, Ψ = KpΨ + FFT/π0, and Ψ ∈ L+
1 .

Note that in [3] dual presentation of Eζ2 was constructed:

Eζ2 =

∫
X

FT(x)Ψ∗(x)F (x)

π(x)
dx = (

FFT

π
,Ψ∗),

where Ψ∗ = HΦ∗T + Φ∗HT −HHT + K∗pΨ
∗.
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In [5] the spectral radius ρ(Kp) of the operator Kp was estimated by resolvent
iterations on the basis of the limit relation of the form:

F T [λI−K]−(m+1)H

F T [λI−K]−mH
→ 1

λ− ρ(K)
, λ > ρ(K), I = diag(1, 1, 1, 1).

In order to improve the convergence of the algorithm in place of H(xn)HT(xn)
was taken ψ(0), i.e. the first eigenfunction of the operator Sp, which represents the
realization of Kp for the case of the infinite medium where FT = (1, 0, 0, 0).

It appeared that even for optically thin layers approximate equality
ρ(Kp) ≈ ρ(Sp)ρ(Lp) is correct, here Lp is scalar integral operator with the kernel
k2

11(x′, x)/p(x′, x).
In [5] is shown more detailed then in [3], that value λ0 = ρ(Sp) is the solution of

the system of equations:

c11 + c21a1 = λ0

c12 + (c22 + c33)a1 + c43a2 = 2λ0a1

c34a1 + c44a2 = λ0a2

where cij =

1∫
−1

r2
ij (µ)

p2 (µ)
dµ and p2(µ) is simulated distribution density of µ = (ω, ω′).

It was found that for the aerosol scattering the value λ0 is majorated with the
value λm = 1, 178, corresponded to the molecular scattering. On the other hand, for
the real atmosphere layers value ρ(Lp) is small, therefore ρ(K∗p) < 1 and Dζ < +∞.

In [5] the results of calculations of the spectral radii of the operators Kp and
Lp for the molecular and the aerosol scattering are presented. Obtained values of
ρ(Kp)/ρ(Lp) statistically insignificant differ from the analytically found values ρ(Sp)
and are estimated with sufficient accuracy using even only the first iteration of the
resolvent.

On basis of the dual representation obtained in [4] new approximate estimate of
the ρ(Kp) is constructed [1]:

ρ(Kp) ≈ ρ̃(Kp) =
(KpΨ0, I)

(Ψ0, I)
≈ Cρ(L̃p)ρ(Sp), (5)

and a value C is not significantly different from 1. Here I = diag(1, 1, 1, 1), Ψ0 =
Ψ̃∗ψ̃(x), Ψ̃∗ is considered above eigenmatrix of the operator Sp and ψ̃(x) is the main
eigenfunction of the scalar operator L̃p, which corresponds to the radiation model
with the replacement of anisotropic scattering on an isotropic, i.e. with r11 ≡ 1/2
and p̃11(µ) ≡ 1/2.

This estimate (5) isn’t contrary to the numerical results given in [5], because for
corresponding flat layers with the isotropic scattering it was obtained that ρ(L̃p|τ =
1) ≈ 0.62, ρ(L̃p|τ = 2) ≈ 0.78, ρ(L̃p|τ = 4) ≈ 0.9, and this values are sufficiently
close to the values of ρ(Lp) from [5]. The estimate (5) can be recommended for
practical use taking into account that for the optically thick media the substitution
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of the essentially anisotropic scattering with the isotropic scattering slightly increases
the value ρ(Lp).

Also the value ρ0(L̃p|τ = 10) ≈ 0.974 was obtained. Hence, we have for the flat
layer with the optical thickness 10 and the molecular scattering: ρ(Kp) ≈ 0.974 ·
1.178 = 1.15, and with the aerosol scattering ρ(Kp) ≈ 0.974 · 1.02077 = 0.994.
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Abstract

This work deals with statistical modeling through branching processes. The
main motivation is the study of stochastic models to describe the demographic
dynamics of sexually reproducing populations. We introduce a class of two-sex
branching models where the reproduction phase is affected, in each generation,
by the current numbers of females and males in the population. Under a
nonparametric setting, we provide some inferential results.

Keywords: Branching models, nonparametric methods, statistical model-
ing.

Introduction

Branching processes are appropriate probabilistic models to describe the evolution
of systems whose components (cells, particles, individuals, etc.) after certain life
period reproduce and die. They have especially played a major role in modeling
general population dynamics, see Jagers (1975), Kimmel and Axelrod (2002), Guttorp
(1991) or Haccou et al. (2005). We are particularly interested in stochastic models for
description of populations where females and males coexist and form couples (female-
male mating units). This research line was initially considered in Daley (1968) where
the called bisexual Galton-Watson process was introduced. From Daley’s model,
several classes of two-sex branching processes have been studied, see Hull (2003) and
Molina (2010). In particular, significant efforts have been made to develop models
based on the assumption that the reproduction phase is influenced by the number
of couples in the population, see e.g. Molina et al. (2002, 2004) and Xing and
Wang (2005). However, in many biological populations, it is more realistic to assume
that the reproduction phase is affected by the numbers of females and males in the
population. Such situations have not been studied in the literature about two-sex
processes. In an attempt to contribute some solution, we introduce a class of two-sex
branching processes where, in each generation, the offspring probability distribution
is determined taking into account the current numbers of females and males in the
population.

The paper is structured as follows: In Section 2, the new class of two-sex branching
models is formally described and intuitively interpreted. Section 3 is devoted to
investigating some inferential questions. Assuming a general nonparametric setting,
Bayesian estimators for the offspring probability distributions involved in the model
and for their main moments are determined. In order to derive highest posterior
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density credibility sets, a computational algorithm is suggested. In Section 4 we
present our concluding remarks.

1 The two-sex branching model

On a probability space (Ω,F , P ), we define the discrete-time two-sex process {Xn}∞n=0,
Xn = (Fn,Mn), as follows:

Xn+1 =
Zn∑
i=1

(
f
ϕ(Xn)
n,i ,m

ϕ(Xn)
n,i

)
, Zn+1 = L(Xn+1), n ∈ N (1)

where the empty sum is considered to be 0 = (0, 0) and N denotes the set of non-
negative integers.

1. The process starts with f0 ≥ 1 females and m0 ≥ 1 males in the population,
namely X0 = (f0,m0).

2. Xn+1 = (Fn+1,Mn+1) represents the numbers of females and males in the (n+
1)st generation. These females and males form Zn+1 couples according to the
mating function L assumed to be non-decreasing in each argument, integer-
valued on the integers and satisfying that L(f, 0) = L(0,m) = 0, f,m ∈ N.

3. ϕ is a function defined on N2 and taking values in the set Ng = {1, . . . , g}, being
g a positive integer which represents the number of reproductive situations
that may occur in the specie. The reproductive situation depends, in each
generation, of the current numbers of females and males in the population.

4. Given that Xn = x = (f,m) ∈ N2 then, irrespectively of n ≥ 1,(
f
ϕ(x)
n,i ,m

ϕ(x)
n,i

)
, i = 1, . . . , L(x)

are independent and identically distributed random vectors with probability
distribution:{

p
ϕ(x)
k,l

}
(k,l)∈Sϕ(x)

, p
ϕ(x)
k,l = P

(
f
ϕ(x)
1,1 = k,m

ϕ(x)
1,1 = l

)
, Sϕ(x) ⊂ N2.

which is referred to as the offspring probability distribution when there are f
females and m males in the population. The variables f

ϕ(x)
n,i and m

ϕ(x)
n,i represent,

respectively, the number of females and males descending from the ith couple
in the nth generation.

{Xn}∞n=0 is a process developing in an environment which changes, stochastically
in time, influenced by the current number of females and males in each generation.
Initially, x0 = (f0,m0), so the number of couples is z0 = L(x0). Each of these
couples produces a random number of females and males according to the offspring
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probability distribution {pϕ(x0)
k,l }(k,l)∈Sϕ(x0)

and then disappears. Hence, the number of

females and males in the first generation, x1 = (f1,m1), is determined by summing the
corresponding numbers of female and male descendants. These descendants produce
z1 = L(x1) couples which reproduce according to the offspring probability distribution

{pϕ(x1)
k,l }(k,l)∈Sϕ(x1)

. Then, we obtain the next generation of females and males, x2 =

(f2,m2), and so on.

From (1) we deduce, almost surely, that:

E[Xn+1 | X0, . . . ,Xn] = E[Xn+1 | Xn], n ≥ 1.

On the other hand,

P (Xn+1 = y | Xn = x) = P

L(x)∑
i=1

(
f
ϕ(x)
n,i ,m

ϕ(x)
n,i

)
= y

 =
(
pϕ(x)
y

)∗L(x)

with ∗ denoting the convolution of distributions.

Note that, if for some n ≥ 1, Xn = 0, then we have that Xn+m = 0, m ≥ 1.

Consequently, {Xn}∞n=0 is a homogeneous Markov chain, being 0 an absorbing
state. For the particular case when g = 1, the model (1) is reduced to the classical
bisexual Galton-Watson process studied in Daley (1968).

2 Some inferential results

Let {Xn}∞n=0 be a two-sex branching process (1). We assume that g is known and
that, for each h ∈ Ng, Sh is a finite set. By simplicity, let us write:

ph =
(
phk,l; (k, l) ∈ Sh

)
, phk,l = P

(
fh1,1 = k,mh

1,1 = l
)
> 0, h ∈ Ng.

We are considering a nonparametric setting. Therefore, no assumption is made
about the functional form of the offspring probability distributions involved in the
two-sex branching model.

a Bayesian estimation

We shall determine Bayesian estimators for p1, . . . ,pg. To this end, we consider the
observation of the entire family tree, up to the nth generation is reached:{

Xi,
(
f
ϕ(Xi)
i,j ,m

ϕ(Xi)
i,j

)
, i = 0, . . . , n; j = 1, . . . , L(Xi)

}
For (k, l) ∈ Sϕ(Xi), let

Zi,(k,l) =

L(Xi)∑
j=1

1{(fϕ(Xi)
i,j ,m

ϕ(Xi)
i,j )=(k,l)}, i = 0, . . . , n
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be the number of couples in the ith generation giving rise to exactly k females and l
males. Clearly,

Zi =
∑

(k,l)∈Sϕ(Xi)

Zi,(k,l), Xi+1 =
∑

(k,l)∈Sϕ(Xi)

(k, l)Zi,(k,l), i = 0, . . . , n.

Let us denote by L the corresponding likelihood function. We deduce that:

L
(
p1, . . . ,pg |

{
Xi,
(
f
ϕ(Xi)
i,j ,m

ϕ(Xi)
i,j

)
, i = 0, . . . , n; j = 1, . . . , L(Xi)

})
∝

g∏
h=1

∏
(k,l)∈Sh

(phk,l)
Y h
n,(k,l) (2)

where, for each (k, l) ∈ Sh,

Y h
n,(k,l) =

∑
{i∈{0,...,n}: ϕ(Xi)=h}

Zi,(k,l)

represents the total number of couples in the first n generations which have produced
exactly k females and l males.

From (2), see e.g. Bernardo and Smith (1994) or Mendoza and Gutierrez-Peña
(2000), we derive that an appropriate conjugate class of prior distributions on (p1, . . . ,pg)
is given by the following product of Dirichlet distributions:

π(p1, . . . ,pg) =

g∏
h=1

Cτh

∏
(k,l)∈Sh

(phk,l)
τhk,l−1 (3)

where, for h ∈ Ng,
τ h =

(
τhk,l; (k, l) ∈ Sh

)
, τhk,l > 0

is a parameter vector and

Cτh =
∏

(k,l)∈Sh

(Γ(τhk,l))
−1Γ(τh∗ ), τh∗ =

∑
(k,l)∈Sh

τhk,l.

Let the σ-algebra:

An = σ
(
Xi,
(
f
ϕ(Xi)
i,j ,m

ϕ(Xi)
i,j

)
, i = 0, . . . , n; j = 1, . . . , L(Xi

)
.

From (2) and (3), conditioned to An, we obtain as posterior distribution of
(p1, . . . ,pg) the product of Dirichlet distributions:

π(p1, . . . ,pg | An) =

g∏
h=1

Cγh

∏
(k,l)∈Sh

(phk,l)
γhk,l−1 (4)

Cγh =
∏

(k,l)∈Sh

(Γ(γhk,l))
−1Γ(γh∗ ), γh∗ =

∑
(k,l)∈Sh

γhk,l
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γh =
(
γhk,l; (k, l) ∈ Sh

)
, h = 1, . . . , g

where
γhk,l = τhk,l + Y h

n,(k,l).

Result 3.1 Considering squared error loss function, the Bayesian estimator of phk,l is
given by:

p̂hk,l = (γh∗ )
−1γhk,l, (k, l) ∈ Sh, h ∈ Ng.

Proof. From (4), we deduce as marginal posterior distribution corresponding to phk,l
the Beta distribution with parameters γhk,l and γh∗ − γhk,l. Thus, assuming squared

error loss function, the Bayesian estimator of phk,l, (k, l) ∈ Sh is given by:

p̂hk,l = E
[
phk,l | An

]
= (γh∗ )

−1γhk,l.

For h ∈ Ng, let us denote by:

µh1 = E[fh1,1], µh2 = E[mh
1,1]

σh11 = V ar[fh1,1], σh22 = V ar[mh
1,1], σh12 = Cov[fh1,1,m

h
1,1].

assumed to be finite.

Result 3.2 Considering squared error loss function, the Bayesian estimators of µhi
and σhij, i, j = 1, 2; h ∈ Ng, are given by:

µ̂hi = (γh∗ )
−1

∑
(k1,k2)∈Sh

kiγ
h
k1,k2

,

σ̂hij = (γh∗ (1 + γh∗ ))
−1(γh∗

∑
(k1,k2)∈Sh

kikjγ
h
k1,k2
−

∑
(k1,k2),(l1,l2)∈Sh

kiljγ
h
k1,k2

γhl1,l2).

Proof. Taking into account Result 3.1, we deduce that:

µ̂hi = E[
∑

(k1,k2)∈Sh

kip
h
k1,k2
| An] =

∑
(k1,k2)∈Sh

kiE[phk1,k2
| An]

= (γh∗ )
−1

∑
(k1,k2)∈Sh

kiγ
h
k1,k2

, i = 1, 2.

σ̂hij = E[
∑

(k1,k2)∈Sh

(ki − µhi )(kj − µhj )phk1,k2
| An]

=
∑

(k1,k2)∈Sh

kikjE
[
phk1,k2

| An
]
−

∑
(k1,k2)∈Sh

kikjE
[
(phk1,k2

)2 | An
]

−
∑

(k1,k2) 6=(l1,l2)

kiljE
[
phk1,k2

phl1,l2 | An
]
, i, j = 1, 2.
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The proof is completed using that:

E
[
(phk1,k2

)2 | An
]

=
(
γh∗ (γ

h
∗ + 1)

)−1
γhk1,k2

(γhk1,k2
+ 1).

E
[
phk1,k2

phl1,l2 | An
]

=
(
γh∗ (γ

h
∗ + 1)

)−1
γhk1,k2

γhl1,l2 , (k1, k2) 6= (l1, l2).

b Highest posterior density credibility sets

From π(phk,l | An), we can determine sets of probable values of phk,l. The most common
procedure is based on looking at the points where the posterior density takes the
highest values:

I(c) = {phk,l : π(phk,l | An) ≥ c}

where the constant c is chosen such that, given a credibility coefficient 1− α,∫
I(c)

π(phk,l | An)dphk,l = 1− α.

We say that I(c) is a high posterior density credibility set.
From the posterior densities of µhi and σhij, i, j = 1, 2, we could derive the cor-

responding highest posterior density credibility sets. It is not easy to compute such
posterior densities. By applying Monte Carlo method we can derive very accurate
approximations. We suggest the following procedure:

1. We generate a sufficiently large number of values for phk,l according to the pos-

terior density π(phk,l | An).

2. Using that:

µhi =
∑

(k1,k2)∈Sh

kip
h
k1,k2

, σhij =
∑

(k1,k2)h∈S

kikjp
h
k1,k2
− µhi µhj , i, j = 1, 2

we calculate the corresponding values of µhi and σhij.

3. By applying a Gaussian kernel method, see e.g. Silverman (1986), we estimate
the posterior densities of µhi and σhij, i, j = 1, 2.

Conclusions

Inside the general context of statistical modeling, we have focused our interest on
stochastic models describing the probabilistic evolution of two-sex populations with
sexual reproduction. To this end, several classes of branching processes have been
studied. However, the range of models investigated is not large enough to get an
optimum modeling in some populations. It might seem conceivable that by several
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factors, in many biological populations the reproduction phase is influenced by the
numbers of females and males in the population. These situations have not been
considered in the literature about two-sex processes. The motivation behind this
work has been the interest in developing appropriate stochastic models to describe
the demographic dynamics in such populations. To sum up:

• We have introduced a new class of two-sex branching models which considers
several reproductive situations. In each generation, the offspring probability
distribution which governs the reproduction phase, is determined according to
the numbers of females and males in the population.

• We have developed some inferential methods. By considering a general non-
parametric setting, we have determined Bayesian estimators for the offspring
probability distributions involved in the probability model (Result 3.1) and for
their corresponding mean vectors and covariance matrices (Result 3.2).

• We have suggested a computational algorithm to determine the corresponding
highest posterior density credibility sets.

It is worth pointing out that in addition to its theoretical interest, the class of
two-sex branching processes introduced has also practical implications, especially in
population dynamics. In this respect, we have developed a specific software for both
the simulation of the model and the practical application of the inferential methods
studied.
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Abstract

This paper reviews the current state of the problem of statistical analy-
sis with missing data and methods of its solution. It is proposed to use a
resampling-method for solving this problem. The work is aimed at demonstra-
tion of resampling possibilities for this task and investigation of the effectiveness
of a resampling method.

Keywords: missing data, maximum-likelihood estimation, resampling-
method.

Introduction

Evaluation of the nuclear power plant equipment reliability is an important issue in
the development of nuclear power engineering. These estimates are important for
planning maintenance, repairs and determination of the spare elements composition.
NPP equipment falls into the category of highly reliable equipment, the failures of
such facilities are rare events. Therefore, statistical methods are used to predict the
equipment lifetime. To achieve this task, you should use all available information
on the functioning of one-type equipment, including information on NPP operation
without failure and information about equipment operation when the failure fixation
has not occurred. Thus, the objective is to develop a parametric approach to restora-
tion of the density distribution of time to failure based on censored data and missing
data.

Today this objective is particularly relevant, as far as many nuclear power plants
of Russia were built in the 60s and 70s, the equipment during that time was heavily
worn, the cracks began to appear. Data about failures have not always been collected
systematically. Requirements to data gathering were formulated in the middle of 80s.
Therefore, there is a amount of facilities with samples of missing data.

Knowing all the information about the research object, the most appropriate
method for estimating the density distribution of time to failure is parametric. This
is caused by fact that the distribution function is known with the accuracy within a
set of parameters measured for the sample given.

For evaluation of parameters distribution laws we use the maximum-likelihood
estimation method (MLE). This method is widely used in estimating the parameters
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of complex systems. It also serves as the basis for procedures of testing statistical
hypotheses and confidence interval estimation. Performance estimates obtained pro-
duced by the method of maximum likelihood have a amount of important properties,
such as unbiasedness, asymptotic efficiency, consistency. The likelihood function has
only single maximum, which considerably simplifies the analysis of the distribution
parameter estimates.

Since this paper is aimed at analyzing the problem of reliability characteristics
taking into account missing data, consequently, before using MLE, it is essential
to restore missing data. A resampling-method will be used to restore the missing
data. This method combines four basic approaches that differ in the algorithm,
but they are similar in effect: randomization or permutation test, bootstrap, the
method of jackknife and the method of cross-validation. They belong to the new
class of a computer-intensive technology and are widely used to verify the statistical
hypothesis or to obtain unbiased characteristics of the parameter required, such as of
expectation, variance and confidence interval estimates. This method is implemented
in a higher-level language C/C++.

1 Data description

When solving the issues of statistical evaluation of reliability elements and systems,
the task of collecting and presenting the original information about the analyzed
object behavior is of special relevance. The accuracy of estimates and calculations of
reliability characteristics depends on the accuracy and validity of initial information.

