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Preface

The Third International Workshop �Applied Methods of Statistical Analysis. Non-
parametric Approach� � AMSA'2015 is organized by Novosibirsk State Technical
University. It took place in the resort Belokurikha located at the foothills of Altai,
Russia. The purpose of our Workshop is to organize interesting meeting on di�er-
ent statistical problems of interest. This seminar aims to provide an overview of
recent results in applied mathematical statistics and primarily on testing statistical
hypotheses, statistical methods in reliability and survival analysis, nonparametric
methods, robust methods of statistical analysis, statistical simulation of natural pro-
cesses, econometric methods and modeling, information and statistical analysis of
complex systems.

Within the framework of AMSA'2015, the XV International Symposium on Non-
parametric Methods in Cybernetics and System Analysis was organized by Siberian
State Aerospace University called after academician M.F. Reshetnev and Tomsk State
University. The �rst such Symposium was held in 1976 in Tomsk, and since then,
after each two or three years, it was taken at various places in Siberia, collecting par-
ticipants from all the Soviet Union, and later � from other countries. The Symposium
is devoted to the development of modern mathematical methods for building intel-
lectual computer systems for various purposes operating under incomplete knowledge
of the studied process and problems of system analysis.

The First International Workshop �Applied Methods of Statistical Analysis. Sim-
ulations and Statistical Inference� � AMSA'2011 and the Second International Work-
shop �Applied Methods of Statistical Analysis. Applications in Survival Analysis,
Reliability and Quality Control� � AMSA'2013 took place in Novosibirsk, Russia.
This city is very well known for its fundamental contributions to the development of
theory of the probability, mathematical statistics, stochastic processes and statistical
simulation. These meetings had been focused on recent research in the areas of sur-
vival analysis, reliability, quality of life, and related topics, from both statistical and
probabilistic points of view. The great attention is paid to applications of statistical
methods in survival analysis, reliability and quality control.

The Workshop proceedings would certainly be interesting and useful for special-
ists, who use statistical methods for data analysis in various applied problems arising
from engineering, biology, medicine, quality control, social sciences, economics and
business.

Boris Lemeshko
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Rank as Proxy for the Observation in

Statistical Procedures

F.P.Tarasenko and V.P. Shulenin

National Research Tomsk State University, Russia

Abstract

The properties of rank tests are discussed and it is shown that besides com-
putational convenience, in many cases they have advantages over their counter-
parts on observations.

Keywords: Statistical procedures, e�ectiveness and e�ciency of proce-
dures, rank tests, statistical properties of ranks.

Introduction

Ranks often are preferred to actual observation values in processing experimental
data. There are a few good reasons for that:

� Ranks are pure whole numbers and, hence, are very convenient to calculate. In
contrast to this, observations often are continuous values that need rounding
(with unpredictable consequences), and registered in various measuring scales
(with each scale having di�erent set of allowed operations over its values).

� Ranks are related to observations and, hence, contain some of the same (sought
by observer) information as well as observations themselves.

� Relation between the sample value and its rank becomes even stronger with
growth of a sample size; this promises the good asymptotic properties to pro-
cedures based on ranks.

� Last but not least: some distribution-free properties of ranks insure robustness
to the rank procedures, � much appreciated property in statistical practice.

Here follows a brief survey of old and a few new results on these issues.

1 Basic Distributions

Let ~X = (X1, ..., Xn) be a sample from p.d.f. FX(x) with a density fX(x), x ∈ R1.

Let, then, ~X(.) = (X(1), ..., X(n)) be the ordered statistics, and ~R = (R1, ..., Rn)

be a vector of ranks for the sample ~X = (X1, ..., Xn). Between the sample ~X and

the pair
{
~X(·), ~R

}
there exists mutual one-to-one correspondence, which means that

the information contained in observations ~X = (X1, ..., Xn) maybe split into two

parts. One part belongs to order statistics ~X(·) = (X(1), ..., X(n)), the other � to

ranks ~R = (R1, ..., Rn). Therefore, a seeking the same aim statistical procedures

10
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may be built either on raw observations ~X = (X1, ..., Xn), or on order statistics
~X(·) = (X(1), ..., X(n)), or on ranks ~R = (R1, ..., Rn).

The vector random variable of a �mixed� type (i.e. consisting of discrete and

continuous components [1]), which our pair
{
~X(·), ~R

}
belongs to, is characterized by

corresponding probability distributions:
C.d.f. for i.i.d.r.v. ~X = (X1, ..., Xn) is equal to

FX1,...,Xn(x1, ..., xn) = FX1(x1) · · ·FXn(xn) =
n∏
i=1

FX(xi). (1)

C.d.f. for r-th order statistics (1 ≤ r ≤ n, x ∈ R1) is

FX(r)
(x) = P

{
X(r) ≤ x

}
=

n∑
i=r

Ci
nF

i
X(x)(1− FX(x))n−i = IF (x)(r, n− r + 1), (2)

where Ip(n , m) is the incomplete beta-function tabulated in [2]. Corresponding
density is

fX(r)
(x) = nCr−1

n−1F
r−1
X (x)(1− FX(x))n−rfX(x). (3)

The joined p.d.f. of random vector ~X(.) = (X(1), ..., X(n)) is

f ~X(·)
(x(1), ..., x(n)) =

n!f ~X(x(1), ..., x(n)) = n!
n∏
i=1

fX(x(i)) , x(1) < ... < x(n)

0 , otherwise
(4)

In case of symmetrical (invariant to permutations of arguments) distribution of
X, order statistics and rank vector are independent:

f ~X(.)
~R(x(1), ..., x(n); r1, ..., rn) = fX(1),...,X(n)

(x(1), ..., x(n)) · P
{
~R = ~r

}
(5)

and their conditional and unconditional distributions coincide [3].
If the distribution gX1,...,Xn(x1, ..., xn) is non-invariant to permutations, the famous

Hoe�ding's Theorem [4] holds:

Pg{~R = ~r} = Pg{R1 = r1, ..., Rn = rn} =
1

n!
M

{
g ~X(X(r1), ..., X(rn))

f ~X(X(r1), ..., X(rn))

}
(6)

which in case of independence of variables takes the form of

Pg{~R = ~r} =
1

n!
M

{
n∏
i=1

gXi(X(ri))

fX(X(ri))

}
(7)

The joint d.f. FRiXi(x, y) of random variables Ri and Xi is [5]

FRiXi(x, y) = n−1

n∑
j=1

C(x− j) ·
y∫

−∞

fXi|Ri=j (x |j )dx =

n−1

n∑
j=1

C(x− j) · FX(j)
(y), 1 ≤ i, j ≤ n (8)

11
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and a formal expression for joint density of the mixed type random variable (X, Y )
is

fXY (x, y) =
n∑
i−1

pX(x̃i)fY |X(y|x̃i)δ(x− x̃i). (9)

2 Some Characteristics of Independence between

Observations and Their Ranks

Suitableness of ranks for coming out as a proxy of the sample measurements in statis-
tical processing of experimental data, clearly depends on how tight is the connection
between them. Most general presentation of interdependence between random vari-
ables is given by their joint distribution function (8). Its one-sided presentations are
made by conditional distributions of each of them conditioned by value of the other
one. Such conditional distributions may be obtained by corresponding integration of
d.f. (8).

But there are several particular indicators characterizing di�erent aspects of the
statistical connectedness. Let us describe some of these quantitative indices for ob-
servations and their ranks.

2.1 Regression

The regression function determines the relationship between a random variable and
corresponding values of dependent value. If both regression lines coincide, it means
that the relationship between the two variables is strictly functional. The more they
di�er, the weaker is the relationship. In case of independency the lines are orthogonal
to each other.

Let us denote a regression of the observation Xi of its rank Ri as M(Xi |Ri = j ),
1 ≤ i, j ≤ n, and regression of the rank Ri of Xi as M(Ri = j |Xi = x), 1 ≤ i, j ≤ n,
x ∈ R1. It can be shown [5] that

M(Ri = j |Xi = x) = 1 + (n− 1)FX(x), x ∈ R1, (10)

M(Xi |Ri = j ) = M(X(j)), 1 ≤ i, j ≤ n. (11)

Quantitative and qualitative analyses of these lines behavior for di�erent distribu-
tions show [5] that the lines are crossing under a certain angle which is monotonously
decreases with sample size increasing. It means that interdependence between rank
and observation becomes only stronger under enlarging n.

2.2 Correlation

The correlation coe�cient is a measure of connexion, which is very popular among
data analysis practitioners. Its calculation for observations and ranks gives a re-

12
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sult [5]:

ρXiRi(F ) =

√
3

2

(
n− 1

n+ 1

)1/2
∆(F )

S(F )
, ∀i ∈ (1, ..., n), (12)

where ∆(F ) is the Geeny's average di�erence de�ned as

∆(F ) =

+∞∫
−∞

∫
|x− y|dF (x)dF (y) (13)

and S(F ) is standard deviation de�ned as

S(F ) =

1

2

+∞∫
−∞

∫
(x− y)2dF (x)dF (y)

1/2

. (14)

It turns out that correlation between observation and its rank is always positive,
equal for any observation in a sample, fast approaches, with growing n, to a value
typical for the length of tails of the distribution. Here are values of ρXR(F ) for some
distributions:

F (x) Uniform Gaussian Logistic Laplasian
ρXR(F ) 1,00 0,98 0,95 0,92

The longer tails of a distribution are, the less correlated are ranks and obser-
vations. This explains, in a way, di�erence between e�ectiveness of the same rank
procedure being applied to data from di�erent distributions.

2.3 Information

Various �quantities of information� are used for estimating degree of connexion tight-
ness. In our case of considering ties inside a pair (Xi, Ri), the Shannon's quantity of
information

I(X, Y ) =

+∞∫
−∞

+∞∫
−∞

fXY (x, y) ln

[
fXY (x, y)

fX(x)fY (y)

]
dxdy (15)

after cumbersome calculations, appeared to be

I(X, Y ) = lnn−

(
n−1∑
k=1

ln k +
n− 1

2
− 2

n

n−1∑
k=1

k ln k

)
, (16)

or, asymptotically, with accuracy of AREF (U : t) = 3, is

I(X,R) = ln
√
ne/2π. (17)

So, quantity of information in ranks about observations does not depend neither
on index i of the observation, nor on its d.f. W1, ...,Wk, and increases, together with n,
with velocity ln

√
n. This ensures, that qualities of the rank statistical procedures will

asymptotically approximate merits of procedures based on observations themselves.
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3 On Some Advantages of Ranks over Observations

It was already mentioned that ranks have attracted interest from statisticians and
data analysts due to their content (they share the information with observations) and
to their form (they are integers, which are very convenient to work with). But it does
not mean that the straightforward replacement of observations by their ranks in a
statistical procedure will bring a desired e�ect. First, observations and their ranks
usually belong to di�erent measuring scales, with di�erent permissible operations for
their processing. This restricts usage of direct similarity of procedures to the case
of their containing equivalent permissible operations only. Second, ranks of sample
values contain the same kind of information as the values themselves if only this
information is connected with own size of each value (when large-sized value receives
higher rank). But if the information of interest is about other relations between ob-
servations, then another, the appropriate way of ordering values is required to map
the information onto ranks. And the third, last but not least: the algorithms (se-
quences of operations) of statistical processing of data depend on a'priori knowledge
of stochastic nature of the data. This is why the same sample must be treated much
di�erently under conditions of parametric, non-parametric, and robust statistics. And
here again an important role belongs to proper way of put observations in order to
preserve useful information on ranks. But the most surprising and admiring feature
of ranks manifests itself in complicated circumstances of robust statistics: rank test
could be more e�ective than its counterpart based on observations.

Let us discuss brie�y the abovementioned peculiarities of ranks and give some
illustrative examples.

3.1 Ordering that transfers target information from

observations onto ranks

Usefulness of ranks as substitutes to observations is primarily based on their attach-
ment to the values of observations. But sometimes a statistical procedure is designed
to extract from the sample such information that is indirectly de�ned by the values
of observations but directly by their relevancy to other random events. In such a
case, neither the sample alone, nor its rank vector are valid for achieving the purpose
of data processing.

Typical example is homogeneity tests. The purpose is to reveal the identity or
distinction between two distributions, judging by a comparison of the samples taken
from them. The test is made by combining the two samples into one, and detecting
a degree of their overlapping. If distributions are di�erent then observations from
one sample will dominate in number over another one in those regions where their
probability is higher. For instance, if distributions are shifted (di�er in location
parameter) then observations from one of them will overwhelm the other in number
at one side of the whole range of values; if distributions di�er in scale parameter, then
the observations from the wider one will outnumber those from narrower at both far
ends of the range. The same will happen to the ranks of observations, if ordering

14
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was made on the whole joined sample but with retained information of belonging
observations to their distributions.

3.2 Comparison of rank tests with their counterparts based

on observations

The general theory of rank tests is presented in books by Lehman [6], Hayek and
Shidak [3], Pury and Sen [4], Hettsmanspreger [7]. Here we give only a few examples
revealing merits of rank tests in comparison with analogous tests based on observa-
tions.

The notion of the Pitman asymptotic relative e�ciency (ARE) is widely used
for comparison of two tests, Tn and Sn. AREF (Tn : Sn) characterizes the ratio of
sample sizes n1 and n2 under which Tn and Sn with equal levels of signi�cance ensure
equal ARE against the same sequence of contigual alternatives converging to zero
hypothesis.

For the Wilcoxon sign rank test S+ and Student's t-test

AREF (S+ : T ( ~X)) = 12σ2

 ∞∫
−∞

f 2(x)dx

2

. (18)

In Table 1 the numerical values of AREF (S+ : T ( ~X)) are presented for some
symmetric distributions.

Table 1

Distribution F (x) AREF (S+ : T ( ~X))
Uniform 1
Gaussian 3/π = 0, 955
Logistic π2/9 = 1, 097

Double exponential 1,5

For the Wilcoxon sign rank test S+ and the sign test S

AREF (S : S+) =2
F (S)/2

F (S+)) = 4σ2f 2(0)/3 ·
[ ∫

f 2(x)dx

] 2

. (19)

Its numerical values are given in Table 2.
Calculations of ARE for many other pairs of tests were made (e.g. in [7 � 12]).

Some general conclusions follow from their consideration:
� In most cases ARE does not depend on scale parameter and is connected to the

distributions' family type only.
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Table 2

Distribution F (x) AREF (S : S+)
Uniform 1/3
Gaussian 2/π = 0, 637
Logistic π2/12 = 0, 822

Double exponential 2

� AREs may take various values not limited from above, but have non-zero lower
limits. For instance, AREF (U : t) ≥ 0, 864, which means that in two-sampled prob-
lem of shift we may loose in e�ciency not more than 13, 6% using Wilcoxon's test
instead of Student's one. Under Gaussian distribution the loss is 5% only. The most
favorable distribution (AREF (U : t) = 3) is gamma-distribution with p = 1. So,
under these circumstances the Wilcoxon test is always preferable among other tests.

Robust statistics is an approach to designing statistical procedures at an inter-
mediate (between parametric and non-parametric) level of a priori knowledge about
stochastic nature of observations. Underlining them distribution is considered as
known approximately: it belongs to a �supermodel�, a certain vicinity of some para-
metric function. The procedures are designed that remain e�ective (�robust�) until
actual distribution lies inside the vicinity; there are among those the rank procedures,
too. And they demonstrate certain advantages.

For example, e�ciency of H-test of Kruskall-Wallis against its Gaussian competi-
tor, Fisher's F-test is [7]

AREF (H : F ) = 12σ2
f

 1∫
0

f(F−1(u)du)

2

, (20)

and this formula is valid for several other counterparts of tests [8]. Numerical values
of it for Gaussian model with a scale obstruction

F ∈ =ε,τ (Φ) = {F : Fε,τ (x) = (1− ε)Φ(x) + εΦ(x/τ)}, 0 ≤ ε < 1/2, τ ≥ 1

are given in Table 3.

Table 3

ε 0.00 0.01 0.03 0.05 0.08 0.10 0.15 0.20
τ = 3 0.955 1.009 1.108 1.196 1.309 1.373 1.497 1.575

AREFε,τ (H : F ) τ = 5 0.955 1.150 1.505 1.814 2.201 2.412 2.795 3.006
τ = 7 0.955 1.369 2.115 2.759 3.553 3.977 4.724 5.099

It is seen that H-test looses in e�ciency only 5% to the optimal F-test of Fisher
in Gaussian case, but much overwhelms it under deviations from normality.
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Abstract

Empirical distribution and reliability functions are discrete that often does
not correspond to real random variables in technical and physical applications.
Smooth nonparametric estimators of the multivariate reliability function based
on the product of �nite and Laplace kernel functions are suggested. The asymp-
totic mean square error (MSE) of the estimator and its limiting distribution are
presented that allow a new interval estimator of the reliability function to be
constructed. Advantages of the suggested estimators over the well-known para-
metric algorithms are discussed.

Keywords: Multivariate reliability function, smooth kernel estimation,
mean square error, asymptotic normality, interval estimation.

Introduction

Design, construction, and operation of complex instrumental and software systems
and complexes require insurance of their reliability [1, 2]. Researchers who are en-
gaged in the prediction of reliability of objects of research on experimental stands
during �eld experiments [3] and estimation of the reliability of semiconductor opto-
electronic devices [4], lasers [5], and their components [6] also face these problems.

To calculate the reliability and to predict failures, the simple characteristic of
e�ciency of non-restorable elements S(t) = 1 − F (t), t ∈ R1, is often used, where
F (t) is the distribution function of the failure time T for the examined element. The
function S(t) describes the probability of failure-free operation of the non-restorable
element up to the moment t and is called the reliability function. To calculate the
reliability, it is convenient to use values of the failure characteristics of individual
elements, because the formulas so derived are simple and convenient for engineering
practice [7]. A more complicated problem is estimation of the strength reliability of
the element consisting in determining the probability of failure-free operation (see
[1], p. 14) which is expressed through the reliability function:

P{S(s− z)} > 0 = S(0),

where the random variable speci�es the ultimate stress and the random variable
determines the tension in the element under the action of an external load.
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In parametric statistics, a function depending on a �nite number of the unknown
parameters that are to be estimated is chosen as the distribution function of the
failure time F (t). Some distributions describe su�ciently accurately the occurrence
of failures of these or other elements. For example, the exponential distribution
F (t, λ) = 1− e−λt for t ≥ 0 describes moments of failure of elements whose residual
lifetime is independent of the period of preceding operation. According to [8], the
Weibull distribution F (t, λ, α) = 1 − e−(λt)α , where t ≥ 0, and λ, α ≥ 0, is used to
describe the fatigue phenomena [6] and failures of electronic devices [9]. In [10], the
behavior of the reliability functions was investigated when the occurrence of failures
in the sequence of tests was described by a Markovian process. The methods of
maximum likelihood, moments, and least squares allow one to estimate su�ciently
e�ciently the unknown parameters from observations of random variables [11].

In problems of estimation of the reliability of complex systems, the moments of
failure of the examined elements are statistics; as a rule, they are determined as a
result of expensive experiments. In this case, researchers often do not have su�cient
information on the elements themselves and on the nature of occurrence of their
failures that complicates and sometimes makes even impossible the construction of
an adequate parametric model of actual object. In some cases, it is required to
improve signi�cantly the reliability of the evaluation, for example, for potentially
dangerous equipment. In this case, for small volume of statistical data and unknown
distribution law, parametric models can inadequately describe actual failures, which
can cause catastrophic consequences. Therefore, the problem of the development and
investigation of nonparametric methods of analysis of system reliability from the data
on failures of products and devices becomes urgent.

The main advantage of the nonparametric procedures compared with the para-
metric ones consists in the fact that they remain e�cient when prior information on
the distributions does not allow one to take advantage of any parametric family of
distributions to construct a mathematical model of the object. Thus, actual probabil-
ity densities of random variables and can have several extreme values (see [1], p. 16),
thereby complicating the strength reliability estimation of the elements. At the same
time, the application of discrete empirical distribution and reliability functions which
are nonparametric estimators leads to deterioration of the accuracy of the algorithms
so obtained when solving many reliability problems. Additional problems can arise
at the boundaries of the de�nition regions, at which the estimates can take zero or
unity values, though their true values di�er from zero or unity.

In the present work extending the results of [12] to the multivariate case, a class
of smooth estimators of the multivariate reliability functions is considered that in
addition, have no disadvantages of the empirical reliability function at the boundaries
of the de�nition region. It should be mentioned that the smooth estimator was �rst
suggested for the one-dimensional distribution function in 1964 [13]. Since then, the
properties of such estimators have been studied by various authors (for example, see
[14]�[22]). To solve the important practical problem of calculating the bandwidth for
a smooth estimator of the distribution function and hence for a smooth estimator of
the reliability function from empirical data (see formula (3) below), some approaches
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have been employed, including methods of leave-one-out cross-validation [23], plug-in
[24], and cross-validation [25]. It should be noted that analogous problem was solved
in [26]�[28] by other methods.

Let Rl be the l-dimensional Euclidean space and T = (T1, T2, . . . , Tl) be the
failure-free operating vector-period of an system of l elements. One of the reliability
indicators of the non-restorable system of l elements is time of its failure-free opera-
tion. The probability that such system will operate till vector-moment t = (t1, . . . , tl)
is expressed through the reliability function

S(t) = P (T > t) = 1− F (t). (1)

Function (1) allows other probabilities to be calculated. Thus, the probability of
failure of l elements in l-dimensional parallelepiped (t, t+x) is expressed through the
di�erence S(t)− S(t, t+ x) = P (t < T ≤ (t+ x)).

The uncertainty in the failure moment for a separate prototype is the main source
of randomness in the evaluation of its reliability. Dealing with a homogeneous group
of su�ciently large number of l-dimensional systems of elements, we are within the
framework of probability theory � science of mass random phenomena. Observing
such group of n systems and �xing the moments of their failures T1, . . . , Tn, Ti ∈
Rl+ = [0,∞) × · · · × [0,∞), Ti = (T1i, . . . , Tli), we obtain a sample of independent
identically distributed random vectors.

The present work is aimed at construction of the smooth kernel estimators of
the multivariate reliability function from the sample T1, . . . , Tn, investigation of their
asymptotic properties for kernels of various classes, �nding limiting distributions, and
interval estimators of the reliability function.

1 Multivariate empirical reliability function

Let us designate by the symbol ⇒ the convergence in distribution and by N1{µ, σ2}
the one-dimensional random variable distributed normally with mean µ and variance
σ2, where 0 ≥ σ < ∞ and symbols E and D denote the mathematical expectation
and variance.

Since S(t) = P (T > t) = P (T1 > t1, . . . , Tl > tl) , it is natural for the sample
of n independent and identically distributed random vectors {Ti ≥ 0, i = 1, . . . , n}
representing periods of failure-free operation of n l-dimensional systems of elements
to take as the simplest estimators

Sn(t) =
1

n

n∑
i=1

I (Ti > t) =
1

n

n∑
i=1

l∏
k=1

I (Tki > t) , (2)

where I(A) is an indicator of an event A. The estimator Sn(t) is called the empirical
reliability function.

Let us present the properties of estimator Sn(t) [29]:
1. Unbiasedness: ESn(t) = S(t).
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2. Variance: DSn(t) =
1

n
S(t) (1− S(t)) .

3. According to the Central Limit Theorem (Sn(t)−S(t))⇒ N1 {0, S(t)(1− S(t))} .
The estimator Sn(t) has two disadvantages:
1) Sn(t) is discontinuous at points T1, . . . , Tn,
2) Sn(t) = 0 in a region Ω∞ = (T1 > t)

⋂
· · ·
⋂

(Tn > t).
Let fn(t) be an estimator of l-dimensional distribution density. Then an estimator

of a hazard rate function fn(t)/Sn(t), with allowance for disadvantage 2 in the region
Ω∞, is unusable [19-21].

2 Smooth kernel estimator of the reliability function

and its asymptotic unbiasedness

Let us introduce the class of functions-kernels S.

De�nition 1. The Borel l-dimensional function V (u) = V (u1, . . . , ul) belongs to the
class S if V (u) is a continuous strictly monotonically decreasing function by each com-
ponent, such that V (·) : Rl → R1, V (−∞,−∞, . . . ,−∞) = 1, and V (∞, t2, . . . , tl) =
V (t1,∞, . . . , tl) = . . . = V (t1, t2, . . . ,∞) = 0.

De�ne the smooth empirical reliability function as

S̃n(t) =
1

n

n∑
i=1

V

(
t− Ti
an

)
=

1

n

n∑
i=1

V

(
t1 − T1i

a1n

, ...,
tl − Tli
aln

)
, (3)

where V (u) ∈ S and the sequences of positive numbers akn ↓ 0, k = 1, ..., l. The func-
tion V (u) is called the kernel of estimate (3). Note that S̃n(t) has no disadvantages
of the estimate Sn(t) (2) and S̃n(t)|an=0 = Sn(t).

As a function V (u) =
l∏

k=1

V (uk) ∈ S, we can take the product of the Laplace

kernels

VL(uk) =

{
1− 0.5euk , −∞ < uk < 0,
0.5e−uk , 0 ≤ uk <∞,

(4)

or, taking as a basis the standard normal distribution, the kernels of the form

VG(uk) =
1

2

[
1− erf

(
uk√

2

)]
where erf(x) =

2√
π

∫ x

0

e−u
2
kduk is the error function.

Let us elucidate when estimate (3) is asymptotically unbiased for S(t). Further,
to simplify the proofs of Lemmas and Theorems, put in (3) akn = an, k = 1, ..., l.

Lemma 1. If the reliability function S(z) is continuous at a point t, V (u) ∈ S, and
the sequence of real numbers an ↓ 0, then

lim
n→∞

ES̃n(t) = S(t). (5)
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Proof. By the de�nition of mathematical expectation, considering that the func-
tion V (·) is continuous at a point t, we have

ES̃n(t) = E

[
1

n

n∑
i=1

V

(
t− Ti
an

)]
=

∫
Rl+

V

(
t− y
an

)
dF (y) =

=

t1∫
0

. . .

tl∫
0

V

(
t− y
an

)
dF (y) +

∞∫
t1

. . .

∞∫
tl

V

(
t− y
an

)
dF (y).

Since

lim
n→∞

V

(
t− y
an

)
=

{
0, if y < t,
1, if y > t,

according to the Lebesgue dominated convergence theorem (see [30], p. 284),

lim
n→∞

∫
Rl+

V

(
t− y
an

)
dF (y) =

∞∫
t1

. . .

∞∫
tl

dF (y) = 1− F (t) = S(t). (6)

Thus we have proved the validity of statement (5).

3 Convergence order of estimator bias with the

Laplace kernel

Let us demonstrate that the estimator S̃nL(t) =
1

n

n∑
i=1

VL

(
t− Ti
an

)
with the Laplace

kernel VL(u) =
l∏

k=1

VL(uk) (see (4)) has the convergence order O
(
aln)
)
of the bias

b
(
S̃nL(t)

)
= ES̃nL(t)−S(t). Let f(t) =

∂lS(t)

∂t1 · · · ∂tl
be the distribution density of the

random vector T .