Therefore, in statistical analysis one has to face with a situation when at certain
time intervals the information on object behavior is missing. There is a situation with
missing data (Fig. 1), which significantly complicates the mathematical processing
and leads to a shift in the basic statistical characteristics such as mathematical ex-
pectation and dispersion.

Fig. 1 shows the situation where data collection on object functioning has begun
at a specific time moment T1. Data collection has been performed within the [0, T1]
interval. Data represent the operating time which can be both the time to failure
and the operating time to censoring.
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Figure 1: Data description

Fig. 1 gives censored data (dashed lines) and missing data (stars).
Let N facilities are under observation. There is a set of data at a given time for

each object. During the object operation in the interval from 0 to T1 the information
on object behavior is not fixed. Data are collected from T1 to T2, have been: equip-
ment failures, censored data (when the tested equipment has no faults). Based on
observations results in the interval [T1, T2] can be obtained time to failure, operating
time to censoring for each object. The problem is to restore data in the interval
[T1, T2] and to estimate the distribution parameter, taking into account missing data,
which can be failures as well as censored data for the whole operating time.

The reason to restore missing data is the fact that in practice statistical analysis is
limited by the analysis of not total population as a whole, but only a selective amount
of observations. The analyzed sample should meet high-quality and completeness
criteria. In reality, we are often faced with a situation where some of the properties
of one or more objects are absent, i.e. there is a situation with missing data, which
significantly complicates mathematical processing, since the displacement of main
statistical characteristics, such as mathematical expectation or variance, for example,
increases the proportion ally to the amount of missing.

2 Development of the method for accounting the

missing data by resampling

There are missing data at the time interval [0, T1], which must also be taken into
account when calculating the system reliability.

The problem of reconstructing missing data in this paper is solved with a proce-
dure based on a resampling-method.

The method consists in the following:
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1. From observation results in the interval [T1, T2] the distribution parameter es-
timate is recovered from data taking into account both the complete and the
censored operating time.

2. The amount of operating time is predicted n in the interval [0, T1] for each
group:

n =
mT1

T2 − T1

, (1)

where m is the amount of operating time in the interval [T1, T2]. Such a ratio
is possible in the case of a uniform failure flow.

3. In parametric approach, the distribution function is being known in advance.
The amount of operating time n is simulated from the distribution function.

4. Samples are combined.

5. The distribution parameter is estimated with allowance for censored and missing
data.

6. The mean time and standard deviation are calculated for the original sample
and the recovered data.

Figure 2: Method for recovering the missing data from distribution function
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3 A test example

As the original information used are the data obtained from random variable simu-
lation in accordance with the given distribution (exponential distribution law). The
time to a failure is simulated with λ1= 0.002 and censored data with λ2 = 0.003. The
amount of failures and censored data determined randomly in a given interval [0, T2],
and are 242 and 54, respectively.

Having taken a simulated sample 30% of data are removed artificially. After this
operation the amount of failures and censored data is 170 and 39. The distribution
law is assessed for each of the resulting data sets (λ1 = 0.00180 for the time to failure
and λ2 = 0.00358 for the operating time to censored data). The whole totality of data
is also evaluated, where λ = 0.00162 and root-mean is found σ = 1.211*10−4. Dis-
tribution law parameters and variances were assessed using the method of maximum
likelihood.

Then an amount of operating time n is predicted in the interval [0, T1] for each of
data groups (n1 = 35 failure and n2 = 8 censored).

Simulation has been performed on the basis of (λ1 and λ2) estimates and the
predicted amount of operating time (n1 and n2) (Fig. 2). The simulated sample was
combined with the existing full operating time for which distribution law parameters
were evaluated by MMPs. Next, the pooled sample is broken down into failure
and censored data and re-evaluation was done for each of groups (λ1 and λ2). The
resulting estimates of distribution law parameter are used for new modeling of missing
data. The process is repeated a several times. Then the mean value of the estimated
distribution law λ = 0,00162 and root-mean σ = 1,038e-004 are found. Results for
one object are presented in Table 1.

Table 1: Results

Failure Censored
λmodeling 0.002 0.003
The amount of each operating time type
simulated in the interval [T1, T2] 170 39
λ for the obtained operating time flow 0.00162
Root-mean deviation, excluding missing data 1.211*10−4

λ for grouped data in the interval [T1, T2] 0.00180 0.00358
The predicted amount of operating time for
each data type in the interval [0, T1] 64 15
λ with missing data 0.00162
Root-mean deviation with missing data 1.038*10−4
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Figure 3: Estimated results and confidence intervals for different amount of missing
data

Figure 4: The variance values

219



Novosibirsk, 25-27 September, 2013

Conclusions

Now it is clear that the recovered data influence the estimate. Fig. 3 shows plots of
the estimations with confidence intervals. Although the assessment does not change,
data recovery significantly reduces the variance when a high percentage of missing
data. As a result, root-mean deviation (Fig. 4) shows the value dispersion of a random
variable with respect to its mathematical expectation. Accounting missing data can
improve the accuracy of produced estimates. Optimization problems controlling the
operation of nuclear power plants are solved with a high degree of certainty.
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Abstract

The numerical stochastic model of spatio-temporal indicator fields of daily
sums of liquid precipitation at the stations, as well as on regular grid on the
basis of observation data is considered in this paper. The approach to mod-
eling is based on a threshold transformation specially selected Gaussian field
and stochastic interpolation of indicator fields from weather stations to a grid
points. The specificity consists in the method of approximate accounting of
the field spatial inhomogeneity.

Keywords: numerical stochastic model, indicator field, precipitation, in-
homogeneity.

Introduction

In the given paper the numerical stochastic models of spatio-temporal indicator fields
of the daily sums of liquid precipitation on a regular and irregular grids are considered.
The approach to modeling is close to the approaches considered in [1], [4], [6], [8]
and is based on threshold transformation of Gaussian field with the specially given
correlation matrix. The method of the approaches account of heterogeneity of a field
consists in modeling a non-homogeneous field at the stations with the subsequent
stochastic interpolation of indicators from stations to a grid points. The results of
the verification models are given in this paper. To construct the models the data
of 15-year precipitation observations at 47 stations of the Novosibirsk region for the
warm half of the year were used.

The spatio-temporal field can be represented as a series of spatial fields in which
the temporal and spatio-temporal correlations are given on the basis of the real
information. In case, when the field is homogeneous in space and stationary in time,
the correlation function can be given as product of spatial and temporary correlations,
which corresponds to direct product of the spatial and temporary correlation matrices
constructed on these correlations for the field on a given grid. Modeling methods of
Gaussian fields with the such correlation structure are known [6]. In this paper we
will consider the method of modeling of heterogeneous indicator precipitation fields
in which Gaussian fields at the stations are modeled by using a stationary vector
autoregression process with the given matrix covariance function. The elements of
this matrix are estimated by real samples. The principle of constructing indicator
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fields of precipitation based on Gaussian spatio-temporal fields will be discussed in
the first section.

1 Numerical stochastic model of spatial fields of

daily sums of liquid precipitation at the stations

The joint stationary time series ~ω1, . . . , ~ωn = ~ω(n) of indicators of daily precipitation at
the stations (or spatio-temporal field {ωi,t}, i = 1, . . . ,m, t = 1, 2, . . . , n, (m = 47)
at the stations) are constructed as a threshold transformation of a Gaussian spatio-
temporal field {ξi,t}with mean zero in the form [1], [4], [6], [8]

ωi,t =

{
1, ξi,t ≤ ci
0, ξi,t > ci

. (1)

Here, the quantities ci (we will use the approach, according to which ci do not
depend on t) are determined from the equations

pi = P (ωi = 1) =
1√
2π

ci∫
−∞

e−
1
2
u2

du (2)

for the given probability of precipitation pi at the stations. The elements of the
block Toeplitz correlation matrix G(n) = (Gk−l) = (Gh), k, l = 1, . . . , n with the
blocks Gh = (gik,jk+h) , i, j = 1, . . . ,m, h = 0, . . . , n − 1 or, for simplicity
G(n) = G = {gij}, of the Gaussian field {ξi,t} associated with the corresponding
elements of the correlation matrix S(n) = (Sh) = S = {sij}of the field {ωi,t} by the
following relation [1]

sij = 1
2

(√
piqj
pjqi

+
√

pjqi
piqj

)
− (T (ci,aij)+T (cj ,aij))√

piqipjqj
,

T (ci, aij) = 1
2π

aij∫
0

e−
c2i (1+u2)

2
du

1+u2 , aij =
ci−cjgij
cj
√

1−g2
ij

,
, (3)

where qi = 1− pi = P (ωi = 0), and T (ci, aij) is the Owen function [2].
Gaussian field {ξi,t} at the stations or stationary sequence of Gaussian vectors

~ξ1, . . . , ~ξt, . . . , ~ξn = ~ξ(n),

where ~ξk = (ξ1k, . . . , ξmk)
T are the vectors of dimension m with the given matrix co-

variance functions (or block Toepliz covariance matrices) required for the construction
of the field {ωi,t} were simulated by using a vector autoregression process [6], [5]:

~ξt = ~BT
1 [q]~ξt−1 + . . .+ ~BT

q [q]~ξt−q + C~ϕt, t = 1, . . . , n.

The initial vectors are calculated recursively by the following scheme

~ξ1 = C0~ϕ1, ~ξk = ~BT [k − 1]J(k−1)
~ξ(k−1) + Ck−1~ϕk, k = 2, . . . , q
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where ~ϕk are independent Gaussian vectors of the dimension m,

J(k)G
−1
(k)J(k)

~Gk = ~B[k], ~B[k] =
(
BT

1 [k], . . . , ~BT
r [k]

)T
,

~Gk = (GT
1 , . . . , G

T
k )T , CkC

T
k = Qk, Qk = R0 − ~BT [k]R̃(k)

~B[k],

J(k) =

∥∥∥∥∥∥
0 · · · I
· · · · · · · · · · · ·
I · · · 0

∥∥∥∥∥∥ −

is a block permutation matrix, where 0 and I are the zero and identity matrices of the
dimension m×m respectively. As the covariance matrix G(n) the matrix is obtained
by the solution of the equations (3) for the given values of sampling block Toeplitz
matrix S(n) = S = {sij} was used.

Probabilities of precipitations pi and block-Toeplitz covariance matrix S(n) were
estimated by the observation data in the stationary approximation using standard
formulas to estimate probability and matrix covariance functions. In this paper, all
calculations were performed for May, where the averaging was taken according to the
sample size of n×L =465, where the n =31 - the number of days in May, and L =15
- the number of years of observations.

2 Estimation of the degree of inhomogeneity of the

indicator fields of precipitation at the stations

In the construction of inhomogeneous precipitation fields it is necessary to know in-
formation about their structure as a function of spatial coordinates. An extent of field
inhomogeneity by the one-point characteristics, such as the probabilities of rainfall
pi which, though weak, but depend on the spatial coordinates [3], is determined by
choosing values ci from the given values pi in the transformations (1),(2).

To study the inhomogeneity of the real field with respect to correlations one can
use the property of a homogeneous field, which consists in the fact that the correlation
between its values at the two points do not depend on their parallel shift. Since the
stations are located irregularly this condition can be checked only approximately.
Consider two pairs of stations. Let’s displace in parallel the second pair so that the
first point of this pair coincides with the first point of the first pair. We denote the
ratio of the length of the segment connecting the free points to the average length
of the intervals between points within each of the pairs through ν = ∆s/s̄. If ν is
small, approximately we will assume these pairs are parallel, and the points in them
- equidistant. As a measure of a deviation of the considered field from homogeneous
one let us consider the value ∆rf/r̄f = λ, where ∆rf - the modulus of the difference
between the correlation coefficients of values of the field at the points relating to each
of pair in the considered double pairs, and r̄f - the correlation coefficient obtained
by averaging of these coefficients. Of all the possible binary pairs of stations were
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selected 1868, for which ν < 0.04. Note that the systematic error in λ for selected
ν calculated for the exponential correlation function of a homogeneous field, on one
order of magnitude smaller than the relative standard deviation σ(r̄f )/r̄f = γ of the
estimates of the correlation coefficients r̄f . In this case, for this purpose the sample
size is 465 values.

To estimate the degree of inhomogeneity of the spatial indicator field of precipi-
tation following numerical experiments were carried out. The block S0 of matrix S(n)

is the correlation matrix of the spatial indicator field of precipitation at the stations,
which determines the corresponding correlation function s(xs, ys;xh, yh). Within the
framework of the given experiment it is necessary to compare the values λ and λ̃ for
inhomogeneous and homogeneous fields, respectively. For this purpose, the real corre-
lation function s(xs, ys;xh, yh) of the indicator fields at the stations was approximated
by the correlation function

s(xl, yl;xh, yh) = s(xl − xh, yl − yh) = s(x, y) = exp(−[ax2 + bxy + cy2]θ) (4)

with a choice of parameters a, b, c and θ by minimizing the mean square difference
between the real and the approximating functions. With the help of this function the
correlation matrix S̃0 of a homogeneous field at the stations was constructed. Further
for the matrix S0 and S̃0 was built two ensembles of samples of 465 indicator fields.
Each ensemble was contained 1000 elements. For each sample were estimated the
corresponding correlation matrix. With the help of these matrixes values λ and λ̃
were calculated for each of the 1868 pairs and further on sample of volume 1868000
values were estimated probabilities P (−γ ≤ λ < γ) = pλ and P (−γ̃ ≤ λ̃ < γ̃) =
pλ̃. Results were showed that pλ = 43%, pλ̃ = 55%. Thus, in 12% of 55% cases
inequalities −γ ≤ λ < γ are carried out because of inhomogeneity. Let’s notice, that
the experiment gives an estimation of a degree of heterogeneity only approximately,
as the considered field is inhomogeneous and we have to compare it with the modeling
homogeneous field with the correlation function (4).

3 Simulation of indicator fields of precipitation on

a regular grid

For the construction of the spatio-temporal indicator fields of daily sums of precip-
itation an approach based on the simulation of joint time-series of indicators at the
stations, discussed in the first section with the following stochastic interpolation val-
ues of the field from stations to the mesh point of the regular grid was used. Some of
the algorithms of modeling of conditional Gaussian fields necessary for the stochastic
interpolation of Gaussian fields are described, for example, in [7]. Approximate ap-
proaches to modeling the conditional non-Gaussian fields in this paper are based on
the method of inverse distribution functions and algorithms for modeling conditional
Gaussian fields.

In this paper, a simple algorithm for stochastic interpolation of indicators pre-
cipitation from stations to the grid points was used. It can be represented as the
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following transformation. Let {ωi} - a spatial indicator field of precipitation at the
stations, where ωi - the value of the field in the point with coordinates {xi, yi} , and
{ωik} , i = 1, . . . , n, k = 1, . . . ,m - a field on the regular grid, where ωik - the value
of the field in the mesh point with coordinates {xik, yik}. Consider the normalized
weights wlk,1, . . . , wlk,n that are built by using the following equations

w̄lk,i =
1√

(xlk − xi)2 + (ylk − yi)2
, w =

n∑
i=1

w̄lk,i, wlk,i =
w̄lk,i
w

.

Stochastic interpolation of field values at the stations {ωi} to the mesh points
was made by using the formula

ωlk = ωi, (5)

where i- a random number of the station with the distribution wlk,1, . . . , wlk,n . Usually
in practical modeling do not use all the available stations, and only a few nearby
stations. In this paper we used the 5 nearby stations.

Figure 1: The example of a realization of the spatio-temporal indicator field of daily
sums of liquid precipitation. Novosibirsk, May.

The example of realization of the model spatio-temporal indicator field of daily
sums of liquid precipitation is presented in Fig.1. The field is built on the grid of
30×25 mesh points, time interval is equal to 1 month (spatial step is 16 km, time
step - 1 day, the first 4 fields of 31 are shown in the figure). Selection of the step of
grid depends on the application. Calculating the value pλ for field {ωik} on the grid
after interpolation (5) is showed that pλ= 38%, i.e. the proportion of correlations
satisfying −γ ≤ λ < γ due to inhomogeneity of the field increased by 5%. It can be
explained, in particular, by the fact that the interpolation was performed with non-
uniform network of stations, which introduces a systematic error in the correlations,
increasing inhomogeneity.

225



Novosibirsk, 25-27 September, 2013

Acknowledgements

The work was supported by the Russian Foundation for Basic Research (11-01-00641,
12-01-00727-, 12-05-00169-)).

References

[1] Anisimova A.V.(1997). Numerical simulation of indicator random fields of liquid
precipitation. Proceedings of the Conference of Young Scientists, Inst. of Comp.
Math. and Math. Geoph. Novosibirsk, pp. 3-15 [in Russian].

[2] Bolshev L.N. and Smirnov N.V. (1983) Tables of Mathematical Statistics. Nauka,
Moscow [in Russian].

[3] Drobyshev A.D., Marchenko A.S., Ogorodnikov V.A. and Chizhykov V.D.(1989).
Statistical structure of time series for daily sums of liquid precipitations
in the plane part of Novosibirsk region. Proc. West Sib. Research Inst.
Goskomgidromet. 86,pp. 44-66 [in Russian].

[4] Kliber W., Katz R. W., Rajagopalan B. (2012). Daily spatiotemporal precipita-
tion simulation using latent and transformed Gaussian processes. Water Resour.
Res. 48, W01523, doi:10.1029/2011WR011105.

[5] Marpl S.L. (1987). Digital Spectral Analysis with Applications. Prentice-Hall.

[6] Ogorodnikov V.A. and Prigarin S.M. (1996). Numerical Modelling of Random
Processes and Fields: Algorithms and Applications. VSP. Utrecht. The Nether-
lands.

[7] Ogorodnikov V.A., Kargapolova N.A., Sereseva O.V. Numerical stochastic model
of spatial fields of daily sums of liquid precipitation. (2013). Russian Journal of
Numerical Analysis and Mathematical Modelling. Vol. 28, No. 2. pp.187-200.

[8] Ukhinova O.S., Ogorodnikov V.A.(2009). Stochastic models of spatial-time fields
of precipitation sums. Proc. of the 6th St. Peterburg WorkShop on simulation,
pp.193-197.

226



Applied Methods of Statistical Analysis

A Power Comparison of Homogeneity Tests

for Randomly Censored Data

Petr Philonenko1 and Sergey Postovalov1

1 Novosibirsk State Technical University, Novosibirsk, Russia
e-mail: petr-filonenko@mail.ru, postovalov@ngs.ru

Abstract

In this paper the behavior of homogeneity test power is presented for differ-
ent cases (different censoring rates, different sample sizes and different alterna-
tive hypotheses). The simulation results show that the power of tests depends
on the censoring distribution while survival functions are intersected. If the
survival curves do not intersect, then the choice of censoring distribution does
not affect on the power of the test. If the survival curves have intersection, the
Bagdonavičus-Nikulin tests are the most powerful, but their power decreases
while the censoring rate increases. If the survival curves are not intersected,
the logrank test, the Cox-Mantel test, the Gehan test and the Peto test are
more powerful than the Bagdonavičus-Nikulin test.

Keywords: randomly censored data, hypothesis of homogeneity, Peto test,
Gehan test, logrank test, Cox-Mantel test, Q-test, Bagdonavičius-Nikulin test
(single crossing), Bagdonavičius-Nikulin test (multiple crossing).

Introduction

In survival data analysis it is often impossible to observe every subject under study
until the end, thus we deal with a right censored data . For such cases special sta-
tistical methods for comparison two survival curves are required, e.g. Gehan’s Gen-
eralized Wilcoxon test, the Cox-Mantel test etc [5][8][9]. Recently a number of new
homogeneity tests were developed. Bagdonavičius and Nikulin developed tests for
homogeneity against crossing survival functions alternatives in the case of randomly
censored data [1][2][3][4]. Martnez and Naranjo suggested pretest to choose more
powerful test [7]. The purpose of this work is to compare the power of homogeneity
tests for different alternative hypotheses, especially with a different number of in-
tersections of survival function. For randomly right censored data we consider two
different distribution law for censoring time and then we compare how this affects on
the test power.

1 Homogeneity tests for right censored data

Suppose that we have two samples of continues random variables ξ1 and ξ2 respec-
tively, X1 = {t11, t12, ..., t1n1} and X2 = {t21, t22, ..., t2n2}, with survival distributions
S1(t) and S2(t), and

tij = min (Tij, Cij) ,
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where Tij and Cij are the failure and censoring times for the jth object of the ith
group. Tij and Cij are i.i.d. with CDF Fi(t) and FC

i (t) respectively. Survival curve
Si(t) means the probability of survival in the time interval [0, t]

Si (t) = P{ξi > t} = 1− Fi (t) .

The main hypothesis is
H0 : S1(t) = S2(t).

Further we will suppose that the elements of samples are ordered: t11 < ... < t1n1 and
t21 < ... < t2n2 . Also we pool these samples and we sort their elements by ascending
order T = X1 ∪X2 =

{
t1, t2, . . . , tn

}
, where t1 < t2 < ... < tn, n = n1 + n2.

Denote the sample indicator vi and the censoring indicators cij and ci as

vi =

{
0, if ti ∈ X1,
1, if ti ∈ X2

cij =

{
1, if tij is censoring time,
0, if tij is failure time;

ci =

{
1, if ti is censoring time,
0, if ti is failure time.

Let us consider tests that is used for randomly right censored data. The following
two criteria are based on the Wilcoxon test.

Gehan’s generalized Wilcoxon test
The test statistic is [6, p.103]

SG =

n∑
i=1

(1− vi)hi√
n1n2

n(n−1)

n∑
i=1

(1− vi)h2
i

, (1)

where

hi =
n∑
j=1

vjhij, hij =


+1, if ti > tj & cj = 0 & vi = 0 & vj = 1;
−1, if ti < tj & ci = 0 & vi = 0 & vj = 1 ;
0, otherwise .

The null hypothesis is rejected with the significance level α, if |SG| > z1−α
2

, where
z1−α

2
is the (1− α

2
)-quantile of the standard normal distribution.

Peto and Peto’s generalized Wilcoxon test
The test statistic is [6, p.116]

SP =

n(n− 1)
n∑
i=1

ui(1− vi)

n1n2

n∑
i=1

u2
i

, ui =

{
ŝ(ti) + ŝ(tki)− 1, if ci = 0
ŝ(tki)− 1, if ci = 1,

(2)
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where ki = max{j|j ∈ {0, ..., i− 1}, cj = 0}, c0 = 0, and

Ŝ(t) =
∏

i:ti<t,ci=0

n− i
n− i+ 1

is the Kaplan-Meier estimator of S(t) by the pooled sample T . The null hypothesis
is rejected with the significance level α, if |SP | > z1−α

2
.

The following two criteria are based on the Logrank test
Logrank test
The test statistic is [6, p.111]

SL =

n∑
i=1

(1− ci)−
i∑

j=1

1
n−j+1√[

n∑
i=1

(1− ci) n−i
n−i+1

]
n1n2

n(n−1)

, (3)

The null hypothesis is rejected with the significance level α, if |SL| > z1−α
2
.

Cox-Mantel test
The test statistic is [6, p.109]

SCM =

r2 −
n∑
i=1

(1− ci)A(i)√
n∑
i=1

(1− ci)A(i)

(
1− A(i)

) , (4)

where

r2 =
n∑
i=1

vi(1− ci), A(i) =
1

n− i

n∑
j=i

vj.

The null hypothesis is rejected with the significance level α, if |SCM | > z1−α
2
.

Q-test
Martnez and Naranjo suggested pretest to choose what test is better to use:

Wilcoxon type or logrank type [7]. The Q-test statistic is

SQ =

{
SL orSCM , if Q < 0
SP orSG, otherwise.

(5)

where Q =
[
Ŝ2 (q0.6)− Ŝ1 (q0.6)

]
−
[
Ŝ2 (q0.2)− Ŝ1 (q0.2)

]
, qp = Ŝ−1

1 (p), and

Ŝi(t) =
∏

j:tij<t,cij=0

n− j
n− j + 1

is the Kaplan-Meier estimator of Si(t). For unambiguity we use the pair SL and SP
further.
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The following two tests are developed against alternative with intersections of
survival functions.

Bagdonavičius-Nikulin test 1 (single crossing)
The test statistic is [2]

SBN1 = (U1, U2) Σ−1(U1, U2)T , (6)

where

U1 =
∑
j:c1j=0

Y2(t1j)

Y (t1j)
−
∑
j:c2j=0

Y1(t2j)

Y (t2j)
,

U2 = −
∑
j:c1j=0

Y2(t1j)

Y (t1j)
ln (1 + Λ(t1j)) +

∑
j:c2j=0

Y1(t2j)

Y (t2j)
ln (1 + Λ(t2j)),

Y (t) = Y1(t) + Y2(t), Yi(t) =

ni∑
j=1

Yij(t), Yij(t) = 1{tij≥t},Λ(t) =
2∑
i=1

∑
j:cij=0,tij≤t

1

Y (tij)
.

The elements of the matrix Σ are

σ11 =
2∑
i=1

∑
j:cij=0

Y1(tij)Y2(tij)

Y 2(tij)
; σ22 =

2∑
i=1

∑
j:cij=0

Y1(tij)Y2(tij)

Y 2(tij)
ln2(1 + Λ(tij)).

σ12 = σ21 =
2∑
i=1

∑
j:cij=0

Y1(tij)Y2(tij)

Y 2(tij)
ln(1 + Λ(tij));

The H0 is rejected with the significance level α if SBN1 > χ2
1−α(2), where χ2

1−α(2)
is the (1− α)-quantile of the χ2-distribution with 2 degrees of freedom.

Bagdonavičius-Nikulin test 2 (multiple crossing)
The test statistic is [2]

SBN2 = (U1, U2, U3) Σ−1(U1, U2, U3)T , (7)

where

U1 =
∑
j:c1j=0

Y2(t1j)

Y (t1j)
−
∑
j:c2j=0

Y1(t2j)

Y (t2j)
, U2 =

∑
j:c1j=0

Y2(t1j)

Y (t1j)
Λ(t1j)−

∑
j:c2j=0

Y1(t2j)

Y (t2j)
Λ(t2j),

U3 =
∑
j:c1j=0

Y2(t1j)

Y (t1j)
Λ2(t1j)−

∑
j:c2j=0

Y1(t2j)

Y (t2j)
Λ2(t2j),

The elements of the matrix Σ are

σ11 =
2∑
i=1

∑
j:cij=0

Y1(tij)Y2(tij)

Y 2(tij)
; σ12 = σ21 =

2∑
i=1

∑
j:cij=0

Y1(tij)Y2(tij)

Y 2(tij)
Λ(tij)
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σ13 = σ31 = σ22 =
2∑
i=1

∑
j:cij=0

Y1(tij)Y2(tij)

Y 2(tij)
Λ2(tij)

σ23 = σ32 =
2∑
i=1

∑
j:cij=0

Y1(tij)Y2(tij)

Y 2(tij)
Λ3(tij); σ33 =

2∑
i=1

∑
j:cij=0

Y1(tij)Y2(tij)

Y 2(tij)
Λ4(tij)

The H0 is rejected with the significance level α if SBN2 > χ2
1−α(3), where χ2

1−α(3)
is the (1− α)-quantile of the χ2-distribution with 3 degrees of freedom.

2 Alternative hypotheses

Since there are a lot of homogeneity tests, a researcher wants to know what the test
should be used in practice. Unfortunately the most powerful test is not exist in
general case. Looking at empirical survival functions (or Kaplan-Meier estimators
for randomly censored data) we could choose what kind of alternative we will have.
In general there are two main situation of survival curves differences: whether they
have intersections or not, and where the difference is lager, for early or for late times.
Therefore we construct 10 different alternative hypotheses.

The alternative hypotheses are shown in Table 1 and in Figure 1, they are based on
Exponential (8), Gamma (9), Lognormal (10), Weibull (11), and Generalized Weibull
(12) families of distribution laws.

fExp(t; θ1) = θ1e
−θ1t, t ≥ 0 (8)

fΓ(t; θ1, θ2) =

(
t
θ1

)θ2−1

e
− t
θ1

θ1Γ(θ2)
, t ≥ 0 (9)

fLgN(t; θ1, θ2) =
1

t
√

2πθ2
2

e
− (ln t−θ1)2

2θ22 , t ≥ 0 (10)

fWe(t; θ1, θ2) =
θ2t

θ2−1e
−
(
t
θ1

)θ2
θ1
θ2

, t ≥ 0 (11)

fGWe(t; θ1, θ2) =
θ1
θ2

(
1 + tθ1

) 1
θ2
−1
e1−(1+tθ1 )

1
θ2

t1−θ1
, t ≥ 0 (12)

3 Power simulation

The test power was calculated by 83000 repetitions (five series by 16600 repetitions
to calculate confidence interval). For all tests both samples X1 and X2 had an equal
size. The significance level is equal 0.05.
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Table 1: Alternative hypotheses

Hi 1st sample 2nd sample Number of intersections Intersections

H1 We(2;2) Γ(0.56; 3.12) 2 ≈0.7 and ≈2.8
H2 We(2;2) LgN(0.41; 0.62) 2 ≈0.75 and ≈2.5
H3 Exp(1) Exp(1.1) 0 -
H4 LgN(0;1) LgN(0.1; 1.0) 0 -
H5 GWe(0.95;0.85) Exp(1) 0 -
H6 We(1.1; 1.4) Γ(0.9; 1.0) 1 ≈1.81
H7 We(1.0; 1.1) We(1.1; 0.9) 1 ≈0.65
H8 LgN(0.1;1.0) LgN(0; 1.2) 1 ≈1.82
H9 We(1.0; 1.1) We(0.7; 0.9) 1 ≈4.97
H10 Γ(1; 1) LgN (0; 0.65) 2 ≈2.28 and ≈5.1

In Tables 4, 5, 6 the power of 7 tests, including Gehan’s generalized Wilcoxon
test (’Gehan’), Peto and Peto’s generalized Wilcoxon test (’Peto’), the logrank test
(Lg), the Cox-Mantel test (CM), the Q-test (Q), the Bagdonavičius-Nikulin tests
(single crossing – BN1, multiple crossing – BN2), are presented for sample sizes
n1 = n2 = 200 with censoring rates 10%, 20%, 30%, 40%, and 50%. We investigated
how the censoring rate and censoring distribution affect on the power of tests.

a How does the distribution of censoring time affect on the
power of the test?

We consider two ways of modeling censoring times using Weibull distribution law
(Table 2) or Gamma distribution law (Table 3). The results are shown in Tables 4,
5, 6 for n1 = n2 = 200.

When survival curves are not crossed (see Tables 6), test powers with different
FC are almost equal. The differences between power values can be explained by
the simulation error. However, when survival curves are crossed, test powers are
significantly different for different distributions of censoring times (see Tables 4 and
5). The most dependence is appeared for the Bagdonavičius-Nikulin tests, because
these tests use information about possibility of the intersections and early censoring
times can hide this information.
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Figure 1: CDFs of alternative hypotheses H1−H10. The circle means the CDFs
crossing

b How does the censoring rate affect on the power of the
test?

Table 7 gives the power of tests against alternatives H1 − H10 for censoring rates
0%− 50% and the Weibull distribution of censoring times. We found that the power
of tests can increase or decrease while the censoring rate increses.

When survival curves are not crossing, the most powerful tests are the Logrank
and the Cox-Mantel against alternatives H3, H5, or Gehan’s generalized Wilcoxon
test and Peto and Peto’s generalized Wilcoxon test against alternative H4. The lowest
tests power are both tests of Bagdonavičius-Nikulin in this case.

The alternative hypothesis H9 has one intersection on the right tail of survival
curves. In this case Gehan’s generalized Wilcoxon test, Peto and Peto’s generalized
Wilcoxon are the most powerful tests.

For others alternatives H6, H7, H8 with one intersection of survival curves the
most powerful test is the Bagdonavičius-Nikulin test BN1. When survival curves have
two intersections (alternatives H1, H2), the most powerful test is the Bagdonavičius-
Nikulin test BN2. If survival curves have late intersection (alternative H10) four
criteria (Gehan’s generalized Wilcoxon test, Peto and Peto’s generalized Wilcoxon
and both the Bagdonavičius-Nikulin tests) are high power.

233



Novosibirsk, 25-27 September, 2013

Table 2: First way of modeling censoring time using Weibull distribution as FC
i (t)

H i 10% 20% 30% 40% 50%

H1 1 We(3.44, 6.88) We(2.87, 5.74) We(2.48, 4.96) We(2.16, 4.32) We(1.87, 3.74)

H1 2 We(4.00, 4.00) We(4.00, 2) We(4.00, 1.25) We(2.25, 2.10) We(3.74, 0.40)

H2 1 We(3.44, 6.88) We(2.87, 5.74) We(2.48, 4.96) We(2.16, 4.32) We(1.87, 3.74)

H2 2 We(4.16, 4.20) We(3.35, 3.11) We(3.00, 2.49) We(2.35, 2.10) We(3.47, 0.45)

H3 1 We(3.4, 2.47) We(2.00, 3.25) We(2, 1.25) We(1.00, 6.50) We(1.00, 1.00)

H3 2 We(3.11, 2.47) We(2.00, 2.14) We(2.00, 1.09) We(1.00, 3.00) We(1.00, 0.75)

Table 3: Second way of modeling censoring time using Gamma distribution as FC
i (t)

H i 10% 20% 30% 40% 50%

H1 1 Γ(2.00, 3.555) Γ(2.50, 1.580) Γ(2.50, 1.185) Γ(2.65, 0.869) Γ((2.73, 0.678)

H1 2 Γ(2.9, 1.870) Γ(2.6, 1.460) Γ(2.5, 1.150) Γ(2.2, 1.050) Γ(2.0, 0.927)

H2 1 Γ(2.00, 3.555) Γ(2.50, 1.580) Γ(2.50, 1.185) Γ(2.65, 0.869) Γ((2.73, 0.678)

H2 2 Γ(2.1, 3.35) Γ(3.2, 1.13) Γ(2.0, 1.59) Γ(2.2, 1.06) Γ(4.0, 0.42)

H3 1 Γ(2.3, 1.71) Γ(3.7, 0.55) Γ(3.5, 0.41) Γ(3.3, 0.32) Γ(3.7, 0.209)

H3 2 Γ(7.71, 0.316) Γ(7.00, 0.235) Γ(7.20, 0.166) Γ(7.60, 0.117) Γ(7.70, 0.086)

Conclusions

Let us summarize received results.In the case of censoring data test power depends on
distribution of censoring time, if survival curves are crossed, especially for the Bag-
donavičius-Nikulin tests. In contrast, if survival curves are not crossed, the choice of
censoring time distribution is not so important. If survival curves have intersections,
then the Bagdonavičius-Nikulin tests have the most power, but it decreases sharply
while censoring rate increases. If survival curves do not have intersections, then the
Logrank test, the Cox-Mantel test, Gehan’s generalized Wilcoxon test and Peto &
Peto’s generalized Wilcoxon test are more powerful than the Bagdonavičius-Nikulin
tests.
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Table 4: The power of tests against H1

Test
Censoring times from Weibull Censoring times from Gamma

0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%
Gehan 0.111 0.121 0.121 0.110 0.105 0.080 0.111 0.117 0.116 0.103 0.092 0.080
Peto 0.106 0.116 0.116 0.111 0.113 0.088 0.106 0.110 0.108 0.104 0.102 0.093
Lg 0.053 0.072 0.083 0.090 0.106 0.082 0.053 0.062 0.069 0.074 0.085 0.086
CM 0.054 0.073 0.090 0.103 0.113 0.096 0.054 0.061 0.070 0.082 0.085 0.086

Q-test 0.062 0.082 0.094 0.098 0.102 0.082 0.062 0.071 0.077 0.085 0.091 0.088
BN1 0.184 0.130 0.105 0.098 0.096 0.086 0.184 0.147 0.123 0.103 0.091 0.080
BN2 0.186 0.134 0.123 0.114 0.106 0.107 0.186 0.150 0.122 0.100 0.097 0.090

Table 5: The power of tests against H2

Test
Censoring times from Weibull Censoring times from Gamma

0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%
Gehan 0.120 0.139 0.160 0.173 0.161 0.106 0.120 0.128 0.138 0.132 0.121 0.105
Peto 0.120 0.132 0.147 0.161 0.157 0.121 0.120 0.124 0.136 0.129 0.127 0.132
Lg 0.061 0.049 0.076 0.103 0.132 0.102 0.061 0.046 0.050 0.058 0.074 0.107
CM 0.070 0.049 0.076 0.108 0.138 0.126 0.070 0.050 0.050 0.058 0.080 0.111

Q-test 0.050 0.052 0.092 0.120 0.131 0.102 0.050 0.043 0.055 0.064 0.084 0.122
BN1 0.729 0.378 0.236 0.170 0.133 0.109 0.729 0.562 0.375 0.271 0.171 0.111
BN2 0.749 0.412 0.292 0.238 0.199 0.192 0.749 0.604 0.405 0.323 0.223 0.130
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Table 6: The power of tests against H3

Test
Censoring times from Weibull Censoring times from Gamma

0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%
Gehan 0.128 0.121 0.122 0.104 0.105 0.086 0.128 0.122 0.121 0.110 0.098 0.093
Peto 0.135 0.131 0.120 0.116 0.108 0.091 0.135 0.129 0.123 0.120 0.107 0.094
Lg 0.159 0.136 0.132 0.121 0.107 0.103 0.159 0.136 0.131 0.122 0.110 0.098
CM 0.160 0.142 0.133 0.126 0.114 0.100 0.160 0.141 0.134 0.123 0.110 0.101

Q-test 0.145 0.136 0.134 0.122 0.110 0.103 0.145 0.142 0.132 0.127 0.112 0.100
BN1 0.119 0.117 0.107 0.100 0.095 0.085 0.119 0.113 0.110 0.100 0.091 0.082
BN2 0.107 0.101 0.097 0.091 0.092 0.078 0.107 0.096 0.095 0.090 0.091 0.085

[8] Mantel N. (1967). Evaluation of survival data and two new rank order statistics
arising in its consideration Cancer Chemotherapy Rep.. Vol. 50, pp. 163-170.
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Table 7: The power of tests against H1–H10

0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%
Test H1 H6

Gehan 0.105 0.118 0.116 0.110 0.107 0.081 0.799 0.826 0.869 0.886 0.907 0.90
Peto 0.106 0.116 0.116 0.111 0.113 0.089 0.800 0.814 0.841 0.835 0.852 0.846
Lg 0.054 0.073 0.086 0.092 0.107 0.084 0.176 0.306 0.426 0.441 0.631 0.658
CM 0.054 0.071 0.087 0.096 0.102 0.093 0.180 0.297 0.420 0.457 0.623 0.672

Q-test 0.058 0.085 0.094 0.100 0.109 0.084 0.213 0.357 0.484 0.516 0.669 0.717
BN1 0.183 0.130 0.109 0.098 0.093 0.087 0.944 0.926 0.915 0.904 0.886 0.882
BN2 0.181 0.134 0.120 0.116 0.110 0.104 0.896 0.868 0.864 0.857 0.829 0.842
Test H2 H7

Gehan 0.120 0.139 0.160 0.168 0.159 0.109 0.066 0.057 0.051 0.053 0.064 0.088
Peto 0.120 0.132 0.147 0.161 0.157 0.121 0.066 0.059 0.053 0.050 0.053 0.061
Lg 0.065 0.049 0.076 0.105 0.130 0.100 0.372 0.222 0.157 0.087 0.044 0.052
CM 0.067 0.051 0.078 0.101 0.139 0.122 0.378 0.231 0.165 0.093 0.054 0.053

Q-test 0.051 0.054 0.083 0.119 0.141 0.113 0.312 0.182 0.133 0.078 0.059 0.050
BN1 0.728 0.397 0.238 0.168 0.134 0.108 0.724 0.548 0.472 0.365 0.262 0.259
BN2 0.743 0.423 0.297 0.242 0.208 0.202 0.603 0.493 0.396 0.307 0.238 0.203
Test H3 H8