Lemma 2. If S(z) is continuous at a point t, sup
t∈Rl+

f(t) ≤ C <∞, and an ↓ 0, then

for n→∞ ∣∣∣b(S̃nL(t)
)∣∣∣ = O

(
aln)
)
. (7)

Proof. To prove formula (7), we take advantage of the following representation:

ES̃nL(t) =

∫
Rl+

VL

(
t− y
an

)
dF (y) = S(t)+

t∫
0

VL

(
t− y
an

)
dF (y)+

∞∫
t

[
VL

(
t− y
an

)
− 1

]
dF (y). (8)

Having substituted (4) into (8), we obtain

ES̃nL(t) = S(t) +

t∫
0

l∏
k=1

[
0.5e

−
(
tk−yk
an

)]
f(y)dy +

∞∫
t

l∏
k=1

[
1− 0.5e

(
tk−yk
an

)
− 1

]
f(y)dy.
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Changing the variables u =
t− y
an

in the integrals and considering that sup
t∈Rl+

f(t) ≤ C,

we obtain

∣∣∣b(S̃nL(t)
)∣∣∣ ≤ C aln

2

 l∏
k=1

tk/an∫
0

e−ukduk +

l∏
k=1

0∫
−∞

eukduk

 = C
aln
2

(
l∏

k=1

e−tk/an + 2

)
= O

(
aln
)
.

Thus, the validity of formula (8) has been proved.

4 Asymptotic variance and MSE

Lemma 3. If the reliability function S(z) is continuous at a point t, V (u) ∈ S, and
the sequence of real numbers an ↓ 0, then the variance of the smooth estimator S̃n(t)
is

DS̃n(t) =
1

n
S(t) (1− S(t)) + o

(
1

n

)
. (9)

Proof. Indeed, by the de�nition of the variance, taking into account the inde-
pendence of random vectors T1, . . . , Tn, arguing as in the derivation of (5), we have

DS̃n(t) =
1

n
DV

(
t− T1

an

)
=

1

n


∫

Rl+

V 2

(
t− y
an

)
dF (y)−

 ∫
Rl+

V

(
t− y
an

)
dF (y)

2 .

(10)

Furthermore, applying to the integrals procedures used to prove statement (6), we
obtain

DS̃n(t) =
1

n

[
S(t)− S2(t) + o(1)

]
=

1

n
S(t) (1− S(t)) + o

(
1

n

)
.

It is obvious that statement (9) is also valid for the estimator S̃nL(t). Let us �nd the
principal term of the asymptotic MSE for S̃nL(t).

Theorem 1. If S(z) is continuous at a point t, sup
t∈Rl+

f(t) ≤ C, and an = o
(
n−1/2l

)
,

then for n→∞
u2
(
S̃nL(t)

)
=

1

n
S(t) (1− S(t)) + o

(
1

n

)
. (11)

Proof. Statement (11) immediately follows from the MSE representation

u2
(
S̃nL(t)

)
= DS̃nL(t) + b2

(
S̃nL(t)

)
in the form of the sum of the variance and the

squared bias including formulas (7) and (9).
Thus, according to (11), the principal term of the MSE for the smooth estima-

tor S̃nL(t) coincides with the variance n−1S(t) (1− S(t)) of the empirical reliability
function Sn(t) (2).
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5 Asymptotic normality

Let us designate by {ξj,n}nj=1 , n = 1, 2, . . . , the sequence of independent and iden-
tically distributed random variables in the scheme of series (the distribution of the
random variable ξj,n depends on n).

Theorem 2. If S(z) is continuous at a point t, sup
t∈Rl+

f(t) ≤ C, and an = o
(
n−1/2l

)
,

then for n→∞
√
n
[
S̃nL(t)− S(t)

]
⇒ N1 {0, S(t)(1− S(t))} . (12)

Proof. Let us represent

√
n
[
S̃nL(t)− S(t)

]
=
√
n
[
S̃nL(t)− ES̃nL(t)

]
+
√
nb
(
S̃nL(t)

)
. (13)

It is clear that the second term in the right side of (13), according to (7), converges
to zero when n→∞ :

√
nb
(
S̃nL(t)

)
=
√
n
[
o
(
n−1/2

)]
→ 0. (14)

Let us demonstrate that all conditions of the Central Limit Theorem in the scheme
of series are satis�ed for the �rst term in the right side of (13) (see [28], p. 435). Let
we have

ξj,n =
1√
n

[
VL

(
t− Tj
an

)
− EVL

(
t− Tj
an

)]
.

Then S̃nL(t) − ES̃nL(t) =
1√
n

n∑
j=1

ξj,n. It is obvious that Eξj,n = 0 and, considering

formula (9),

Eξ2
j,n =

1

n
DVL

(
t− Tj
an

)
<∞.

Also, according to formula (9), lim
n→∞

nEξ2
1,n = S(t) (1− S(t)) .

Let us check the validity of the Lindeberg condition. Since sup
u∈Rl

VL(u) ≤ 1, than

for any τ > 0,

κn = nE
(
|ξ1,n|2 , |ξ1,n| > τ

)
<
n

τ
E |ξ1,n|3

≤ C√
n

[
E

∣∣∣∣VL(t− T1

an

)∣∣∣∣3 +

∣∣∣∣EVL(t− T1

an

)∣∣∣∣3
]
<

2C√
n
,

where C is a positive constant. Hence, κn = O
(
n−1/2

)
→ 0 for n → ∞, i.e. the

Lindeberg condition is satis�ed. So, according to the Central Limit Theorem in the
scheme of series,

n∑
j=1

ξj,n ⇒ N1 {0, S(t)(1− S(t))} .

Considering formula (14), we obtain statement (12).
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6 Interval estimation of the reliability function

Formula (12) allows us to �nd transformation of smooth estimators of the reliability
function that has limiting standard normal distribution. Thus, according to [31], for
su�ciently large n the variance

D

(
2
√
n arcsin

√
S̃nL(t)

)
≈ 1.

Note that the transformation

arcsin

√√√√( n∑
i=1

VL

(
t− Ti
an

)
+

3

8

)/(
n+

3

4

)
for moderately large n provides a more stable variance [32]. Taking into account the
foregoing and formula (12), if S(z) is continuous at a point t, sup

t∈Rl+
f(t) ≤ C, and

an = o
(
n−1/2l

)
, then for n→∞

2
√
n

[
arcsin

√
S̃nL(t)− arcsin

√
S(t)

]
⇒ N1 {0, 1}

from which the inequality follows

2
√
n

∣∣∣∣arcsin

√
S̃nL(t)− arcsin

√
S(t)

∣∣∣∣ < u1−α
2
,

where u1−α
2
is the quantile of the level 1 − α

2
of the standard normal distribution.

Thus, the interval estimator with the preset reliability 1 − α for S(t) assumes the
form[

sin

(
arcsin

√
S̃nL(t)−

u1−α
2

2
√
n

)]2

< S(t) <

[
sin

(
arcsin

√
S̃nL(t) +

u1−α
2

2
√
n

)]2

. (15)

It is important to note that interval estimator (15) is not expressed through the
unknown reliability function S(t).

Conclusions

Let us list the main results of this work.
1. Such classes of kernel functions have been determined for which orders of

convergence to zero can be found for the biases of smooth estimators.
2. Expressions for principal terms of the MSEs of smooth estimators with Laplace

and �nite kernels have been derived. It was established that the principal terms of the
MSEs of such estimators coincide with the variance of the empirical reliability func-
tion that, as is well known, is the optimal nonparametric estimator of the reliability
function S(t).
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3. The asymptotic normality of di�erence
√
n
[
S̃nL(t)− S(t)

]
and has been

proved, which allows the researchers and experimenters to construct the interval
estimators whose characteristics are independent of the unknown reliability function
S(t).

As a result of investigations, it was established that in comparison with the well-
known parametric and discrete nonparametric algorithms, the advantage of the sug-
gested estimators in calculations of the strength reliability is that they allow more
reliable data to be obtained on the reliability of technical products and their residual
lifetimes to be estimated. Thus, the use of smooth estimators of the reliability func-
tion allows, in particular, to obtain additional information based on smooth nonpara-
metric estimators of the hazard rate function λ̃n(t) = fn(t)/S̃nL(t) when calculating
the probability of failure-free operation of a pipeline from the data of strength tests
of steels (see [1], p. 163). In addition, interval estimators with preset reliability can
be constructed for the hazard rate function λ(t) using the smooth estimator λ̃n(t)
[33].

Also, the proposed algorithms and the results obtained can be used in solving the
problem of increasing the reliability of various systems processing, transmitting and
storing information. Here are some examples of such use:

� synthesis of better tests for new fault models;

� synthesis of logic circuits to mask faults of individual classes;

� study of temporal models of the components of information systems;

� analysis and synthesis of controllers used in modern transport systems;

� construction of mixed diagnostic tests for hybrid intelligent training and testing
system [34].
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Abstract

The tasks of nonparametric identi�cation and dual control of dynamic ob-
jects with discrete-continuous nature of the process is considered. The methods
of dynamic processes modeling and control, based on the nonparametric algo-
rithms are o�ered. The complexity of dynamic process modeling and control
under condition of incomplete information is discussed. The purpose of the
given work is to develop and investigate the algorithms of identi�cation and
control of dynamic processes by both case nonparametric and partially para-
metric classes of the model. The results of computing experiment are explicitly
presented which show e�ciency of this method for the case of solving the tasks.
The scienti�c researches in this �eld will help improving the control and iden-
ti�cation quality.

Keywords: dynamic processes, nonparametric identi�cation, adaptive sys-
tems.

Introduction

At the present moment the parametric theory is widely spread. The problem of para-
metrical identi�cation and control is investigated by di�erent authors in particular
Cypkin Ja in his theory of adaptive systems [1]. The parametrical theory based on
the statistical solution is analyzed by Feldbaum A. in his publication [2]. In these
works, the stage of posing the identi�cation and control tasks of parametric struc-
ture of the dynamic process model, selected by means of di�erent methods is de�ned
model structure up to the parametric value.

However, the issue of identi�cation and control should be analyzed from the point
of non-parametric theory. The problems of identi�cation and control under condition
of incomplete information is very topical, because many of the dynamic processes are
not deeply studied. The factor of unknown distribution random noises causes the
complexity of solving the identi�cation and control tasks. In the case of insu�ciency
a priori information for selecting the structure of a parametric model of the dynamic
process the theory of nonparametric systems is applied [2, 3]. In comparison with
the parametric theory, the nonparametric theory is applied for identi�cation tasks if
only the qualitative characteristics of the system are known.

The purpose of the given work consists in developing and researching the algo-
rithms of identi�cation and dual control of dynamic processes by both case: nonpara-
metric and partially parametric classes of the model.
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The tasks of the work are to develop the extended algorithms for modeling and
control of dynamic objects and to carry out experimental research of the real objects
and their comparison with the presented objects of the model. The main idea of this
research is to reduce the problem of identi�cation to a mathematical modeling by
using nonparametric model of a regression function.

1 The level of priory information

Di�erent levels of prior information are considered by A. Feldbaum [4]. In this paper
the following levels of prior information is analyzed [2].

The level of parametric uncertainty is the �rst levels of prior information, which
is conceded below. The parametric level of prior information means, that the para-
metric structure of the model and some characteristics of random noises with zero
mathematical expectation and limited dispersion are known. The iterative probable
procedures are used for estimating various parameters. Under these conditions the
problem of identi�cation is solved in �narrow sense�.

The following level of prior information is the level of nonparametric uncertainty.
Nonparametric level of prior information doesn't imply knowledge about this para-
metric model, but applies that some information of qualitative character of dynamic
processes is known, for example the linearity for dynamic processes or the nature of
its nonlinearity is required. The methods of nonparametric statistics are applied to
the solution of the identi�cation tasks (identi�cation in �all-inclusive sense� [1]).

The level of parametric and nonparametric uncertainty is the level under condi-
tions of the amount of information, which does not correspond to any of the types
described above. In this respect, solving the task of identi�cation is formulated in
conditions of both case parametric, and nonparametric prior information. The mod-
els represent interdependent system, of parametric and nonparametric ratios. The
solution of identi�cation problems in this level is important from the point of practical
problem solving.

2 Nonparametric identi�cation

Let's consider the dynamic object from the point of di�erent levels of a priori infor-
mation. The �rst level implies the determination of linearity of the dynamic object,
but the structure of the parametric model is unknown. The order of the equation
can't be determined from a priori information.

In the second case, the dynamic process is described by the equation:

xt = f(x(t−1), x(t−2), ..., x(t−k), ut) (1)

where f(.) is unknown functional, xt is the output variable of the process, ut is
control actions, k is the known �depth� of memory [4], which is found based on a
priori information. The form of the function is not de�ned with the precision of
parameters.
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The block diagram of the simulation of the process is show in Figure 1.

Figure 1: Block - scheme of modeling the dynamic object

The notation is accepted in Figure 1: (t) is continuous time; index t is discrete
time, x̂t is the output model of the object, random noise measurement hxt , h

u
t corre-

sponding to the process variables, ξ(t) is vector random interference.
Let the object be described by a linear di�erential equation of unknown order. In

this case, x(t) under zero initial conditions is:

x(t) =

∫ t

0

h(t− τ)u(τ)dτ (2)

where h(t−τ) is the weight function of the system, which is a derivative of the transfer
function: h(t) = k‘(t). It is known that the inverse operator (2) is the operator [5]:

u(t) =

∫ t

0

v(t− τ)x(τ)dτ (3)

where v(t − τ) is the weight function of the object in the �output - input� direction
and v(t) = ω‘(t), where ω(t) is a transfer function of the system in the same direction.
Therefore, the problem now is to �nd the weight functions h(t), v(t). One way of
solving this problem is to measure the transient function and the evaluation of the
weighting function using the results of the measurements:

{
xi = ki, ti, i = 1, s

}
The nonparametric model (2) has the form:

xs(t) =

∫ t

0

(hs(t− τ), ks, ts)u(τ)dτ (4)

where ks, ts is time vectors: ks = (k1, ..., ks), ts = (t1, ..., ts), and hs(.) is:
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hs(t) =
1

scs

∫ t

0

kiH(
t− ti
cs

)dt (5)

where H(.) is a bell-shaped (nuclear) function, cs is a blur parameter satisfying, the
certain conditions of convergence [4].

3 Nonparametric dual control

The de�ciency a priory information results in the necessity to combine learning and
controlling the object. This type of control is called the dual control. The problem
of the dual control was investigated by A.Feldbaum. This parametrical theory was
developed based on the theory of statistical solution in this publication [2]. The given
paper presents the analysis of developing the dual control by using nonparametric dual
control theory [3].

Let's consider the dynamic object by both case nonparametric and partially para-
metric classes of the model. As described bellow, the �rst case implies the deter-
mination of linearity of the dynamic object, where the structure of the parametric
model is unknown and the order of the equation can't be determined from a priori
information. In the second case, the dynamic process is described by the equation
(1).

The block diagram of the control process is shown in Figure 2.

Figure 2: Control scheme of a dynamic object

The notation is accepted in Figure 2: x∗t is task for the control unit. The unknown
operation A of an object describes the processes, i.e. x(t) = A < u(t) > where x(t)
is the output variable of the process, u(t) is a set of control actions. If the operation
A−1 is de�ned: AA−1 = 1, then:
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A−1x(t) = a−1, A < u(t) >, u(t) = A−1x(t) (6)

Setting the trajectory x(t) = x∗(t), the ideal value u∗(t) is found from (12). In
this case, the operation A was found from the nonparametric models (4), and the
inverse operator A is the operator A−1 and can be found from the equation (3). Then,
the inverse operator A is a set of control impact:

u∗(t) =

∫ t

0

1

scs

s∑
j=1

ωjH‘(
t− τ − ti

cs
)x∗(τ)dτ (7)

where x∗(τ) is a task control. The integral of equation (13) is taken numerically. The
unknown operations A and A−1 are calculated by using the weight function and the
transfer function of the system in the class of nonparametric statistic [4], because the
equation of the processes is unknown. Then, nonparametric dual control algorithms
of linear dynamic system has the form:

us+1 = u∗s + δus+1 (8)

where u∗s is (13), and δus+1 = ε(x∗s+1 − xs) is the �search step�. The duality of the
algorithm is exhibited here. If the structure of the dynamic process may be described
by the partially parametric classes of the model, i.e. the process is described by the
equation x(t) = f(x(t − 1), x(t − 2), ..., x(t − k), u(t)), where k is known, then u∗s is
described by the nonparametric evaluation of the regression function using the results
of the measurements

{
xi, ui, i = 1, s

}
u∗s =

∑s
i=1 uiΦ(

x∗s−j−xi−j
cs

)
∏k

j=1 Φ(
xs−j−xi−j

cs
)∑s

i=1 Φ(
x∗s−j−xi−j

cs
)
∏k

j=1 Φ(
xs−j−xi−j

cs
)

(9)

where Φ(.) is a bell-shaped (nuclear) function, and cs has the form:

cs = α
∣∣xs − x0

s−1

∣∣ (10)

where x0
s−1 - the closest element to xs.

4 The computation experiment

The veri�cation of the nonparametric identi�cation and control algorithms is carried
out by statistical modeling. For the purpose of computational experiment the object
is described by equations of the form: xt = 0.4xt−1 − 0.3xt−3 + ut, where xt is the
output variable of the process, ut is the input process variable.

Transient response of the object is shown in Figure 3. The input control variable
is de�ned by the equation: u(t) = sin(0.5t). The model of the object is constructed
by using a non-parametric model (4). The simulation results are shown in Figure 4.
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Figure 3: The transfer function of the dynamic process

Figure 4: Results of the identi�cation process using the model (4)

The notation is accepted in Figure 4, where x(t) is output of the object, x̂(t) is
output of the model. The square error of the simulation is 0.015. The model of the
object is constructed by using a non-parametric model (10).

The use of this model is acceptable, when the parametric structure of the object
is partially known. The simulation results are presented in Figure 5.

The square error of modeling is 0,023.

The comparison of nonparametric dual control algorithms with the typical control
algorithms de�ned as PI-algorithms is represented in the computational experiment.
The amount of sampling (ui, xi) is 100. The control results are shown in Figure 6,
when the task control is stepwise impact:

In Figure 6 the notation is accepted: x(t) is output of the object, when the control
unit is a nonparametric dual control regulator, x(t) is output of the object, when the
control unit is the PI regulator, x∗(t) is a control task. The square error of the control
for the nonparametric regulator it is 0.07, for the PI regulator is 0.34.
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Figure 5: The results of the identi�cation process using the model (10)

Figure 6: The control results, when the task control is a stepwise impact

5 Conclusion

In the article the analysis of algorithms for nonparametric identi�cation and control
under condition of non-parametric uncertainty is carried out, i.e. the case where a
priori information about the object is small and do not allow choosing the parametric
model of the object. In this case, the Duhamel integral is used for describing the
process. The problem is reduced to the solution of nonparametric estimation of the
weight function of the system because of the observations �input-output� of the object.
The non-parametric algorithms under partial nonparametric uncertainty are shown
in the computational experiment.
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Abstract

In the present work, semi-nonparametric estimates of regression by the
weighted maximum likelihood method are considered. Their e�ciency is in-
vestigated for a class of distributions of residues with di�erent degrees of tail
stretching in the presence of outliers described by the Tukey model. It is demon-
strated that the given estimates are e�cient.

Keywords: Robust, Adaptive Estimates, Weighted Maximum Likelihood
Method, Nonparametric, Semi-Nonparametric, Regression.

Problem formulation. Introduction

Let us consider a problem of local regression. Let we have the vector x = (x1, . . . , xp)
T

∈ X ∈ Rp of independent variables and the dependent variable y = m(x) + ε, where
m(x) is an unknown regression function and T denotes transposition. It is required to
�nd the regression estimatem(x0) at any point x0 ∈ X from the available independent
observations (xi, yi), i = 1, . . . , N .

Let us designate by G1(x) ⊂ I1 ↔ g1(x) the a priori distribution function and
the density of random vector x; G2(ε) ⊂ I2 ↔ g2(ε) the a priori distribution function
and the density of the random variable ε independent of x; F (x, y) ⊂ I3,↔ f(x, y),
F (y/x) ⊂ I4 ↔ f(y/x) actual experimental joint and conditional distribution func-
tions and the density of random vector z = (xT , y)T ; m(x) ⊂ I5; FN = (x, y) and
FN(y/x) the empirical distribution functions of the vector z and the nonparametric
estimate F (y/x).

Let us consider below the following classes 〈I〉 = (I1, I2, I3, I4, I5): class I1 of
distributions with �nite Fisher information; class I2 of unimodal symmetric distribu-
tions with �nite Fisher information; class I3 of distributions of the form (the Tukey
supermodel):

F (x, y) = [(1− p)G2(y −m(x0)) + pH(y −m(x0))]G1(x), (1)

where p is the fraction of outliers and H1 is their distribution; without loss of gener-
ality, we consider x = x1 ∈ R1.

All methods and algorithms for solving the given problem depend on the a priori
information on the classes 〈I〉 = (I1, I2, I3, I4, I5) we have. The intersection of the
given types of a priori information 〈I〉 determines also a concrete algorithm for
�nding estimates.

The problems with unknown m(x) and G1(x) are conventionally referred to the
class of nonparametric problems, but for supermodels Eq. (1), a number of robust
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nonparametric problems arise in which a part of supermodels can be determined
parametrically, and another part nonparametrically - a class of semi-nonparametric
models.

Classi�cation by levels of a priori information allows 〈I〉 semi-parametrical esti-
mates of the regression to be ordered as already considered in the literature, and new
estimates to be synthesized for scanty a priori information 〈I〉.

Our analysis of the literature shows that by the present time, a large number
of robust nonparametric regression algorithms have been synthesized or heuristi-
cally suggested (for example, see [1-12]; these references include only works supplied
with extensive bibliography on the subject). The classical nonparametric Nadaraya-
Watson regression estimates (see references in [1] and [2]) were nonrobust; therefore,
by analogy with them, nonparametric estimates of the conditional median and condi-
tional mode were suggested [1]. Later on, the synthesis of the robust nonparametric
regression estimates was mostly based on local adaptation methods (LAM) [3],[4]
and local maximum likelihood method (LMLM) [12] using conditional M-estimates.
Conditional R- and L- estimates [17] are not widespread.

According to the ideas of robust statistics [3], [4], [7], [14], the estimators for ro-
bust estimates are determined based on minimax solutions. Ya. Z. Tsypkin [4] called
optimal on a class such robust estimates synthesized on the basis of the entropy
criterion. However, as demonstrated investigations, such estimates optimal on a
class can have amazingly low e�ciency for a concrete situation. Exactly this fact
stimulates a search for adaptive estimates adjusted to search for an optimal solution
in a given concrete situation [8], [9], [13] based on distributions, outliers, and band-
width parameter [3], [11]. An analysis of a priori information 〈I〉 = (I1, I2, I3, I4, I5)
[8], [8], [13]shows that the adaptive algorithm must be adjusted based on the form
of a priori information on the distribution G2(ε) ⊂ I2 (global adaptation) and on
the shape of outliers in supermodel Eq. (1) which, as a rule, takes into account un-
known information on the shape and fraction of the outliers (local adaptation). It is
important to note that adaptation algorithms must be nonparametric inherently [8].

In the present work, adaptive semi-nonparametric estimates of local regression are
synthesized based on the weighted maximum likelihood method [8], [9] for di�erent
levels of a priori information. This work further develops our work [13] in which
semi-parametrical global regression estimates were synthesized.

1 Weighted maximum likelihood method.

Adaptation

1.1 Weighted maximum likelihood method

Let us consider the problem of a search for a local estimate mN(x0) for the Tukey
supermodel given by Eq. (1). For this purpose, we take advantage of the LMLM [12].
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Equations for LMLM estimates in our case are written in the form:

N∑
i=1

Ψ(zi,mN(x0))K1

[
x0 − xi
h1N

]
= 0, (2)

where z = (x, y)T , Ψ(z,m(x0)) is the estimator, K1(u) is the kernel function [2],
[3], [8] K1(−u) = K1(u),

∫
K2

1(u)du < ∞,
∫
uK1(u)du = 0, h1N is the bandwidth

parameter.
The estimator Ψ(z,m(x0)) from Eq. (2) can be represented in the following a

form:

Ψ(z, x0) =

[
∂
∂m
g2(y −m(x0))

f(z)

]
=

[
∂
∂m
g2(y −m(x0))

g2(y −m(x0))

]
·
[
g2(y −m(x0))

f(z)

]
=

=
∂

∂m
ln g2(y −m(x0)) · [g2(y −m(x0))]l , l =

ln f(·) + ln g2(·)
ln g2(·)

,

Ψ(z,m(x0)) = U(g2) ·W (F ), (3)

where U(g2) = ∂
∂m

ln g2(y−m(x0)) is the function of contribution of the conditional a

priori distribution g2(y−m(x0)),W = [g2(y −m(x0))]l is the weight function, l is the
radical parameter responsible for information on deviation of the actual distribution
F from the a priori (ideal) distribution G2, concentrating all information on outliers
in one, in principle unknown, radical parameter.

Hence, LMLM estimator Eq. (3) can be written in terms of the WMLM estimator
in the form

N∑
i=1

∂

∂m
ln g2(yi −mN(x0)) · [g2(y −mN(x0))]lK1

[
x0 − xi
h1N

]
= 0. (4)

1.2 Properties of estimates by the weighted maximum

likelihood method

Let us represent Eq .(4) in the form of a functional of the empirical distribution
function FN(z): ∫

Ψ̃(z,m(x0))dFN(z) = 0, (5)

Ψ̃(z,m(x0)) =
∂

∂m
ln g2(y −m(x0)) · [g2(y −m(x0)]K1

[
x0 − x
h1N

]l
.

Let us take advantage of the standard approach to investigation of the conditional
M-estimates [1]-[3],[5], [6], [11], [15]. Omitting intermediate routine calculations, we
can prove that: √

NhN(mN(x0)−m(x0))⇒ N(bN , VN),
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bN =
h2
N

2
· d

2

dx
m(x)|x=x0

·
∫
u2K(u)du,

VN =

∫
K2(u)du

NhNg1(x0)

∫
[ψ(y −m(x0)]2dG2(y/x0){∫
∂
∂m
ψ(y −m(x0)dG2(y/x0)

}2 .

For local linear regression models, the matrix variant of the results presented
above is used, for example, by analogy with [3], [5], [7].

1.3 Adaptation

In the present work, we consider two aspects of the adaptation of estimates: by the
form of a priori distribution G2 and by the form of the distribution of outlier fraction
(p,H). The idea of global adaptation by the form of a priori distribution G2 was
suggested by Beran [16] in the middle 70s. It is reduced to application of the non-
parametric estimate of the Rozenblatt-Parzen density. We note that from Eq. (4) at
l = 0 we obtain LMLM estimates, at l = 1 maximum stability estimates (MSE), and
at l = 0.5 radical estimates on the Hellinger distance [7]. This fact allows estimates
robust to outliers in the given situations to be obtained using adaptation by the rad-
ical parameter l (0 ≤ l ≤ 1). As a measure of robustness, it is reasonable to use
the variation coe�cient of the estimate V . The standard approach to construction of
adaptive robust estimates is reduced to assignment of a supermodel for which a cer-
tain characteristic, for example, V is determined as a function of a priori distributions
and (p,H). Then Hogg selectors are determined by which adaptation is carried out
in the form of sample truncation operation [14]. Analogous procedures are performed
for the Meshalkin exponentially weighted (EW) estimates and Shurygin stable esti-
mates [7]. The given approach calls for complex theoretical research, but any critic
has the right to declare that the ideal supermodel is close to reality, and construction
of estimates already robust on supermodels is required. A nonparametric approach
to the construction of an algorithm of adaptation by outliers is required. Such non-
parametric approach - bootstrap procedures - has already been used for a long time.
Taking advantage of the bootstrap method, local estimates V (l)(0 ≤ l ≤ 1) can be
obtained, and the optimal value of the radical parameter l∗ can be found. Compu-
tational di�culties in implementation of the bootstrap procedures are not principal
for modern PC.