Gehan 0.135 0.129 0.118 0.108 0.105 0.084 0.146 0.157 0.179 0.224 0.269 0.278
Peto 0.135 0.131 0.120 0.116 0.108 0.091 0.147 0.154 0.169 0.184 0.211 0.242
Lg 0.158 0.147 0.133 0.124 0.109 0.100 0.052 0.049 0.059 0.074 0.097 0.140
CM 0.155 0.149 0.135 0.126 0.115 0.098 0.055 0.050 0.057 0.067 0.095 0.184

Q-test 0.150 0.144 0.130 0.125 0.114 0.102 0.051 0.052 0.066 0.082 0.110 0.269
BN1 0.126 0.113 0.109 0.094 0.091 0.086 0.433 0.418 0.394 0.367 0.356 0.373
BN2 0.105 0.101 0.100 0.088 0.090 0.078 0.331 0.363 0.335 0.323 0.314 0.395
Test H4 H9

Gehan 0.169 0.165 0.168 0.150 0.141 0.147 0.940 0.941 0.940 0.940 0.919 0.889
Peto 0.168 0.165 0.168 0.149 0.140 0.144 0.941 0.940 0.938 0.934 0.907 0.869
Lg 0.146 0.150 0.151 0.140 0.128 0.126 0.771 0.829 0.853 0.843 0.815 0.766
CM 0.153 0.153 0.151 0.143 0.131 0.136 0.770 0.833 0.868 0.853 0.848 0.779

Q-test 0.158 0.157 0.156 0.144 0.134 0.133 0.816 0.868 0.893 0.883 0.874 0.782
BN1 0.123 0.129 0.123 0.118 0.111 0.113 0.891 0.892 0.896 0.884 0.865 0.807
BN2 0.108 0.111 0.109 0.107 0.097 0.121 0.830 0.856 0.859 0.843 0.825 0.744
Test H5 H10

Gehan 0.510 0.472 0.449 0.392 0.334 0.329 0.995 0.995 0.996 1.000 1.000 1.000
Peto 0.511 0.484 0.462 0.422 0.343 0.341 0.995 0.994 0.995 0.998 0.999 0.998
Lg 0.641 0.566 0.510 0.471 0.292 0.334 0.586 0.673 0.784 0.851 0.975 0.957
CM 0.637 0.570 0.509 0.466 0.359 0.355 0.591 0.670 0.780 0.856 0.978 0.958

Q-test 0.575 0.521 0.493 0.462 0.364 0.353 0.992 0.993 0.995 0.997 0.998 0.998
BN1 0.523 0.454 0.417 0.364 0.261 0.283 0.996 0.999 1.000 1.000 1.000 1.000
BN2 0.435 0.384 0.360 0.316 0.206 0.247 0.997 0.999 1.000 1.000 1.000 1.000

237



Novosibirsk, 25-27 September, 2013

Optimal Discrete Two-Stage Study Design for

Genome-Wide Association Studies

Sergey Postovalov1, Andreas Ziegler2 and Eugenia Konomanina1

1 Novosibirsk State Technical University, Novosibirsk, Russia
2 Institute of Medical Biometry and Statistics, Luebeck, Germany

e-mail: postovalov@ngs.ru

Abstract

Genome-wide Association Studies (GWAS) require large phenotyping and
genotyping costs. Two-stage design can be efficient to reduce genotyping costs:
on the first stage some disease associated SNP are detected and these associ-
ations are checked on the second stage with reliable significance level. This
procedure decreases the number of genotyped SNP on the second stage, thus
the genotyping costs will be less than genotyping costs of one-stage design.
Modern genotyping technologies allow using 96 and 384 well plates. Thus the
number of individuals should be proportional to well plate size. Monte Carlo
simulation was used to find optimal number of well plates and critical values on
the first and second stages. We also found that the costs have inverse relation-
ship to Kullback-Leibler divergence between cases and controls distributions
under alternative hypothesis.

Keywords: Sequential study design, genetic association, robust statistical
test, genetic model selection, computer simulation.

Introduction

Two-stage case-control designs were considered for the epidemiologic purpose by
White [1] and have been developed by Breslow and colleagues [2]. Approach of
minimization costs in two-stage design was proposed by Elston et al. [3] for linkage
analysis. Later this approach was transferred to association analysis by Satagopan et
al. [12][13][14]. Optimization of the design consists in choosing the proportion of sam-
ples between two stages and critical values in such a manner as to minimize the total
cost for specified genome-wide significance level and power [9][15][21][5] [8][16][10].

The start point of present work was a paper of Nguyen et al [10], where an op-
timal robust two-stage design using the MAX3 test were considered. In this paper
we improved their results. First we found an optimal design for considered genetic
models more accurately. Then we discovered the relationship between optimal sam-
ple size (and costs) and the Kullback-Leibler divergence between cases and controls
distributions under alternative hypothesis. Also we considered the discrete design
when the sample size on the first stage is proportional to a well plate size.

1 Statistical hypotheses

Suppose that there are three genotypes AA, Aa, and aa for SNP with two alleles,
A and a. Let us there are r cases and s controls in the study. In the r cases, there
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are r0, r1 and r2 affected people with genotypes AA, Aa, and aa respectively. In the
s controls, there are s0, s1 and s2 affected people with genotypes AA, Aa, and aa
respectively (Table 1).

Table 1: Case-control association studies

Genotype AA Aa aa Total
Cases r0 r1 r2 r

Controls s0 s1 s2 s
Total n0 n1 n2 n

The null hypothesis H0 is that there are not an association between the disease
and the genotyped SNP. There are three common alternative hypotheses that relies
on mode of inheritance (MOI): Hr is recessive, Hd is dominant, and Ha is additive
MOI. Let us pa = P (a) is a population frequency of allele a, pi = P{ number of
alleles a is equal i | cases } and qi = P{ number of alleles a is equal i | controls};
fi = P{ cases | number of alleles a is equal i } are the penetrances, K = P{cases}
is a population prevalence of disease. The alternative hypothesis is defined by MOI,
probability of risk allele pa, and the odds ratio (OR)

ψi =
fi(1− f0)

f0(1− fi)
=
pi · q0

p0 · qi
, i = 1, 2 (1)

or the genetic relative risk (GRR)

γi =
fi
f0

, i = 1, 2. (2)

The differences between the distributions in the cases and controls groups (P and
Q respectively) can be calculated by Kullback-Leibler divergence:

DKL(P,Q) =
2∑
i=0

pi ln
pi
qi

(3)

or symmetric Kullback-Leibler divergence:

ρKL(P,Q) = DKL(P,Q) +DKL(Q,P ) =
2∑
i=0

(pi − qi) ln
pi
qi

(4)

If the H0 is true then ρKL = 0. Let us Hardy-Weinberg equilibrium (HWE) holds.
The Kullback-Leibler divergence is related with pa, K, ψ1, and ψ2 as

DKL = ln
1−K
λ

+
2pa(1− pa)ψ1

λ+Kψ1

lnψ1 +
p2
aψ2

λ+Kψ2

lnψ2, (5)
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Table 2: The symmetric Kullback-Leibler divergences for different alternative
hypotheses

pa MOI ψ1 ψ2 ρKL MOI ψ1 ψ2 ρKL MOI ψ1 ψ2 ρKL

0.1 R 1.00 1.25 0.00054 A 1.25 1.56 0.00970 D 1.25 1.25 0.00814
0.1 R 1.00 1.50 0.00195 A 1.50 2.25 0.03409 D 1.50 1.50 0.02814
0.1 R 1.00 1.75 0.00398 A 1.75 3.06 0.06831 D 1.75 1.75 0.05558
0.1 R 1.00 2.00 0.00648 A 2.00 4.00 0.10925 D 2.00 2.00 0.08780
0.3 R 1.00 1.25 0.00442 A 1.25 1.56 0.02169 D 1.25 1.25 0.01237
0.3 R 1.00 1.50 0.01560 A 1.50 2.25 0.07339 D 1.50 1.50 0.04046
0.3 R 1.00 1.75 0.03136 A 1.75 3.06 0.14208 D 1.75 1.75 0.07618
0.3 R 1.00 2.00 0.05035 A 2.00 4.00 0.22033 D 2.00 2.00 0.11539
0.5 R 1.00 1.25 0.00979 A 1.25 1.56 0.02479 D 1.25 1.25 0.00886
0.5 R 1.00 1.50 0.03348 A 1.50 2.25 0.08110 D 1.50 1.50 0.02793
0.5 R 1.00 1.75 0.06547 A 1.75 3.06 0.15266 D 1.75 1.75 0.05108
0.5 R 1.00 2.00 0.10250 A 2.00 4.00 0.23116 D 2.00 2.00 0.07557
0.9 R 1.00 1.25 0.00719 A 1.25 1.56 0.00826 D 1.25 1.25 0.00045
0.9 R 1.00 1.50 0.02248 A 1.50 2.25 0.02552 D 1.50 1.50 0.00136
0.9 R 1.00 1.75 0.04084 A 1.75 3.06 0.04594 D 1.75 1.75 0.00244
0.9 R 1.00 2.00 0.06010 A 2.00 4.00 0.06711 D 2.00 2.00 0.00354

where λ can be found from equation

(1− pa)2

λ+K
+

2pa(1− pa)ψ1

λ+Kψ1

+
p2
aψ2

λ+ kψ2

= 1. (6)

The Kullback-Leibler divergence is related with pa, K, γ1 , and γ2 as

ρKL =
(1− pa)2 (1− τ) ln 1−K

τ−K + 2pa (1− pa) (γ1 − τ) ln γ1(1−K)
τ−γ1K

+ p2
a · (γ2 − τ) ln γ2(1−K)

τ−γ2K

τ(1−K)
,

(7)
where

τ = (1− pa)2 + 2pa(1− pa)γ1 + p2
aγ2. (8)

In the Table 2 the symmetric Kullback-Leibler divergences are calculated for dif-
ferent alternative hypotheses. The symmetric Kullback-Leibler divergence is better
mesure of association than OR, because the same OR shows different dependence for
different pa .

2 Association tests

a The Cochran-Armitage trend test

The Cochran-Armitage trend test (CATT) statistic can be defined as [11]
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TCATT =

2∑
i=0

ωi (sri − rsi){
rs

(
2∑
i=0

ω2
i ni − 1

n

(
2∑
i=0

ωini

)2
)}1/2

.

For the recessive MOI the test statistic Tr use score vector ω = (0, 0, 1), for the
additive MOI the test statistic Ta use score vector ω = (0, 1, 2) and for dominant MOI
the test statistic Td use score vector ω = (0, 1, 1). The CATT statistic has standard
normal distribution under null hypothesis and large sample size. The null hypothesis
is rejected for big absolute value of T. The CATT utilizes a set of scores that can
be obtained as an efficient score test for a logistic regression [19]. The statistical
properties of the optimal test for the additive model were investigated by [17]. It
is known that CATT test has substantial loss of power when optimal scores for one
model are used, but the data follow a different model. We took the table 2 and table
3 from [4]. If the model is corresponded the optimal scores, then nρKL is almost a
constant. But if the model is misspecified, then nρKL is different for different n. This
is demonstrated in the Figure 1. The slope of curve n(ρKL) is higher when model is
misspesified.

Figure 1: Relationship between required sample size and the symmetric
KL-divergence for the Cochran-Armitage trend test with different score vectors

(α = 0.05 and β = 0.2)
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b The MAX3 test

For robust analysis, when the MOI is misspecified, the Maximum test (MAX3)
statistic is used [4]

Tmax = max (|Tr| , |Ta| , |Td|) (9)

The optimal sample sizes for MAX3 test and different genetic models, when
α = 0.05/m (m = 610000 is the number of markers), were calculated by Nguyen
et al. [10]. We took the data from the tables 1-3 [10] and calculated ρKL. The
relationship between optimal sample size and ρKL is shown in Figure 2.

Figure 2: Relationship between required sample size and the symmetric
KL-divergence for the MAX3 test (α = 0.05/m and β = 0.1)

3 Relative Efficiency

The association tests can be compared by required sample size. From [22] we can
suppose that the required sample size is proportional to

ϑ(α, β) =
(

Φ−1
(

1− α

2

)
+ Φ−1 (1− β)

)2

, (10)

where α and β are the probabilities of first and second type respectively.
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Then the relationship between required sample size and the symmetric Kullback-
Liebler divergence is

nCATT =
4.035 · ϑ(α, β)

ρKL
, (11)

for the Cochran-Armitage trend test and

nMAX3 =
4.238 · ϑ(α, β)

ρKL
. (12)

for MAX3 test.
Therefore relative efficiency of MAX3 test in compare of he Cochran-Armitage

trend test with an optimal score vector is equal 0.95, so MAX3 test require in average
5% more observation than the optimal test.

4 Optimal design

The purpose of optimal design is the search optimal experiment parameters for what
costs are minimized. For 1-stage design it is equivalent to minimize sample size for
specified the errors type I and type II. Optimization of the 2-stage design consists in
choosing the proportion of samples between the two stages and critical values in such
a manner as to minimize the total cost for specified genome-wide significance level
and power. Overall costs of 2-stage design can be calculated as

Costs = n (CR + πmCG1 + (1− π) ((m− d)α1 + d(1− β1))CG2) , (13)

where CR is costs of phenotyping one person, CG1 is costs of genotyping one marker
on the first stage and CG2 on the second stage, m is a number of markers, d is a
number of disease associated markers, n1 is an overall number of person tested on
both stage, π is proportion between number of person tested on the first stage and
n, α1 is the probability of the error type I on the first stage, β1 is the probability of
the error type II on the first stage.

The results of an optimal design we obtained by refinement optimal plans from
the tables 1-3 [10], where optimal robust two-stage design using MAX3 test were
considered. The genetic model parameters, optimal n, c1, c2, π and overall costs are
shown in the Tables 3, 4 and 5. Overall costs can be expired in terms of the sym-
metric Kullback-Leibler divergence between cases and controls distributions under
alternative hypothesis as it is shown in Figure 3.

5 The number of disease associated markers

Since costs are depended on the number of disease associated markers d in 2-stage
case-control association study, it is interesting what kind of dependencies that is. We
constructed an optimal design for different values of d (Table 6) and revealed that
this dependence has a linear shape (Figure 4), but proportional coefficient is so small
that it has a slight influence on costs.
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Table 3: Optimal design for recessive genetic model

pa ψ1 ψ2 ρKL n π c1 c2 Costs, 109 × CG1 nρKL

0.1 1.00 1.25 0.00054 383340 0.489 3.6650 5.4876 159.520 209
0.1 1.00 1.50 0.00195 105627 0.490 3.6020 5.5407 44.557 206
0.1 1.00 1.75 0.00398 53239 0.486 3.6797 5.3274 22.019 212
0.1 1.00 2.00 0.00648 33127 0.482 3.6881 5.2479 13.608 215
0.3 1.00 1.25 0.00442 46291 0.489 3.5949 5.3447 19.616 205
0.3 1.00 1.50 0.01560 13457 0.489 3.6902 5.4011 5.595 210
0.3 1.00 1.75 0.03136 6688 0.490 3.6847 5.4268 2.788 210
0.3 1.00 2.00 0.05035 4182 0.488 3.6806 5.4602 1.740 211
0.5 1.00 1.25 0.00979 21219 0.489 3.6851 5.4309 8.839 208
0.5 1.00 1.50 0.03348 6251 0.489 3.6809 5.4672 2.607 209
0.5 1.00 1.75 0.06547 3187 0.489 3.6809 5.4784 1.328 209
0.5 1.00 2.00 0.10250 2039 0.489 3.6841 5.4988 0.850 209
0.9 1.00 1.25 0.00719 28630 0.488 3.6647 5.4056 11.901 206
0.9 1.00 1.50 0.02248 9160 0.489 3.6638 5.4796 3.815 206
0.9 1.00 1.75 0.04084 5079 0.486 3.6626 5.4436 2.106 207
0.9 1.00 2.00 0.06010 3456 0.487 3.6638 5.4005 1.436 208

Table 4: Optimal design for log-additive genetic model

pa ψ1 ψ2 ρKL n π c1 c2 Costs, 109 × CG1
nρKL

0.1 1.25 1.56 0.00970 21332 0.479 3.6492 5.4345 8.787 207
0.1 1.50 2.25 0.03409 6096 0.480 3.6610 5.4401 2.508 208
0.1 1.75 3.06 0.06831 3072 0.480 3.6623 5.4518 1.263 210
0.1 2.00 4.00 0.10925 1934 0.479 3.6636 5.4746 0.794 211
0.3 1.25 1.56 0.02169 9667 0.480 3.6774 5.4724 3.980 210
0.3 1.50 2.25 0.07339 2860 0.480 3.6808 5.4639 1.176 210
0.3 1.75 3.06 0.14208 1484 0.480 3.6819 5.4668 0.610 211
0.3 2.00 4.00 0.22033 962 0.480 3.6814 5.4735 0.396 212
0.5 1.25 1.56 0.02479 8439 0.480 3.6815 5.4651 3.475 209
0.5 1.50 2.25 0.08110 2589 0.480 3.6791 5.4695 1.066 210
0.5 1.75 3.06 0.15266 1382 0.480 3.6810 5.4700 0.569 211
0.5 2.00 4.00 0.23116 924 0.480 3.6800 5.4700 0.381 214
0.9 1.25 1.56 0.00826 25084 0.481 3.6541 5.4590 10.343 207
0.9 1.50 2.25 0.02552 8198 0.479 3.6581 5.4472 3.370 209
0.9 1.75 3.06 0.04594 4854 0.479 3.6600 5.4447 1.996 223
0.9 2.00 4.00 0.06711 3227 0.478 3.6570 5.4569 1.326 217
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Table 5: Optimal design for dominant genetic model

pa ψ1 ψ2 ρKL n π c1 c2 Costs, 109 ×G1 nρKL

0.1 1.25 1.25 0.00814 25324 0.485 3.6608 5.4397 10.488 206
0.1 1.50 1.50 0.02814 7305 0.487 3.6644 5.4602 3.033 206
0.1 1.75 1.75 0.05558 3715 0.488 3.6632 5.4675 1.546 206
0.1 2.00 2.00 0.08780 2356 0.489 3.6698 5.4509 0.980 207
0.3 1.25 1.25 0.01237 16998 0.488 3.6858 5.4322 7.069 210
0.3 1.50 1.50 0.04046 5129 0.489 3.6818 5.4706 2.135 208
0.3 1.75 1.75 0.07618 2725 0.489 3.6839 5.4481 1.135 208
0.3 2.00 2.00 0.11539 1800 0.490 3.6817 5.4656 0.750 208
0.5 1.25 1.25 0.00886 23634 0.485 3.6811 5.4676 9.803 209
0.5 1.50 1.50 0.02793 7495 0.487 3.6805 5.4695 3.116 209
0.5 1.75 1.75 0.05108 4102 0.488 3.6828 5.5008 1.709 210
0.5 2.00 2.00 0.07557 2781 0.489 3.6820 5.4656 1.159 210
0.9 1.25 1.25 0.00045 468107 0.487 3.6696 5.5221 194.310 209
0.9 1.50 1.50 0.00136 154800 0.485 3.6770 5.5774 63.976 211
0.9 1.75 1.75 0.00244 87763 0.483 3.6851 5.2692 36.122 214
0.9 2.00 2.00 0.00354 61325 0.481 3.6935 5.7002 25.149 217

Table 6: 2-stage experiment costs for different number of disease associated markers
for recessive genetic model

a ψ2 d n π c1 c2 Costs. 109 × CG1

0.1 2 1 3.312728 0.4820548 3.6881411 5.2479493 13.6084
0.3 2 1 0.418234 0.48787 3.680582 5.460205 1.7398
0.5 2 1 0.2039411 0.4887829 3.684086 5.498811 0.8497
0.9 2 1 0.3456458 0.4874937 3.663774 5.4005 1.4364
0.1 2 3 3.309047 0.4834189 3.69151 5.689438 13.6153
0.3 2 3 0.4187521 0.4884526 3.688388 5.526668 1.7415
0.5 2 3 0.2042659 0.4881194 3.688066 5.530075 0.8499
0.9 2 3 0.3453255 0.4876306 3.660024 5.44371 1.4366
0.1 2 10 3.325978 0.4765964 3.673375 5.544194 13.6053
0.3 2 10 0.4180625 0.4884433 3.681854 5.482262 1.7419
0.5 2 10 0.2041193 0.4883948 3.686623 5.518704 0.8505
0.9 2 10 0.3453255 0.4876306 3.660024 5.44371 1.4377
0.1 2 100 3.327556 0.4758604 3.671292 5.532026 13.7458
0.3 2 100 0.4188474 0.4870465 3.682143 5.465708 1.7594
0.5 2 100 0.204077 0.4884602 3.686299 5.516228 0.8590
0.9 2 100 0.3455149 0.4876147 3.66204 5.443868 1.4526
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Figure 3: Relationship between overall costs and the symmetric KL-divergence for
the MAX3 test (α = 0.05/610000 β = 0.1)

6 Discrete design

Modern genotyping technologies allow using 96 and 384 well plates. Thus the number
of individuals should be proportional to well plate size. Therefore the optimal study
designs can be considered when the first stage sample size is a multiple of the well
plate size (On the second stage another genotyping technology is used, because the
number of markers is small).