2 Adaptive regression estimates by the weighted

maximum likelihood method

2.1 Adaptive nonparametric estimates of correlation

analysis

Classical algorithms of nonparametric regression were synthesized in the form of esti-
mates of the location parameter θ for the conditional distribution F (y/x0): average,
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median, and mode [1], [2]. Let F (y/x0) be the distribution function symmetric about
θ:

F (y/x0) = 1− F ((2θ − y)/x0).

Estimates θN based on the functional
∫
ϕ(1 − FN(2θN − t/x0))dFN(t/x0) = 0

lead to the nonparametric R-estimates of the regression [17]. The given classical
estimates have been investigated su�ciently well. Let F (y/x0) be symmetric about
θ. To determine θN , we use the WMLM. We obtained the following estimator for θN :

N∑
i=1

d

dθ
fN(yi, θN/x0) [fN(yi, θN , /x0)]l−1K1

(
x0 − xi
h1N

)
= 0,

where fN(yi, θN/x0) is the Rozenblatt-Parzen symmetrized estimate.

2.2 Adaptive regression estimates by the local approximation

method

In this section we consider examples of construction of local regression WMLM esti-
mates when the distribution G2(ε) is set parametrically. Because the properties of the
estimates depend on the degree of stretching of the distribution tail, four distributions
are analyzed with short, intermediate, and long tails.

2.2.1 t-Student distribution

Let G2(ε) belong to the class of t-Student distributions with zero location parameter,
ν degrees of freedom, and probability density

g2(x, s, v) =
B(v)

s

1

Dm(x/s)
,m =

v + 1

2
, D(u) = 1 +

u2

v
. (6)

Substituting Eq. (6) into Eq. (4), we obtain the WMLM estimators:

N∑
i=1

yi −mN(x0)

Dlm+1 (yi −mN(x0))
K1

(
x0 − xi
h1N

)
= 0. (7)

The random variable
√
NhN(mN(x0)−m(x0)) has asymptotically normal distribution

with mean bN and variance VN of the form:

bN =
h2
N

2

d2

dx
m(x)|x=x0

·
∫
u2K(u)du,

VN =

∫
K2(u)du

NhNg1(x0)
·

∫ (y−m(x0))2

D2lm+2(y−m(x0))
dG2(y/x0){∫ (

1− 2(lm+1)
v

(y−m(x0))2

s2·D(y−m(x0))

)
dG2(y/x0)

}2 .

For the Cauchy distribution (v = 1), Eq. (7) can be represented in the following form:

N∑
i=1

(yi −mN(x0))gl+1
2 (yi −mN(x0))K1

(
x0 − xi
h1N

)
= 0. (8)
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2.2.2 Generalized normal distribution

Let G2(ε) belong to the family of generalized normal distributions with zero location
parameter and probability density of the form

g2(x) =
β

2sΓ(1/β)
e−( |x|s )

β

. (9)

Substituting Eq. (9) into Eq. (4), we obtain the WMLM estimators

N∑
i=1

Sign(yi −mN(x0))|yi −mN(x0)|β−1gl2(yi −mN(x0))K1

(
x0 − xi
h1N

)
= 0. (10)

The random variable
√
NhN(mN(x0)−m(x0)) has asymptotically normal distribution

with mean bN and variance VN of the form:

bN =
h2N
2
· d

2

dx
m(x)|x=x0

·
∫
u2K(u)du, VN =

∫
K2(u)du

NhNg1(x0)
×

×
∫
|y −m(x0)|2β−2g2l2 (y −m(x0))dG2(y/x0){∫

|y −m(x0)|β−2

(
β − 1− l · β

(
y−m(x0)

s

)β)
gl22 (y −m(x0))dG2(y/x0) + 2|0|β−1gl2(0)g2(0/x0)

}2

Let us study some special cases of generalized normal distributions.

1. Laplace distribution (β = 1). The WMLM estimators for the semi-nonparamet-
ric regression estimate from Eq. (10) is

N∑
i=1

Sign(yi −mN(x0))gl2(yi −mN(x0))K1

(
x0 − xi
h1N

)
= 0. (11)

2. Normal distribution (β = 2). The WMLM estimators for the semi-nonparamet-
ric regression estimate from Eq. (10) is

N∑
i=1

(yi −mN(x0))gl2(yi −mN(x0))K1

(
x0 − xi
h1N

)
= 0. (12)

3. Generalized normal distribution of the 4th degree distribution (β = 4).
The WMLM estimators for the semi-nonparametric regression estimate from
Eq. (10) is

N∑
i=1

(yi −mN(x0))3gl2(yi −mN(x0))K1

(
x0 − xi
h1N

)
= 0. (13)
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2.3 Adaptive nonparametric regression estimate

Let G2(ε) belong to the nonparametric class of unimodal distributions symmetric
about zero. To estimate the unknown g2(ε), we take advantage of the symmetrized
estimate of the Rozenblatt-Parzen density of the form

g2N(ε) =
1

2Nh2N

N∑
i=1

(
K2

(
ε− εi
h2N

)
+K2

(
ε+ εi
h2N

))
, (14)

where N is the sample length, h2N is the bandwidth parameter, and K2 is the kernel
function. Substituting Eq. (14) into Eq. (4), we derive the WMLM estimator for the
regression parameters of the following form:

N∑
i=1

gl2−12N (yi,m(x0))K1

(
x− xi
h1N

) N∑
j = 1
i 6= j

(
γ

(
2m(x0)− yi − yj

h2N

)
K2

(
2m(x0)− yi − yj

h2N

))
= 0,

(15)

γ(x) =
1

K2(x)

∂

∂x
K2(x).

3 Modeling

3.1 Experiment description

The e�ciency of regression estimates Eqs. (8), (11), (12), (13), and (15) was stud-
ied for the following class of symmetric noise distributions with di�erent degrees
of tail stretching: generalized normal distribution of the 4th degree (D4), normal
distribution (ND), Laplace distribution (LD), Cauchy distribution (CD)) without
outliers (WO) and with outliers for the Tukey model of symmetric outliers (SO) and
asymmetric outliers (AO) along the y axis(p = 0.1). The scaling parameter of each
distribution from the examined class was determined so that the distribution quantile
on a level of 0.95 coincided with the quantile on a level of 0.95 for standard normal
distributions. The following regression function was considered:

m(x) = 2.5e−
(x+1)2

4 − 2.5e−
(x−1)2

4 + x.

The e�ciency of estimates was calculated in the following form:

ξ =
Vmin

V
,

where V is the conditional variation of the examined regression estimate and
Vmin is the minimum conditional variation among the examined estimates. To �nd
the conditional variation of the estimate, the Monte Carlo method was used. For
this purpose, we formedM = 500 two-dimensional samples (X, Y ) from distributions
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F1(x) and F2(ε) at the point in the vicinity of x0 whose width was determined by the
parameter h1N using the regression function m(x) and random number generators.

The adaptive nonparametric estimates (ANE) given by Eq. (15) were compared
with the adaptive semi-nonparametric estimates (ASE: AECD Eq. (8), AELD
Eq. (11), AEND Eq. (12), and AED4 Eq. (13)) with maximum likelihood (MLE),
Nadaraya-Watson ((N-W)E), conditional median (ME), radical (RE), and maximum
stability estimates (MSE).

3.2 Results

Table 1: E�ciency of estimates on the D4 distribution at the point x0 = 0

Estimates MLE (N-W)E ME RE MSE ASE ANE
WO 1.00 0.73 0.37 0.78 0.43 1.00 0.82
AO 0.00 0.01 0.11 0.78 0.36 1.00 0.86
SO 0.08 0.50 0.52 1.00 0.68 1.00 0.73

Table 2: E�ciency of estimates on the normal distribution at the point x0 = 1.5

Estimates MLE (N-W)E ME RE MSE ASE ANE
WO 1.00 1.00 0.58 0.73 0.50 1.00 0.81
AO 0.01 0.01 0.21 0.79 0.54 0.92 1.00
SO 0.62 0.62 0.79 0.97 0.73 1.00 0.80

Table 3: E�ciency of estimates on the Laplace distribution at the point x0 = 0.949

Estimates MLE (N-W)E ME RE MSE ASE ANE
WO 1.00 0.85 1.00 0.80 0.68 1.00 0.83
AO 0.30 0.01 0.30 0.71 0.56 0.79 1.00
SO 1.00 0.47 1.00 0.87 0.73 1.00 0.78

3.2.1 E�ciency of estimates on distribution classes

The average and minimal e�ciency of the suggested estimates were investigated on
classes of distributions of residues S = 〈D4, ND,LD,CD〉 with and without symmet-
ric and asymmetric Tukey outliers. The following classes were considered: class S1

of distributions of residues without outliers, class S2 of distributions of residues with
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Table 4: E�ciency of estimates on the Cauchy distribution at the point x0 = 0

Estimates MLE (N-W)E ME RE MSE ASE ANE
WO 0.83 0.01 0.88 0.77 0.66 0.83 1.00
AO 0.92 0.00 0.30 0.94 0.80 1.00 0.97
SO 0.81 0.01 0.81 0.81 0.71 0.84 1.00

asymmetric outliers, and class S3 of distributions of residues with symmetric outliers.
Adaptive nonparametric estimate (ANE) Eq. (15) was compared with the following
estimates: maximum likelihood estimate (MLED4) provided that the a priori residues
obeyed the distribution of the fourth degree; Nadaraya�Watson estimate ((N-W)E),
radical estimate (REND), and maximum stability estimate (MSEND) provided that
the a priori distribution of the residues was normal; and conditional median estimate
(M). The average and minimal e�ciencies of estimates were calculated for each class
(Tables 5-7).

Table 5: Average and minimal e�ciencies of estimates on class S1

Estimates MLED4 (N-W)E ME MLECD REND MSEND ANE

Average e�ciency 0.53 0.70 0.57 0.56 0.80 0.57 0.76
Minimal e�ciency 0.00 0.06 0.38 0.28 0.47 0.30 0.64

Table 6: Average and minimal e�ciencies of estimates on class S2

Estimates MLED4 (N-W)E ME MLECD REND MSEND ANE

Average e�ciency 0.00 0.01 0.20 0.65 0.85 0.59 0.91

Minimal e�ciency 0.00 0.00 0.15 0.46 0.62 0.42 0.67

Conclusions

1. Based on the WMLM, new semi-nonparametric adaptive estimates of the local
regression are synthesized for di�erent levels of a priori information (Eqs. (7),
(8), (10), (11), (12), (13), and (15));

2. Adaptive semi-nonparametric estimates (ASE) on the level of a priori informa-
tion are e�ective;

3. MLE (MLED4, (N-W)E, and M) on the class of distributions have low or zero
e�ciency (Tables 1 - 4);
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Table 7: Average and minimal e�ciency of estimates on class S3

Estimates MLED4 (N-W)E ME MLECD REND MSEND ANE

Average e�ciency 0.07 0.45 0.70 0.72 0.99 0.75 0.75
Minimal e�ciency 0.00 0.03 0.50 0.65 0.95 0.72 0.69

4. Classical robust estimates (M and MSEND) for particular distributions have
low e�ciency (Tables 1 - 4);

5. Adaptive nonparametric estimate (ANE) on nonparametric level of a priori
information is e�ective.
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Abstract

Statistical estimators of a linear functional of an unknown distribution are
considering based on combined estimator in the form of weighted sum of non-
parametric estimator and a prior guess about the value of this functional. The
optimal (in terms of mean square error) weighting coe�cient is subject of adap-
tive estimation itself. A series of k�adaptive estimators are constructed by using
the prior guess recursively k times. Examples of combined estimators and re-
sults of numerical calculations are provided, that illustrates how the di�erence
between prior guess and unknown value of functional a�ects the limit distribu-
tions of estimators and their probabilistic characteristics.

Keywords: linear functional, prior guess, a priori information, combined
estimator, nonparametric estimator, k - adaptive combined estimator.

Introduction

The term 'prior guess' has been probably �rst introduced by Ferguson [11] and used
later in various contexts. There are many papers in the literature devoted to the
estimation of the probability characteristics with using additional information (prior
guess). Combined statistical estimators adapting a prior guess and their properties
have been considered in [2], [8], [9], [10], [17]. Estimators of the mean were proposed
in [1], [3], [13], [18]. Estimators of the variance of �nite samples have been considered
in [4] and [19]. Estimators of conditional quantile have been developed in [19]. In [16]
this problem was considered for dependent data. A new class of M�estimators with
auxiliary information has been introduced in [14]. Missing data case presented in [7],
censored data case has been considered in [15]. Problems of adaptive classi�cation
and optimization are considered in [5].

In this paper we consider the case when there exists an assumption on the value
of estimated functional. The assumed value we will refer to as a prior guess. We
propose k�adaptive combined estimators that use prior guess recursively k times.
Asymptotic distributions of the estimators have been obtained, that allow to study
the in�uence of a prior guess to the estimation accuracy.

The obtained asymptotic results extend the results presented in the paper [10].

1 Structure of estimator utilizing a prior guess

Let X1, ..., Xn be independent observations of size n over a random variable X with
unknown distribution function F on R1. Following to [10], consider the problem of
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statistical estimation of a linear functional on a certain class of distributions F ,

J(F ) = MF [ϕ(X)] =

∫ ∞
−∞

ϕ(x)dF (x), F ∈ F , (1)

using a prior guess Ja as a possible value of J(F ), speci�ed by researcher. The real
function ϕ is known. Nonparametric estimator of the functional is

Ĵ = J(Fn) = n−1
∑n

i=1
ϕ(Xi),

where Fn(x) = n−1
∑n

i=1 c(x−Xi) is empirical distribution function, c(t) = {0 : t <
0; 1, t ≥ 0}. Following to [8], [9], [10], [17], consider the combined estimator utilizing
simultaneously Ĵ and prior guess Ja in the form

Ĵ(λ) = (1− λ)Ĵ + λJa = Ĵ − λ(Ĵ − Ja), (2)

where the weighting coe�cient λ is selected from the minimum of mean square error
(MSE) SF (λ) = MF [Ĵ(λ)− J ]2. Optimal value of λ is given by

λ∗ = λ∗(F ) = (1 + n∆2/σ2)−1 = (1 + b2
n(F ))−1, (3)

where σ2 = σ2(F ) = DF (ϕ(X)) is the variance of ϕ(X), ∆ = ∆(F ) = J(F ) − Ja is
the value of displacement of the prior guess from the true value J(F ), and bn(F ) =√
n∆(F )/σ(F ) is the normalized displacement.
The minimal value of MSE is given by the expression nSF (λ∗) = σ2(1 − λ∗).

The weighting factor λ∗ varies between 0 < λ∗n ≤ 1, and shows contribution of each
estimator to the combined estimator (2) and their in�uence to the optimal MSE.
Particularly, if ∆F = 0, we have λ∗ = 1, and prior guess Ja should be taken as
the estimator of the functional J(F ). When ∆F 6= 0, which usually happens in
practice, λ∗ < 1, and λ∗ → 0 with the growth of sample size (n → ∞), so the
in�uence of a prior guess and the advantage in the estimation accuracy decrease.
More conclusions can be obtained if we assume that ∆ decreases simultaneously with
growth of n such that for each �xed F ∈ F there exists a limit lim bn(F ) = b. Then
limnSF (λ∗) = σ2b2/(1 + b2).

Practical usage of the combined estimator (2) is complicated because optimal
coe�cient λ∗ is not possible to calculate due to distribution function F is unknown.

Construction of statistical estimators for λ∗ leads to adaptive estimation of the
functional (1). However, the weighting coe�cient becomes non-optimal, and the
question arises, under what conditions the adaptive estimator is more preferable by
MSE as compared to the estimator Ĵ . We consider this issue in the following sections.

2 Adaptive estimators and their asymptotic

properties

We construct adaptive estimators by the method of substitution and consequent use
of a prior guess. Let substitute unknown F with Fn in (3) and let use a prior guess
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σa instead of σ. Then we do have the �rst estimator for λ∗:

λ̂1 = (1 + n∆̂2/σ2
a)
−1 = (1 + b̂2

n)−1,

where ∆̂ = Ĵ − Ja is estimator of displacement ∆, b̂n =
√
n∆̂/σa is estimator of nor-

malized displacement. By substitution λ with λ̂1 in (2), we obtain the �rst adaptive
combined estimator Ĵ1 = Ĵ − λ̂1(Ĵ − Ja). Using Ĵ1 in estimation of displacement ∆,
we obtain ∆̂1 = Ĵ1 − Ja and b̂1,n =

√
n∆̂1/σa. Then the second estimator will be

given by λ̂2 = (1 + b̂2
1,n)−1 and Ĵ2 = Ĵ − λ̂2(Ĵ − Ja). After repeating this procedure

k times consecutively, we obtain the following expressions for the estimator

Ĵk = Ĵ − λ̂k(Ĵ − Ja) = Ja + (1− λ̂k)(Ĵ − Ja), (4)

λ̂k =
(

1 + n∆̂2
k−1/σ

2
a

)−1

=
(

1 + b̂2
k−1,n

)−1

,

where b̂k,n =
√
n∆̂k/σa, ∆̂k−1 = Ĵk−1 − Ja, ∆̂0 = ∆̂ = Ĵ − Ja, b̂0,n = b̂n.

Let us refer to Ĵk as k�adaptive estimator with parameter σa. We emphasize here
that the prior guess Ja has been used at each step of estimation of ∆, but unknown
value σ is replaced by the speci�ed value σa. Let us note that in [10] the sample
estimate σ̂2 was used instead of σ2.

Consider asymptotic behavior of Ĵk. Let

ξ̂k =

√
n(Ĵk − J)

σ
.

Denote

ηn =

√
n(Ĵ − J)

σ
, τ =

σ

σa
.

Then we can write

b̂n = (ηn + bn)τ, b̂k,n = qk(b̂n) = qk((ηn + bn)τ),

λ̂k =
[
1 + q2

k−1((ηn + bn)τ)
]−1

,

ξ̂k =

√
n(Ĵk − J)

σ
= −bn + qk((ηn + bn)τ)/τ,

where qk(x) = xq(qk−1(x)), k ∈ {1, 2, 3, . . .}, q(x) = x2/(1 + x2), q0(x) = x.

Theorem 1. Let σ2 <∞ for each F ∈ F and sequence bn converges to non-random
value b as n→∞. Then for each k the random sequence ξ̂k converges in distribution
to the random variable

ξk = −b+ qk((η + b)τ)/τ if |b| <∞, 0 < τ <∞.

P{ξk < x} = Φ(q−1
k ((x+ b)τ)τ−1 − b),−∞ < x <∞,

where η is the standard normal random variable with distribution function Φ(x),
q−1
k (x) is inverse function.
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Proof. Since functions qk(x) are continuous and monotonically increasing, then the
statement of the theorem follows from convergency of ηn to η in distribution by the
central limit theorem and the continuity theorem ([6], Chapter 6).

Corollary 1. Under the conditions of the theorem 1, the following statements hold
true.

1. ξk = η if |b| =∞, 0 < τ <∞.
2. ξk → η in distribution as τ →∞, |b| <∞.
3. If τ → 0 and |b| < ∞ then the distribution of ξk converges to degenerate

distribution at point −b (formally, ξk → −b).

Proof. The �rst statement follows from the representation

ξ̂k = ηn −
ηn + bn

1 + q2
k−1((ηn + bn)τ)

, (5)

where the second term converges weakly to zero as |bn| → ∞ due to the proposition
5 from lemma 1 [10]. The second and third statements of the corollary follows from
the limit form of representation (5), convergency of q2

k−1(x) to in�nity as x → ∞,
and convergency of qk−1(x) to zero as x→ 0.

3 Examples of k�adaptive combined estimators and

numerical results

In this section we provide some examples of estimators, their asymptotic properties,
and results of numeric calculations. Consider the k�adaptive combined estimators
(4) Ĵk under k ∈ {1, 2, . . .}.

Ĵ1 = Ĵ −
[
1 + b̂2

n

]−1

(Ĵ − Ja),

Ĵ2 = Ĵ −

[
1 +

b̂3
n

1 + b̂2
n

]
(Ĵ − Ja).

According to lemma 1 [10] where the expression for q∞(x) is derived, the limit esti-
mator (obtained after using the prior guess in�nite number of times, k =∞), can be
written as

Ĵ∞ =



Ĵ −

[
1 +

(
b̂n−
√
b̂2n−4

)2
4

]−1

(Ĵ − Ja), b̂n ≤ −2,

Ja, |b̂n| < 2,

Ĵ −

[
1 +

(
b̂n+
√
b̂2n−4

)2
4

]−1

(Ĵ − Ja), b̂n ≥ 2.
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Figure 1: Dependence of the MSE Sξk on normalized displacement b and
k ∈ {1, 2, 4, 16,∞} for τ = 1.0 (left plot) and τ = 0.5 (right plot).

Using the theorem 1 we can compute moments of random variable ξk. Most
interesting is the second moment, which due to (5) can be written in the form

Mξ2
k = Sξk = M

[
η − η + b

1 + q2
k−1((η + b)τ)

]2

.

Figures 1 and 2 present the plots of Sξk in dependence of k, b and τ . At the left
plot of �gure 1 the case of τ = 1 is considered. It shows that there exist range of
values of |b| where Sξk < 1. Outside the range the combined estimators lose on MSE
to regular empirical estimator represented by random variable ξ0 with Sξ0 = 1. The
mentioned intervals and maximal loss are presented in the table 1 in numbers.

Figure 2: Dependence of the MSE Sξk on τ and k ∈ {1, 2, 4, 16,∞} for normalized
displacement b = 0 (left plot) and b = 2.33 (right plot).

When τ decreases, the maximum of Sξk grows and minimum decreases down to
zero (see for examples the right plot at the �gure 1 and both plots at the �gure
2). The inverse behavior is observing when τ increases, in that case Sξk tends to
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Table 1: Extremal points of Sξk under τ = 1 and points of its intersection with
level one are presented with accuracy ±0.07.

k 1 2 4 16 ∞
maxb Sξk 1.25 1.49 1.82 2.31 2.43
arg maxb Sξk ±2.66 ±2.52 ±2.38 ±2.38 ±2.24
b : Sξk < 1 |b| < 1.40 |b| < 1.26 |b| < 1.12 |b| < 0.98 |b| < 0.98

Sξ0 = 1 for all b and τ . In the case of b = 0 (left plot at the �gure 2) the value of
Sξk < Sξ0 = 1 for all 0 < τ <∞, and this advantage is increasing with growth of k.
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Abstract

The properties of non-parametric kernel estimators for the �rst order deriva-
tive of probability density function from special parameterized classes are in-
vestigated. In particular, in the case of known smooth classes parameter, rates
of mean square convergency of density and its derivative estimators of smooth
parameter estimators are found. Adaptive estimators of densities and their �rst
derivatives from the given class with the unknown smooth parameter are con-
structed. Non-asymptotic and asymptotic properties of these estimators are
established.

Keywords: Non-parametric kernel density estimators, smooth parameter
estimation; adaptive density derivative estimators, mean square convergence,
rate of convergence, smoothness class.

Introduction

Let X1, . . . , Xn be independent identically distributed random variables (i.i.d. r.v.'s)
having a probability density function f . In the typical nonparametric set-up, nothing
is assumed about f except that it possesses a certain degree of smoothness, e.g., that
it has r continuous derivatives.

Estimating f via kernel smoothing is a sixty year old problem; M. Rosenblatt
who was one of its originators discusses the subject's history and evolution in the
monograph by [13]. For some point x, the kernel smoothed estimator of f(x) is
de�ned by

fn,h(x) =
1

n

∑n

j=1

1

h
K

(
x−Xj

h

)
, (1)

where the kernel K is a bounded function satisfying
∫
K(x)dx = 1 and

∫
K2(x)dx <

∞, and the positive bandwidth parameter h is a decreasing function of the sample
size n. In this paper we will employ a particularly useful class of in�nite order kernels
namely the �at-top family; see [7] for a general de�nition.

It is a well-known fact that optimal bandwidth selection is perhaps the most
crucial issue in such nonparametric smoothing problems; see [3] and the references
therein. The goal typically is minimization of the large-sample Mean Squared Er-
ror (MSE) of fn,h(x). However, to do this minimization, the practitioner needs to
know the degree of smoothness r. Using an in�nite order kernel and focusing just
on optimizing the order of magnitude of the large-sample MSE, it is apparent that
the optimal bandwidth h must be asymptotically of order n−1/(2r+1) that yields a
large-sample MSE of order n−2r/(2r+1) (see, e.g., [2]).
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The problem of course is that, as previously mentioned, the underlying degree of
smoothness r is typically unknown. In Section 3 of the paper at hand, we develop an
estimator rn of r and prove its strong consistency. In order to construct our estimator
rn, we operate under a class of functions that is slightly more general than, e.g., the
Hölder class; this class of functions is formally de�ned in Section 1 via eq. (3) or (4).
Under such a condition on the tails of the characteristic function we are able to show
in Section 2 that the optimized MSE of f̂n(x) is again of order n−2r/(2r+1) for possibly
noninteger r.

Furthermore, in Section 4 we develop an adaptive estimator f̂n(x) that achieves
the optimal MSE rate of n−2r/(2r+1) within a logarithmic factor despite the fact that
r is unknown, see Examples after Theorem 3. Similar e�ect arises in the adaptive
estimation problem of the densities, in particular, from the Hölder class, see [1, 4, 5].

The estimaton problem of the density derivatives is actual as well; in particular
for estimation of the logarithmic derivative. As the major theoretical result of our
paper, we are able to prove a non-asymptotic upper bound for the MSE of the adaptive
estimator of the density f and f ′. The rate of convergency in the mean square sense
satis�es (for the estimators of f in examples) the abovementioned optimal rate.

Section 5 contains some simulation results showing the performance of the esti-
mator f̂n(x) in practice.

Full investigation of the density function estimators will be presented in the paper
[12].

1 Problem set-up and basic assumptions

Let X1, . . . , Xn be i.i.d. having a probability density function f . Denote φ(s) =∫
eisxf(x)dx the characteristic function of f and the sample characteristic function

φn(s) = 1
n

∑n
k=1 eisXk . For some �nite r > 0, de�ne two families F+

r and Fr of
bounded, i.e.,

∃ 0 < f <∞ : supy∈R1f(y) ≤ f, (2)

and continuous functions f satisfying one of the following conditions respectively:∫
|s|r|φ(s)|ds <∞,

∫
|s|r+ε|φ(s)|ds =∞, for all ε > 0, (3)

∫
|s|r−ε|φ(s)|ds <∞,

∫
|s|r|φ(s)|ds =∞, for all 0 < ε < r. (4)

It is easy to verify that the derivative f ′ satis�es the relations (3) and (4) if
f ∈ F+

r+1 and f ∈ Fr+1 respectively.
De�ne the family F+

r,m (respectively Fr,m) as the family of functions f from F+
r

(respectively Fr) but with f being such that its characteristic function |φ(s)| has
monotonously decreasing tails.