In the table 7 the results for additive genetic model are shown when the number
of the well plates is equal 384, pa = 0.3, ψ1 = 2, ψ2 = 4, K = 0.05, m = 610000,
α = 0.05

m
, β = 0.1, d = 1, the proportion of the cases and controls is equal 0.5,

CG2

CG1
= 100, CR

CG1
= 105. The estimations α̂ and β̂ were found by Monte Carlo method

with Na = 2.18× 1010 and Na = 9.55× 106 replicates for α and β respectively.

The optimal plan requires 461 persons on the first stage and 501 person on the
second stage. From two available discrete plan (384 and 768 individuals) the first
plan is better, because it is more close to restrictions and a little loses the optimal
continue plan by costs.
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Figure 4: The relationship between costs and number of disease associated markers
(pa = 0.5, ψ1 = 2, ψ2 = 4)

7 Discussion

The most interesting result of our work is the relationship between optimal sample size
(and overall costs) and the symmetric Kullback-Leibler divergence for MAX3 test
optimal design under different genetic models. So the empirical symmetric Kulback-
Leibler divergence

ρ̂KL =
1

rs

2∑
i=0

(sri − rsi) ln
ri
si

Table 7: Optimal discrete design for additive genetic model (in first row). Well
plate size is equal 384

Number of n1 n2 Costs c1 c2 α̂ β̂
Well plates 108 × CG1 10−8

1 384 578 4.06 3.3489 5.38015 14.43 0.097
2 768 194 5.65 4.6389 5.58331 7.47 0.046

Optimal 461 501 3.97 3.68142 5.47351 9.69 0.086
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can be used as a measure of association. Under null hypothesis nρ̂KL/8 slowly tends
to standard exponential random variable.

Acknowledgements

This work was supported by DAAD grant A/11/76161 (first coauthor).

References

[1] White J.E. (1982) A two stage design for the study of the relationship between
a rare exposure and a rare disease. Am J Epidemiol Vol 115, 119-128.

[2] Breslow N.E., Chatterjee N. (1999) Design and analysis of two-phase studies with
binary outcome applied to Wilms tumor prognosis. JRSS C Vol 48, 457-468.

[3] Elston R.C., Guo X., Williams L.W. (1996). Two-stage global search designs for
linkage analysis: use of the mean statistic for affected sib pair. Genet Epidemiol
Vol 18, 97–110.

[4] Freidlin B, Zheng G, Li Z, Gastwirth JL. (2002) Trend tests for case-control
studies of genetic markers: power, sample size and robustness. Human Heredity
Vol 53, 146–152.

[5] Kraft P. (2006) Efficient two-stage genome-wide association designs based on
false positive report probabilities. Pac Symp Biocomputing Vol 11,523-534.

[6] Kraft P, Cox DG. (2008) Study designs for genome-wide association studies Adv
Genet Vol 60, 465-504.

[7] Kullback, S and Leibler, R. A. (1951). On information and sufficiency. Ann.
Math. Statist., Vol. 55, 79–86.

[8] Muller, H.-H., Pahl, R. and Schafer, H. (2007) Including sampling and phenotyp-
ing costs into the optimization of two stage designs for genome wide association
studies. Genet Epidemiol Vol 31, 844-852.

[9] Saito A, Kamatani N. (2002) Strategies for genome-wide association studies:
optimization of study designs by the stepwise focusing method. sl J Hum Genet
Vol bf 47, 360-365.

[10] Nguyen TT, Pahl R, Schafer H. (2009) Optimal robust two-stage designs for
genome-wide association studies. Ann Hum Genet. Vol 73 638–51.

[11] Sasieni PD (1997) From genotypes to genes: doubling the sample size. Biometrics
Vol 53, 1253–1261.

248



Applied Methods of Statistical Analysis

[12] Satagopan J.M., Verbel D.A., Venkatraman E.S., Offit K.E., Begg C.B. (2002)
Two-stage designs for gene-disease association studies. Biometrics Vol bf58,
163–170.

[13] Satagopan J.M., Elston R.C. (2003) Optimal two-stage genotyping in
population-based associaton studys. Genet Epidemiol Vol 25, 149–157.

[14] Satagopan J.M., Venkatraman E.S., Begg C.B. (2004) Two-stage designs for
gene-disease association studies with sample size constraints. Biometrics Vol 60,
589–597.

[15] Service S.K., Sandkuijl L.A., Freimer N.B. (2003) Cost-effective designs for link-
age disequilibrium mapping of complex traits. Am J Hum Genet Vol 72, 1213-
1220.

[16] Skol, A. D., Scott, L. J., Abecasis, G. R. and Boehnke, M. (2007) Optimal
designs for two-stage genome-wide association studies. Genet Epidemiol Vol 31,
776-788.

[17] Slager SL, Schaid DJ (2001) Case-control studies of genetic markers: Power and
sample size approximations for Armitages test for trend. Hum Hered Vol 52,
149-153.

[18] Song K, Elston RC (2006) A powerful method of combining measures of associa-
tion and Hardy-Weinberg disequilibrium for fine mapping in case-control studies.
Stat Med Vol 25, 105-126.

[19] Tarone RE, Gart JJ (1980) On the robustness of combined tests for trends in
proportions. J Am Stat Assoc. Vol. 75, pp. 110–116.

[20] Wang K, Sheffield VC (2005) A constrained-likelihood approach to marker-trait
association studies. American Journal of Human Genetics Vol 77, 768–780.

[21] Wang, H., Thomas, D. C., Peer, I. and Stram, D. O. (2006) Optimal two-stage
genotyping designs for genome-wide association scans. Genet Epidemiol Vol 30,
356-368.

[22] Zheng, G and Gastwirth, J.L. (2006) On estimation of the variance in Cochran-
Armitage trend tests for genetic association using case-control studies. Statist
Med Vol 25, 3150–3159.

249



Novosibirsk, 25-27 September, 2013

Parametric Models in the Analysis of Patients

with Multiple Myeloma

Mariya Semenova1 and Alexander Bitukov2

1 Novosibirsk State Technical University,
Novosibirsk, Russia

2 The Hematology Center,
Main Military Clinical Hospital named after N.N.Burdenko,

Moscow, Russia
e-mail: vedernikova.m.a@gmail.com

Abstract

The research of various schemes of chemotherapy for the patients with mul-
tiple myeloma has been carried out. The purpose of the investigation is to
compare the response time to the treatment in two groups of patients who
received different treatment. It has been proposed to use the accelerated life
models with cross-effect for relating the distribution of response time to the
scheme of chemotherapy, type of the response, etc. We have ascertained the
fact that such as a complete response, partial response, minimal response, sta-
bilization and progression of the disease in the group of patients treated by
Bortezomibe were achieved faster than in the control group. We are continuing
these studies.

Keywords: lifetime analysis, censored data, regression models, cross-effect
of survival functions.

Introduction

Accelerated life models are used more and more often in oncology and hematology
studies for estimation of the effect of explanatory variables on lifetime distribution
and for estimation of the survival function under given covariate values see [6], [8]
and [9].

The most popular and most widely applied survival regression model is the pro-
portional hazards model (called also the Cox model) introduced by Sir David Cox.
The popularity of this model is based on the fact that there are simple semiparametric
estimation procedures which can be used when the form of the survival distribution
function is not specified, see [4]. The survival functions for different values of the
covariates according to the Cox proportional hazard (PH) model do not intersect.
However, in practice this condition often does not hold. Then we need to apply
some more complicated models which allow decreasing, increasing or nonmonotonic
behavior of the ratio of hazard rate functions.

Following [1],[2] and [7] we illustrate possible applications of the Hsieh model (see
[5]), which is particularly useful for the analysis of survival data with one crossing
point.
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1 Parametric models

Suppose that each individual in a population has a lifetime Tx under a vector of
covariates x = (x1, x2, ..., xm)T . Let us denote by Sx(t) = P (Tx ≥ t) = 1− Fx(t) the
survival function and by λx(t) and Λx(t) the hazard rate function and the cumulative
hazard rate function of Tx, respectively.

In survival analysis, lifetimes are usually right censored. The observed data usu-
ally are of the form (t1, δ1), ..., (tn, δn), where δi = 1 if ti is an observed complete
lifetime, while δi = 0 if ti is a censoring time, which simply means that the lifetime
of the i-th individual is greater than ti.

a Proportional hazards model

The cumulative hazard rate for the Cox proportional hazards model is given by

Λx (t; β) = exp
(
βT · x

)
Λ0 (t) , (1)

where β is the vector of unknown regression parameters, Λ0(t; θ) is the baseline cu-
mulative hazard rate function, which is presented in Table 1 for some commonly used
baseline distributions.

This model implies that the ratio of hazard rates under different values of covariate
x2 and x1 is constant over time:

λx2 (t)

λx1 (t)
=

exp
(
βT · x2

)
exp (βT · x1)

= const (2)

However, this model is rather restrictive and is not applicable when the ratios of
hazard rates are not constant in time. There may be an interaction between covariates
and time, in which case hazards are not proportional.

Table 1: The cumulative hazard rate functions for baseline distributions

Distribution Λ0 (t; θ)

Exponential t/θ1

Weibull (t/θ1)θ2

Gamma − log
(

1− Γ(t/θ1,θ2)
Γ(θ2)

)
Lognormal − log

(
1
2
− 1

2
√
π
Γ
(

1
2θ2

log2 (t/θ1) , 1
2

))

b Hsieh model

According to the idea of Hsieh, one possible way to obtain a nonmonotonic behavior
of ratios of hazard rates is to take a power function of the baseline cumulative hazard
function. Namely, Hsieh proposed the model given by
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Λx (t; β, γ) = exp
(
βT · x

)
{Λ0 (t)}exp(γT ·x) . (3)

The parameters β and γ are m-dimensional. It is a generalization of the propor-
tional hazards model taking the power exp(γTx) of Λ0(t) instead of the power 1. It
is easy to show that the Hsieh model implies that the hazard ratio between different
fixed covariates is increasing from 0 to ∞ or decreasing from ∞ to 0. So, we have a
cross-effect of hazard rates functions and survival functions [5].

To test the goodness-of-fit of the proportional hazards model to an observed data
we will use the approach based on the residuals, which should fit closely to the stan-
dard exponential distribution if the model is indeed “correct”. Testing the hypothesis
H0 whether the samples of observed residuals belong to a particular distribution can
be carried out by means of Kolmogorov, Cramer-von Mises-Smirnov and Anderson-
Darling tests and using the maximum likelihood estimates of unknown parameters.

In this paper, we also use these test statistics to choose the most suitable baseline
distribution for observed data. The distributions of these test statistics are different
for different baseline distributions, i.e. test statistics are measured in different scales.
Therefore, it is logical to use the value p = 1−G(Sn|H0) as a numerical measure, where
G(S|H0) is the distribution function of the statistic corresponding to the presumed
parametric model and Sn is the value of the statistic calculated from the residuals.
The greater the value of p, the better the fit is for the baseline lifetime distribution
in the considered model to the data at hand [3].

2 Analysis of patients with multiple myeloma

This investigation of patients with multiply myeloma was carried out in The Hema-
tology Center, in the Main Military Clinical Hospital named after N.N.Burdenko.
The purpose of the investigation is to compare the response time to the treatment
in two groups of patients. The difference in these groups is in the fact that the first
group received chemotherapy with Bortezomibe, which is marketed as Velcade by
Millennium Pharmaceuticals.

a Data description

The data include observations of 60 patients, 4 of which were randomly censored. Pa-
tients in the study were randomly assigned to one of two treatment groups: chemother-
apy without Bortezomibe (x1 = 0) or chemotherapy together with Bortezomibe
(x1 = 1).

In addition to treatment, several factors were also observed: type of response (the
value x2 = 1 corresponds to the general response, x2 = 0 - the progression of the
disease), sex (x3 = 1 means that the patient is male, x3 = 0 means that the patient
is female), and age in years (x4).

Table 2 also gives the response times in months (t) and the censoring indicator δ.
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Table 2: The data of patients with multiply myeloma

t δ x1 x2 x3 x4 t δ x1 x2 x3 x4 t δ x1 x2 x3 x4

61 1 1 1 1 64 62 1 1 0 1 75 7 1 0 1 0 66
50 1 1 0 1 81 3 1 1 1 1 64 2 1 0 1 0 60
2 1 1 1 0 71 26 1 1 1 1 61 262 0 0 1 1 68
36 1 1 0 1 69 22 1 1 0 1 72 81 1 0 1 0 81
14 1 1 0 0 74 46 1 1 0 1 59 33 1 0 0 0 79
27 1 1 0 1 83 3 1 1 1 1 77 215 1 0 0 1 65
1 1 1 1 0 46 16 1 1 1 1 66 57 1 0 0 0 85
4 1 1 1 1 80 10 1 1 0 0 46 17 1 0 0 1 89
27 1 1 0 0 58 25 1 1 1 0 55 26 1 0 1 0 75
115 0 1 0 1 50 6 1 1 1 1 48 7 1 0 0 1 47
13 1 1 0 1 85 5 1 1 1 0 51 30 1 0 0 1 75
2 1 1 1 1 56 30 1 1 0 1 81 2 1 0 0 1 66
3 1 1 1 1 57 25 1 1 0 1 58 26 1 0 1 1 76
25 1 1 1 1 71 39 1 1 0 1 77 20 0 0 1 1 37
4 1 1 1 1 64 6 1 1 1 1 65 5 0 0 0 0 57
62 1 1 0 0 57 83 1 1 0 0 69 8 1 0 1 0 73
9 1 1 1 0 71 24 1 1 1 1 52 127 1 0 0 0 79
10 1 1 0 0 56 3 1 1 1 1 49 149 1 0 0 1 87
7 1 1 1 1 55 7 1 0 1 1 61 10 1 0 1 1 65
54 1 1 0 1 75 2 1 0 1 1 45 8 1 0 1 1 61

So, there are 38 observations in the first group and 22 observations in the second
one. It should be noted that 4 observations are independent randomly censored
observations.

b Simulation results

First of all, we estimated survival functions for patients in two groups of treatment
using nonparametric Kaplan-Meier estimates since the sample is censored. On Figure
1, these estimates are presented.

As can been seen from Figure 1, the estimates of survival functions intersect once.
By this reason the proportional hazards model can be inappropriate for these data
(proportional hazard assumption was not hold (2)); and we propose using the Hsieh
model with a cross-effect of survival functions for relating the distribution of response
time to the scheme of chemotherapy and other factors.

We analyzed different parameterizations of Hsieh models for these data and con-
sidered the problem of choosing a distribution law for the baseline survival function
that best fits these data. So, we obtained the values p for exponential (Exp), Weibull
(Wei), gamma (Gam) and lognormal (LnN) Hsieh models. In Table 3, the maxi-
mum likelihood estimates of the model parameters θ, β = (β1, β2, β3, β4)T and γ =
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Figure 1: The Kaplan-Meier estimates of survival functions

(γ1, γ2, γ3, γ4)T , the statistics of Kolmogorov (Sk), Cramer-von Mises-Smirnov(Sω2)
and Anderson-Darling (SΩ2) tests and the corresponding values of p are all presented.

As can been seen from Table 3, the lognormal Hsieh model fits the data much
better than all other considered models. Now, let us consider the significance of
the parameters β1 and θ1 by the Wald test. The null hypothesis to be tested is
H0 : β1 = θ1 = 0, the statistic

W (η0) = (η̂ − η0)T I (η̂) (η̂ − η0) , (4)

where η̂ is vector (β̂1, β̂2, β̂3, β̂4, γ̂1, γ̂2, γ̂3, γ̂4), η0 = (0.0, β̂2, β̂3, β̂4, 0.0, γ̂2, γ̂3, γ̂4) and
I (η̂) is the following estimation of Fisher information matrix

I (η) = −∂
2 logL (Tn; η)

∂η2
.

For obtained value W (η0) = 13.09 and corresponding χ2 distribution the p-value
is less than 0.01, therefore the hypothesis H0 is rejected, parameters β1 and θ1 are
not equal to 0, i.e. parameters for the first covariate in the model, namely type of
chemotherapy, are significant.
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Table 3: Comparison of different baseline distributions for the Hsieh model

θ̂ β̂ γ̂ Sk pSk Sω2 pSω2 SΩ2 pSΩ2

Exp 106.14 1.26,
0.71,
-0.56,
0.007

0.31,
-0.57,
-0.10,
0.004

1.05 0.01 0.19 0.01 1.10 0.01

Wei 4.21, 0.24 0.07,
2.37,
-0.67,
-0.05

0.41,
-0.39,
0.06,
0.02

0.79 0.16 0.11 0.11 0.67 0.10

Gam 5.87, 3.93 0.54,
1.50,
-0.49,
-0.02

0.01,
-0.89,
-0.06,
0.003

0.71 0.12 0.11 0.09 0.75 0.08

LnN 15.68, 0.97 0.53,
1.65,
-0.49,
-0.02

0.11,
-0.94,
0.03,
0.006

0.61 0.31 0.08 0.18 0.60 0.16
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Abstract

The problem of inertialess processes with “tube” structure identification is
considered. The parametric and nonparametric algorithms are used for solution
of this problem. The results of numeracy experiments are given.

Keywords: inertialess process, “tube” structure, nonparametric model.

Introduction

The problem of discrete continuous processes identification will be a long time one
of the most of actual in control theory. On the initial stage of the process research
a priori information availability is one of the most factor, which causes a variety of
identification problems. Depending on this, a large variety of mathematical tasks are
formulated. Below the discrete continuous processes identification in nonparametric
uncertainty conditions, in other words in the conditions, when there is no a priori not
only the laws of distribution of random factors, and information on the parametric
model of the process, is told about. After that the special case, when inputs variables,
influencing on the process, are stochastic depended form each other, is researched.
Apparently this case was researched in [1] at the first time. The analysis of this case
leads to the necessity to revise the identification problem of inertialess systems and
the introduction of a new class of models describing the processes that have a “tube”
structure in the space of input and output variables.

1 The general problem of identification

Recently the inertialess processes get more actual. It’s connection with the fact that
the measurements of the variables are made through significant periods of time. In
particular it’s happened when step of discretisation is larger than stability time. Let’s
consider the typical task of identification of [2], in which the process belongs to the
class of static and corresponds to the scheme.

On the fig. 1 A is operator, describing the process, it’s known with an accuracy
of up to parameters (but the class of operator is known); x(t) ∈ R1 is scalar output
variable of the process; u(t) ∈ Rn is vector input variable of the process; ξ(t) is
random action, hu(t) and hx(t) are noises, executing in the measuring lines; ut and xt
are measurements of input and output variables at the moment t. The random action
has dual character: it describes influence to the process by environment and random
actions inside of the process. Type and distribution of the random action ξ(t) are
unknown. The random action ξ(t) is centered random variable with limited variance.
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Figure 1: Scheme of the process

The distribution laws of the noises hu(t) and hx(t) are also unknown, centered and
have limited variances.