Consider the class Ξ of kernel smoothed estimators fn,h(x) of f(x) as given in

eq. (1). Note that we can alternatively express f
(l)
n,h(x) in terms of the Fourier trans-
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form of kernel K, i.e.,

f
(l)
n,h(x) =

1

n

n∑
j=1

1

h1+l
K(l)

(
x−Xj

h

)
=

1

2π

∫
λ(l)(s, h)φn(s)e−isxds, l = 0; 1, (5)

where λ(0)(s, h) =
∫
K
(
x
h

)
eisxdx and λ(1)(s, h) =

∫
K ′
(
x
h

)
eisxdx = −ishλ(0)(s, h).

In this paper, we will employ the family of �at-top in�nite order kernels, i.e., we will
let the function λ(0)(s, h) be of the form

λc(s, h) =


1 if |s| ≤ 1/h,
g(s, h) if 1/h < |s| ≤ c/h,
0 if |s| ≥ c/h,

where c is a �xed number in [1,∞) chosen by the practitioner, and g(s, h) is some
properly chosen continuous, real-valued function satisfying g(s, h) = g(−s, h),
g(s, 1) = g(s/h, h), and |g(s, h)| ≤ 1, for any s, with g(1/h, h) = 1, and g(c/h, h) = 0;
see [7]-[10] for more details on the above �at-top family of kernels.

Denote for every 0 ≤ γ < r the functions

δγ(h) =

∫
1/h<|s|<c/h

|s|r−γ|φ(s)|ds, when h > 0, and δγ(0) = 0.

From (3) and (5) it follows that δγ(h) = o(1) as h→ 0 for f ∈ F+
r and γ = 0, as

well as for f ∈ Fr and 0 < γ < r. In other cases δγ(h) =∞.
De�ne the following classes F r = F+

r ∪ Fr and F r,m = F+
r,m ∪ Fr,m.

The main aim of the paper is adaptive estimation of densities and their �rst
derivatives from the class F r with the unknown r.

2 Asymptotic mean square optimal estimation of f

According to [10, 11] the mean square error (MSE) u2
f (fn,h) = Ef (fn,h(x)− f(x))2 of

the estimators fn,h(x) ∈ Ξ, f ∈ F r has the following form:

u2
f (fn,h) = U2

f (h, c)− 1

n

(∫
K(v)f(x− hv)dv

)2

, (6)

where U2
f (h, c) is the principal term of the MSE,

U2
f (h, c) =

L1f(x)

nh
+

 1

2π

∫
1/h<|s|<c/h

(1− g(s, h))φ(s)e−isxds


2

,

L1 =
∫
K2(v)dv. Thus, in particular, supf∈Fr

∫
K(v)f(x− hv)dv <∞.

The optimal (in the mean square sense) value h0 = h0(n) is de�ned from mini-
mization of the principal term U2

f (h, c).
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De�ne the number h0
1 = h0

1(n) from the equality

(h0
1)2r+1−2γδ2

γ(h
0
1) =

π2L1f(x)

(c0 + c1(γ))n
. (7)

In such a way we have proved the following theorem, which gives the rates of con-
vergence of the random quantities f 0

n(x) = fn,h0(x) and fn,h01(x). We can loosely call

f 0
n(x) and fn,h01(x) 'estimators' although it is clear that these functions can not be
considered as estimators in the usual sense in view of the dependence of the band-
widths h0 and h0

1 on unknown parameters r and f(x). Nevertheless, this theorem can
be used for the construction of bona �de adaptive estimators with the optimal and
suboptimal converges rates; see, e.g., Examples 1 and 2 in what follows.

Theorem 1. Let f(x) > 0. Then for the asymptotically optimal (with respect to
bandwidth h) in the MSE sense 'estimator' f 0

n(x) of the function f ∈ F r and for the
'estimator' fn,h01(x) of f ∈ F r,m the following limit relations, as n→∞, hold

1◦. sup
f∈Fr

∣∣∣inf
h
u2
f (fn,h)− U2

f (h0, c)
∣∣∣ = O

(
1
n

)
;

2◦. for every f ∈ F r,m with γ = 0 if f ∈ F+
r,m and every 0 < γ < r if f ∈ Fr,m,

as well as some constant Cγ, we have

u2
f (f

0
n) ≤ u2

f (fn,h01) ≤ Cγ ·
δ

2
2r+1−2γ
γ (h0

1)

n
2r−2γ

2r+1−2γ

, n ≥ 1.

Remark 1. The de�nition (7) of h0
1 is essentially simpler than the de�nition of

the optimal bandwidth h0. From Theorem 1 it follows, that the (slightly) suboptimal
'estimator' fn,h01 can be successfully used instead.

Example 1. Consider an estimation problem of the function f ∈ F+
r,m, satisfying the

following additional condition

|φ(s)| ≈ 1

|s|r+1 ln1+ϕ |s|
as |s| → ∞, ϕ > 0. (8)

We �nd the rates of convergence of the MSE u2
f (f

0
n) and u2

f (fn,h01) :

h0
1 ≈

(
ln2(1+ϕ) n

n

) 1
2r+1

and u2
f (fn,h01) = O

(
1

n2r ln2(1+ϕ) n

) 1
2r+1

and using the piecewise linear �at-top kernel λLINc (s, h), introduced by [9] (see [10] as
well)

λLINc (s, h) =
c

c− 1

(
1− h

c
|s|
)+

− 1

c− 1
(1− h|s|)+ ,

where (x)+ = max(x, 0) is the positive part function, we �nd

h0 ≈

(
ln2(1+ϕ) n

n

) 1
2(r+1)

and u2
f (f

0
n) = O

(
1

n2r+1 ln2(1+ϕ) n

) 1
2(r+1)

= o
(
u2
f (fn,h01)

)
.
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Example 2. Consider an estimation problem of the function f ∈ Fr,m, satisfying the
following additional condition:

|φ(s)| ≈ 1

|s|r+1
as |s| → ∞.

We �nd the rate of convergence of the MSE u2
f (f

0
n) and u2

f (fn,h01). From (7) we
have

h0
1 ≈ n−

1
2r+1 and u2

f (fn,h01) = O
(
n−

2r
2r+1

)
, as n→∞.

Similarly to Example 1, as n→∞, for f ∈ Fr we �nd

h0 ≈ n−
1

2(r+1) and u2
f (f

0
n) = O

(
n−

2r+1
2(r+1)

)
= o

(
u2
f (fn,h01)

)
.

Similar results can be obtained for the estimators of f ′.

3 Estimation of the degree of smoothness r

De�ne the functions

Φα(A,B) =

∫
A<|s|<B

|s|α|φ(s)|ds, Φn,α(A,B) =

∫
A<|s|<B

|s|α|φn(s)|ds.

Let (δn)n≥1 and (ρn)n≥1 be two given sequences of positive numbers chosen by the
practitioner such that δn → 0 and ρn →∞ as n→∞. The sequence (δn) represents
the 'grid'-size in our search of the correct exponent r, while (ρn) represents an upper
bound that limits this search.

De�ne the following sets of non-random sequences

C+ = {(An, Bn, δn)n≥1 : An →∞, 0 < An < Bn →∞, δn → 0 as n→∞; for some m0 ≥ 2,∑
n≥1

B
2m0(%n+1+δn)
n

nm0
<∞; Φr+ε(An, Bn)→∞, ∀ε > 0; Φr+δn(An, Bn)→∞},

C = {(An, Bn, δn)n≥1 : An →∞, 0 < An < Bn →∞, δn → 0 as n→∞; for some m0 ≥ 2,∑
n≥1

B
2m0(%n+1+δn)
n

nm0
<∞; Φr−δn(An, Bn)→ 0; Φr(An, Bn)→∞}

and for an arbitrary given H > 0 chosen by the practitioner, the estimators (r+
n )n≥1

and (rn)n≥1 of the parameter r in (3) and (4) respectively

r+
n = min[%n, (δn · inf{k ≥ 1 : Φn,(k+1)δn(An, Bn) ≥ H, (An, Bn, δn) ∈ C+})], (9)

rn = min[%n, (δn · inf{k ≥ 1 : Φn,kδn(An, Bn) ≥ H, (An, Bn, δn) ∈ C})]. (10)

Theorem 2. The estimators r+
n and rn, de�ned in (9) and (10) respectively have the

following properties
a) if f ∈ F+

r and for some δn → 0 the sequences (An, Bn, δn) ∈ C+, then

lim
n→∞

δ−1
n (r+

n − r) = 0 Pf − a.s.

b) if f ∈ Fr and for some δn → 0 the sequences (An, Bn, δn) ∈ C, then
lim
n→∞

δ−1
n (rn − r) = 0 Pf − a.s.
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4 Adaptive estimation of the functions f, f ′ ∈ F r

The purpose of this section is the construction and investigation of an adaptive es-
timator of the functions f, f ′ ∈ F r with unknown r, which can either serve as the
main estimator or can serve as a 'pilot' estimator for the construction of an adaptive
optimal and suboptimal bandwidths ĥ0 and ĥ0

1.
We de�ne an adaptive estimators of f and f ′ from F r as follows

f̂ (l)
n (x) =

1

n

n∑
j=1

Λ
(l)
j−1 (x−Xj) =

1

2πn

n∑
j=1

∫
λ

(l)
j−1(s)e−is(x−Xj)ds, (11)

where Λ
(l)
j−1(z) = 1

ĥ1+lj−1

K(l)
(

z

ĥj−1

)
= 1

2π

∫
λ

(l)
j−1(s)e−iszds is the smoothing kernel, and

λ
(0)
j−1(s) = λc(s, ĥj−1), l = 0; 1. The required bandwidths are de�ned by

ĥj = (j + 1)−
1

1+2(r(j)+l) , j ≥ 1,

where r(j) = r+
j if f ∈ F+

r and r(j) = rj if f ∈ Fr; recall that the estimators r+
j and

rj are de�ned in (9) and (10) respectively.
Below C(γ, l) are some constants and Ψγ,l(n) are concrete decreasing to zero

functions. Main properties of constructed estimators are stated in the following
theorem.

Theorem 3. Let the sequences (An, Bn, δn) in the de�nition of the estimator r+
n

belong to the set C+ and in the de�nition of the estimator rn to the set C. Let γ = 0
if f ∈ F+

r and γ ∈ (0, r) if f ∈ Fr, as well as r > 0 if l = 0 and r > 1 if l = 1. Then
for every n ≥ 1 the estimators (11) has the following properties:

sup
f∈Fr

u2
f (f̂

(l)
n ) ≤ Ψγ,l(n) +

C(γ, l)

n
, l = 0; 1.

Examples 1 and 2 revisited.
Under appropriate chosen δ > 0 and sequences (An, Bn, δn) in the de�nition of

sets C+, C :
In Example 1 (case (f ∈ F+

r ))

Ψ0,0(n) ≈ (nhn)−1 · (lnn)
2δ

(1+2r)2 ≈ n−
2r

1+2r · (lnn)
2δ

(1+2r)2 .

Then, according to Theorem 3, in this case the rate of convergence of adaptive density
estimators of f ∈ F+

r di�ers from the rate of non-adaptive estimators in [10] on the
extra log-factor only.

For the functions f ∈ Fr and γ ∈ (0,min(r, 1)) from Example 2 it follows that

Ψγ(n) ≈ n−
2(r−γ)

1+2(r−γ) · (lnn)
δ

1+2(r−γ) as n→∞.
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Figure 1: MSE of kernel estimators multiplied by n3/4 versus n ∈ {25, 2000}. Left
chart corresponds to the estimator with piece-wise linear kernel characteristic
function. Right chart corresponds to the estimator with in�nitely-di�erentiable

�at-top kernel characteristic function.

5 Simulation results

In this section we provide brief results of simulation study of the estimators introduced
in Section 2. We examine kernel estimators of triangular probability density function
f(x) = (a − |x|)/a2, |x| ≤ a belonging to the family F1 with characteristic function
φ(s) = 2(1 − cos(as))/(as)2. Also φ(s) meets requirements of the Example 2. Thus
the bandwidth can be taken in the form h = O(n−1/4) and expected convergence rate
of the kernel estimator MSE is n−3/4.

Two �at-top kernels have been used in the simulation. First one has the piece-wise
linear kernel characteristic function introduced in [10]: λ(s) = {1, |s| ≤ 1; (c−|s|)/(c−
1), 1 < |s| < c; 0, |s| ≥ c}. Second case refers to the in�nitely-di�erentiable �at-

top kernel characteristic function (see [6]) λ(s) = {1, |s| ≤ c; exp

[
−b exp[−b/(|s|−c)2]

(|s|−1)2

]
,

c < |s| < 1; 0, |s| ≥ 1}.

The main goal of the simulation study is investigation of the MSE behavior for the
kernel estimator with the growth of sample size. We generate sequence of 150 samples
for each sample size from 25 to 2000 with step 25, then calculate the estimator MSE
multiplied by n3/4 and expect visual stabilization of the sequence of resulting values
with growth of n.

Two typical examples are presented at the Figure 1. Both cases refer to estimation
of triangle density function f(x) with unit variation (which support is bounded by
±2.45, a = 2.45) at the point x = 1.0 by kernel estimators with �at-top kernels. The
expected stabilization is observing in both cases.
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Abstract

We have applied our theoretically well-grounded method of robust parame-
ter estimation from the multivariate nonhomogeneous incomplete data to mul-
tivariate normal regression in the presence of missing data with ignoring the
missing-data mechanism. The theory is based on optimization of the weighted
L2-norm of Hampel's in�uence function. The estimators provide robustness
against deviations from the assumed distribution. In this paper the form of
estimators is given, questions of their calculation are discussed, Monte Carlo
study is described.

Keywords: M -estimator, robustness, in�uence function, redescending es-
timator, multivariate regression, missing data, missing completely at random,
ER algorithm.

Introduction

When studying complex objects their state is described by a vector of characteristics.
However, the values of characteristics cannot always be �xed in observations. In
this case, the data are incomplete and contain missing values [11]. This situation
may arise in modeling multivariate data, which includes multivariate (multiresponse)
regression model.

If a parametric model is assumed, parameters can be estimated by the maximum
likelihood method. But such estimates may be unstable when there are deviations
of the actual distribution from assumed distribution. To solve this problem robust
procedures are used [5, 13, 14]. However, the theory of robustness was generally
developed for modelling complete data.

In the presence of missing values in multivariate data in papers [1, 2, 4, 10, 12, 15]
methods of robust estimation of shift and scale parameters of multivariate normal
random variable or parameters of regression model are proposed. However these
methods are based on heuristic arguments.

In this paper, the general theory of optimal estimation of the unknown param-
eters of the model from multivariate nonhomogeneous incomplete data [8] applies
to multivariate normal regression in the presence of missing data and ignoring the
missing-data mechanism. At the bottom of this theory we �nd synthesis of approach
by F. Hampel [5] which is associated with the in�uence function and approach by
A.M. Shurygin [14] which is associated with the Bayesian point-mass contamination
model distribution. The resulting methods are robust against the deviation of the
actual distribution of observations from an assumed one. Previously, these methods
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were applied to cases with nonhomogeneous quantitative (including count), qualita-
tive and mixed data [3, 6, 9].

1 Elements of the theory of robust parameter

estimation

Let n-dimensional independent random variables ζi = (ζi1, . . . , ζin)T , i = 1, . . . , N ,
have an assumed (or ideal) pdf's gi(zi|φ), zi ∈ Rn, with respect to a σ-�nite measure
µ and p-vector of parameters φ.

M -estimate φ̂ of vector of parameters φ is obtained from the observations ζ̃i,
i = 1, . . . , N , of random variables ζi, i = 1, . . . , N , by means of a solution of the
system of equations

N∑
i=1

ψi(ζ̃i, φ̂) = 0,

where ψi(ζ̃i, φ̂) is p-dimensional score function satisfying further condition

Eψi(zi, φ) = 0, i = 1, . . . , N, (1)

E is expectation under the assumed pdf.
In the robustness theory the estimates are of high quality not only in the assumed

distribution, but in the case of a deviation from it. One of the major indicators of
estimator's robustness is an in�uence function [5]. In our case, forM -estimator under
certain regularity conditions, the in�uence function for the ith observation take the
form [8]

IFi(zi, ψ) = M−1
1 ψi(zi, φ),

where ψ = (ψT1 , . . . , ψ
T
N )T , M1 = −

N∑
i=1

∂

∂φ̃T
Eψi(zi, φ̃)

∣∣∣∣
φ̃=φ

=
N∑
i=1

∫
Rn

ψi(zi, φ)
∂gi(zi|φ)

∂φT
dµ is

non-singular p× p matrix.
Indicator of estimation badness can be written as square of the weighted L2-norm

of an in�uence function [8]

Λs(ψ) =
N∑
i=1

∫
Rn

IFTi (zi, ψ)W IFi(zi, ψ)si(zi|φ) dµ,

where s = (s1, . . . , sN)T , si(zi|φ) > 0 is weight function, W = W (φ) is some symmet-
ric positive de�nite weight matrix of size p×p (under some conditionsW can provide
invariance of Λs to one-to-one di�erentiable parameter transformation [7, 8]).

Also, this indicator can be interpreted in accordance with the model of Bayesian
point-mass contamination [14], when the �rst argument to the in�uence function is
a random variable with pdf si(zi|φ), zi ∈ Rn, with respect to µ [8]. Then

Λs(ψ) =
N∑
i=1

Esi

[
IFTi (zi, ψ)W IFi(zi, ψ)

]
,
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where Esi is expectation under the pdf si(zi|φ).
Optimal score function is a solution of minimization problem [8]:

ψ∗s = arg min
ψ

Λs(ψ)

under the constraints (1) and has the form

ψ∗s,i(zi, φ) = C

[
∂

∂φ
ln gi(zi|φ) + βi

]
gi(zi|φ)

si(zi|φ)
,

where C = C(φ) is insigni�cant non-singular matrix, βi = βi(φ) is determined from
the condition (1).

This general theory can be applied to the incomplete case [8].
Suppose that for each observation there is a set of structures of missingness �

possible values of a vector of missing-data indicators [11]. Each structure of missing-
ness shows the presence or absence of individual elements of observation. Enumerate
these structures in some order and assume that the number of structure of missing-
ness is random variable. Let ρi, ρ̃i denote such random variable and its observed
value for the ith observation. By ri denote the corresponding argument in the pdf's,
estimators, etc.

For the rith structure of missingness we will introduce the vectors ζrii,obs and ζ
ri
i,mis,

corresponding to the observed and missing elements of the vector ζi and having the
pdf's with respect to σ-�nite measures µrii,obs and µrii,mis, and the measure µ is a

product of their. As a result, we have vectors ζ̃i,obs, i = 1, . . . , N , of observations of
random vectors ζrii,obs, i = 1, . . . , N . In this way the sample is formed by the vectors(
ζ̃Ti,obs, ρ̃i

)T
, i = 1, . . . , N .

In general, the solution of problem of optimal estimation depends on the missing-
data mechanism � the distribution of the random variable ρi. Often variable ρi is
nuisance, therefore modeling this variable is not desirable. In [8] found conditions
under which the missing-data mechanism can be ignored.

The �rst condition is MCAR � missing completely at random [11], when the
random variable ρi is independent of the random vector ζi. MCAR condition with
respect to the pdf's gi(zi, ri|φ), si(zi, ri|φ) leads to gi(ri|zi) = gi(ri), si(ri|zi) = si(ri)
under the assumption of independence of distribution of variable ρi from estimated
parameters φ. The other conditions have the form gi(ri) = si(ri) and∫

Rnri

ψi(z
ri
i,obs, ri, φ) gi(z

ri
i,obs|φ) dµrii,obs = 0, (2)

where nri is size of the vector ζ
ri
i,obs. The latter condition replaces (1).

As a result the optimal score function takes the form

ψ∗s,i(z
ri
i,obs, ri, φ) = C

[
∂

∂φ
ln gi(z

ri
i,obs|φ) + βrii

]
gi(z

ri
i,obs|φ)

si(z
ri
i,obs|φ)

,

and is de�ned only by the marginal pdf's gi(z
ri
i,obs|φ), si(z

ri
i,obs|φ); for each rith structure

of missingness the vector βrii = βrii (φ) is determined from the condition (2).
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2 Estimation of regression model in the presence

of missing data

In the case of complete data the multivariate regression model has the form

yi = F (xi)θ + ei, i = 1, . . . , N,

where yi is the ith observation of the n-vector of quantitative responses, F (xi) is
n × t matrix of regressors (functions of vector of deterministic input variables), xi
is vector of input variables of the ith observation, θ is t-vector of parameters, ei is
vector of errors having a multivariate normal distribution with zero mean vector and
covariance matrix Σ. Actually observations of responses contain missing values.

Marginal distribution of the vector of observed responses is normal for the ith
observation and the mth structure of missingness and has pdf

g(ymi,obs|xi, φm) =

(2π)−nm/2 |Σm,obs|−1/2 exp

[
−1

2

(
ymi,obs − Fm,obs(xi)θ

)T
Σ−1
m,obs

(
ymi,obs − Fm,obs(xi)θ

)]
,

where ymi,obs is nm-vector of observed responses, φm is vector of parameters of marginal
distribution, Σm,obs is submatrix Σ, corresponding to the vector of observed responses,
Fm,obs(xi) is nm × t matrix, which consists of rows of a matrix F (xi), corresponding
to the observed elements of a vector of responses.

One of the special cases of optimal estimators are generalized radical estimators

with a pdf s(ymi,obs|xi, φm) = κδ,m
[
g(ymi,obs|xi, φm)

]1−δ
, where κδ,m is normalizing factor,

δ is parameter of robustness (0 6 δ < 1). Note that the case of δ = 0 matches
maximum likelihood estimator.

Thus, we have g(ymi,obs|xi, φm)/s(ymi,obs|xi, φm) = γδ,m
[
g(ymi,obs|xi, φm)

]δ
, where

γδ,m = (2π)δnm/2 |Σm,obs|δ/2 (1 − δ)−nm/2. The factor γδ,m increases rapidly as δ → 1,

so we use an equivalent factor γ̃δ,m = (2π)δnm/2 |Σm,obs|δ/2 (1− δ)(n−nm)/2. As a result
we de�ne function

w(ymi,obs, xi, φ) = γ̃δ,m
[
g(ymi,obs|xi, φm)

]δ
.

Another special case is estimator analogous estimator of minimum variance sen-
sitivity [13] corresponding s(ymi,obs|xi, φm) = 1 and w(ymi,obs, xi, φ) = g(ymi,obs|xi, φm), it
can be interpreted as some kind of generalized radical estimator with δ = 1, γδ,m = 1.
Analogously, estimators with δ > 1, γδ,m = 1 can be used. They are useful under
very unfavorable conditions.

Let's note that all presented estimators are redescenders [5, 13] and can be in-
terpreted as some generalizations of Welsch's estimator, also known in the Russian
publications as Meshalkin's estimator [14].

For the vector of regression parameters θ have the system of estimating equations
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[
m̃∑
m=1

∑
i∈Jm

w(ymi,obs, xi, φ̂)F T
m,obs(xi)Σ̂

−1
m,obsFm,obs(xi)

]
θ̂ −

m̃∑
m=1

∑
i∈Jm

w(ymi,obs, xi, φ̂)F T
m,obs(xi)Σ̂

−1
m,obsy

m
i,obs = 0,

where m̃ is number of structures of missingness, Jm is set of numbers of observations
corresponding to the mth structure of missingness.

Matrix Σ is symmetric positive de�nite matrix. So we can represent it as a
Cholesky decomposition Σ = SST , where S is lower triangular matrix with real and
positive diagonal entries. To ensure a positive diagonal, we parametrize the diagonal
entries Sjj = |σjj|, where σjj is parameter. Although in the case of parameters
transformation (this transformation must be one-to-one and di�erentiable [7, 8]) for
maintaining optimality of estimator is necessary to impose a condition σjj > 0, in
the calculations this condition is convenient to ignore.

The o�-diagonal, nonzero entries of the matrix S denote by σjk, j > k. As a
result, vector of parameters takes the form φ = (θT , σ11, σ21, . . . , σnn)T .

Note that the matrix Σm,obs represented as Σm,obs = Sm S
T
m, where Sm is nm × n

matrix, consisting of the rows of the matrix S, which correspond to the observed
elements of a vector of responses for the mth structure of missingness.

De�ne a symmetric nm × nm matrix

B̂m = Σ̂−1
m,obs

∑
i∈Jm

w(ymi,obs, xi, φ̂) êmi,obs (êmi,obs)
T Σ̂−1

m,obs −
1

1 + δ
Σ̂−1
m,obs

∑
i∈Jm

w(ymi,obs, xi, φ̂),

where êmi,obs = ymi,obs − Fm,obs(xi)θ̂ is residual.
For the element σjk, j > k, have the estimating equation

∑
m∈Jobsj

nm∑
v=1

(Ŝm)vk (B̂m)v,(j) = 0, (3)

where Jobsj is set of numbers of structures of missingness, in which the jth entry of

the vector of responses is observed, (Ŝm)vk is entry in the vth row and kth column
estimate of matrix Sm, (B̂m)v,(j) is entry of B̂m, and this entry is in the vth row and
column corresponding to the jth entry of the vector of responses.

Component-wise procedure is used to calculate the estimates. According pro-
cedure the set of parameters is divided into a number of subsets. The solution is
iterative. Each iteration involves several stages consisting in �nding the next approx-
imation of estimates for a subset of the parameters from the corresponding subsystem
of estimating equations with �xed values of the parameters of the other subsets.

In our problem, forms two subsets � vector θ and set {σjk, j > k}. For θ the
iteratively reweighted least squares algorithm is useful, for {σjk, j > k} solve the
appropriate subsystem of estimating equations by Broyden algorithm.

Instead of the equations of the form (3) the direct estimating equations for entries
Σjk, j > k, of the covariance matrix can be used, then vector of parameters has the
form φ = (θT ,Σ11,Σ21, . . . ,Σnn)T . The estimating equation for the element Σjk has
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the form ∑
m∈Jobsjk

(B̂m)(j),(k) = 0, (4)

where Jobsjk is set of numbers of structures of missingness, in which the jth and kth

entries of the vector of responses is simultaneously observed, (B̂m)(j),(k) is entry of B̂m,
and this entry is in the row corresponding to the jth entry of the vector of responses
and in the column corresponding to the kth entry of the vector of responses.

For the equations of the form (4) at appropriate stage of component-wise pro-
cedure is suitable the ER algorithm [15]. In our case ER algorithm is an iterative
process such that at the (u + 1)th iteration next approximation of estimate of the
covariance matrix is computed, namely,

Σ(u+1) =
1 + δ

N∑
i=1

w(ymi,obs, xi, φ
(u))

N∑
i=1

w(ymi,obs, xi, φ
(u))

[
e

(u)
i (e

(u)
i )T +

1

1 + δ
C

(u)
i

]
,

where φ(u) is approximation of the vector of parameters φ at the uth iteration,
e

(u)
i = y

(u)
i − F (xi)θ

(u), y
(u)
i = E(yi|yi,obs, φ(u)), C

(u)
i = cov(yi|yi,obs, φ(u)), cov is

covariance under the assumed pdf. Note that Σ(u) is a symmetric positive de�nite
matrix at every iterations of ER algorithm.

3 Monte Carlo results

A Monte Carlo study was conducted to verify the usefulness of the generalized radical
estimates. The study is based on generating samples with the further computation
of the parameter estimates.

The responses were generated by yji = θj1 + θj2 xi + eji, where yji is value the
jth response from the ith observation, θj1 = θj2 = 1, eji is the error value of the
jth response from the ith observation, n = 2, input variable varies over the range
−1 . . . 1. Ideal distribution of errors was multivariate normal with zero mean vector
and covariance matrix whose diagonal entries are equal to 0.01, o�-diagonal entries are
equal to 0.005. Actual distribution is received by contamination of ideal distribution
[5]. Contaminating distribution was multivariate normal with mean (0.1,−0.1)T and
covariance matrix twice greater than ideal. In study the results for di�erent sample
sizes, probabilities of missingness, fractions of contamination were obtained.

Measure of the badness of the estimates was
3∑
j=1

2∑
k=1

(θjk − θ̂jk)2. Its average val-

ues increased on 103, for 2000 replications are shown in Figure 1. The abscissa is
the parameter of robustness (its maximum value was 0.98). Following fractions of
contamination are presented: 0 (solid lines), 0.1 (dashed lines), 0.2 (dotted lines).
The left panel of Figure 1 represents the following case: N = 200; probability of
missingness is 0 (circles) and 0.1 (triangles). The right panel of Figure 1 represents
the following case: probability of missingness is 0.1; N = 100 (circles) and N = 400
(triangles).

69



Nonparametric and robust statistical methods in cybernetics (XV Symposium)

Figure 1: Measure of badness

The results show the advantage of robust estimates to maximum likelihood esti-
mates in cases of contaminated distribution of errors. The best quality is obtained
in di�erent cases for the various values of robustness parameter. Estimation quality
decreases with increasing the probability of missingness or fraction of contamination
and with decreasing the size of sample.

Conclusion

The paper presents theoretically well-grounded robust estimates of multivariate nor-
mal regression model in the presence of missing data with ignoring the missing-data
mechanism. The Monte Carlo study showed that robust estimates have better result
than maximum likelihood estimates in cases of contaminated normal distribution of
errors.
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Abstract

Concerns about misinterpretation of research results of random processes
(RP) with non-linear regression if their analysis tools are used traditional cor-
relation and spectral analysis are states. A list of tasks that must be solved
in order to determine the degree of fear and select targets for the development
of alternative approaches. The features of regression functions (RF) random
processes compared with RF random variables. In general terms, and speci�c
examples investigate the property of proportional correlation of random pro-
cesses with linear regression and nonlinear transformation of RP.

Keywords: Random process, correlation, correlation analysis, regression,
regression analysis, nonlinear transformations.

Introduction. Problem Statement

Many physical signals are described by probabilistic models. These signals are called
random. Among the most often considered a model of stationary random processes.
At the same time to study the properties and characteristics of signals, as well as the
solution of applied theoretical and practical problems using correlation, correlation-
spectral1, singular spectrum, wavelet and other derivative forms of analysis. They are
directed, usually on the study of statistical relationships temporary signal samples,
their frequency content, identifying the properties and characteristics of linear dy-
namic systems, signal �ow through them, study di�erentiability signals (processes) in
the mean square, as well as for the identi�cation and prediction signals. Very rarely,
in contrast to the random vectors, the study focused on stochastic processes and their
regression and scedastic analyzes. This is all the more surprising that the correct ap-
plication of the correlation and the associated correlation and spectral analysis for

1Under the spectral correlation is de�ned here as an analysis based on the use of spectral descrip-
tion of the power spectral density (PSD) obtained by Fourier transform of the correlation function
(CF) or as a limit for an unlimited increase in the length T of trajectories (realizations) of random
processes, ensemble averaged of PSD periodogram estimates[4, 5].
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many applications is possible only if the corresponding private or cross regression
function processes are linear. Examples of erroneous conclusions for random vectors
when the function is non-linear regression, and we obtain (consciously or not) its
approximation in the form of mean-square regression line are given in [2, 3, 4, 5].
However, neither the domestic or world literature speci�c individual studies related
to the properties and characteristics of random processes with non-linear regression,
its impact on the results of various applications, as well as a preliminary exploratory
analysis of random signals belonging to the signals from the line (LR) or nonlinear
(NR) regression, i.e. describing assignment of processes to LR or NR-classes haven't
been conducted. Therefore, the aim of this paper are: �rst, the wording of the priori-
ties of research, and secondly, to determine the characteristics of processes with linear
regression, in particular those which would allow the RP to refer to a class of pro-
cesses with linear or nonlinear regression, thirdly analysis of the impact of nonlinear
transformations of LR-processes on auto and cross CF.

1 Priorities for research

Task 1 - Investigation of the features of the function (line) regression (LR) of random
processes in comparison with the RF of random vectors variables.

Task 2 - Development and theoretical (task 2.1) and experimental (task 2.2)
research of methods classi�cation RP of classes LR or NR.

Task 3 - Theoretical (task 3.1) and experimental (task 3.2) investigation of the
features of its auto and cross correlation, correlation-spectral and singular spectrum
analysis RP with nonlinear regression.

Task 4 - Theoretical (task 4.1) and experimental (task 4.2) investigation of the
e�ect of non-linearity of the RP regression function on the results of the applied
problems solution.

Task 5 - Develop and theoretical (task 5.1) and experimental (task 5.2) study of
the ratio characteristics and frequency of communication that are invariant to the
form one to one nonlinearity of the RP regression function .

2 Accepted Designations

We denote by X(t), Y (t), Z(t) studied in the stationary level in all considered char-
acteristics of random processes. We shall consider the following characteristics (see.,
Eg, [1-4]):the mathematical expectations mX , mY , mZ , where

mX = M{X(t)} = mX , (1)

M{·} - averaging operator to the probability measure corresponding dimension (the
mathematical expectation operator); dispersionDX , DY , DZ and standard deviations
σX , σY , σZ , where

DX(t) = M{[X̊(t)]2} = M{[X(t)−mX(t)]2} = DX = σ2
X = RXX(0), (2)
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X̊(t) = X(t)−mX(t) - centric RP X(t);
initial mk,n(t, t+ τ) and central µk,n(t, t+ τ) moments

mk,n;X,Y (t, t+ τ) = M{Xk(t)Y n(t+ τ)} = mk,n;X,Y (τ), (3)

µk,n;X,Y (t, t+ τ) = M{[X̊(t)]k[Y̊ (t+ τ)]n} = µk,n;X,Y (τ), (4)

in particular cross BXY (τ), RXY (τ), self(auto) BXX(τ), RXX(τ) covariation (B) and
correlation (R) functions

BXY (τ) = m1,1;X,Y (τ), BXX(τ) = m1,1;X(τ); (5)

RXY (τ) = µ1,1;X,Y (τ), RXX(τ) = µ1,1;X(τ); (6)

the normalized correlation functions

ρXY (τ) =
RXY (τ)

σxσy
, ρXX(τ) =

RXX(τ)

σ2
x

=
RXX(τ)

RXX(0)
. (7)

Consider also the eigen for X(t), and cross for X(t), Y (t) regression functions

mx(t+ τ ;x, t) = M{X(t+ τ)|(X(t) = x)} = mX(x;−τ), (8)

mx(t;x, t+ τ) = M{X(t)|(X(t+ τ) = x)} = mX(x; τ), (9)

my(t+ τ ;x, t) = M{Y (t+ τ)|(X(t) = x)} = my(x;−τ), (10)

my(t;x, t+ τ) = M{Y (t)|(X(t+ τ) = x)} = my(x; τ), (11)

mx(t+ τ ; y, t) = M{X(t+ τ)|(Y (t) = y)} = mX(y;−τ), (12)

mx(t; y, t+ τ) = M{X(t)|(Y (t+ τ) = y)} = mX(y; τ), (13)

where M{Y |(X = x)} - averaging operator for the conditional probability measure,
ie operator �nding the average value (conditional mathematical expectation) of the
random value Y pair (X, Y ), provided that this quantity X takes the value of X = x.

3 Theoretical study of features of random processes

regression functions

3.1 Properties of random processes regression functions

Various properties of the regression function of the random variables X and Y -vector
elements (X, Y ) in the compact form shown in [3]. Important properties of RF
RP, di�erent from those of the RF random variables considered in [2]. Consider the
supplement and important ones.

First of all, pay attention to two similar properties. The �rst property is �linear-
ity�. It related to the fact that for the RP of LR class all regression function of the
type (8) - (13) are linear. Wherein

mX(x; τ) = mx + ρXX(τ)(x−mX) = mX(x;−τ), (14)
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mY (x; τ) = mY +
σY
σX

ρXY (τ)(x−mX) = mY +
σY
σX

ρY X(−τ)(x−mX) = mY (x;−τ),

(15)

mX(y; τ) = mX +
σY
σX

ρXY (τ)(y −mY ) = mX +
σY
σX

ρY X(−τ)(y −mY ) = mX(y;−τ).

(16)
And from (16)-(17) follows that since ρXX(0) = 1,

mX(x; 0) = x, (17)

mY (x; 0) = mY +
σY
σX

ρXY (0)(x−mX), (18)

mX(y; 0) = mX +
σX
σY

ρXY (0)(y −mY ). (19)

The second property is a �proportionality� of RP X(t), Y (t) with the linear re-
gression it reduced that all the center moments µk,1(τ), µ1,n(τ) with k, n ≥ 1 are
proportional to ρXY (τ) [2].

The third property of LR RPX(t), Y (t) also applies to �non-linear� proportionality
moments with respect to ρ [2]. Let X(t) and Y (t) belong to the LR class and g(·) -
numerical (deterministic, unambiguous, instantaneous) function. Then

M{X(t)g[Y (t+ τ)]} = mx·M{g([Y (t+ τ)]}+
σX
σY

ρXY M{Y̊ (t+ τ)g[Y (t+ τ)]} =

= mX ·mg(Y ) +
σX
σY

ρXY (τ)M{Y̊ (t)g[Y (t)]}.

(20)

Therefore

RXg(Y )(τ) = M{X̊(t)̊g[Y (t+ τ)]} = AY gρXY (τ) = AY gρXY (−τ); (21)

where
AY g =

σX
σY

M{Y̊ (t)g[Y (t)]}. (22)

From (21) it follows that for �xed RP belongs to the LR class,

RXg(X)(τ) = M{X̊(t)g[X(t)]}ρXX(τ) = AXρXX(τ) = AXρXX(−τ) = RXg(X)(−τ).
(23)

The fourth property �reducible to a point�. Assume thatmX(x; τ) = mX+ψX(x; τ)
to X(t), andmX(y; τ) = mX+ψX(y; τ) to X(t), Y (t) where ψ(·) - function describing
RF. Then, according to [2].

M{X̊(t)ψX [X(t+ τ)|X(t) = X]} = MX{ψ2
X(X; τ)}, ψX(x; 0) = x−mX ; (24){

M{X̊(t)ψX [Y (t+ τ)|X(t) = X]} = MY {ψ2
X(y; τ)},

ψX(y; τ0) = σX
σY

(y −mY )signρXY (τ0) when |ρXY (τ0)| = 1,
(25)

where sign(x) is signum function, i.e., sign(x) = −1 for x < 0, 0 at x = 0 and 1
when x > 0. The �rst relation in (24) and (25) are valid for random vectors and
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LR-processes and the second in (24) are speci�c to RP with any RF and impose
restrictions on the form of the function ψ(·). For RP with linear regression it follows
from (18), (19).

Fifth property �reduction to the value of transfer function� refers to the RF Y (t) =
f [X(t)]. If f(·) - valued deterministic numerical function, then

mY (x; 0) = f(x). (26)

If the inverse of f(x) function x = φ(y) is also unique, ie f(·) and φ(·) are mutually-
to-one function, then

mX(y; 0) = φ(y). (27)

As for RF for other τ when Y (t) = f [X(t)], in general terms mY (x; τ), mX(y; τ)
mY (y; τ) be imagined without the knowledge of the distribution law is impossible.
However, (26) and (27) can be used as constraints, which must comply with the RF
X(t), Y (t).

3.2 Special Cases

As an example, consider some special cases. Let Y (t) = X3(t) = [X̊(t)]3. For this
dependence have

RY Y (τ) = M{[X̊(t)]3[X̊(t+ τ)]3} − [M{[X̊(t)]3}]2, (28)

RY Y (τ) =
RY Y (τ)

RY Y (0)
=
µ3,3(τ)− µ2

3

µ6 − µ2
3

, (29)

RXY (τ) = µ1,3(τ), (30)

RY X(τ) = µ3,1(τ). (31)

For LR - processes (28) - (31), taking into account (20)

RXY (τ) = RY X(τ) = µ4;XρXX , (32)

ρXY (τ) =
µ4,XρXX(τ)

σXσX̊3

. (33)

Since σX =
√

M{[X3(t)−MX3(t)]2} =
√

(µ6 − µ2
3), from (33) we obtain for cen-

tered LR processes

ρX̊X̊3(τ) =
µ4,XρXX(τ)

σX
√
µ6 − µ2

3

. (34)

Similarly, for centered LR process X(t) we have

ρXX3(τ) =
m4 −m1m3

σX
√
m6 −m2

3

. (35)

Consider special cases.
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1. X(t) = X̊(t) - centered normal process. This is LR - process. For him, we
have [4] µ4X = 3µ2

2X = 3σ4
X , µ6 = 15σ6

X ; µ3 = 0, µ2 = σ2
X and so (see also [5]).

ρXY (τ) = ρX(X̊)3(τ) = ρ(X̊)3X(τ) =

√
3

5
ρXX(τ) ≈ 0, 775ρXX(τ). (36)

Next to the case in question

ρY Y (τ) = ρ(X̊)3(X̊)3(τ) =
1

5
ρXX(τ)[3 + 2ρ2

XX(τ)], (37)

mY (y; τ) = M{Y (t+ τ)|Y (t) = y} = 3σ2
Xy

1/3[ρXX(τ)− ρ3
XX(τ)] + yρ3

XX(τ),
(38)

mY (x; τ) = M{Y (t+τ)|X(t) = x} = 3σ2
Xx[ρXX(τ)−ρ3

XX(τ)]+x3ρ3
XX(τ). (39)

2. X(t) - a two-dimensional random process with the gamma density distribu-
tion[5]

WX(x, y; τ) =
(z1z2)

a−1
2 exp{− z1+z2

1−ρ(τ)
}

[1− ρ(τ)]λ2ρ
a−1
2 (τ)Γ(a)

Ia−1(
2
√
z1z2ρ(τ)

1− ρ
); (40)

where z1 = (x− a)/λ, z2 = (y − a)/λ, |a| <∞, λ > 0, a > 0, ρ(τ) ≥ 0; Γ(a) -
gamma function, Ia(x) - Bessel function of imaginary argument [1]. RP with
such a distribution has a linear regression [4]. A special case of the gamma
distribution is an exponential distribution, obtained from (40) with a = 1. For
our distribution points species µ1,1(τ), µ2,2(τ), mu3,3(τ) are presented in the
general form of the hypergeometric functions [4]. Therefore, we consider only
the cross CF. Since, according to [4] for the distribution (40) µ2 = σ2

X = aλ2,
µ3 = 2aλ3, µ4 = 3λ4(2a+ a2), µ6 = 5λ5(24a+ 25a2 + 3a2) of (36), we have

ρX(X̊)3(τ) =

√
3(2 + a)ρXX(τ)√
40 + 42a+ 5a2

; (41)

i.e.

ρX(X̊)3(τ) = [

√
3

10
;

√
3

5
]ρXX(τ) ≈ [0, 55; 0, 755]ρXX(τ). (42)

For an exponential distribution, i.e. when a = 1, from (41) we obtain

ρX(X̊)3(τ) =

√
9

29
ρXX(τ) ≈ 0, 56ρXX(τ). (43)

When a→∞, i.e. for the limiting case of one-dimensional gamma distribution -
Gauss distribution, we obtain

ρX(X̊)3(τ) =
3√
15
ρXX(τ) ≈ 0, 755ρXX(τ); (44)
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ie the same expression for the Gaussian (normal) distribution, but for the bi-
variate normal distribution (42) ρXX(τ) ∈ [−1, 1] in contrast to (53), where
ρXX(τ) ∈ [0, 1]. When 0 ≤ a ≤ 1/2.

ρ(X̊)3(X̊)3(τ) ≈ 0, 55ρXX(τ). (45)

On the other hand, omitting the proof (see [4].), For the gamma distribution
when a = 1 we have (see. (35))

ρX(X̊)3(τ) =
(m4 −m1m3)ρXX(τ)

σX
√
m6 −m2

3

=

√
3(a+ 1)(a+ 2)√
3a2 + 15a+ 20

ρXX(τ). (46)

It follows that there AXX3 ∈ [
√

0, 3; 1] ≈ [0, 55; 1].When a = 0 for Y (t) = X3(t)
we have

mY (y; τ) = M{Y (t+ τ)|Y (t) = y} = [1− ρXX(τ)]3a(a+ 1)(a+ 2)λ−3×

× exp{−λy
1/3ρXX(τ)

1− ρXX(τ)
}1F1(a+ 3, a;

y1/3ρXX(τ)

1− ρXX(τ)
),

(47)

where 1F1(a, β;x) is a degeneracy hypergeometric function.

3. X(t) - is a strictly stationary process

X(t) = λ sin(νt+ Φ); (48)

where Φ is a random variable with a uniform on (−π, π) or (0, 2π) distribution
[4]. This process also applies to LP-class [5]. For them, [4]

ρXX(τ) = cos(ντ); (49)

Y (t) = [X̊(t)]3 = λ3 sin3(νt+ Φ) =
λ3

4
[3 sin(νt+ Φ)− sin(3(νt+ Φ))]; (50)

It follows directly from (49) or by (33), we �nd

M{X̊(t)[X̊(t+ τ)]} = M{[X̊(t− τ)][X̊(t)]3} =
3λ4

8
ρXX(τ); (51)

µ2
2 = λ2

2
, µ3 = 0, µ4 = 3

8
λ4, µ6 = 15

48
λ6, i.e.

ρXY (τ) = ρXX3(τ) =
3√
10
≈ 0, 95ρXX(τ); (52)

Similarly, we �nd that

RY Y (τ) = µ3,3(τ) =
λ6

32
[cos(3ντ) + 9 cos(ντ)], (53)

ρY Y (τ) = ρX3X3(τ) = 0, 9 cos(ντ) + 0, 1 cos(3ντ). (54)

Note that µ3,3(τ) = ρX3X3(τ) can be found on the two-dimensional distribution
of the arc sine N = 22 table 4.7 in [4], having a place to RP (43), using the
expansion of the distribution of orthogonal polynomials. Anyone can do it
yourself. For this RP

mY (y; τ) = M{X3(t+ τ)|X3(t) = y} =
λ2

2
[cos3(ντ + arccos

y1/3

λ
)] + cos3(ντ −arccos

y1/3

λ
).

(55)
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Conclusions

This work is the �rst part in a series of papers devoted to the study of random
processes with nonlinear regression. The tasks 1-5 set therein de�ne directions for
further research. In this paper we obtain only partial solutions of the �rst and the
second task. Of the �rst results of such research presented in this paper and related
to random processes with linear regression and nonlinear transformations, we can
draw the following conclusions.

1. Special cases con�rmed and speci�ed the general properties of LR processes.

2. The nature and degree of nonlinearity of dependency of NCF ρY Y (τ) SP Y (t) =
f [X(t)] from NCF ρXX(τ) and de�ning not only on the functions f(·), but also
the type and parameters of the distribution of the RP X(t). At the same
time cross NCF ρXY (τ) for the SP processes with linear regression is always
proportional to ρXX(τ). The type and parameters of the distribution of X(t)
a�ect only on the values of the coe�cients proportionality A .

3. Upon the lack of proportionality ρXf(X)(τ) and ρXX(τ) for various f(·) can
be inferred non-linearity of the regression function X(t). This is the basis for
developing classi�cation algorithms RP for linear and nonlinear autoregression
them.

4. Subject to the study of the question of what conclusions can be drawn from
the knowledge of the values of A the coe�cient of proportionality ρXY (τ) =
AρXX(τ) for various f(X) and distribution parameters.

5. Con�rmed known [5], the fact of a possible reduction in the cross-correlation
between the input and output non-linear element as compared to linear. This
fact, together with the fact that parity ρXf(X)(τ) allows to develop an algorithm
for determining the presence of only a fast-response nonlinearity in the system
of the �black box� on its input and output signals, as well as inertial units.
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Abstract

The properties of various parametric and nonparametric tests are studied
using methods of statistical simulation. Such tests are designed to test hypothe-
ses for randomness or absence of a trend in dispersion characteristics. Statistics
distributions and the test powers are studied with respect to various competitive
laws. Advantages and disadvantages of the studied tests are noted.

The procedure of interactive simulation of distributions of the test statistics
is proposed and implemented. Such procedure allows making valid conclusions
when using the test in the case of violation of standard assumptions.

Keywords: trend, hypothesis of randomness, statistical simulation, test
power.

Introduction

A variety of parametric and nonparametric tests has been proposed at di�erent times
to test the hypothesis for randomness or absence of a trend in the mathematical
expectation and in the dispersion characteristics. However, available sources do not
allow us to judge the bene�ts of a particular test and do not contain any distinct
recommendations on the area of application and prerequisites providing correctness
of statistical conclusions when using the tests under consideration.

As a rule, assumption of normal distribution law of noise is the main prerequisite
for ensuring the correct application of parametric tests, but it is not always realized
in practice. The usage of nonparametric tests is based on asymptotic distribution of
statistics of such tests. For limited sample sizes, the distributions of statistics of para-
metric and non-parametric tests may di�er signi�cantly from the corresponding limit
distributions of statistics used for testing the hypothesis. The common disadvantage
of nonparametric tests is an apparent discreteness of the statistics distribution. In
such situations, the usage of the limiting (asymptotic) distribution of the statistics
instead of the actual distribution of such statistics to test the hypothesis may lead to
wrong conclusion.

In this paper, the methods of statistical simulation are used to investigate the
statistic distributions and the power of tests for an absence of trend in a mathematical
expectation, as well as the dispersion characteristics of the observed random variables.

When testing the absence of a trend in the mathematical expectation, it is as-
sumed that time series of values x1, x2, ...xn of mutually independent random variables
with mathematical expectations m1,m2, ...mn and equal (but unknown) variances are

1This research has been supported by the Russian Ministry of Education and Science (project
2.541.2014K).
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observed. The hypothesis H0 : mi = m, i = 1, 2, ..., n is tested that all sample values
belong to the same population with mean m, against a competitive hypothesis about
the presence of a trend Hj : |mi+1 −mi| > 0, i = 1, 2, ..., n− 1.

When testing the absence of a trend in dispersion characteristics, the hypothesis
H0 : si = s, i = 1, 2, ..., n is tested that all sample values belong to the same popula-
tion with standard deviation s, against a competitive hypothesis for the presence of
a trend Hl : |si+1 − si| > 0, i = 1, 2, ..., n− 1.

When testing the absence of a variance shift (in dispersion characteristics) the
hypothesis H0 : s2

1 = ... = s2
n = s2

0 (s
2
0 being unknown) is tested against a competitive

hypothesis

Hl : s2
1 = s2

2 = ... = s2
k = s2

0; s2
k+1 = ... = s2

n = s2
0 + d; (d > 0),

for variance value changes in some unknown point (k unknown 1 ≤ k ≤ n− 1).

1 Tests for an absence of trend in mathematical

expectation research results

We have carried out the research of statistics distribution and the powers of para-
metric tests, which are used for testing the hypotheses of a trend absence in math-
ematical expectation (Autocorrelation test [1], Autocorrelation test modi�cation [1],
Dufor-Roy test [2], Ljung-Box test [3], Moran test [4], Wald-Wolfowitz test [5]), as
well as non-parametric tests used for the same purposes (Wald-Wolfowitz rank test
[5], Dufor-Roy rank test [2], Bartels test [6], Foster-Stewart test [7], Cox-Stuart test
[8], Hollin test [16], Wald-Wolfowitz series test [5], Inversion test [9], Cumulative sum
test [10, 11], series Wald-Wolfowitz test [5], series Ramachandran-Ranganathan test
[12] and number of sign series of the �rst-order di�erences [13]).

The results of such research are brie�y summarized in Table 1. The tests studied
are arranged in the order of power decreasing. Table 1 shows main advantages and
disadvantages of tests, noted during the research.

2 Tests for an absence of trend in dispersion

characteristics

Statistical distributions and powers of non-parametric tests (Foster-Stewart test [7],
Cox-Stuart test [8], Savage test [14, 12], Klotz test [14, 12])and parametric test (Hsu
test [15]) which are used to test an absence of trend in dispersion characteristics, are
studied here in more detail.

2.1 Foster-Stuart test

This nonparametric test can be used to test hypotheses of absence of a trend in the
mean values or in the variances (dispersion characteristics) depending on the used
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statistics type. The test for an absence of trend in distribution characteristics is given
by [7]:

S =
n∑
i=2

Si, (1)

where Si = ui + li ;

ui = 1, if xi > xi−1, xi−2, ...x1, otherwise ui = 0;

li = 1, if xi < xi−1, xi−2, ...x1, otherwise li = 0.

It is clear that 0 ≤ S ≤ n− 1.

In the absence of a trend the normalized statistics

t̃ =
S − µ
σ̂S

, (2)

where

µ = 2
∑n

i=2
1
i
, σ̂S =

√
µ− 4

∑n
i=2

1
i2
≈
√

2 lnn− 3.4253,

are approximately described by Student's distribution with ν = n degrees of freedom.
The hypothesis of absence of a trend is rejected at large modulus values of statistics
(2).

Actually, the area of discrete values is the range of de�nition of t̃ statistics. The
analysis of statistics distributions shows that even with relatively large sample sizes
(around n = 100, 200) the discrete distributions of test statistics are signi�cantly
di�erent from the Student distribution with n degrees of freedom [17, 18]. It follows
that the use of achieved signi�cance level (p-value) for calculations instead of the
actual (discrete) distributions of statistics of asymptotic Student t-distributions can
lead to serious errors.

2.2 Cox-Stuart test

Cox-Stuart test [8] for the hypothesis of an absence of a trend in variance (in disper-
sion characteristics) is designed as follows.

Initial sample x1, x2, ...xn is divided into [n/k] subsamples with k number of el-
ements x1, ..., xk;xk+1...x2k;x2k+1...x3k; ...;xn−k+1...xn (if n is not divided by k, then
the required number of measurements in the center is dropped out). For every ith
subsample the range wi is found ((1 ≤ i ≤ r, r = [n/k])). Then, the resulting se-
quence of ranges is tested against the trend in the mean values using the test with
statistics

S∗1 =
S1 − E[S1]√

D[S1]
, (3)

where

S1 =
∑[n/2]

i=1 (n− 2i+ 1)hi,n−i+1, E[S1] = n2

8
, D[S1] = n(n2−1)

24
,
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where hi,j = 1, if xi > xj and hi,j = 0, if xi ≤ xj(i < j). If the hypothesis for the
absence of a trend is true, distribution (3) can be approximately described by the
standard normal law.

It is recommended to choose the value of k in [8] according to the following
correlations:

n ≥ 90→ k = 5; 64 ≤ n < 90→ k = 4;
48 ≤ n < 64→ k = 3;n < 48→ k = 2.

The discreteness of the S∗1 statistics distribution upon detection of a trend in
the variance is signi�cantly higher than the discreteness of the Cox-Stuart statistics
distribution for trend in mean. This is natural because the analyzed range sample
contains only [n/k] number of elements. When using the Cox-Stuart test for detection
of a trend in the dispersion, the di�erence of statistics discrete distribution from the
standard normal law can almost be neglected only for n > 170 [19].