Mathematically the process can be shown as the equation:

x(t) = A (u(t), ξ(t)) . (1)

The task is concluded to construct the mathematical model of dependence between
output and input variables. Depending on the type of operator A task will have a
different character. If a priori model structure is known, then we have identification
problem in “narrow” sense. The parametric model will be used to solve this problem:

x̂(t) = Bα (u(t), α) , (2)

when Bα is parametric operator, α is a set of parameters.
If the parametric model structure is unknown, then the identification problem has

“wide” sense. The nonparametric model [3] will be used to solve this problem:

xs(t) = Bs (u(t), ~xs, ~us, β) , (3)

where Bs is nonparametric operator, β is parameters set of nonparametric model,
~xs = (x1, . . . , xs), ~us = (u1, . . . , us) are temporal vectors. Asymptotical properties of
inertialess processes nonparametric estimations are considered in [4]. Unlike “wide”
identification of “narrow” lies in the fact that there is no a selection stage of the
variational structure. However the parameters are also configured with help samples
xi, ui, i = 1, . . . , s and quality criterion.:

W (β) = M
{

(xi − xs(ui, ~xs, ~us, β))2}→ min
β
. (4)

The similar criterion is used for configure parameters α in (2).

2 The processes with “tube” structure

This paper focuses on the modeling of processes having a ”tube” structure. In the
such processes there may be dependence between components of input vector u(t).
It’s necessary more clear idea about “tube” structure to understand the problem.
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In the input-output space Ω(x, u) the process have limited domain ΩH(x, u). For
clarity let’s consider case, when n = 2. Type of the dependence between inputs
variables has functional character:{

x(t) = f(u(t)) + ξ(t);

F (u(t)) + ϕ(t) = 0.
(5)

Here f(u(t)) is some unknown function and ϕ(t) is centered random variable with
limited variance. Schematically it can look like on the fig. 2.

Figure 2: Scheme of the “tube” structure

If to look on the scheme (fig. 2), then you can see, that the domain area is limited
ΩH(x, u) ⊂ Ω(x, u), as we told previously. Shown structure is like curved tube,
therefore it was called “tube” structure.

For researched process the input-output variable space Ω(x, u) can be submitted
as hypercube without loss of generality. This space is always known. On the scheme,
shown on fig. 2, the hypercube is three-dimensional unit cube. If it’s possible, then
it’ always advisable to transform space Ω(x, u) to unit hypercube to simplify calcula-
tions. The limited domain ΩH(x, u) will be called “tube”. Only in this field contain
the values of the input variables, in which the process operates. It should be noted
that this space is never known. This is the whole complexity of the studied problem.

If we use usual models (constructed without considering “tube” structure) for
identification, then these models may contain value of input variables, in which the
researched process can not operate. In other words, such models contain dots in
hypercube (x, u) ∈ Ω(x, u), but they don’t belong “tube” area (x, u) 6∈ ΩH(x, u).

Work with such processes can be with the help of three instruments:

1. variance analysis;
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2. indicator function;

3. cluster analysis.

The first method is concluded in search functional dependencies between variables
and reduction the space Ω(u), until the “tube” structure will not disappear.

The second method enter the new special function, which estimate ownership
researched dot to “tube” area: u ∈ ΩH(u).

The third method separate the space Ω(u) on some subspaces with same dimen-
sion. However every space hasn’t dependence between inputs variables, i.e. the
process hasn’t “tube” structure.

In this paper only the second modeling method is researched. Introduce indicator
function: {

ΘH(u) = 1 if
∑s

s=1

∏n
j=1 Φ

(
c−1
j,s (uj − uj,i)

)
> 0;

ΘH(u) = 0 otherwise,
(6)

where Φ(·) is finite kernel function, cj,s are smooth parameters. When value of the
indicator function equals one, then u ∈ ΩH(u), when it equals zero, then u 6∈ ΩH(u).

Now the parametric model (2) is transformed into:

x̃(t) = Bα(u(t), α) ·ΘH(u). (7)

As the result we get absolutely new class of models with “tube” structure (7).
Their speciality consists of the fact that, in addition to the estimates values of the
output variables, they return again and ownership of the ΩH(u).

3 The numeracy experiments

Let’s demonstrate the advantage of the new class of models with the “tube” structure
in the following example:{

x(t) = 0.5u1(t) + 0.5u2(t) + ξ(t);

u2(t) = u1(t) + ϕ(t),
(8)

where ξ(t) and ϕ(t) are random variables, distributed on the uniform law in range
[−0.05; 0.05].

Create five samples of statistically independent measurements of the volume s =
200. The first component of vector input variable u1(t) is random variable, distributed
on uniform law in range [0; 1]. The random variables generator [5]. Values of the
second component u2(t) are calculated according to the second equation in system (8),
and according the first equation values of the output variable x(t). The parametric
model (2) is created for every case with help method of the least squares. The results
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of modeling are shown on fig. 3. We have five models with different estimations of
coefficients: 

x̂1(t) = 0.2u1(t) + 0.8u2(t);

x̂2(t) = 0.4u1(t) + 0.6u2(t);

x̂3(t) = −5u1(t) + 6u2(t);

x̂4(t) = 0.6u1(t) + 0.4u2(t);

x̂5(t) = 1.3u1(t)− 0.3u2(t).

As the result we have the researched process is described same structure models,
but the have absolutely different coefficients. In the real situation it means that
researcher need estimate parameters of the model in every new experiment. Two of
the obtained models are out from limit of the unit cube x̂ 6∈ Ω(x). In other words got
models aren’t adequate. However values of the least-mean square criteria for every
models are not exceed the one thousandth.

Figure 3: Results of parametric modeling

As we told, the parametric model estimates process great into area ΩH(u), but out
this area u 6∈ ΩH(u) and u ∈ Ω(u) (i.e. the process doesn’t operate with this values
of the input variables) the model estimates very strangely. And fact, that “tube”
area is never known, makes more complex the problem. In the control problem the
model returns unrealizable control.

The results of modeling with using indicator function are shown on fig. 4.
Dark grey color denotes estimation of “tube” area ΩH(u), light grey color denotes

parametric model and black points denote samples.
We will spend one more experiment. This time we will solve the problem of “wide”

identification. Let the object is described by the equation:{
x(t) = 0.5u2

1(t) + 0.5u2
2(t) + u1(t)u2(t) + ξ(t);

(u2
1(t)− 0.5)2 + (u2

2(t))2 = (0.4 + ϕ(t))2.
(9)
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Figure 4: Results of “tube” modeling

As a nonparametric model we use Nadaraja-Watson’s estimation [6]:

x(t) =
s∑
i=1

xi

n∏
j=1

Φ
(
c−1
j,s (uj(t)− uj,i)

)/ s∑
i=1

n∏
j=1

Φ
(
c−1
j,s (uj(t)− uj,i)

)
. (10)

The result is shown on fig. 5.

Figure 5: Results of nonparametric modeling

On the fig. 5 the result of nonparametric modeling without indicator function is
shown. The fact is, that such model in a natural form has a “tube” structure, because
in the dots of the space Ω(u) (when the process doesn’t operate and there are no
measurements) the model returns uncertainty, which is not operable by computer.
It’s just need exception.

4 The volume of “tube”

The researched processes obtain one property, it’s “tube” area. If this area is exist,
then its volume can be estimated.
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In the considered examples we can see, that the volume of the hypercube is rather
larger than volume of the “tube”. The true volume of the space ΩH(u) is also un-
known. But it can be estimated some other way. Let’s consider example with variate
dimension: {

x(t) = n−1
∑n

j=1 uj(t) + ξ(t);

uj(t) = u1(t) + ϕ(t) j = 2, . . . , n.
(11)

Estimation the volume of “tube” will be in two methods. The first method is
geometrical. Let’s imagine, that we can evaluate length of the “tube”, i.e. depended
inputs can be expressed:

uj(t) = fj(u1(t)) + ϕ(t) j = 2, . . . , n, (12)

where fj(·) are unknown functions. Then the volume could be estimated:

V̂1 = l · π0.5n · rn · Γ−1(0.5(n+ 2)), (13)

where l is length of the “tube”, r is its radius, Γ - gamma-function. Length and
radius are evaluated by help estimations of functions fj(·) between input variables.

The second method is concluded in the follow. In the space Ω(u) set of random
dots, distributed on uniform law, is generated. The volume of “tube” equals fraction
of amount of dots, owned by space u ∈ ΩH(u), and amount of all generated dots.
Ownership to “tube” area is estimated by indicator function (6). Then the volume
could be estimated:

V̂2 = kΩ/k, (14)

where kΩ is amount of dots, owned by “tube” area, k is amount of all generated dots.

Let’s experiment with different dimensions n. Value of noises is fixed 5%. The
results of computing modeling are shown in the table 1.

Table 1: Results of volume evaluating

Method n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

V̂1 4.8 · 10−3 4.1 · 10−4 5.2 · 10−5 5.2 · 10−6 6.0 · 10−7 8.2 · 10−8

V̂2 7.7 · 10−3 4.5 · 10−4 5.2 · 10−4 2.0 · 10−6 8.2 · 10−7 2.3 · 10−7

Truth 5.6 · 10−3 5.9 · 10−4 6.2 · 10−5 6.4 · 10−6 6.8 · 10−7 6.9 · 10−8

The first method is rather closer to truth and needs less time on evaluations.
However the first method can be used in one case, when the dependence (12) between
inputs is exist. When we get volume of the ΩH(u), we can say about available “tube”
structure of researched process.
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Conclusions

The modeling of inertialess processes, having “tube” structure, was considered. The
usual parametric models can’t be used for estimation of these processes, but introduce
the indicator function make models adequate. The new class of models with indicator
function was got. The nonparametric models can be used for estimation of processes
with “tube” structure in nature type. Also volume of “tube” structure was estimated
accurate within order. In the future the control system of inertialess processes with
“tube” structure will be constructed.
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Abstract

It is demonstrated that Ramsey Regression Equation Specification Error
Test (RESET-test) is robust to disturbance in the assumption of a Gaussian
distribution model errors. The power of Ramsey RESET-test is investigated.

Keywords: Model specification, a linear regression model, Ramsey RESET-
test.

Introduction

RESET tests the significance of a regression of the residuals on a linear function
vectors, which are obtained from the least-squares estimates of the depended vari-
able. The specification errors considered are omitted variables, incorrect functional
form. The effects on the Ramsey RESET statistics distribution of residuals of model
specifications are considered. However, this test is designed with the assumption of
Gaussian distribution of the random component of the model, which often disturbs in
practice. Computer modelling methods provide an opportunity to study the influence
of disturbance of this assumption on the properties of the distribution statistics.

1 Research of distribution of the Ramsey RESET-

test statistic

Ramsey RESET-test tests whether non-linear combinations of the fitted values help
explain the response variable. More specifically, if the null-hypothesis that all regres-
sion coefficients of the non-linear terms are zero is rejected, then the model suffers
from mis-specification. F test used for proof of hypothesis. To research of distribu-
tion of the Ramsey RESET-test statistic under failure the assumption of a Gaussian
distribution model errors we used bilateral exponential distribution (Be), distribution
of maximum value (Max) and distribution of minimum value (Min). The significance
level is equal 0.05 in all researches. The samples of distributions of the statistics
are modeled with sample size is equal 20000, which made it possible to estimate the
attainable significance point and the power with error to within 0.01. To implement
RESET, we must decide how many functions of the fitted values to include in an
expanded regression. To answer this question, we researched of distribution of the
test statistic for different number of added regressors. The results of this researching
are presented in Table 1. According to Table 1, the squared and cubed terms have
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Table 1: Goodness-of-fit test’s attainable significance point for different number of
added regressors

Errors distribution — Number of added regressors 1 3 5 7
Gaussian 0.71 0.68 0.11 0.65
Be (0.5) 0.01 0.00 0.00 0.00
Be (10) 0.70 0.78 0.00 0.00

Max 0.90 0.06 0.08 0.00
Min 0.27 0.08 0.04 0.00

proven to be useful in most situations. Also, we researched the dependence of the
test statistics distribution from the noise level. The results of this researches are
presented in Table 2. According to Table 2, Ramsey RESET-test is robust as to a

Table 2: Goodness-of-fit test’s attainable significance point for different noise level

Errors distribution — Noise level (%) 10 30 50 70
Gaussian 0.70 0.28 0.65 0.39
Be (0.5) 0.05 0.00 0.00 0.02
Be (10) 0.23 0.61 0.19 0.60

Max 0.11 0.49 0.06 0.25
Min 0.68 0.50 0.21 0.14

high noise level as to disturbance the assumption of model errors distribution.

2 Power of the Ramsey RESET-test

The power was analysed of the relative to the following alternative: regression co-
efficient of the squared term is not zero. We researched the dependence of the test
power from the sample’s size and from the noise level. The results of this researches
are presented in Table 3 and Table 4, respectively.

According to Tables 3, Ramsey RESET-test’s power is hight for different distri-
butions of the observational errors for different sample size. According to Tables 4,
Ramsey RESET-test’s power is the highest for Gaussian distribution for different
noise levels.

Conclusions

Ramsey RESET-test is robust as to a high noise level as to disturbance the assumption
of model errors distribution. To implement Ramsey RESET-test, we must decide how
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Table 3: Test’s power for different sample size

Errors distribution — Sample size 20 40 60 80
Gaussian 1.00 1.00 1.00 1.00
Be (0.5) 0.96 1.00 1.00 1.00
Be (10) 0.99 1.00 1.00 1.00

Max 0.97 1.00 1.00 1.00
Min 0.98 1.00 1.00 1.00

Table 4: Test’s power for different noise level

Errors distribution — Noise level (%) 10 30 50 70
Gaussian 1.00 1.00 1.00 1.00
Be (0.5) 1.00 0.95 0.86 0.77
Be (10) 1.00 0.98 0.86 0.72

Max 1.00 0.96 0.85 0.73
Min 1.00 0.97 0.88 0.75

many functions of the fitted values to include in an expanded regression. There is no
right answer to this question, but the squared and cubed terms have proven to be
useful in most situations. Ramsey test’s power is approximately the same for different
distributions of the observational errors.
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Introduction

Last thirty years the theory and applications of the functional Monte Carlo estima-
tors are developed rapidly [6, 7, 8]. As a rule, corresponding Monte Carlo discrete-
stochastic schemes are used for global solution of Fredholm integral equations of the
second kind. They look as follows. A grid is introduced and some Monte Carlo esti-
mators (dependent, independent, ”weakly” dependent) are used for approximation of
the solution in grid nodes. Then the ”fulfilment” of solution is realized using approx-
imate values at grid nodes and some basis of known functions (in this paper, the local
finite elements [4] are used). New approaches to investigating errors of such schemes
and to choosing the conditionally optimal parameters are elaborated [6, 7, 8].

In significant applications the independent estimators at grid nodes are used be-
cause of existence of singularities in required functionals and in kernels and free terms
of integral equations. Independence of estimators leads to loss of smoothness for ap-
proximate values at grid nodes. Thus, some smoothing procedures are needed and
some geostatistical techniques (in particular, kriging; see, for example, [3, 5, 9]) can be
useful in framework of L2-approach to conditional optimization of the corresponding
discrete-stochastic schemes (see [6, 7, 8] and Section 2 of this paper). In this paper
the theoretical foundations of such usage are considered.

1 Classical Monte Carlo estimators

1.1. The collision estimator. The main practical example of Monte Carlo calcu-
lations is a linear functional

I = (ϕ, h) =

∫
ϕ(x)h(x) dx (1.1)
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on the solution ϕ(x) of Fredholm integral equations of the second kind

ϕ = Kϕ+ l or ϕ(x) =

∫
k(x′, x)ϕ(x′) dx′ + l(x), (1.2)

where K is an integral operator with a kernel k(x′, x) and l(x) is a free term of the
equation (1.2). The following Monte Carlo estimator – unbiased collision estimator

ζ =
N∑
m=0

Q(m)h(ξ(m)) (1.3)

is usually used for the value (1.1) (see, for example, [7]). Here

ξ(0), ξ(1), . . . , ξ(N) (1.4)

are the states of a uniform Markov chain, which breaks with probability one (N equals
to number of the break-state), defined by the initial density π(x) and transition
function p(x′, x) = (1 − qa(x

′)) × q(x|x′); here qa(x) is the probability of breaking
(”absorption”) and q(x|x′) is the transition conditional density. Stochastic weights
Q(m) can be defined reccurently:

Q(0) = f(ξ(0))/π(ξ(0)); Q(m) = Q(m−1)k(ξ(m−1), ξ(m))/p(ξ(m−1), ξ(m)). (1.5)

The Monte Carlo method is an application of the big numbers law (see, for example,
[7]) which is used for the estimator (1.3) as follows:

I = E[ζ] ≈ Sn =
1

n

n∑
j=1

ζj. (1.6)

Using the central limit theorem (see, for example, [2]) it is easy to get the ratio for
the error of the method (1.6) (see, for example, [7]): with probability close to unit

|I − Sn| ∼ H ×
√

Var[ζ]√
n

; H = const, (1.7)

where Var[ζ] is the variance of the estimator ζ and H < 3.
For optimization of choice of the estimator ζ (it means the choice of the functions

π(x) and p(x′, x) for the chain (1.4)) we have to minimize the cost of the algorithm
(1.6):

Cost = t×Var[ζ], (1.8)

where t is an average time for computer calculating of an individual sample value ζj
of the random value ζ (see, for example, [7]).

1.2. The local Monte Carlo estimator. For further reasoning it is necessary
to note that the estimators of the type (1.3) can be derived for a value ϕ(x0) of the
solution of the equation (1.2) in some individual point x0.

269



Novosibirsk, 25-27 September, 2013

There are exist two approaches for constructing an estimator for the value ϕ(x0)
[7, 8]. The first one has a little bit ”strange” name – local estimator (in fact, it is
a kind of ”global” estimator). The idea is to treat the first term in the right side of
the equation (1.2) as a parametric functional

∫
k(x′, x)ϕ(x′) dx′ = (ϕ, hx) = Ix and

construct an unbiased collision estimator (1.3) for this functional, and finally

ϕ(x0) = E[ζ(x0)], ζ(x0) =
N∑
m=0

Q(m)k(ξ(m), x0) + l(x0) (1.9)

(see [7, 8]). Note that in this case the same trajectories of the Markov chain (1.4)
can be used for various points x (in this sense (1.9) is a ”global” estimator as it
was mentioned above). Moreover, it is possible to prove [8] that the error of the

”continuous” Monte Carlo approximation Zn(x) = 1
n

∑n
i=1

(∑Ni
m=0Q

(m)
i k(ξ

(m)
i , x)

)
+

l(x) has the same order with respect to n of the error in the C-norm as for ”ordinary”
Monte Carlo scheme – see formula (1.7):

ρ(C)(ϕ,Zn) = sup
x∈X
|ϕ(x)− Zn(x)| ∼ HC√

n
; (1.10)

here X is a bounded compact domain in Rd. Nevertheless, for this result the function
ϕ(x) must be smooth enough with respect to the x (the second derivative on x must
be bounded), thus, the kernel k(x′, x) and the free term l(x) of the equation (1.2)
must have the same smoothness. But for the most part of actual applied problems
this smoothness does not exist.

EXAMPLE 1. One of the main applications of the estimator (1.3) is the modelling
of heat transfer (see, for example, [6, 7]). The radiation flow is treated as as a steam
of ”small” particles which interact with ”big” particles of medium. Under interaction
the ”small” particle can be absorbed by the ”big” one or disperse stochastically. In
this case ϕ(x) is a total density of collisions and

k(x′, x) = ps(r
′)χs(ω|x′)

(
λe−λ|r−r

′|
)
× δ

(
ω − r − r′

|r − r′|

)
, (1.11)

where x = (r, ω); x′ = (r′, ω′) are the points of ”small” particle’s collision with ”big”
ones: r is a three-dimensional coordinate of a collision point, ω is a unit vector of
the moving direction of the ”small” particle before collision; ps(r

′) is the probability
of survival of the ”small” particle in the collision point r′ (and pa(r

′) = 1 − ps(r
′)

is the probability of absorption); χs(ω|x′) is conditional density for new direction of
moving (which includes the dispersion index); λe−λ|r−r

′| – is the density of length
of free run (without collisions); for homogeneous environment it is exponential (this
case is considered); δ(ω−(r−r′)/|r−r′|) is a generalized function (or delta-function);
it is reflects that fact that free run occurs on a straight line.

Availability of the delta-function excludes the smoothness of the function (1.11)
with respect to x. In practice, the delta-function is approximated by the smooth
function in small neighborhood of the corresponding value of independent variable x,
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and the estimator (1.9) is constructed for this comparatively small domain (that is
why the stochastic function (1.9) is called ”local” estimator).

1.3. The conjugate wandering method. In many practically considerable
cases, the presence of singularities (in particular, delta-functions – like in the formula
(1.11)) forces to use the following approach for calculating for the value ϕ(x0) (see
also [6, 7, 8]). Note that it is possible to rewrite this value in the form (1.1):

ϕ(x0) =

∫
ϕ(x)hx0(x) dx; h(x0)(x) = δ(x− x0). (1.12)

But the estimator (1.3) can not be used in this case because it is impossible to get the
value of the delta-function in an individual point ξ. The following dual representation
of the functional (1.1) can be easily derived (see, for example, [7]):

I = (ϕ, h) = (ϕ∗, l), (1.13)

where ϕ∗(y) is the solution of the conjugate (with respect to functional (1.1)) equation

ϕ∗(y) =

∫
k∗(y′, y)ϕ∗(y′) dy′ + h(y); k∗(y′, y) = k(y, y′). (1.14)

Thus, instead of the estimator (1.3) we can use the collision estimator of the functional
(ϕ∗, l) from (1.13) on the solution of the integral equation (1.14)

ζ∗ =
N∗∑
m=0

Q∗(m)l(ξ∗(m)) (1.15)

for the corresponding uniform Markov chain

ξ∗(0), ξ∗(1), . . . , ξ∗(N) (1.16)

(which reflects the conjugate wandering) with initial density π∗(y) and transition
function p∗(y′, y) (here N∗ is the stochastic number of break-state of the chain);

Q∗(0) = h(ξ∗(0))/π∗(ξ∗(0)); Q∗(m) = Q∗(m−1)k(ξ∗(m), ξ∗(m−1))/p∗(ξ∗(m−1), ξ∗(m)).
(1.17)

In the case of the indicating function (1.12) for estimator (1.16) of the value
ϕ(x0) it is impossible to calculate the stochastic weight Q∗(0) in ratios (1.17). Here
the method of including singularity into a density (see, for example, [7]) can be used.
Namely, we can choose the delta-density π∗(0)(y) = δ(y − x0). It means that

ξ∗(0) = x0 and Q∗(0) = 1 (1.18)

with probability one (thus, the randomness ”¡dissapear”¿ for the delta-density) and

ϕ(x0) = E[ζ∗(x0)]; ζ∗(x0) = l(x0) +
N∗∑
m=1

Q∗(m)l(ξ∗(m)). (1.19)

Note that because of (1.18) the chain (1.16) and estimator (1.19) are realized ex-
clusively for one point x0 (thus, the estimator (1.19), compared with (1.9), is really
”local”).
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2 Functional Monte Carlo estimators

2.1. The discrete-stochastic algorithm. For many useful applications there is
needed the ”global” approximation of the solution ϕ(x) of the equation (1.2) in a
bounded compact domain X ⊂ Rd [6, 7, 8]. We can use some ”classical” method
of numerical function approximation (see, for example, [1]) and introduce a grid
X(M) = {x1, . . . , xM} and then consider the approach

ϕ(x) ≈ LMϕ(x) =
M∑
i=1

wi(ϕ
(M))χi(x), (2.1)

where Ξ(M) = {χ1(x), . . . , χM(x)} are known ”basis” functions, and
W (M) = {w1, . . . , wM} are some coefficients which depend on the values
ϕ(M) = {ϕ(x1), . . . , ϕ(xM)} of the function ϕ(x) at grid nodes X(M); as a rule

wi(ϕ(x1), . . . , ϕ(xM)) = ϕ(xi). (2.2)

In our case the values {ϕ(x1), . . . , ϕ(xM)} are not given: we have to use Monte
Carlo method (with estimators (1.9) or (1.19)) to get them:

ϕ(xi) ≈ S(i)
ni

=
1

ni

ni∑
j=1

ζ
(i)
j . (2.3)

As a result we have the following approximation instead of (2.1):

ϕ(x) ≈ LM ϕ̃(x) =
M∑
i=1

wi(S
(1)
n1
, . . . , S(M)

nM
)χi(x). (2.4)

This formula presents the discrete-stochastic algorithm for approximation of the func-
tion ϕ(x) (see [7, 8]).

2.2. Conditional optimization of the discrete-stochastic algorithm. One
of the main problems in realization of the approximation (2.4) is: how to choose
the parameters M (number of nodes in the grid X(M)) and number of sample values
n = min(n1, . . . , nM) of the estimators {ζ(i)} of the values {ϕ(xi)}? The approach
is highly natural [6, 7, 8]: we construct the upper boundary for the error of the
approximation (2.4)

δ(B) = ρB(X)(ϕ,LM ϕ̃) < T (M,n); (2.5)

here B(X) is a corresponding Banach functional space. The we consider the equation

T (M,n) = ∆, (2.6)

where ∆ is an admissible level of error. From the equation (2.6) we express one
parameter by means of another, for example, n = v(M,∆), and then use this ratio
for expression of the cost of the algorithm (2.4). As a rule, this expression has the
form s̃ = H ×M × n (here H = const), thus, we get the function

s(M) = H ×M × v(M,∆)
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on one independent variable M . Then we can find the minimum point Mmin of
this function using the approaches of mathematical or numerical functional analysis.
Finally we get the conditionally optimal parameters

M = Mmin(∆), n = v(Mmin,∆), (2.7)

which can be used in calculations according the formula (2.4). Here we exploit the
term ”conditional” (see also [7, 8]) because in the equation (2.6) we use the upper
boundary T (M,n) (see the inequality (2.5)), but not the exact dependence of the error
δ(B) on parameters M and n.

2.3. Construction of upper boundaries for the error of the discrete-
stochastic algorithm. Note that the error δ(B) is a stochastic value. Thus, the
inequality (2.5) must be treated in some probabilistic sense. Another problem is:
how to choose the Banach space B(X).

For using the geostatistical technique it is appropriate to use the so called L2-
approach (see [6, 7, 8]), where the upper boundary is constructing for the averaged
second order deviation:

(
E
[
δ(L2)

])2
=

(
E

[(∫
X

(
ϕ(x)− LM ϕ̃(x)

)2
dx

)1/2
])2

< T (L2)(M,n), (2.8)

where T (L2)(M,n)→ 0 while M,n→∞.
As basic functions Ξ(M) it is expedient to use local finite elements of the so called

Strang–Fix approximation (because of their good properties concerning stability) [4].

3 Usage of kriging

3.1. Expediency for usage of some smoothing procedure for the discrete-
stochastic algorithm. Note that for many important applications the indepen-
dent stochastic estimators (namely, the estimators (1.19) of the conjugate wandering

method) for getting the approximations {S(i)
ni } of values {ϕ(xi)} are used. The main

reason of such usage is the existence of singularities in required functionals and in
kernels and free terms of corresponding integral equations (see, for example, formula
(1.11)).

It is well-known (see [7, 8]) that the usage of independent estimators in grid nodes
can disturb the smoothness of the solution ϕ(x) even in the cases when this solution is
continuous or smooth. Sometimes some tricks for involving of an artificial dependence
are used [6, 7, 8], but they are not so effective. Thus, smoothing procedures for

the values {S(i)
ni } (together with or instead of ”fulfilment” (2.1))) can give essential

positive effect in global approximation of the function ϕ(x).
3.2. Accuracy of data. Note that in practice for every i calculation of the

value S
(i)
ni is laborious. Thus, the number of grid nodes M can not be rather big.

In this case, according to formulas like (2.7), it is not necessary to use too many
computer realizations of Markov chain trajectories (thus, their number n is not so
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big). In this case the accuracy of data {S(i)
ni } in grid nodes can be not so high. Thus,

some geostatistical smoothing technique (in particular, the kriging; see, for example,
[3, 5, 9]) seems to be useful as a modification of the corresponding discrete-stochastic
algorithm (2.4).

Note also, that in opposite to standard setting of geostatistical problems we can
use not only the final data {S(i)

ni }, but also some intermediate information {S(i)
n̂i
}; here

n̂i < ni.
3.3. Numerical approximation of the variogram. Note that the criteria

(1.8) for optimization of the classical Monte Carlo method can not be used directly
because the problem of calculation of variance Var[ζ] has the same difficulty as the
initial problem of calculating of the value I = E[ζ]. In practice the value Var[ζ] is
approximated by the preliminary calculations which use the sample values ζ1, . . . , ζn̂
(the number n̂ is rather less than the value n from the approximate ratio (1.6)). The
simplest approximation has the form stochastic approximation of the variance has
the form

Var[ζ] = E[ζ2]− (E[ζ])2 ≈ Vn̂ =
1

n̂

n̂∑
i=1

ζ2
i − (Sn̂)2. (3.1)

It is well known (see, for example, [7]) that if we treat ζi as independent identically
distributed random variables, then E [Vn̂] = (1 − 1/n̂)Var[ζ], i. e. the estimator Vn̄
of the variance Var[ζ] is biased (but consistent). It is easy to construct an unbiased
estimator of variance:

Var[ζ] ≈ V̂N̂ =
Vn̂

1− 1/n̂
=

1

n̂− 1

n̂∑
i=1

ζ2
i −

1

n̂(n̂− 1)

(
n̂∑
i=1

ζi

)2

. (3.2)

The value t from criteria (1.8) can be also easily approximated using the preliminary
calculations with the sample values ζ1, . . . , ζn̂:

t ≈ t1 + . . .+ tn̂
n̂

,

where ti is the cost of calculation of the value ζi.
The approximations of the type (3.1), (3.2) can be also used for approximation of

the variogram as follows (see, for example, [3, 5, 9]). Note that in this approximation
the corresponding average is realized with respect the parameter M (the number of
grid nodes in the set X(M)) instead of the parameter n (the number of realizations
of Monte Carlo estimators at grid nodes).

Let us consider (for simplicity) the one-dimensional case:

X = [0, 1], xi = i× s; s = 1/(M − 1); i = 1, . . .M,

and suppose n1 = . . . = nM = n. Introduce the stationary random process

Zn(x) =
1

n

n∑
j=1

ζj(x)− ϕ(x).
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Consider also the variogram of this process (see, for example, [3, 5, 9]):

γn(h) =
1

2
Var[Zn(x+ h)− Zn(x)].

For the discrete-stochastic algorithm (2.4) we have a kind of ”geostatistical situ-
ation”: we can use only and the values in corresponding grid nodes

Z(i)
n = S(i)

n − ϕ(xi); i = 1, . . .M ;

moreover, we have to approximate somehow the unknown value ϕ(xi) (for example,

using some intermediate information {S(i)
n̂i
}). Thus we can use only the values h =

k× s; k = |i1− i2| for corresponding indexes of the grid nodes xi1 and xi2 (as in the
cases of practical use of kriging, see [3, 5, 9]).

Conclusions

In this paper the reasoning for usage of geostatistical smoothing technique in discrete-
stochastic numerical algorithms together with corresponding numerical schemes are
formulated.
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Abstract

Kinetics of the first order phase transition is considered. Double stochastic
processes controlled by inhomogeneous Poisson process were investigated. It
has been shown that the consideration of double stochastic processes leads to
a heavy-tailed probability distributions (as compared with a normal distribu-
tion).
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Introduction

The theoretical derivation of the rate for the first order phase transition is one of
the actual tasks of the first order phase transition kinetics. To construct the global
picture of the phase transition one has to take into account a depletion of a mother
phase around growing objects of a new phase. Such problems have been studied, for
example, in [8, 9, 10, 11, 12]

One of the first attempts to take into account the effect of the interaction of
volumes free from the formation of the new phase was made in [5]. The process of
the phase transition can be described by the following way: At some moment (let it be
an initial moment) the embryos of a new phase begin to appear in the mother phase.
Later these embryos begin to consume the mother phase and the regions of essential
exhaustion will inevitably grow in the mother phase. Certainly, in the unexhausted
regions the embryos of a new phase can appear later, but the total volume of the
unexhausted region will decrease in time.

The process of the embryos formation satisfies the following natural assumptions:
1. The potential (without exhaustion) intensity of the embryos formation does to

depend on the spatial point which implies the homogeneity of the substance. This
value is assumed to be constant .

2. The formation of embryos is the which implies that the probability of formation
of n embryos in the time interval [0, t] is given by:

pn(t) =
(λt)n

n!
exp(−λt),

where λ is the constant intensity of the embryos formation.
This condition can be rewritten as:
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{
p1(dt) = λdt
p≥2(dt) = o(dt)

,

where pn(dt) is the probability of embryos formation of n in the time interval dt.
3. The part of the exhausted volume at time t is proportional to the probability

for some point to be out of the process of the embryos formation at t (ergodic
property).

Let us introduce the following notation.
α(t) is a intensity of the embryos formation in unit volume per unit time;
W (t) is the relative volume of exhausted phase;
V (t) is the relative volume of unexhausted phase;
p(t) is the probability that an arbitrary point will be in the exhausted volume;
q(t) is the probability that an arbitrary point will be in the unexhausted volume.
N(t) is the number of embryo formed in the time interval [0, t];
the volume of embryo grows in time as some function ω(t).

It is obvious: p(t) + q(t) = 1.
Due to ergodicity: V (t) = q(t); W (t) = p(t).

Kolmogorov has received the following formulas:

q(t) = exp

(
−
∫ t

0

α(τ)ω(t− τ)dτ

)
;

N(t) =

∫ t

0

α(τ)q(τ)dτ.

Similar results were obtained by the authors in a manner which allows some
further generalization in the paper [14].

Note that these expressions are a deterministic functions of time. Now we going
to study stochastic processes N(t) and W (t).

1 Main results

- probability generating function for stochastic process N(t) and the Laplace trans-
form for stochastic process W (t) are found;

- the basic numerical characteristics of these processes are calculated;

- it is shown that the expectations of these processes are the same as corresponding
deterministic functions, found earlier by Kolmogorov;

- asymptotic distributions of these processes as t→ +∞ processes are found;

- double stochastic processes N2(t) ≡ N(α(t)) and W2(t) ≡ W (α(t)), con-
trolled by stochastic process α(t), are investigated;

- asymptotic distributions of N2(t) and W2(t) are also found;
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- it has been shown that the consideration of double stochastic processes leads to
a heavy-tailed probability distributions (as compared with a normal distribution).

2 Process N(t) as an inhomogeneous Poisson

process

It is easy to show that by the assumptions 1-3 process N(t) is an inhomogeneous
Poisson process with local intensity

λ(τ) = α(τ)q(τ);

(see [4, 3]).

Khinchin showed that in this case the probability of formation of k events in the
time interval [τ, t+ τ ] is given by:

Pk(τ, t) =
(Λ(τ, t))k

k!
exp(−Λ(τ, t)),

where

Λ(τ, t) =

∫ t

τ

λ(u)du.

The function Λ(τ, t), according to Khinchin, is called the leading function of in-
homogeneous Poisson process. According to [7], we can derive the following formula:

P (N(t) = k) =
(Λ(0, t))k

k!
exp(−Λ(0, t)),

where

Λ(0, t) =

∫ t

0

α(u)q(u)du.

Now we can calculate the generating function for process N(t):

Φ(z, t) ≡
∞∑
k=0

zkP (N(t) = k).

Calculations yield

Φ(z, t) = exp (Λ(0, t) (z − 1)).

Now, with the calculation of derivatives of the generating function, we can obtain
the moments of the process N(t). In particular:

EN(t) ≡ ∂Φ(z, t)

∂z

∣∣∣∣
z=1

= Λ(0, t) =

∫ t

0

α(τ)q(τ)dτ.
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This result is analogous to that of Kolmogorov. Thus, the formula derived by
Kolmogorov actually is a formula for the expectation of the (random) number of
embryos. We can now calculate the variance of the number of embryos (and get the
same value):

DN(t) ≡ ∂Φ(z, t)

∂z

∣∣∣∣
z=1

+
∂2Φ(z, t)

∂z2

∣∣∣∣
z=1

−
(
∂Φ(z, t)

∂z

∣∣∣∣
z=1

)2

=

∫ t

0

α(τ)q(τ)dτ.

Now let’s look for the asymptotic distribution of the process N(t) as t→ +∞.
Let

a =

∫ ∞
0

α(τ)dτ exp

(
−
∫ τ

0

α(u)ω(τ − u)du

)
.

This integral converges, hence as t→ +∞

Φ(z, t)→ exp(a(z − 1)) ≡ Φ1(z).

This means that at infinity the process N(t) converges to a Poisson random vari-
able with parameter a.

Consider an important special case α(t) = α.
Then

Φ1(z) = exp(α(z − 1)

∫ ∞
0

−α exp

(
−
∫ τ

0

ω(τ − u)du

)
dτ).

If more ω(t− τ) = t− τ, then we have

Φ1(z) = exp

(
(z − 1)

√
πα

2

)
.

3 Double stochastic Poisson process N2(t)

Now, we assume that α(t) is itself a stochastic process. Then define the (double
stochastic) process N2(t) ≡ N(α(t)). We have the so called Cox process controlled
by α(t) (see [6]).

At first, we consider a special case, α(t) = α. Here α is a positive random variable
with the density fα(α).

Let’s calculate the generating function for double stochastic process N2(t):

Φ2(z, t) =

∫ ∞
0

exp

(
(α(z − 1)

∫ t

0

−α exp

(
−
∫ τ

0

ω(τ − u)du

)
dτ

)
fα(α)dα.

As t→ +∞

Φ2(z,∞) =

∫ ∞
0

exp(a(z − 1))fa(a)da,
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where

a = α

∫ ∞
0

exp

(
−α
∫ τ

0

ω(τ − u)du

)
dτ.

We can see that random variable a is a deterministic function of random variable
α. That is, the distribution of a uniquely determines the distribution of α, and vice
versa. We can say that we have a mixed Poisson distribution, and mixing distribution
will have the density fa(a).

Here are some specific examples.
- if a has a gamma distribution, then N2(∞) has a negative binomial distribution.
- if a has a exponential distribution, then N2(∞) has a negative geometric distri-

bution.
- if a has a shifted gamma distribution, then N2(∞) has a Delaporte distribution.

The main difference of these distributions is that now the tails of the distributions
decreases much more slowly than for the determined value of a (or, equivalently, α).
Namely, Willmot theorem holds (see [13]).

Theorem (Willmot).
If

P (a > λ) ∼ L(λ)λα exp(−βλ),

as λ→∞ and L(λ) is a slowly varying function
(

lim
λ→∞

L(aλ)
L(λ)

= 1
)

then as λ→∞

P (N2(∞) > n) ∼ L(n)nγ(β + 1)−1−n−γ,

with γ < 0 for β ≥ 0.

This theorem implies that the rate of decrease of the tails of distribution N2(t) is
a power function. It is not exponential function, as for the deterministic case.

In general, we can use the theorem of continuity (see [1]).

Theorem.
Suppose that there is a weak convergence of the process α(t) to the (positive)

random variable αas t→∞.
Then the generating function of the process N2(t) ≡ N(α(t)) converges to

Φ2(z,∞) =

∫ ∞
0

exp(a(z − 1))fa(a)da,

where

a = α

∫ ∞
0

exp

(
−α
∫ τ

0

ω(τ − u)du

)
dτ.

This means that the process N(α(t)) has the same asymptotic distribution as for
special case α(t) = α (where α is a random variable).
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4 Process W (t) with the deterministic control

function α(t)

We can calculate the Laplace transform of process W (t):

ψ(s, t) ≡ E exp(−sW (t)).

We’ll obtain

ψ(s, t) = exp (Λ(0, t)(Eτ exp(−sω(t− τ))− 1)) .

Hence we have

EW (t) ≡ ∂ψ

∂s

∣∣∣∣
s=0

= Λ(0, t)Eτω(t− τ).

Let’s define

Λ1(0, t) ≡
∫ t

0

α(τ)q1(τ, t)dτ,

where

q1(τ, t) ≡ exp

(
−
∫ t

τ

α(u)ω(t− u)du

)
;

Next, we consider the case when Λ(0, t) = Λ1(0, t)(for example, this holds if
α(τ) = α, this is verified by direct calculation). Then we can find the expectation

EW (t) = Λ(0, t)Eτω(t− τ) = 1− exp

(
−
∫ t

0

α(u)ω(t− u)du

)
= p(t).