2.3 Hsu test for an absence of variance shift and shift

point detecting

Under this test the rejection of the hypothesis of randomness (for absence of a trend)
can show the discovery of a variance shift. Hsu test statistics are given by [15]

H =

∑n
i=1 (i− 1)(xi −mx)

2

(n− 1)
∑n

i=1 (xi −mx)2
, 0 ≤ H ≤ 1, (4)

where mx is median of variation series. Under the assumption that the mathematical
expectation of a sequence of random variables has the same value, the hypothesis
of a constant variances is tested. As a competitive hypothesis, the change in the
dispersion of observed values at some (unknown) time (starting from some element
of the sample) can be considered. The test is two-sided: the tested hypothesis of
absence of a variance shift is rejected for small and large values of the statistics (4).

Usually the test is used in a normalized form

H∗ =
H − 1/2√
D[H]

, whereD[H] =
n+ 1

6(n− 1)(n+ 2)
. (5)

Under the validity of the hypothesis of the absence of variance changes, statistic
(5) obeys the standard normal law asymptotically.

The simulation results [17] show that for n > 30 statistics distribution agrees well
with the standard normal law.

Statistics distribution (5) strongly depends on the law of distribution to which
random variables belong. The greatest deviation from the standard normal law is
observed in the case when random variables belong to the laws with heavy tails.
Asymmetry of the law signi�cantly a�ects the statis-tics distribution.

A test allowing to determine the change point of the variance (in the case when
observations belong to the normal law) is proposed in [15] of this test are presented
as follows. Let for k = 1, 2, ..., n− 1
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wk =
∑k

i=1 (xi −mx)
2,Wk = wn−wk

wk

k
n−k ,

where k corresponds to the required variance change point. If xi belongs to normal
law, then values of Wk, k = 1, 2, ..., n− 1, belong to corresponding Fn−k,k(W ) Fisher
distributions with n− k and k degrees of freedom.

Next, based on the corresponding distribution functions, we �nd γk = Fn−k,k(Wk),
where γk must obey to uniform law under the absence of variance shift.

G-test statistics are given by

G =
1

n− 1

n−1∑
k=1

γk, 0 ≤ G ≤ 1. (6)

The hypothesis about absence of variance changes is rejected with signi�cance
level α, if G < Gα/2 or G > G1−α/2. In this case value k corresponding to the
maximum value |γk − 1/2|, evaluates the desired change point of the variance value
in observed series. For x1 = mx value w1 = 0, thus W1 =∞ and γ1 = 1.

The type of limit distribution of the statistics (6) is not given in the original
material, only percentage points are given. Basing on the results of the statistical
simulations we have shown that a good model of the limit distribution of the statistics
(6) is a beta distribution of the 1st kind with the density of

f(x) = 1
θ2B(θ0,θ1)

(x−θ3
θ2

)θ0−1(1− x−θ3
θ2

)θ1−1

and parameter values θ0 = 2.7663, θ1 = 2.7663, θ2 = 1, θ3 = 0.
Based on this law we can �nd percentage points Gα/2 and G1−α/2 or p-values.
G-test is also a parametric test. Thus its statistics distributions depend strongly

on the type of the law under observation.

2.4 Klotz and Savage rank tests for an absence of

variance shifts

Rank tests for detecting the change of the scale parameter (dispersion characteristic)
in the unknown point are based on the usage of a family of rank statistics in form
[20]

SR =
n∑
i=1

ian(Ri), (7)

where Ri are ranks of sampled values in an ordered series of measurements.
Tests di�er by the used scores an . Their type determines the name of the test.

The following scores are commonly used:

� Klotz scores a1n(i) = U2
i/(n+1), where Uγ � is a γ-quantile of standard normal

law;

� Savage scores a2n(i) =
∑i

j=1
1

n−j+1
.
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If the tested hypothesis H0 is true, then tests with statistics SR,j =
∑n

i=1 iajn(Ri),
j = 1, 2 are free from the distribution and are symmetric with respect to E[SR,j] =
n+1

2

∑n
i=1 ajn(i).

Usually normalized tests with the following statistics are used

S∗R,j =
SR,j − E[SR,j]√

D[SR,j]
, (8)

where

E[SR,1] = n+1
2

∑n
i=1 U

2
i/(n+1), E[SR,2] = n(n+1)

2
;

D[SR,1] = n(n+1)
12

∑n
i=1 U

4
i/(n+1) −

1
3n+3

[E[SR,1]]2;

D[SR,2] = n(n+1)
12

(n−
∑n

j=1
1
j
.

Statistics (8) are approximately obeying the standard law. The convergence of the
statistics distributions to the standard law was studied in [16, 20].

Statistical simulation research of the distribution of statistics with Klotz scores
has shown that for n > 20 distribution is well-approximated by the standard normal
law. Distribution of the test statistics with Savage scores also matches well with the
standard normal law, but only for n > 30.

3 Analysis of the test powers

During analysis of test powers for the tests against variance change in an unknown
point hypotheses close to the H0 (in case of normal distribution of random variables)
were treated as competitive, when at some point the standard deviation was increased
by 5, 10, 15%:

H1 : σ2
1 = ...σ2

k = 1;σk+1
1 = ...σ2

n = 1.1025,
H2 : σ2

1 = ...σ2
k = 1;σk+1

1 = ...σ2
n = 1.21,

H3 : σ2
1 = ...σ2

k = 1;σk+1
1 = ...σ2

n = 1.3225,

where k = n/2. One competitive hypothesis was considered as more distant:

H4 : σ2
1 = ...σ2

k = 1;σk+1
1 = ...σ2

n = 4.

The presence of a linear trend in the dispersion characteristics of the observed
series of random variables (change in scale parameter) in the interval t ∈ [0, 1] can
be simulated according to

xi = ξi(1 + cti),

where c ∈ (−1,∞), ti = (i− 1)4 t,4 = 1/n. True tested hypothesis H0 corresponds
to parameter value c = 0.

In case of a periodic trend in the characteristics of dispersion, random values can
be simulated, for example, in accordance with the following formula:

xi = ξi(1 + d sin(2kπti)

for |d| < 1. In case of a combined trend it can be simulated according to
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xi = ξi(1 + cti + d sin(2kπti)

for |d| < 1, if c ≥ 0, and for |d| < 1 + c, if c ∈ (−1, 0). The absence of a periodic
component of the trend corresponds to the parameter value d = 0, and the absence
of a linear component corresponds to c = 0.

During the analysis of power with respect to linear, periodic, and combined trend
in the dispersion characteristics (in variance) of a random variable in the interval
t ∈ [0, 1] the following competitive hypotheses were considered:

H5 : xi = ξi(1 + cti), c = 1; H6 : xi = ξi(1 + d sin(2kπti), d = 0.8, k = 2;
H7 : xi = ξi(1 + cti + d sin(2kπti), c = 1, d = 0.8, k = 2.

At that, ti = (i − 1)4 t,4t = 1/n, and random variables xi have been simulated
according to the normal law with parameters m and s.

In the course of work statistical simulation methods (for probabilities of errors
of the �rst kind α = 0.15, 0.1, 0.05, 0.01) provided estimations of the capacity of the
investigated criteria with respect to the competitive hypotheses H1, H2, H3 and H4

(corresponding to the shift of the dispersion value), and with respect to the com-
petitive hypotheses H5, H6, H7,corresponding to the presence of a linear or nonlinear
trend in the characteristics of the dispersion process.

In the columns of Table 2 tests are ordered by decreasing power 1− β according
to the power estimations with respect to studied competitive hypotheses with the
signi�cance level α = 0.1 and sample volume n = 100.

For similar competitive hypotheses criteria Hsu tests with H and G statistics as
well as Klotz test showed the highest power with respect to the analyzed sets of
competitive hypotheses. They showed the ability to detect trend in the dispersion
characteristics when it has a 10% increase. Hsu tests with H− and G−statistics
and Klotz test are also detecting the presence of a linear or periodic trend in the
dispersion characteristics (H0 is distinguished from the hypotheses H5, H6).At the
same time Cox-Stuart, Savage and Foster-Stuart tests can not detect the presence of
a periodic trend in the variance reliably (due to relatively low power against similar
enough hypothesis H6). Unfortunately, none of these tests has shown the ability to
detect a mixed trend in the dispersion corresponding to the studied hypothesis H7.
The power with respect to such close hypothesis has been extremely low.

Considered criteria can be placed in order of preference in the following way [22]:

Trend in mathematical expectation

K-inversion, Reversed inversion � Inversions� Cox-Stewart� Autocorrelation test
modi�cation� Ramachandran-Ranganathan � Wald-Wolfowitz, autocorrelation,

Dufour-Roy, Moran, Ljung-Box� Wald-Wolfowitz rank, Rank Dufour-Roy, Hollin�
Bartels � CUSUM � Series Wald-Wolfowitz test � Foster-Stewart � Number of

sign series of the �rst-order di�erences.

Trend in variance

HsuH − test � Klotztest � HsuG− test � Cox− Stewart �
Foster − Stewarttest � Savagetest.
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Conclusions

Thus, methods of statistical simulation have been used to study the statistics distri-
bution of various parametric and nonparametric tests for randomness and the absence
of a trend in the dispersion characteristics; within the framework of developing ISW
software an interactive study mode of the distributions of the statistics has been im-
plemented for the case of violation of standard assumptions. A comparative analysis
of test powers against some competitive hypotheses has been carried out, and results
of such analysis can be used to estimate the desirability of application of particular
test. Disadvantages of individual criteria have been noted.
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Table 1: Main advantages and disadvantages of used tests for an absence of trend in
mean

� Test Advantages Disadvantages

1 Inversion High power in respect to linear
trend. For n ≥ 30 discreteness
of normalized statistics can be
neglected.

The discreteness of normalized
statistics must be considered
for n < 30.

2 Reversed inversion

3 K-inversion

4 Cox-Stuart Power is above the average. For
n ≥ 40 discreteness of normal-
ized statistics can be neglected.

For n < 40 discreteness of nor-
malized statistics must be con-
sidered.

5 Autocorrelation
test modi�cation

Relatively good power. The di�erence of normalized
statistics distribution from the
standard normal law can be ne-
glected only for n ≥ 200

6 Ramachandran-
Ranganathan

Relatively good power. Statistics distribution have
strong dependence on n. Usage
of a table of critical values is
necessary.

7 Dufour-Roy The di�erence of normalized
statistics discrete distribution
from the standard normal law
can be neglected for n > 17.

Low power.

8 Autocorrelation The di�erence of normalized
statistics distribution from the
standard normal law can be ne-
glected for n > 30.

Low power.

9 Moran Low power. The di�erence of
statistics distribution from the
standard normal law can be ne-
glected only for n > 50.

10 Ljung-Box Low power. Statistics distribu-
tion converge very slowly to stan-
dard normal law.

11 Wald-Wolfowitz The di�erence of normalized
statistics distribution from the
standard normal law can be ne-
glected for sample sizes n > 20.

Low power.
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12 Hollin Average power. Distribution of the statistics de-
pends on n. The test is nonpara-
metric, yet distribution of the
statistics reacts to asymmetry of
the observed law.

13 Rank Wald-
Wolfowitz

Standard normal law can be used
for n > 10 as distribution of the
proposed modi�cation of normal-
ized statistics.

The power is slightly smaller
than one of Dufour-Roy and
Wald-Wolfowitz tests. Is equal
to rank Dufour-Roy test.

14 Rank Dufour-Roy For n > 17 distribution of the
statistics is well-approximated
by standard normal law. Dis-
creteness of statistics distribu-
tion can be neglected for n > 10.

The power is slightly smaller
than one of Dufour-Roy and
Wald-Wolfowitz tests. Is equal
to rank Wald-Wolfowitz test.

15 Bartels The di�erence of normalized
statistics discrete distribution
from the standard normal law
can be neglected for n > 10.

Low power.

16 Foster-Stuart High discreteness of statistics
distribution, persisting for hign
values of n. Usage of assymp-
totic Student tn-distribution for
evaluation of p-value leads to se-
rious errors. Power against lin-
ear trend is below the average.
Power against nonlinear trend is
low.

17 CUSUM Good power against linear trend. Statistics distribution is dis-
crete and it is dependent on n.
Very low power against nonlinear
trend.

18 Series Wald-
Wolfowitz

Normalized statistics distribu-
tion is discrete for a long time.
Low power.

19 Number of sign se-
ries of the �rst-
order di�erences

Normalized statistics distribu-
tion is discrete even for large
sample sizes.Extremely low
power.
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Table 2: Comparative analysis of powers of all tests for randomness and tests for an
absence of a trend in variances (n = 100, α = 0.1)

� Against H1 1− β Against H2 1− β Against H3 1− β
1 Hsu H 0.156 Hsu H 0.304 Hsu H 0.500
2 Klotz 0.151 Klotz 0.287 Klotz 0.469
3 Hsu G 0.147 Hsu G 0.269 Hsu G 0.430
4 Cox-Stuart 0.123 Cox-Stuart 0.188 Cox-Stuart 0.284
5 Savage 0.110 Foster-Stuart 0.130 Foster-Stuart 0.165
6 Foster-Stuart 0.106 Savage 0.129 Savage 0.159

� Against H4 1− β Against H5 1− β Against H6 1− β
1 Hsu H 1 Hsu H 0.836 Hsu H 0.711
2 Klotz 1 Hsu G 0.818 Klotz 0.678
3 Cox-Stuart 0.997 Klotz 0.807 Hsu G 0.545
4 Hsu G 0.993 Cox-Stuart 0.489 Savage 0.196
5 Foster-Stuart 0.625 Foster-Stuart 0.346 Cox-Stuart 0.143
6 Savage 0.610 Savage 0.246 Foster-Stuart 0.048

� Against H7 1− β
1 Hsu H 0.162
2 Klotz 0.104
3 Savage 0.095
4 Foster-Stuart 0.082
5 Hsu G 0.057
6 Cox-Stuart 0.052
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The Comparative Analysis of Tests in the

Problem of Testing the Hypothesis of Uniformity1

Pavel Yu. Blinov and Boris Yu. Lemeshko

Novosibirsk State Technical University, Novosibirsk, Russian Federation
e-mail: blindizer@yandex.ru,lemeshko@ami.nstu.ru

Abstract

In the paper some statistical tests intended for testing of uniformity have
been considered. Distributions of test statistics, the power of tests under dif-
ferent competing hypotheses have been studied. Considered tests have been
ranked by the test power. Advantages and disadvantages of individual tests
have been shown. Also, it has been shown that the large part of the tests
traditionally used for testing uniformity has the bias under some kind of com-
peting hypotheses. It is underlines that special uniformity tests haven't clear
advantage over nonparametric goodness-of-�t tests used for testing uniformity
in general.

Keywords: uniform distribution, hypothesis testing, test statistic, test
power.

Introduction

The uniform distribution is one of common distributions in applied mathematics
statistics and probability theory. It is often used to describe the measurement er-
ror of some instruments or measuring systems. Simulation of pseudorandom values
according to di�erent parametric laws relies on sensors of uniform pseudorandom
values. Parametric laws are urgently needed in the systems of statistical simulation.
Testing the uniformity actually represents goodness-of-�t testing the hypothesis of
uniform distribution of the observed sample x1, ..., xn. In some papers, the authors
states that testing composite hypothesis can be reduced to test simple hypothesis
of uniformity on the interval [0, 1], because if x1, ..., xn belong law with probability
distribution function F (x), then random variable yi = F (xi) is uniformly distributed
on unit interval. All of these factors explain the increasing interest in the choice
of simple and computationally e�cient procedures for testing hypotheses about the
uniform law of analyzed samples.

The various statistical tests used for testing hypothesis of uniformity can be di-
vided into two subsets. These are common goodness-of-�t tests applicable for testing
of uniformity and special tests oriented on testing hypothesis that sample x1, ..., xn
is uniform distributed.

The presence of numerous tests put not simple problem of choosing for specialists,
because available information in papers doesn't allows to give preference to certain
test, while every specialist is interested not only in correctness of using of tests, but
else in reliability of statistical inferences.

1This work is supported by the Russian Ministry of Education and Science (project 2.541.2014K).
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In this paper, a lot of considered tests are studied by the method of statistical
simulations. The number of experiments carried out for statistical modeling is as-
sumed equal to 1 660 000 in the study of the distributions of test statistics. On the
one hand, such number of experiments allows tracing the qualitative picture of test
statistic distributions in depend on various factors. On the other hand, this number
of experiments provides acceptable accuracy of the power estimates and unknown
probabilities.

1 The statement of testing uniformity

In the most of uniformity tests, ordered statistics of quantityX are used (x(1) < x(2) <
... < x(n) are elements x(i) of variation series of the sample). Further designation
Ui = x(i), i = 1, n will be used in expressions of statistical tests.

As usually tests are oriented on testing of simple hypothesis H0 on interval [0, 1].
However, if hypothesis of uniformity is tested on interval [a, b] then elements x(i)

of variation series a < x(1) < x(2) < ... < x(n) < b are modi�ed to corresponding

(required in the tests) ordered statistics as: Ui =
x(i)−a
b−a , i = 1, n.

To test composite hypothesis of uniformity H0: F (x) = (x− a)/(b− a), x ∈ [a, b],
where a and b are non-known, we proceed as follows. Using the variation series
x(1) < x(2) < ... < x(n) of sample X1, X2, ..., Xn the parameter estimates are obtained
as follows:

â = x(1) −
x(n) − x(1)

n− 1
, b̂ = x(n) +

x(n) − x(1)

n− 1
. (1)

It is obviously that testing of composite hypothesis of uniformity for sample
X1, X2, ..., Xn on interval [â, b̂] equal to testing of simple hypothesis of uniformity
for sample with sample size n− 2 on interval [x(1), x(n)]. The required values of order

statistics for testing such hypothesis obtained by expressions: Ui−1 =
x(i)−x(1)
x(n)−x(1)

,

i = 2, (n− 1).

A number of considered tests can be divided into three groups. The �rst group
has statistics based on interval between elements, in most of cases di�erences between
neighbor elements denoted as:

Di = Ui − Ui−1, (2)

where U0 = 0, Un+1 = 1, n is the size of the sample. In the second group test
statistics used di�erence between theoretical (expected) and empirical data. These
tests also called as tests based on the empirical distribution function (EDF tests),
and goodness-of-�t tests are contained in this group. The third group has statistics
based on entropy estimator. The third group includes the tests based on the entropy
estimator.
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2 Alternative hypotheses

We compared the power of tests for relatively sample size n = 10, 20, 30, 40, 50, 100,
150, 200, 300 . Empirical distributions of test statistics under either true null hypoth-
esis or competing hypotheses were found based on 1 660 000 simulations also. The
hypothesis under test H0 was chosen as uniform law. Alternative hypothesis Hi was
chosen as beta distribution with the density

f(x) =
1

θ2B(θ0, θ1)

(
x− θ3

θ2

)θ0−1(
1− x− θ3

θ2

)θ1−1

, (3)

where B(θ0, θ1) = Γ(θ0)Γ(θ1)/Γ(θ0 + θ1) is beta-function, θ0, θ1 ∈ (0,∞) are param-
eters the of form, θ2 ∈ (0,∞) is shape parameter, θ3 ∈ (−∞,∞) is bias parameter,
x ∈ [0,∞]. This distribution was chosen because the fact that the standard uniform
distribution is a special case of the beta distribution with the parameters of form
θ0 = 1 and θ1 = 1. We denote the function of beta distribution with values of param-
eters BI(θ0, θ1, θ2, θ3). So, three alternative hypotheses H1, H2, H3, which are quite
close to H0, can be written by

H1 : F (X) = BI(1.5, 1.5, 1, 0), x ∈ [0, 1];
H2 : F (X) = BI(0.8, 1.0, 1, 0), x ∈ [0, 1];
H3 : F (X) = BI(1.1, 0.9, 1, 0), x ∈ [0, 1] .

The distribution functions and the density functions of these hypotheses are presented
in Figure 1 and 2, respectively.

Figure 1: The distribution functions corresponding to the hypotheses

It is worth noting that the distribution function of alternative H1 crossed the
function of the uniform distribution, while the distribution functions of alternatives
H1 and H3 are located above and below the function of uniform distribution, respec-
tively. And abilities to distinguish hypothesis H0 from H1 and from H2 and H3 in
tests are di�erent. The comparative analysis shows that most of the considered tests
have inability to distinguish hypothesis H0 from H1 under small sample size n , in
other words these tests are biased in such cases.
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Figure 2: The density functions corresponding to the hypotheses

3 Simulation result

The expressions for statistics of special uniformity tests are presented in Table 1. The
Table 2 contains considered tests ordered by decreasing of power (quantity 1 − β)
under alternatives H1, H2 and H3 (n = 100 and α = 0.1). The dark mark means that
the test is biased under small sample size n, in other words that quantity α larger
than 1− β. This bias take a place to a lesser extent in Neyman-Barton tests N2 and
N3 [14]. This advantage isn't observed only for some tests: Kuper test [9], Watson
test [19, 20], Dudewicz-Van Der Mulllen test [5], Cheng-Spiring test [3], Swartz
test [18], second Cressie [4] test and chi-squared Pearson test.

Entropy procedure used di�erent entropy estimator gives high power under alter-
native hypothesis H1. Whereas their power is relatively worst under alternatives H2

and H3. It should be noted that only modi�cations of entropy test have bias under
alternative H2 for small sample size n. It is recognized that power of these tests and
also Cressie tests and Pardo test [15] depends from choosing of parameter m called
as window size also.

The Neyman-Barton test N2 shows good power under H1 and relatively good
power under H2 and H3. The Hegazy-Green tests [7] and Frosini test demonstrate
consistently good ability to distinguish alternative hypotheses from uniformity distri-
bution. The low powers are shown by tests, the statistics of which use the di�erences
(2) of successive values of order sample Ui−Ui−1 (Sherman test [17], Kimball test [8],
Moran tests [12, 13], Greenwood test [6], Greenwood-Quesenberry-Miller test [16]).
The Cheng-Spiring test, demonstrated quite high power under H1, shows low power
under H2 and H3. The lowest power is demonstrated by Yang test [22], under all
considered alternative hypotheses. Among the non-parametric goodness-of-�t tests,
the good powers are obtained by Zhang tests ZA and ZC [24], and Anderson-Darling
tests [1].
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Conclusions

Unfortunately, the distributions of most special uniformity tests depend on the sample
size, therefore the researchers must rely on the tables of percent points. The similar
issue occurs in using nonparametric goodness-of-�t Zhang tests.

It is found from comparative analysis of tests, which can be used for testing the
hypothesis of uniformity, that using of single certain test can be incorrect in forming
the reliable statistical inference. The applying more than one test based on di�erent
measure of deviation of empirical distribution from theoretical distribution improves
the quality of statistical inference. It is better to use some series of tests, which have
certain advantages for more objective inferences.
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Table 1: Statistics of considered tests for uniformity

Number Test Test statistic

1 Sherman ωn = 1
2

n+1∑
i=1

|Di − 1
n+1 |

2 Kimball A =
n+1∑
i=1

(Di − 1
n+1 )2

3 Moran 1 B =
n+1∑
i=1

(Di)
2

4 Moran 2 Mn = −
n+1∑
i=1

ln [(n+ 1)Di)]

5 Yang M = 1
l

n∑
i=1

min(Di, Di+1); l = b− a

6 Greenwood G = (n+ 1)
n+1∑
i=1

(Di)
2

7 Greenwood-Qesenberry-Miller Q =
n+1∑
i=1

(Di)
2 +

n∑
i=1

(Di+1Di)

8 Swartz A∗n = n
2

n∑
i=1

(
Ui+1−Ui−1

2 − 1
n

)2
,

where U0 = −U1, Un+1 = 2− Un

9 Cressie 1 S
(m)
n =

n+1−m∑
i=0

(
Ui+m − Ui − m

n+1

)2
, m < n

2

10 Cressie 2 L
(m)
n =

n+1−m∑
i=0

ln[n+1
m (Ui+m − Ui)], m < n

2

11 Cheng-Spiring Wp =
[
(Un − U1)n+1

n−1

]2
/

n∑
i=1

(
Ui − Ū

)2
12 Hegazy-Green T1 T1 = 1

n

n∑
i=1

|Ui − i
n+1 |

13 Hegazy-Green T ∗1 T ∗1 = 1
n

n∑
i=1

|Ui − i−1
n−1 |

14 Hegazy-Green T2 T2 = 1
n

n∑
i=1

(
Ui − i

n+1

)2
15 Hegazy-Green T ∗2 T ∗2 = 1

n

n∑
i=1

(
Ui − i−1

n−1

)2
16 Frosini Bn = 1√

n

n∑
i=1

|Ui − i−0.5
n |

17 Neyman-Barton Nk; k = 2, 3, 4 Nk =
k∑
j=1

V 2
j , where Vj = 1√

n

n∑
i=1

πj(Ui − 0.5),

π1(y) = 2
√

3y; π2(y) =
√

5(6y2 − 0.5);

π3(y) =
√

7(20y3 − 3y);
π4(y) = 3(70y4 − 15y2 + 0.375)
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Table 1 (continued)

Number Test Test statistic

18 Dudewicz-Van Der Mulen H(m,n) = − 1
n

n∑
i=1

ln [ n2m (Ui+m − Ui−m)],

where m < n
2 ; if i+m ≥ n, then Ui+m = Un, and if

i−m ≤ 1, then Ui−m = U1

19 Pardo Em,n = 1
n

n∑
i=1

2m
n(Ui+m−Ui−m)

20 The �rst modi�cation of
entropy test [23],

HY1 = − 1
n

n∑
i=1

ln
(

Ui+m−Ui−m
F̂ (Ui+m)−F̂ (Ui−m)

)
, where

F̂ (Ui) = n−1
n(n+1)

(
i+ 1

n−1 + Ui−Ui−1

Ui+1−Ui−1

)
,

i = 2, (n− 1), F̂ (U1) = 1− F̂ (Un) = 1
n+1

21 The �rst modi�cation of
entropy test [21],

HY2 = −
n∑
i=1

ln
(

Ui+m−Ui−m
F̂ (Ui+m)−F̂ (Ui−m)

)

∗

 F̂ (Ui+m)−F̂ (Ui−m)
n∑
j=1

(F̂ (Uj+m)−F̂ (Uj−m))



Table 2: The tests ranked by power (n = 100,α = 0.1)

hypothesis H1 1− β hypothesis H2 1− β hypothesis H3 1− β
1 The second modi-

�cation of entropy
test

0.883 Anderson�Darling 0.648 Anderson�Darling 0.526

2 Zhang ZA 0.850 Hegazy-Green T1 0.610 Hegazy-Green T1 0.522

3 Neyman-Barton N2 0.837 Zhang ZC 0.606 Frosini 0.522

4 Cressie 2 0.820 Frosini 0.603 Hegazy-Green T ∗1 0.520

5 Zhang ZC 0.819 Hegazy-Green T2 0.602 Hegazy-Green T2 0.508

6 Dudewicz-Van Der
Mulen

0.790 Neyman-Barton N2 0.597 Kramer-von-
Misses-Smirnov

0.507

7 The �rst modi�ca-
tion of entropy test

0.789 Kramer-von-
Misses-Smirnov

0.595 Hegazy-Green T ∗2 0.506

8 Watson 0.779 Hegazy-Green T ∗1 0.595 Zhang ZC 0.463

9 Neyman-Barton N3 0.766 Zhang ZK 0.590 Zhang ZA 0.459

10 Neyman-Barton N4 0.739 Hegazy-Green T ∗2 0.585 Kolmogorov 0.450
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Table 2 (continued)

hypothesis H1 1− β hypothesis H2 1− β hypothesis H3 1− β
11 Kuper 0.736 Neyman-Barton N3 0.577 Neyman-Barton N2 0.447
12 Cheng-Spiring 0.722 Zhang ZA 0.574 Zhang ZK 0.438

13 Zhang ZK 0.617 Neyman-Barton N4 0.557 Neyman-Barton N3 0.416

14 Pearson χ2 0.593 Kolmogorov 0.542 Neyman-Barton N4 0.381
15 Swartz 0.583 Pardo 0.463 Pearson χ2 0.374

16 Anderson�Darling 0.505 Pearson χ2 0.448 Pardo 0.291

17 Hegazy-Green T ∗1 0.443 Kuper 0.364 Dudewicz-Van
Der Mulen

0.275

18 Hegazy-Green T ∗2 0.409 Watson 0.356 The �rst modi�-
cation of entropy
test

0.275

19 Pardo 0.408 The �rst modi�ca-

tion of entropy test

0.328 The second
modi�cation of
entropy test

0.267

20 Frosini 0.384 Dudewicz-Van Der

Mulen

0.327 Watson 0.257

21 Kramer-von-

Misses-Smirnov

0.358 Cressie 1 0.314 Kuper 0.254

22 Hegazy-Green T1 0.322 The second

modi�cation of

entropy test

0.266 Cressie 2 0.226

23 Kolmogorov 0.322 Greenwood-
Qesenberry-
Miller

0.244 Cressie 1 0.218

24 Hegazy-Green T2 0.308 Swartz 0.226 Swartz 0.206

25 Greenwood-

Qesenberry-Miller

0.290 Cressie 2 0.217 Greenwood-
Qesenberry-
Miller

0.186

26 Kimball 0.279 Sherman 0.204 Kimball 0.165

27 Moran 1 0.279 Kimball 0.201 Moran 1 0.165

28 Greenwood 0.279 Moran 1 0.201 Greenwood 0.165

29 Sherman 0.215 Greenwood 0.201 Sherman 0.154

30 Cressie 1 0.187 Moran 2 0.193 Moran 2 0.143

31 Moran 2 0.187 Cheng-Spiring 0.168 Cheng-Spiring 0.106

32 Yang 0.115 Yang 0.108 Yang 0.104
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Abstract

In this paper the statistical properties of mid range and mean as estimators
of measured value, for the samples of varying number of observations taken
from a population of uniform distribution, have been examined by the Monte
Carlo simulation. The midrange of such samples has a smaller standard devia-
tion than the mean value, which is recommended by the Guide GUM (�g. 1).
A distribution similar to Student's t-distribution and an expanded uncertainty
were also calculated for such samples. It was found for samples from the gen-
eral population of Flatten-Gaussian distribution, that with increasing share of
the normal distribution, the advantage of mid-range quickly decreases. Final
conclusions are enclosed.

Introduction

The metrologically correct result of a measurement should contain the most probable
value of a measurand together with an assessment of its accuracy. It should be
determined in widely accepted uniform manner. Seven international organizations
recommend the procedure described in the guide known by the acronym GUM [1]. It
assumes that the observations are independent and can be treated as if they are taken
from a normally distributed population and there are no outliers or been removed.
In the most of laboratory measurements these assumptions are typically ful�lled and
the uncertainties are determined for two or three signi�cant digits. A description of
the instrument accuracy by the worse case of limited errors is also used.

Notice: the statistical approach to unknown systematic errors and to calculations
of the �nal result accuracy, nearly similar as in Guide GUM [1], was proposed 40 years
earlier by S. Trzetrzewinski PhD work in 1951 at Gdansk Technical University [4].
In the GUM this approach is presented widely and using another terminology (e.g.
the most probable �nal error - is the uncertainty) and GUM is now internationally
sanctioned.

Measurements and processing of the measurement data carried on in science, in-
dustry and many other �elds commonly use now electronic and computers. Some of
them do not ful�ll the assumptions of GUM. The distribution of measured values,
or components of a random signal is often better modeled by Non-Gaussian distri-
butions. There are also distortions (random, continuous or intermittent) � so called
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outliers. Sometimes there is a need to make statistical evaluations from the samples
of low number of elements. Since the mid-twentieth century the new statistical tools
were developed, such as robust and resampling methods, to analyze these issues.

The statistical properties of samples from a population of uniform distribution
and few di�erent �atten-Gaussian distribution in varying degree will be examined in
detail by using Monte Carlo simulation.

1 Basic Equations

The classic approach of the measurement uncertainty calculation is in [1] and [2].
It is based on an assumption that the randomness of the observed N values of x
is the source of their origin from the general population with normal distribution.
After elimination of the known systematical errors from measurement data, the best
estimate of the measured value is determined as the arithmetic mean of the empirical
sample:

xav =
1

N
·
N∑
n=1

xn =
1

ν + 1
·
ν+1∑
n=1

xn (1)

wherein ν = N − 1 is the number of degrees of freedom.

The estimator of the standard deviation of average is

scl =

√√√√√ N∑
n=1

(xav − xn)2

N · (N − 1)
=

√√√√√ ν+1∑
n=1

(xav − xn)2

(ν + 1) · ν
. (2)

This deviation of the sample, determined by statistical method is named in [1] as
a standard uncertainty uA(x). In addition, based on the knowledge of the observer,
a standard uncertainty uB(x) is estimated. Then the combined standard uncertainty
uC(x) is calculated. Considering the expansion coe�cient kp for the con�dence level
P , or using Monte Carlo method [2], the expanded uncertainty is U(x) = kP · uC(x).

In Supplement 1 of GUM [2] Monte Carlo method is recommended as the most
universal, based on elementary mathematical relationships, possible to apply for the
highly nonlinear measurement functions, as well as in cases of unusual, for example,
asymmetrical distributions, as in [5]. If it is known that the observations come from
di�erent general population and the probability distribution is also given, it is better
to use an approach called here: special.

Cramer, in his the excellent timeless monograph [3] for samples from a popula-
tion with uniform distribution demonstrated analytically that a mid range is better
estimator of a measurand than a mean due to having the smaller standard deviation.
This is con�rmed by numerical examples in [7] - [9] and the distributions of the three
estimators of the samples with high cardinality N obtained by the MC method -
Figure 1 [9]. Basic parameters of the sample are presented in the Table 1.
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Figure 1: Histograms of estimators of measurand value for samples from population
of rectangular distribution simulated by 200× 220 random numbers: 1 � midrange; 2

� mean value; 3 � median

Table 1: Statistical parameters of the sample of uniform pdf

Range of the sample V = ximax − xi min

Midrange xV
Standard deviation of midrange xV sV

For observations from a population with uniform distribution the best estimate
of the measured value is mid range of the sample xV :

xV =
ximax + xi min

2
, (3)

and the estimate of the standard deviation is its empirical deviation sV :

sV =
V√

2
·
√

N + 1

(N − 1)2 (N + 2)
=

V√
2 · ν

·
√
ν + 2

ν + 3
. (4)

The paper presents the results of the properties of these estimators in function
of degrees of freedom of sample ν = N − 1, the simulation were carried out using
the MC method. Observations were simulated with pseudo-random numbers from a
population with a standard deviation
σ = 1 for the number M = 2× 105 of simulations and the numbers of degrees of free-
dom ν = 1, 2, 3, 4, 5, 7, 10, 16, 32, 63, 125, 250, 500, 1000. The tests were carried out for
the case where the population of random numbers (from which the observations come
from) has clear and uniform distribution and for several cases where this population
has uniform distribution contaminated by normal distribution.
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2 Samples of Observations from a Population of

Uniform Distribution

In general case estimator of the mean value xav (1) in classic approach and estimator
of midrange xV (3) as special-estimator and their standard deviations respectively
sCl and sV have di�erent values. A comparison of deviations from formulas (2) and
(4) is shown in Figure 2.

Figure 2: Standard deviations of mean and of midrange as functions of number ν of
degree of freedom

On the basis of N − 1 = ν pure samples of uniform distribution with a standard
deviation σ = 1, in each simulation number m(m = 1, ...M), for each value ν, the
values scl_m and sV_m were calculated. Then, for each value of ν fromM simulations
average values scl_av and sV_av were calculated. Figure 2 suggests a superiority of
special estimators (3), (4) over the conventional estimators (1), (2). For ν = 103 a
value of sV_av is approximately 13 times less than the scl_av.

Comparing the estimates only by empirical deviations is not fully reliable from
metrological point of view, because the expanded uncertainties are important. Only
the expanded uncertainties UA associated with the random scatter of observations
were taken into consideration here. With the classical approach the expanded un-
certainty UAcl_m is the product of deviations of the empirical scl_m and expansion
coe�cient kcl calculated by Student's t-distribution for ν = N − 1 degrees of freedom
and con�dence level P :

UAcl_m = kcl · scl_m. (5)

In a special approach one can express the expanded uncertainty of type A:

UAV_m = kV · sV_m, (6)

where: kV is the coverage factor, specially adapted to estimators (3) and (4).
Classic Student's t-variable is de�ned as:

t
def
=
xav − E (x)

scl
=

∆xav
scl

, (7)

104



Applied Methods of Statistical Analysis

where E(x) is the measured (expected) value, known in simulation experiments, and
∆xav - error of estimate xav.

Similarly, the variable tV of quasi-Student distribution is de�ned as

tV
def
=
xV − E (x)

sV
=

∆xV
sV

. (8)

This is equivalent to the Student's t-variable for a population of observations of
the uniform distribution with estimators (3) and (4). The probability distribution of
the variable tv can be called quasi-Student distribution.

For calculations of the expanded uncertainty from the sample data Dorozhovets
[8] gives the following formula

UP (xV ) = kV · xV =

(
1

N−1
√

1− P
− 1

)
xV . (9)

As we did not �nd any mathematical proof of above formula we decided to calcu-
late the appropriate coverage factor kV by MC simulation. The graphs of the coverage
factors kcl and kV for a con�dence level p = 95% are shown in Figure 3.

Figure 3: Coverage factors as function of number of ν degrees of freedom, P = 0.95

For following values νm the uncertainty UAcl_m(5) and UAV_m (6) M times have
been calculated and also their average values UV_av and Ucl_av in the data sets of
size M are �nd. Results as function of ν are given in Figure 4.

These plots con�rm the superiority of midrange estimators (3), (4) over the clas-
sical estimators of mean value (1), (2) for the numbers of degrees freedom ν greater
than about 5. For ν = 103 the value UAV_av is about 11 times smaller than UAcl_av.

It is desirable to verify the MC simulation results. It may be done by checking
the empirical probability of an event which depend on verifying if estimate errors of
the measured value (7), (8) are in the limits of the calculated uncertainty. For each
of the N = ν + 1 observations there is a need to calculate the number of successes
and divide it by the number of M simulations. This quotient should have a value
close to the postulated level of con�dence p = 95%. The results of this veri�cation
are in Figure 5.
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Figure 4: Average expanded uncertainties as function of number of ν degree of
freedom

Figure 5: Empirical probabilities as a function of number of ν degree of freedom

They are fully satisfactory for a special approach - estimate (3) and (4). In
contrast to the classical approach - estimate (1) and (2), they are unsatisfactory at
small values of the number of observations N = ν + 1.

3 Example

Let us �nd the best expected values of mean xav and midrange xV and their expanded
uncertainties of the resistance R of the population of resistors with a nominal value
RN = 100 ohm. It can be assumed that the values of resistance R in the population
have a uniform distribution based on the information that this population is the result
of:

� selection in production from a population of resistors of the value of R of a
continuous distribution of considerable width, or

� choosing the specially calibrated resistors taken from the population with a
continuous, very wide distribution of values R, e.g. by step by step method [6].

To determine the expected value of resistance in the population and its uncer-
tainty, the sample of size N is randomly collected and the resistance value of each
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of the downloaded items is measured. Table 2 shows the results of Monte Carlo
simulations of such procedure.

Four variants are completed in the table: A - sample of size NA = 2(νA = 1), B
- sample of size NB = 4(νB = 3), C - sample of size NC = 8(νC = 7), D - sample
of size N = 17(νD = 16). For each of the samples calculations of estimates of:
the mesurand value (as expected value of resistance in the population), its standard
deviation and the expanded uncertainty for a con�dence level of P = 95% have been
performed. Two methods of calculations are used: the classical method (estimate =
average value) by formulas (1) and (2), and a special method (estimate = midrange)
by formulas (3) and (4). It was also assumed that the uncertainty of the measuring
equipment used for resistance is negligibly small.

Table 2: Example

Sample
No Ri A B C D

1 99.925 100.006 100.089 1 100.015 No Ri

2 100.057 99.929 100.016 2 100.025 10 99.971
3 � 100.046 99.951 3 99.910 11 100.049
4 � 99.906 99.970 4 99.952 12 100.048
5 � � 100.059 5 100.079 13 99.940
6 � � 99.914 6 100.046 14 100.036
7 � � 100.018 7 99.979 15 99.974
8 � � 99.940 8 100.081 16 99.922
9 � � � 9 99.978 17 99.941

xav 99.991 99.972 99.995 99.997
xV 99.991 99.976 100.001 99.995

scl 0.0660 0.0327 0.0216 0.0132
sV 0.0808 0.0301 0.0168 0.00736

kcl 12.71 3.18 2.36 2.12
kV 15.31 3.98 2.79 2.41

Ucl 0.84 0.10 0.051 0.028
UV 1.2 0.12 0.047 0.018

Results of calculations are presented in the lower rows of Table 2. Favorable
results are given in bold numerals. As expected, the average value xav has a lower
value of the expanded uncertainty only for a very small sample sizes: NA = 2 and
NB = 4 � variants A and B. In other cases, the midrange xV is better as has the less
uncertainty.
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4 Statistical Properties of Samples from Population

of Flatten-Normal Pdf

Value of the midrange xV of samples from a population with uniform distribution
depends only on the two external, minimal and maximal observations. Then the
value of midrange and its uncertainty is strongly in�uenced by data outliers. It can
be eliminated, similarly as for Gaussian samples according the Grabbs criteria, or
by calculation of xV for several external pairs of observations and discard the outlier
score.

In the measuring system can also occur samples from a population, which is a
convolution of uniform distribution with another distribution. If second one is, or
can be approximated by a normal distribution, the �atten-normal distribution is
obtain. The calculation of the mean value and its uncertainty of the sample from the
�atten -normal distribution by use a number of conventional methods is described in
[14]. By MC method will be checked now whether a midrange of the samples from
this distribution has properties similar to those of the uniform distribution.

The distribution of a �atten-normal population can be characterized by the degree
of participation λ of normal distribution. This means that when the population stan-
dard deviation σ = 1, the standard deviation of the normal distribution component
is σN = λ, and for the main component of the uniform distribution σJ =

√
1− σ2

N .
Figure 6 shows the plots of the �atten-normal distribution in four di�erent levels of
λ. Thus, for λ = 5% the component with uniform distribution is characterized by
standard deviation of σJ ≈ 99.87%. Plots of the empirical deviations and expanded
uncertainties with contribution of the normal distribution λ = 5% are not di�er
signi�cantly from charts for a uniform distribution in Figure 2 and Figure 4.

5% 10%

20% 50%

Figure 6: Flatten-Gaussian distributions of di�erent λ and uniform pdf

In contrast, the empirical probability plots shown in Figure 7 di�er signi�cantly
from those shown in Figure 4. Too small probabilities PV for the larger numbers
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of observations ν = n + 1 indicate the need to extend the coverage factors kV for
�atten-normal distribution.

Figure 7: Empirical probability as function of number ν of degree of freedom

MC coe�cients calculated by the factor kV for a con�dence level p = 95%,
and at the values of the degree of participation of the normal distribution λ =
0%, 5%, 10%, 20%, 50%. The results of the calculations are presented in the Table
3 and in Figure 8.

Table 3: Coverage factor kV (p = 95%) as function of number ν of degree of freedom
for some values of λ

The degree of λ compactness of the normal distribution in %
freedom ν λ = 0% λ = 5% λ = 10% λ = 20% λ = 50%

1 15.31 15.54 15.01 14.40 11.94
2 5.51 5.47 5.42 5.31 4.66
3 3.98 3.95 3.96 3.91 3.67
4 3.42 3.41 3.41 3.40 3.34
5 3.09 3.09 3.10 3.12 3.23
7 2.79 2.79 2.81 2.88 3.19
10 2.57 2.59 2.62 2.74 3.36
16 2.41 2.42 2.52 2.83 3.96
32 2.24 2.39 2.71 3.55 5.63
63 2.18 2.61 3.48 5.13 8.68
125 2.14 3.45 5.23 8.20 14.23
250 2.13 5.31 8.60 13.93 24.33
500 2.14 8.79 14.79 24.30 42.57

1× 103 2.13 15.39 26.44 43.61 76.29

With the increase of λ as degree of participation of the normal distribution in
the �atten-normal population the e�ciency of special approach (for the mid range)
compared to classical approach is decreasing. This is illustrated on Figure 9 by graphs
of the average expanded uncertainty and of the likelihood of verifying its legitimacy
after-calculation.
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Figure 8: Coverage factors (p = 0.95) of Flatten-Gaussian pdf of normal pdf level
λ = 0%, 5%, 10%, 20%, 30%, 50% as function of number ν of degree of freedom

Remarks and Conclusions

The results of the MC simulation calculations are achieved with errors inversely pro-
portional to the square root of M . In particular, the error of probability calculation
is binomial (Bernoulli) with a standard deviation:

σP =

√
P · (1− P )

M
. (10)

For P = 0.95 and M = 2 · 105 one can receive σP ≈ 5 · 10−4. For large values of
M the error of probability calculation approaches the normal distribution and error
limit can be estimated with the range 3σ as approximately 0.15%. This validates
irregularities of plots in Figure 5 and Figure 9.

For the uniform distribution the use of special approach (3) and (4) is e�ective
when the number of degrees of freedom ν is greater than 5 - see Figure 4. Then
the average expanded uncertainty UV_av, calculated according to a special approach
using a special coverage factor, is less than the average uncertainty Ucl_av calculated
classically by the GUM recommendations. UV_av is less if the greater number ν.

For the observations from a population with convoluted uniform distribution even
with a low content of another distribution, for example, λ = 5% of the normal
distribution, there is a need to increase the coverage factor (Figure 8). It was assumed
that this additional component has a normal distribution. Increasing the degree of
participation of the normal distribution λ approach reduces the e�ectiveness of the
special approach - see Figure 9 a,b,c. For example, for λ = 20% (Figure 9a) the
e�ectiveness is only for the number of degrees of freedom ν from about 5 to about 100,
and for λ = 50% (Figure 9c). The special approach is inferior to the classic approach
in the whole range of numbers of degrees of freedom. The degree of participation
of 50% does not mean that additional component of the standard deviation is 50%
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a) b) c)

d) e) f)

Figure 9: Uncertainties Uclav, UV av � a, b, c and control probabilities Pcl , PV � d, e,
f for levels of standard deviation of normal distribution λ = 10%, 20%, 50%

of the population standard deviation of observation. The standard deviation of the
main component is then

√
1− 0, 52 ≈ 0, 87 = 87% of the standard deviation.

The classical approach is more e�cient if there is a signi�cant decrease of the
uniform distribution in the plane-normal distribution (1), (2). However, the small
numbers of degrees of freedom ν < 20 gives a bit too low level of verifying probability
Pcl � Figure 9 d,e,f.

In addition, it is worth mentioning that the other simple distributions also have
the single component estimators better than the mean value. For U distribution (arc
sin) mid range also is better, for the Laplace distribution (two-exponential) the best
is median [7] - [9].

By MC method examined are also families of trapezoidal distributions, linear one
- Trap as a convolution of two di�erent uniform distributions and of concave shape
CTrap [10] -[13]. For the ratio β of two bases of the trapezium in the range of 1 -
0.6315 the midrange is a better estimator than the mean value as it has a smaller
standard deviation. For the linear Trap and concave CTrap trapezoidal distributions
two-component estimator: 0.5 · (midrange + mean) is proposed [10] - [13]. It is more
e�ective than any single-element estimator almost in the full range (0; 1) of the ratio
β of trapezium basis.
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Abstract

The application of robust statistical methods to assess the precision (un-
certainty) of the results of interlaboratory comparison test with outliers is pre-
sented. An usual rejection of outlier data reduces the reliability of evaluation,
especially for small samples. And the robust statistical methods take into con-
sideration all data of sample (also outliers). In this paper the use of robust
method "Algorithm S" for evaluation of the precision of interlaboratory mea-
surements is presented and discussed in detail on the numerical example.

Keywords: robust statistics, algorithm S, outlier, interlaboratory compar-
isons, precision, uncertainty.

Introduction

Increasing demands of users and intensifying competition caused by producers and
globalization of the World market led to the need for a comprehensive study of
product parameters. Simultaneously, the interests of customers and suppliers, of-
ten con�icting, appeared during such studies. The principles of mutual recognition
of product quality evaluation results were developed (to assess their compliance with
requirements).

Their use is not possible without a well-functioning independent research lab-
oratories with a high professional level. Mutual recognition of test results can be
based only on the basis of proven technical competence of such laboratories [1], that
is obtained in the process of accreditation. A particularly important role is played
by the accuracy and reliability of test results that allow comparability. To this end,
the laboratory must achieve the appropriate test conditions and maintain them as
immutable. It also must apply a comprehensive modern statistical methods in pro-
cessing the measurement results. Even with a limited set of data, statistical approach
contributes to a better understanding of the course and causes of variability factors
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a�ecting the accuracy and reliability of the results [2] and allow comparability and
compatibility studies [3] which are carried out in di�erent laboratories.

A solution is to carry out the same measurements of homogenous objects in sev-
eral accredited laboratories and to calculate the mean precision of all results. This
interlaboratory comparisons are, in fact, an experimental implementation of a physi-
cal model by speci�c test procedures in certain conditions. This model is created on
the basis of the measurement results obtained in the laboratories of a similar essential
level of competence, which are specialized in a particular type of testing.

1 Test procedure

Quality testing procedures and its implementation a�ect the quality of the results.
When assessing the suitability of the procedure, it is veri�ed the possibility of its
use for the test items that may occur with factors a�ecting them. When applying
the procedure, the obtained results are controlled including ones received on the
basis of participation in joint interlaboratory experiments. Previously, to assess the
parameters of the results it was enough to do an experiment only in one laboratory.
The latest certi�cation rules require transition to other forms such an assessment, in
particular the implementation of the joint experiment in order to more objectively
determine the accuracy.

Depending on the purpose of research, the relevant statistical model analysis of
variance and various types of indicators of accuracy. It is assumed that each mea-
surement y is the sum of three components (in the regulations on testing laboratories
there are other names than in GUM [4]), i.e.:

y = My +B + e, (1)

where:My = µ+ δ - mean value of the measurement results from all laboratories;
δ - component of the correctness of the result, i.e. moving average value (bias)
due to the imperfections of the test procedure; B - validation results component
(under reproducibility conditions); e - random measurement error component (under
repeatability conditions).

The organization of interlaboratory experiment is presented in Fig. 1.

Figure 1: Organization diagram of interlaboratory experiment
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Within-lab variance s2
wi

is separately calculated for the results in each laboratory

s2
wi

=
1

m−1

m∑
j=1

(yij−ȳi) 2. (2)

The estimate of repeatability variance s2
r is a component which expresses repeata-

bility of the scattering of results

s2
r =

1

n

n∑
i=1

s2
wi. (3)

Component σ2
L is the estimate of the between-lab variance which describes a

dispersion of the measurement results for the homogeneous objects in individual
laboratories when the same measuring procedure is used

s2
L =

1

n−1

n∑
i=1

(ȳi−¯̄y) 2. (4)

The estimate of reproducibility variance σ2
R represents the results of the interlab-

oratory test, conducted with the controlled measuring method, according to certi�ed
procedures. It is the sum of variances which de�nes repeatability, for n→∞

σ2
R = σ2

r + σ2
L. (5)

The relationships between these components are given in Fig. 2.

Figure 2: Basic statistical model of the measurement result

Usually, the statistical data analysis is based on the assumption that the scat-
tering of data is normally distributed. It is also the basis for making a decision in
statistical inference. Signi�cant percentage of measurement results in practice can
include data outliers. In particular this concerns the datasets with a small number
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of samples. The reason of outlier values in datasets are: failure of measuring instru-
ments, non-compliance with the principles of an experiment, errors in the estimation
of results, the impact of external factors. Rejecting these data in the calculations can
signi�cantly a�ect accuracy and reliability of the statistical evaluation of research
precision.

The classic parametric evaluation of the experimental results based on normal
distribution as well as the theory of statistical inference are �rmly settled in prac-
tice. Cancellation of this approach would have been inadequate. Thus, a need of
adaptation of the �old� model to the new challenges emerged. It can be realized
by developing such methods of estimation which, under certain conditions, include
�data outliers� or allow su�ciently to assess the parameters of results on the basis of
acquired data. Several methods, named as robust, were developed by Tukey, Huber
and others [5-7]. Some of them are applied in accredited laboratory practice and
interlaboratory comparisons, [11], [14-part 5], [15].

As the example in the robust method proposed by Tukey [7], the basic model
used is not a single normal distribution, but it is mixed from two of them. Tukey
assumed that there are a large number n of measurement data, as accidentally mixed
�good� and �bad� observation xi from a population with a mean value µ, respectively,
with probability (1-ε), where ε is a low number. Both types of observations xi have
di�erent normal distributions, i.e. the �rst - N (µ, σ2) and the second - N (µ, 9σ2),
but with the same mean value µ � Fig. 3.

Figure 3: Joint distributionF (x )=(1- ε)N (µ, σ2)+εN (µ, 9σ2) for ε= 0.2

The standard deviation of the �bad� is 3 times higher than �good�. Assuming that
all values xi are independent, the following joint distribution can be expressed as
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F (x) = (1−ε) · Φ
(
x−µ
σ

)
+ ε · Φ

(
x−µ
3σ

)
. (6)

Among robust methods and algorithms the approach of Huber is widely spread [5]
and is also currently regarded as classical. Huber introduced k value which depended
on the degree of �contamination� of the general population. It de�nes the boundaries
of the central area of the measurement data histogram, i.e. di�erence between the up-
per and lower quartiles modeled by the normal distribution � Fig. 4 [7], [8], [12], [13].
Observations are less common in the lateral areas and in one of the criteria they can
be considered as outliers. In the method IRLS (iteratively reweighted least squares)
extreme observations are subject to winsorizing, i.e. pulling them on the borders of
the central area. It follows a change in the mean value and standard deviation of the
new set of observations, and constriction of the central area. Therefore customizing
the extreme data should be repeated. This process is iterated until changes become
negligible.

The application of this robust method (to assess: the result obtained with a
measurement method, pro�ciency testing for laboratory using small samples of data
and the occurrence of outliers) was presented in [12], [13]. The di�erence between
the average values designated in the interlaboratory study is utilized to assess the
reproducibility of the result. The basis of applied robust algorithms in these works
is high stability of interquartile range (Fig. 4) with the �pollution� reaching up to 50

Figure 4: The inter-quartile range (IQR) and probability density function of a
normal distribution N (µ,σ2).