This answer coincides again with the result obtained by Kolmogorov!

And we get the formula for the variance:

DW (t) =

∫ t

0

ω2(t− τ)α(τ)exp

(
−
∫ τ

0

α(u)ω(t− u)du

)
dτ.

These formulas follow from the formula for the Laplace transform:

ψ(s, t) = exp

(∫ t

0

(exp(−sω(t− τ))− 1)α(τ)exp

(
−
∫ t

τ

α(u)ω(t− u)du

)
dτ

)
.

Asymptotic distribution of process W (t) when α(t) = α; ω(t− τ) = t− τ.
Try to calculate explicitly the Laplace transform as t → +∞ in this important

case. The result is as follows:
ψ(s,∞) = exp

(√
πα
2

(
2 exp

(
− s2

2α

(
1− Φ

(
− s√

α

)))
− 1
))

.
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Here Φ (•) is the Laplace function.

Bivariate Laplace transform of the process W (t).

ψ(s1, s2, t1, t2) =

= exp (−Λ(0, t2)) exp

(∫ t2

t1

exp(−s2ω(t2 − τ)))α(τ) exp

(
−
∫ t2

τ

α(u)ω(t2 − u)du

)
dτ

)

exp

(∫ t1

0

exp(−i(s1ω(t1 − τ) + s2ω(t2 − τ)))α(τ) exp

(
−
∫ t1

τ

α(u)ω(t1 − u)du

)
dτ

)
.

Correlation function of the process W (t).

If we know the Laplace transform, we can easily calculate the correlation function
of the process.

KW (t1, t2) =

=

∫ min(t1,t2)

0

ω(t1 − τ)ω(t2 − τ)α(τ) exp

(
−
∫ min(t1,t2)

τ

α(u)ω(min(t1, t2)− u)du

)
dτ.

5 Asymptotic distribution of the double stochastic

process W2(t)

Suppose that there is a weak convergence of the process α(t) to the (positive) random
variable α as t→∞.

Then the Laplace transform of the process W2(t) ≡ W (α(t)) converges to

ψ2(s,∞) =

∫ ∞
0

ψ(s,∞)fα(α)dα.

In particular for ω(t− τ) = t− τ we have

ψ2(s,∞) =

∫ ∞
0

exp

(√
πα

2

(
2 exp

(
− s

2

2α

(
1− Φ

(
− s√

α

)))
− 1

))
fα(α)dα.

Asymptotics for the tail distributions can be found using the Tauberian theorem
(see [2]).

Let’s show an example of the application of this theorem. Let the density of the
random variable α−

1
2 has a gamma distribution:
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f
α−

1
2
(x) =

λρ

Γ(ρ)
xρ−1e−λx, x > 0.

Then as s→ 0

ψ2(s) ∼ λρ
(
λ+

√
π

2

s2

2

)−ρ
,

and according to the Tauberian theorem density of W2(∞) decreases as a power
function as x→∞.

References

[1] A.A. Borovkov Probability theory, //M., Nauka, 1986 (in Russian).

[2] William Feller An Introduction to Probability Theory and Its Applications, Vol.
2.

[3] B.V. Gnedenko, I.N. Kovalenko vvedenie v teoriyu massovogo obsluzhivaniya
//M., Nauka, 1987 (in Russian), 336p.

[4] A.Ya. Khinchin Works on the mathematical theory of queuing //M., Fizmatlit,
1963 (in Russian).

[5] A.N. Kolmogorov Isv. AN SSSR. Ser. Mat. 3, 1937 (in Russian), pp.355-360.

[6] V.Yu. Kovalev, V.E. Bening, S.Ya. Shorgin Matematicheskie osnovy teorii riska
//M., Nauka, 2007 (in Russian), 542p.

[7] I.N. Kovalenko, N.Yu. Kuznetsov, V.M. Shurenkov Stochastic processes: hand-
book //Kiev, Naukova Dumka (in Russian), 1983, 366p.

[8] V.B. Kurasov Phys. Rev. E 63 (2001), 056123.

[9] H.N.W. Lekkerkerker B. Widom Physica A 285 (2000) 483-492.

[10] H.N.W. Lekkerkerker, E.H.A. de Hoog Physica A 298 (2001) 69-74.

[11] S.M. Oversteegen, H.N.W. Lekkerkerker Physica A 310 (2002) 181-186.

[12] S.M. Oversteegen, H.N.W. Lekkerkerker Physica A 341 (2004) 23-39.

[13] Willmot G.E. Adv. Appl. Probab. v.22 (1990) 147-159.

[14] Zolotukhin S.I., Kurasov V.B. Approximate account of the depletion regions
overlapping in kinetics of nucleation. // St.Petersburg University Gerald ser.4 v.2
(2010) 8-15.

283



Novosibirsk, 25-27 September, 2013

About Non-Parametric Control by Dynamic
Systems

A.V. Medvedev
Siberian state aerospace university, Krasnoyarsk, Russia

e-mail: saor medvedev@sibsau.ru

Abstract

The paper considers the problem of dynamic system control in conditions
of non-parametric uncertainty, i.e. for the case when the equation describing
the process with the exactness to the parameters vector is unknown. Non-
parametric algorithms of control are offered. The identification problem in
“narrow” and “wide” senses is analyzed. The results of calculations are given.

Introduction

The theory of automatic control assumes the choice (determination) of equation of the
object with the exactness to within the parameters set. A priori information about
the investigated process is of the significance. In fundamental monographs by A. A.
Feldbaum [1] and Ya. Z. Tsipkin [2] different levels of a priori information about the
investigated process while identification and control problems solving are considered.
Methods of classical and modern theory of automatic control are inapplicable if a
type of equation describing the process with the exactness to within the parameters
vector is unknown. In this case it’s expedient to use the theory of non-parametric
control systems [3]. Let’s point out the levels of a priori information an investigator
meets while creating different systems of control by discrete-uninterrupted processes.

1 Levels of a priory information

In reality the availability of this or that volume of a priori information about the
investigated process determines a mathematical statement of the identification and
control problems and in its turn it assumes the approach to the problem solution.
Let’s give the types of the a priori information and corresponding control systems:

• Systems with complete information;

• Systems with maximal but incomplete information;

• Systems with incomplete information;

• Systems with active information storage;

• Systems with parametric uncertainty. The parametric level of the a prior infor-
mation assumes a parametric structure of the model and some characteristics of
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random noise. Zero mathematical expectation and bounded dispersion are typ-
ical for them. To estimate parameters different iterated probability procedures
are usually used. In these conditions the problem of identification in narrow
sense [2] is solved as in all previous cases;

• Systems with non-parametric uncertainty. Non-parametric level of the a prior
information doesn’t assume the model existence but it needs some information
of the qualitative character about the process, e.g. uniqueness or a lack of
uniqueness of its characteristics, linearity for dynamic processes or the character
of its non-linearity. To solve the identification problem at this level of the a
priori information (identification in a wide sense) methods of non-parametric
statistics are used;

• Systems with parametric or non-parametric uncertainty. The identification
problems of multiply connected systems in conditions when quantity of the
initial information doesn’t correspond to any type mentioned above. For ex-
ample, one can derive parametric correlations for the particular features of the
multiply connected process on the basis of physicochemical regularities, energy,
mass conservation law, balance correlation etc., but not for others. So, we have
the situation when the identification and control problem is stated in condi-
tions of either parametric or non-parametric a priori information. Then control
models and algorithms are represented an interdependent system of parametric
and non-parametric correlations.

2 Control system by the discrete-uninterrupted

process

The control system by the discrete-uninterrupted object is presented generally in the
figure 1.

Figure 1: General view of the closed-loop control system

The following designations are accepted: x∗s - a control input, mixing with the
noise h∗s through the channel H∗ enters the regulator as y∗s ; the output of the object
xs coming through the channel H and mixing with the noise hs enters ys the regulator
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as us; the control effect us coming through the channel G, and mixing with the noise
disturbance gs enters to the object which is under the effect of ξs as vs.

In the theory of dual control [1] and in the theory of adaptive systems [2] one
supposes mathematical description of the object with the exactness to within the
parameters vector. In most cases it is not enough to have only a priori information to
choose the control of the investigated process well-grounded. That’s why we should
conduct a number of experiments on the object (often long and expensive) to solve the
identification problem qualitatively from practical point of view. The more detailed
analysis of a priori information levels is given in [4].

3 Non-parametric dual control

In conditions of non-parametric uncertainty [3] the equation of the process with the
exactness to within the parameters vector is unknown but we know object’s features
of the qualitative character, e.g. characteristics uniqueness or a lack of uniqueness
for non-inertia processes; linearity or a type of non-linearity for dynamic processes.
If a type of the equation describing a process is unknown then the known parametric
methods of the control theory can’t be applied for the identification and control
problems solution.

Let the process is described by the equation

x(t) = A 〈u(t)〉 , (1)

where A - an unknown operator, describing the process. If there exists an operator
inverse to , i.e. −1, AA−1 = I - a single operator, then

u(t) = u∗(t) = A−1 〈x∗(t)〉 . (2)

Having defined a path x∗(t), let’s find an ideal value u∗(t) from (2). So (2) could
be referred to the category of ideal regulators. Further we’ll call it u-regulator to
distinguish it from already known regulators. But the problem is in impossibility to
build it in most cases; moreover the operator A is unknown. The attempt to solve
this problem b at least partially by introduction control systems of correcting chains,
compensating links etc. was undertaken. In some technical systems it led to the
success.

In 50s years of the previous century academician V. S. Kulebakin offered and de-
veloped substantially a method of K(D)-images. It led to the theory of automatically
regulated and controlled systems invariance. But in that case it is necessary to have
high exactness of the investigated processes description by differential equations. If
this kind of equation estimating the investigated process is unknown, classical meth-
ods of control theory can’t be applied.

We take a particular case. Let an object is described by a linear differential
equation of the unknown order, e.g. n (n - unknown). In this case at zero initial
conditions x(t) is:

x(t) =

∫ t

0

h(t− τ)u(τ)dτ, (3)
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where h(t−τ) - a weight function of the system, which is a derivative of the transient
function k(t), i.e. h(t) = k′(t). It is known that the inverse operator (3) is an operator

u(t) =

∫ t

0

ν(t− τ)x(τ)dτ, (4)

where ν(t) - a weight function of the object in the direction “input-output” and
v(t) = w′(t), where w(t) - a transient function of the system in the same direction. In
this case A is presented by the operator (3), and −1 - by the expression (4). Hence,
the problem is in finding a weight function h(t). One of the possible ways for this
problem solution is to solve the Wiener-Hopf equation. The second way is in taking
a transient characteristic on a real object with a further estimation of its weight
function according to the measurement results xi = ki, ti, i = 1, . . . , s.

The non-parametric model is as follows:

xs(t) =

∫ t

0

hs(t− τ,~ks,~ts)u(τ)dτ, (5)

where ~ks, ~ts - time vectors ~ks = (k1, . . . , ks, ~ts = (t1, . . . , ts and hs(·) is:

hs(t) =
1

scs

s∑
i=1

kiH
′
(
t− ti
cs

)
, (6)

H(·) - bell-shaped (kernel) functions, cs - a smooth parameter, satisfying conditions
of convergence.

It is not possible to “take off” a weight function v(t) in the direction “input-
output” as well as a transient function w(t) on the object. It was offered to take off
a transient function “backwards” on the model. Apparently it was done for the first
time in [3]. So, from the correlation

xs(t) = 1(t) =

∫ 1

0

hs(t− τ,~ks,~ts)u(τ)dτ, (7)

where 1(t) - Heaviside function; it is possible to receive samples uj, tj, j = 1, . . . , s.
Then the non-parametric control algorithm by a linear dynamic system is as follows:

u∗s(t) =

∫ t

0

(
1

scs

s∑
j=1

wjH
′
(
t− τ − tj

cs

))
x∗(τ)dτ. (8)

It’s evident a sample number while taking transient characteristics on a real object
and a model couldn’t be coincided.

As operators A and A−1 according to the real data will be estimated not exactly,
the control system could be represented on figure 2.

In figure 2: CU - control unit, A−1
s - non-parametric estimation of the reverse

operator of the object, u∗s - output (estimation A−1), the noise disturbance hxt operates
in the channel of the feedback.

287



Novosibirsk, 25-27 September, 2013

Figure 2: The system of dual control with feedback

Figure 3: Learning the system of dual control with feedback

A more general scheme of non-parametric the duality of management is presented
on the figure 3.Here (fig. 3) as a result of the functioning of the closed-loop control
is specified evaluation of inverse operator of the object.

Non-parametric algorithm of dual control is as follows:

us+1,t = u∗s,t + ∆us+1,t. (9)

Here u∗s,t is determined according to the formula (8), and ∆us+1,t = ε(x∗t − xt, s) -
search steps. So, in u∗s,t “the information” about the object and in ∆us+1,t - “studied”
search steps are concentrated. That is the essence of the algorithm (9) dualism.

Let’s clarify it as an example the non-inertia object x = f(u). For its estima-
tion we’ll take non-parametric estimation of the regression function according to the
observations xi, ui, u = 1, . . . , s [4].

xs(u) =
s∑
i=1

xiΦ

(
u− ui
cs

)/ s∑
i=1

Φ

(
u− ui
cs

)
, (10)

where a bell-shaped functions Φ(·) and a spreading parameter cs satisfy some conver-
gence conditions [4]. In this case u = f−1(x) will be the analogue of the expression
(8), and u∗s from (9) will be equal to:

u∗s,t =
s∑
i=1

uiΦ

(
x∗s+1 − xi

cs

)/ s∑
i=1

Φ

(
x∗s+1 − xi

cs

)
. (11)
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Let’s analyze the dualism feature of the algorithm (9). At the initial control stage
the second summand ∆us+1,t of the formula (9) is of the most importance. It is the
case of active information storage in the system of dual control. It begins with the
first observation of input and output variables of the object. During the training
process (the information storage) the first summand, i.e. us+1,t begins to play an
increasing role the control influence formation us,t.

4 Numerical experiments

We shall represent below certain results of calculations illustrating particular results
while investigating dynamic and non-inertia objects.

The first experiment illustrates “taking” of the weight functions of the linear
dynamic system. The following figure shows a weight function received by solving
differential equation of the type when a delta-function is accepted. Here we will
represent weight functions for different analogues of delta-functions.

Weight functions received with various d-shaped step-functions of the following
type as numerical investigations have shown are practically coincided:

δ1(t) =

{
∆t−1, if ∆t ∈ [0; 0.1];

0, otherwise.
δ2(t) =

{
∆t−1, if ∆t ∈ [0; 0.01];

0, otherwise.

As you can see, a weight function received analytically as well as weight func-
tions received under effect on the object of considerably different d-shaped functions
are practically coincided. It leads to the conclusion that in practice at the experi-
ment about weight functions observation it is possible to give considerably different
d-shaped controlled effects to he object’s input. The connection (correlation) of two
elements - “a dynamic object (process) - a differential equation” are of a great im-
portance here.

The results of the linear dynamic object control are shown in figure 4 in the
conditions that various master controls are: x∗t = sin(t).

Figure 4: Illustration of the non-parametric model (u(t) is the input action, x(t) is
the output variable)
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The experiment was conducted according to the following plan: at first the tran-
sient characteristics were taken; the operator A was estimated according to the for-
mula (7) by these characteristics. The inverse operator A−1 was evaluated according
to the formula (8). The figure illustrates that good quality of control though in such
an “exotic” case. Any known regulator can’t manage to solve this problem.

Here are some of the results of computing experiments, which are of an illustrative
character. Therefore, below does not include information about the choosing smooth
parameter at each step of the experiment, and shows only the final results, for reasons
of brevity. On the left figure 5 the case, when the control u(t) and decontrol (but
measurable) µ(t) influence on the object, is shown. The learning of controlling system,
including blocks A−1

s and CU, begins with the first triad, i.e. computing of controlling
action is executed with triad (u1, µ1, x1). On the left figure 5 the learning of dual
control non-parametric system with changing master controls x∗ and µ is shown.
On the initial stage of control I it’s necessary to collect samples during some time
to stable object in given state. On the stage II specified value x∗ was chosen out
from had measurements of object output x, therefore it was required some time to
stable object to specified state x∗. On the stage III master control was path, and
on the stage IV it was random variable. As we can see, on the stages III and IV
the control process has enough high quality. The above results are illustrative. As it
was noted above, reasons of brevity does not contain specific information about the
configuration smooth parameters, search steps.

Figure 5: The control of static system with available µ(t) and the control of
dynamic system with staircase task

On the right figure 5 the case of object control (the equation of object for CU
is unknown), when the task x∗t is step excitation, is shown. The figure shows that
the process is quite fast passes to a new state when changing the master control
in contrast to the standard algorithms used (like as P, PI, PID, being CU without
memory) in contrast to the non-parametric algorithms of the duality of control.

The results of linear dynamic object control (the third order differential equations
was token) are shown on the figure 6. The master control x∗t is random variable,
generated by uniform law. One of the numerous experiments is shown. Deliberately
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been taken sufficiently small sample size. When the sample size increase, the processes
shown on the figure 6 are practically closely.

Figure 6: The control of object with changeable control action

The experiment was conducted on the following scheme: at the first the transition
characteristics were measured on the object (the equations of object were known),
then the operator A was estimated by formula (10) and inverse operator A−1 was
estimated by formula (11). On the pictures shown, that the quality of control is
satisfactory in the even “exotic” case. One of the famous regulators fails with such a
task.

5 Modeling of dynamic processes

In general, the model of a linear dynamic system can be described by the equation:

xt =
m∑
i=1

αixt−i +
k∑
i=1

biut−i+1, (12)

where u and x - input and output variables of the object correspondingly. In figure 7
an analogue of the object (12) is presented at k = 1.

Let’s introduce the vector notations

zt = (xt−1, . . . , xt−m, ut−1, . . . , ut−k), α = (a1, . . . , am, b1, . . . , bk),

then the equation (12) is as follows:

xt =
θ∑
i=1

αizit, (13)

where θ = k+m. We should pay attention to the fact that we are, in reality reduced
the identification problem of a linear dynamic system to identification problem of
multidimensional linear object without memory. Unfortunately, it does not lead
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Figure 7: Introducing the dynamic of the system as a static

to any simplification of the initial problem, but perhaps only to the algorithmic
simplicity. Acting as it was done earlier we get:

αjt = αj(t−1) +Hjt

(
xt −

θ∑
i=1

αi(t−1)zit

)
zjt, j = 1, . . . , θ. (14)

Thus, for the parameters estimation in models (12), (13) one should apply algo-
rithms stochastic approximation (14), detailed in [3].

6 About the non-parametric systems theory

The terms “non-parametric identification”, “non-parametric methods of data process-
ing” are met in monographs about identification, but non-parametric identification
algorithms are not sited. Usually non-parametric identification of linear dynamic
processes is related to searching weight or transient functions of the system in the re-
sult of integral Fredholm equations of the 1st kind solving, in particular Wiener-Hopf
equations.

We were speaking above about the models and u-regulators that are free of choice
with the with the exactness to within the parameters vectors of the models of the
investigated process or a parametric structure of the control units, as well as we were
speaking about parametric structure of other process characteristics, e.g. correlative
functions, spectral density and etc. So we are speaking about identification and
control in conditions of non-parametric uncertainty [3]. It is conceived that the least
level of the a priori information of the investigated object when the solution of a
large number of cybernetics problems adequate to real processes is possible. Also
let’s note that the first investigations about non-parametric control by non-inertia
objects belongs to the beginning of 70s of the previous century. One may consider
the theory of non-parametric systems covers different cybernetics problems oriented
to the non-parametric level of the a priori information.
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Conclusions

The stated above information covers some identification and control problems at the
level of parametric and non-parametric a priori information. In contrast to the well-
developed parametric theory, the non-parametric one is oriented at the less level of
the a priori information about the investigated objects and processes. The special
attention is paid for the systems of dual control of the Bayes type, an adaptive
dual control and a non-parametric dual control. Some non-parametric models and
algorithms of dual control and particular results of numerical calculations of the
illustrative character are given.
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