Some other robust methods are also applied in accredited laboratory practice and
in interlaboratory comparisons and in quality assessment [5-12]. One of them -
Algorithm S, recommended by ISO [14], [15] for the estimation of precision of the
common result in interlaboratory measurements, is analyzed below in detail.

2 The robust method �Algorithm-S�

The implementation condition of this algorithm is that the bias estimate of robust
standard deviation of results from laboratories should be equal to zero. For real
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experimental data at each j -th step of iteration, this assessment is closer to the
standard deviation σ of the normal distribution. Adjustment factor ξ is introduced
to estimate a variance shift. The condition should be provided

E
{

(ξ s∗)2} = σ2, (7)

where:σ - standard deviation of �pure� normal distribution population, ξ - adjust-
ment factor.

Robust standard deviation s∗ should be stable with some probability (1-α) - Fig. 5.

P {s∗ > ησ} = α, (8)

where:η � limit factor, η σ - upper α% point of distribution s∗.
The values of adjustment factor ξ and limit factor η are usually determined for

α = 0.1. It is made by intersecting of cumulative curves of one-modal distributions
near the point where the probability equals 0.9. This approach should be examined
analytically and its e�ectiveness should be assessed. Factor η corresponds to the
upper value (1-α) 100% of distribution describing the scattering of robust standard
deviation s∗. Standard deviation of this distribution may be used to assess the
scattering.

A value χ2
ν, =1−α can be found from Pearson distribution tables [8], [9] and then

limit factor η for which the condition (8) occurs

η2 =
χ2
ν, P=0,1

ν
. (9)

Starting from the relation P (χ2
ω ≤ ν · η2) = 1 − α, for the main part of the

distribution z value corresponding to the value of probability P can be found from
the tables. Adjustment factor ξ for the selected limit factor η, which assures that
robust estimate will not be shifted

ξ =
1√

z + 0.1η2
. (10)

Robust standard deviation s∗j is calculated for the j -th step of iteration. In the
iterative calculation the value s∗j is updated as follows

ψj = η s∗j , (11)

In the ordered series of variances of results from laboratories participating in the
experiment, a median is selected as an initial assessment of the standard deviation
of the predicted normal population

s∗20 = Me(s∗2i ), (12)

where i = 1 .. n - number in an ordered series of laboratories.
Then the laboratory standard deviations are changed according to formula

s∗ij =

{
ψj when si > ψj
si −in other cases

j = 0, 1, ... (13)
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On the basis of the value ψj which is found in the current step, the values of
deviations s∗ij in the dataset are modi�ed and the new values are calculated from

s∗j+1 = ξ

√√√√ n∑
i=1

(s∗ij)
2

n
, (14)

where - s∗ij robust standard deviation in the j -th step of iteration, for the i -th
from n laboratories participating in the experiment.

Robust estimate s∗j+1 is used to establish a new limit ψj+1. Iterative proce-
dure is continued until all standard deviations of the laboratories involved in this
experiment converge within the ranges of current limit. Within-lab variances (3)
s2
w1,...

s2
wi
, ...s2

wnare used in Cochran's C test. The C test evaluates the ratio

Gp =
s2
wi max∑n
i=1 s

2
wi

≤Gkr (α,m, n) . (15)

The estimate of repeatability variance is s2
r = 1

n−1

∑n−1
i=1 s

2
wi
.

Figure 5: Tail probability computed from the F-distribution, Gkr - critical value, α -
signi�cance level, n - number of considered data series, m - number of data points

per data series

Application of Cochran's criteria suggests that the experimental data belongs to
the general normal distribution. However, experience has shown that this assump-
tion is not always ful�lled. In addition, a decrease in the sample size causes that the
statistical reliability of the decision hypothesis is reduced. The type of distribution
of ratio (10), as shown in Fig. 6, suggests that the violation of normally distributed
sample should be considered. If it not considered, the checked hypothesis of equality
of dispersions (uniformity of selective dispersions) can be rejected with a high prob-
ability at violation of normally distributed sample. The standard [11] suggests the
use of Cochran's test for small sample sizes: it must be kept in mind that in such
a situation it can be reliably to distinguish only far enough alternatives when the
variances are signi�cantly di�erent.
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Figure 6: The distribution functions of (10) when the sample observations belong to
di�erent distributions: normal, logistic [17]

3 The application of algorithm-S to evaluate

di�erences between laboratories

Nine laboratories with extensive experience in this type of research were selected
for the experiment. Standard deviation (range) values wi for all laboratories are as
follows:

w 1 = 0.28; w 2 = 0.49; w 3 = 0.40; w 4 = 0.00; w 5 = 0.35; w 6=1.98; w 7 = 0.80;
w 8 = 0.32; w 9 = 0.95.

The variance of the di�erence of m=2 results from the i -th laboratory is s2
i =

w2
i

2
.

The hypothesis of a statistical outlier in a 6th laboratory (value w 6 = 1.98) is
tested using the Cochran's C test [8], [16]

Gp =
1.982

6.1663
= 0.636, Gkr (5%) = 0.638, Gkr (10%) = 0.754.

Gp(w6) < Gkr (5%) and w 5 can be considered as outlier.
For m = 2 adjustment factor ξ and limit factor η are equal to

ξ = 1.097, η = 1.645.

Initial data wiare ordered by valuesand put in column 0 of Table 1 as w∗i0.
In the �rst step of iteration from (12) is: ψ1 = η w∗50≈0.66. Values of

(w∗10, ...w
∗
60) < ψ1. Three values w∗70 > ψ1, w

∗
80 > ψ1, w

∗
90 > ψ1 need to be modi�ed

to value ψ1, as it is in column 1 of Table 1.

The new value of standard deviation is w∗1 = ξ
√

1
9

∑9
i=1 (w∗i1)2 = 0.52.

In the second step of iteration ψ2 = 1.645 · w∗1≈0.86. New values are:
w 72

∗=w 70
∗=0.80, w 82

∗= w 92
∗=ψ2= 0.86 and w∗2 = 0.56.
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In the third step: ψ3 = 1.645·w∗2 = 1.00, w 83
∗=w 80

∗and w 93
∗ = 1.0 as w 90

∗modi�ed

to value ψ3 and w
∗
3 = ξ

√
1
9

∑9
i=1 (w∗i 3)2 = 0.60.

Next values are: ψ4 = 1.645 · w∗3 = 1.09,w∗94 = 1.09, and computed is w∗4 = 0.62,
which is higher than w∗3 only about 3%. Then �nally another changes of w∗j can be
neglected.

Table 1: Example of calculations using algorithm S

Iteration j 0 1 2 3 4 5
ψj - 0.66 0.86 1.00 1.09 1.12
w1
∗ 0.00

w2
∗ 0.28

w3
∗ 0.32

w4
∗ 0.35

w5
∗ 0.40

w6
∗ 0.49

w7
∗ 0.80 0.66 0.80

w8
∗ 0.95 0.66 0.86 0.95

w9
∗ 1.98 0.66 0.86 1.00 1.09 1.12

St.Dev. wj
∗ 0.83 0.47 0.56 0.60 0.62

Final processed values of general standard deviations of interlaboratory experi-
ment are:

1. for all initial values wi w
∗
0 (n = 9) = 0.83,

2. with rejection w 9 as outlier w
∗ (n = 8) = 0.53,

3. by robust method w∗rob (n = 9) = 0.68.

Referring to Tab. 1 it is supposed that w∗9 can take values greater than 1.98.
Studies have shown that in this case for α =0.1 the robust deviation w∗robwould
change its value only in the third decimal place.

Conclusions

The method of determining precision of a measurement method is brie�y presented.
If the full model is not known then tests are conducted on homogeneous objects by the
same procedure in several laboratories with similar competencies. It can be assumed
that the scattering is modeled by random variable with normal distribution. On the
basis of the results of this research a statistical model is created and its accuracy is
determined. In practice the outliers in results may occur. Rejection of them from
further processing, when there is a small number of experi-mentally acquired data,
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diminishes the credibility of the assessment. Thus a robust statistical method should
be applied.

The evaluation of precision of results, using the same method for homogeneous
objects in nine laboratories, was presented. By traditional calculations, the estimate
of the standard deviation was achieved 1.5 times higher without rejection of outlier
in comparison to one with rejection of outlier. In turn, after using of robust method
�Algorithm S� a value close to the lower of them was received, and with greater
reliability.
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Abstract

In many practical situations, we only know the upper bound ∆ on the
measurement error. It means, that the precise measurement is located on the
interval (x−∆, x+∆). In other words, the data can be represented as a sample
of interval observations. This paper is devoted to the problems of estimation of
distribution parameters and testing goodness-of-�t with interval data. At �rst,
we have compared the properties of maximum likelihood estimates (MLEs) with
complete and interval data. Then, the modi�cations of Kolmogorov, Cramer-
von Mises-Smirnov and Anderson-Darling statistics for testing goodness-of-�t
have been proposed for interval data. The power of these tests has been inves-
tigated for complete and interval data.

Keywords: interval data, maximum likelihood estimates, Monte Carlo
method, Kolmogorov test, Cramer-von Mises-Smirnov test, Anderson-Darling
test.

Introduction

The development of statistical methods for the analysis of interval data is a promising
area of research in the �eld of applied mathematical statistics. The nature of interval
data is various. For example, obtained observations can be considered as intervals
of �xed length due to the measurement errors. In marketing research, observations
obtained from the survey of a target group of consumers are usually interval. In
reliability and survival analysis, lifetime data are often interval-censored.

The basis of interval data analysis was initially laid by the measurement theory in
metrology, where an interval uncertainty is introduced naturally. It is expected, that
every observation is a value measured by an instrument with absolute error ∆. Thus,
if the precise value of an observed response is ẋ, measurement error is e ∈ [−∆,∆],
then the measurement is equal to x = ẋ + e. In this case, we deal with a usual
complete sample Xn = {X1, ..., Xn}. On the other hand, the measurement can be
represented as an interval (x − ∆, x + ∆) = (L,R). In this case, for the sample of
observations we obtain an interval sample of the form

In = {(L1, R1), ..., (Ln, Rn)}.

1This research has been supported by the Russian Ministry of Education and Science (project
2.541.2014K).
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Interval observations are considered in many publications, see for example [4] -
[10], [12]. In these papers, the reasonability of constructing new mathematical and
statistical models, according to which observations are not numbers but intervals,
was shown.

On the one hand, the transformation of complete observations (measurements) to
intervals is associated with the loss of information and, as a result, with the decrease
of accuracy of distribution parameters estimation. On the other hand, when the
distribution of measurement errors Fe(t) is unknown, the properties of parameter
estimates by interval data, in theory, should not be sensitive to this distribution.
This should distinguish this case from complete data, for which the estimates of
distribution parameters can be biased in the case of asymmetric distribution Fe(t).

In this paper, we investigate the statistical properties of MLEs of distribution
parameters for interval samples. New goodness-of-�t tests for simple and composite
hypotheses for interval data are proposed. The investigation of statistics distributions
and the power of proposed tests are carried out using statistical simulations. All
results for interval samples are compared with similar results for complete samples.

1 Maximum-likelihood method

Let us assume, that random variables ẋ1, ..., ẋn have the parametric distribution
F (t; θ). The maximum likelihood method was chosen to estimate parameter θ. This
method is based on maximization of the likelihood function

L(In; θ) =
n∏
i=1

(F (Ri; θ)− F (Li; θ)) .

Then, the MLE of distribution parameter is

θ̂ = arg max
θ∈Θ

lnL(In; θ).

To compare the accuracy of the parameter estimates by complete and interval sam-
ples, we simulated complete and interval samples in accordance with the given dis-
tributions F (t) and Fe(t). Interval samples, in which each element is an interval of
length 2∆, were generated according to the following algorithm:

1. Generate an observation ẋ from the distribution F (t).

2. Generate a measurement error e from the distribution Fe(t).

3. Obtain the interval observation:

(L,R) = (ẋ+ e−∆, ẋ+ e+ ∆).

4. Repeat 1-3 n times, thus forming an interval sample (L1, R1), ..., (Ln, Rn).
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Table 1: The properties of MLEs of distribution parameters for complete and
interval data

Fe(t)-Uniform Fe(t)-Exponential
n Xn In Xn In
50 4.949 4.949 4.932 4.932
100 4.949 4.949 4.934 4.934

Mθ̂1 200 4.949 4.949 4.934 4.934
300 4.951 4.951 4.934 4.934
500 4.950 4.951 4.934 4.934
50 0.986 0.984 0.986 0.984
100 0.993 0.991 0.993 0.992

Mθ̂2 200 0.996 0.995 0.997 0.996
300 0.998 0.996 0.996 0.996
500 0.999 0.998 0.999 0.997
50 2.3E-04 2.3E-04 2.5E-04 2.5E-04
100 6.4E-05 6.5E-05 7.4E-05 7.5E-05

det Cov
(
θ̂1, θ̂2

)
200 1.9E-05 1.9E-05 2.3E-05 2.38E-05

300 9.7E-06 9.7E-06 1.3E-05 1.3E-05
500 4.5E-06 4.5E-06 6.4E-06 6.5E-06

The normal distribution with the density function

f(t) =
1√

2πθ2

e
(t−θ1)

2

θ22

and parameters θ1 = 5, θ2 = 1 was considered as the distribution F (t). As the
distribution of measurement errors, we used the uniform distribution on the interval
[-0.1, 0.1] and the right truncated at point 0.1 exponential distribution with the
density function

fe(t) =


1

0.0333
e−

t
0.0333 , t ≥ −0.1,

0, t < −0.1.

Unknown parameters of the normal distribution were estimated by maximum like-
lihood method. We simulated N = 20000 samples of size n = 50, 100, 200, 300, 500.
Table 1 represents the mean values for MLEs of parameters θ1 and θ2 as well as the

determinant of covariance matrix det Cov
(
θ̂1, θ̂2

)
for samples Xn and In.

As can be seen from Table 1, the properties of MLEs of normal distribution
parameters by complete and interval samples are almost identical, but the mean
values of estimates by complete samples are closer to the true parameter values than
the corresponding estimates for interval samples. As it was expected, in the case of
exponential distribution of measurement errors the MLEs of parameters by complete
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samples are biased. However, the assumption, that the MLEs of parameters by
interval data are not sensitive to the distribution of measurement errors, was not
con�rmed.

2 Goodness-of-�t tests for interval data

The problem of testing a composite goodness-of-�t hypothesis

H0 : F (t) ∈ {F0(t; θ), θ ∈ Θ}

with an interval sample can be solved similarly to the case of complete data. The
di�erence is in the calculation of nonparametric estimate of the distribution function
F (t). In this case, the test statistic of the Kolmogorov type is calculated as follows:

Dn = sup
0<t<τm

∣∣∣F̂n(t)− F0(t, θ̂)
∣∣∣ ,

the statistic of Cramer-von Mises-Smirnov type test is de�ned as:

Sω2 =

τm∫
0

(
F̂n(t)− F0(t, θ̂)

)2

dF0(t, θ̂),

and the statistic of Anderson-Darling type test has the form:

SΩ2 =

τm∫
0

(
F̂n(t)− F0(t, θ̂)

)2 dF0(t, θ̂)

F0(t, θ̂)
(

1− F0(t, θ̂)
) ,

where F̂n(t) is the nonparametric estimate of the distribution function by interval
data, which is calculated using the ICM-algorithm [1, 2, 3, 11], 0 = τ0 < τ1 < ... < τm
is a sequence of points, which consists of all non-recurring ordered boundary points
Li and Ri, i = 1, n. The hypothesis H0 is rejected for large values of these statistics.
The analytical form of the distributions of considered statistics under the true null
hypothesis is unknown. However, the signi�cance level achieved (p-value) can be
estimated using Monte-Carlo simulations. To investigate the power of the proposed
goodness-of-�t tests for complete and interval samples, we consider a pair of close
competing hypotheses:

H0 : the normal distribution against
H1 : the logistic distribution with the density function

f(t) = e
− (t−θ1)

θ2

/
θ2

(
1 + e

− (t−θ1)
θ2

)2

, θ1 = 5, θ2 =

√
3

π
.

The estimates of the power calculated for the signi�cance level α = 0.1 are given
in Table 2 in the case of uniform distribution of measurement errors and in Table 3 in
the case of exponential distribution of measurement errors. We simulated N = 20000
samples of size n = 50, 100, 200, 300, 500.

127



Monte Carlo method in problems of Applied Statistics

Table 2: The power of tests in the case of uniform distribution of measurement
errors

Dn Sω2 SΩ2

n Xn In Xn In Xn In
50 0.181 0.175 0.210 0.213 0.239 0.235
100 0.234 0.215 0.286 0.293 0.326 0.318
200 0.356 0.306 0.453 0.459 0.498 0.496
300 0.454 0.363 0.578 0.578 0.675 0.621
500 0.647 0.504 0.780 0.779 0.887 0.819

Table 3: The power of tests in the case of exponential distribution of measurement
errors

Dn Sω2 SΩ2

n Xn In Xn In Xn In
50 0.176 0.169 0.207 0.209 0.231 0.225
100 0.239 0.224 0.285 0.291 0.326 0.318
200 0.352 0.292 0.448 0.457 0.502 0.497
300 0.463 0.373 0.586 0.587 0.640 0.631
500 0.651 0.515 0.779 0.779 0.896 0.821

As can be seen from Tables 2 and 3, the power of all considered tests is higher for
complete samples. The most powerful test among considered tests is the Anderson-
Darling type test for both complete and interval samples. It is interesting to note, that
the power of the Cramer-von Mises-Smirnov type test for interval data practically do
not yield to the power of this test for complete data.

Conclusion

In the case, when the measurement error is known, the data obtained at the experi-
ment can be considered as a sample of interval observations. In this paper, we have
compared the properties of MLEs of distribution parameters for complete and inter-
val data. It has been shown, that the precision of estimates by complete and interval
data is almost the same.

In this paper, we have proposed the modi�cations of the Kolmogorov, Cramer-von
Mises-Smirnov and Anderson-Darling type goodness-of-�t tests for interval data. The
application of these tests in practice is based on the usage of Monte-Carlo simulations.
The power of the proposed goodness-of-�t tests for interval data for all considered
distributions of measurement errors is insigni�cantly less than the power of similar
tests for complete data.

So, it is possible to conclude that under such problem de�nition, the consideration
of data with measurement errors as an interval sample is not advisable.
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Abstract

In this paper, the usefulness of L-distance between the investigated probability
densities and their sample approximates is demonstrated.
Keywords: L-distance, random sample, probability density estimation, Monte
Carlo simulation.

1 Introduction

A well-known method to test the hypothesis that the elements of the random sample
SN = {η1, . . . , ηN} have the probability distribution with p.d.f.1 p(x), a < x < b
needs the calculation of the criterion

χ2 =
m∑
i=1

(N · Pi −mi)
2

N · Pi
. (1)

The sum in (1) can be represented in the other form. For this objective, on the grid
Xm = {x0 = 0 < x1 < . . . < xm−1 < xm = b} the variables hi = xi−xi−1 and the sets
∆i = {xi−1 < x < xi} are de�ned. The piecewise constant p.d.d.f.(χ(x|Y ) = 1 if x ∈
Y, and = 0 otherwise)

p̂g(x) =
m∑
i=1

Pi
hi
χ(x|∆i), (2)

where Pi =
∫ b
a
p(x)χ(x|∆i)dx =< p(x)χ(x|∆i) > gives the Galerkin approximation

of the p.d.d.f. p(x). This approximation has the form p̂(x) =
∑m

i=1 ciχ(x|∆i), where
the coe�cients {ci} are obtained from the equations

< [p(x)−
∑
j

cjχ(x|∆j)] · χ(x|∆i) >= 0, i = 1, . . . ,m.

These equations have the solution ci = bi/hi = Pi/hi. The values of bi =< χ(x|∆i)p(x) >
can also be estimated over a random sample SN as b̄i =

∑N
j=1 χ(ηj|∆i)/N . This gives

a random piecewise constant p.d.d.f.

pPC =
m∑
i=1

mi

Nhi
χ(x|∆i) =

m∑
i=1

c̄iχ(x|∆i). (3)

1p.d.d.f. - probability distribution density function(s),
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Criterion (1) can be written as L2-distance between densities (2) and (3) with the
piecewise constant weight function WPC(x) =

∑m
i=1 Wiχ(x|∆i)

L2 =

∫ b

a

WPC(x)(p̂g(x)− pPC(x))2 =
m∑
i=1

hiWi(
Pi
hi
− mi

Nhi
)2.

The choice of the weight values Wi = Nhi/Pi transforms L2 to criterion (1).

2 L - distance between densities

There is another measure of the distance between the densities p(x) and
p̂g(x) =

∑m
i=1 ciχ(x|∆i)

Lg =

∫ b

a

|p̂(x)− p(x)|dx =
m∑
i=1

hi

∫ 1

0

|ci − p(xi−1 + hit)|dt =
m∑
i=1

hiIi.

The use of L-distance for estimation of the probability density was investigated in [1].
The value of L-distance can be calculated using the the compound Gauss quadrature.
For its application every t-integral Ii =

∫ 1

0
g(t)dt is represented as the sum of n

subintegrals (ht = 1/n, tl−1 = ht(l − 1), t = tl−1 + ht · s )

Ii = ht

n∑
l=1

∫ 1

0

g(xi−1 + hi(tl−1 + hts))ds ≈
ht
2

n∑
l=1

2∑
k=1

g(xi−1 + hi(tl−1 + htX
(2)
k )).

Here X
(2)
1,2 = (1∓

√
3/3)/2 are the knots of the two-point Gauss quadrature.

The computer experiments have shown that Lg is very near to a minimum value
Lmin = mind ||

∑m
i=1 diχ(x|∆i)− p(x)||. This means that a predominant part of ran-

dom L-distances Lest = ||pPC(x) − p(x)|| will be greater then a Lg. If standard
methods for the generation of random variates with p.d.d.f. p(x)( see, for example,
[3]) do not give an e�ective simulation algorithm, it is possible to use the approxima-
tion of p(x) [4]. Suppose we have constructed the piecewise constant approximation
of p(x) on the uniform grid XM , M > m with the error Lapr ≤ δ · Lg, where δ � 1.
Then the use of this p.d.d.f. for the generation of the new test samples S̄N gives the
values of the random distances Lest(S̄N) ≤ (1 + δ)Lest(SN).

For the approximation of the parametric p.d.d.f. p(x|θ), θ = (θ1, . . . , θK) the ran-
dom estimates θ̄(SN) are calculated over the initial sample SN . Then the approxima-
tion of the p.d.d.f. p(x|θ̄) by p̂M(x|θ̄))2 is used for the generation of the new arti�cial

samples S(1)
N , . . . ,S(K)

N . UsingK random distances Lk = ||p̂M(x|θ̄(SN))−p(x|θ̄(S(k)
N ))||

it appears possible to approximation p.d.d.f. p(L) by the histogram with n intervals
p(L). Then for the given α(= 0.1, 0.2) the quantile Lα can be calculated. The ap-
proximation p̂M is adopted if Lapr = ||p̂M(x|θ̄)) − p(x|θ̄)|| ≤ δ · Lα. Otherwise the

2For the piecewise constant or piecewise linear approximation M is the number of the grid
intervals.
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procedures repeated with increasing M until success has been achieved.
For the kernel estimation we need to simulate a random variate with the sample

p.d.d.f. p̄(x) = (
∑N

j=1 K(x, ηj)/N . It is possible to choose the kernel density with an
e�ective simulation algorithm. For example, the triangle kernel K(x, y) = 1 − (x −
y)/h, for|x− y| ≤ h, otherwise = 0 has the simulation algorithm ξ := y + h(U1 −U2),
where U1, U2 are independent random variates uniformly distributed on (0, 1).

3 Computer experiments

3.1 Non-parametric density estimation

1. The test p.d.d.f. is p(x) = 6x(1 − x), 0 ≤ x ≤ 1. The distribution function is
F (x) = x2(3− 2x).
The Galerkin approximation on the uniform grid with m = 10 has Lg = 7.51e − 2.
The random variate η ∼ p(x)3 was generated by the inversion method: the equation
F (η) = U was solved by the Newton iteration method with the relative accuracy
1.0e-6. Hundred random samples S100 were generated. For every sample, the function
pPC(x) was constructed on the uniform grid X10 and the distance L = ||pPC(x)−p(x)||
was calculated. Then for the sample L1, . . . , L100 the histogram with 10 intervals was
constructed. It is presented in the Figure 1. The following extremum values were
obtained for L-sample: Lmin = 1.23e − 1, Lmax = 4.25e − 1. The estimates of the
quantiles are equal to L0.1 = 0.17, L0.2 = 0.20.

Figure 1: Sample estimation of p(L) for pPC(x).

The same experiments were carried out for the piecewise linear approximations
of the test p.d.d.f. which have the form p̂(x) =

∑m
j=0 cjφj(x). Here {φj(x)}mj=0 are

the basic functions of the piecewise linear approximation [4]. As for the piecewise

3The symbol "∼" means "has p.d.d.f.".
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constant case, the coe�cients {cj}mj=0 are de�ned from the orthogonality conditions:
for i = 0, . . . ,m < [

∑m
j=0 cjφj(x)− p(x)] ·φi(x) >= 0. This gives the system of linear

algebraic equations A · c = b, where the matrix A = {ai,j =< φi(x)φj(x) >}mi,j=0

and b = {bi =< p(x)φi(x) >. If the source vector b is calculated by the quadrature
formula, the solution of the system gives the non-stochastic Galerkin approximation
p

(PL)
g (x). It was calculated form = 10 and L-distance L

(PL)
g = 3.84e−3 was obtained.

The components of the source vector were also estimated over a random sample with
N = 1000 as b̄i = 1

N

∑N
k=1 φi(ηk), ηk ∼ p(x) = 6x(1 − x). The L-distance between

p(x) and its random estimate pPL(x) equals Lest = 3.15e− 2.
Hundred realizations of the random L-distance were obtained by the simulation

of samples S100 from the test distribution with p.d.d.f. p(x) = 6x(1 − x). Then the
histogram with 10 intervals was calculated. It is shown in the Figure 2. The limiting

Figure 2: Sample estimation of p(L) for pPL(x).

values are Lmin = 0.12, Lmax = 0.41. The estimates of the quantiles are equal to
L0.1 = 0.16, L0.2 = 0.19.

The test p.d.d.f. p(x) = 6x(1 − x) has the e�ective direct simulation algorithm.
Suppose, that one has to use the approximation of the test probability density with
the relative error δ = 1.0e − 2. To this end, it is needed to use the approximations
of the test p.d.d.f. with L-distance L ≤ Lerr = δ · Lg. The Galerkin piecewise
approximation with 10 intervals has Lg = 7.5e − 2, and therefore Lerr = 7.5e − 4.
This error can be obtained for the piecewise constant approximation with m = 1000
intervals (Lg = 7.5e − 4) or for the piecewise linear approximation with m = 40
intervals (Lg = 2.4e− 4).

3.2 Parametric density estimation

In the case of the parametric density estimation the investigated p.d.f has the form p =
p(x|θ1, . . . , θK). Using the sample SN the parameter estimates θ̄1(SN), . . . , θ̄K(SN)
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are obtained. The p.d.d.f. p(x|θ̄1, . . . , θ̄K) is then used in the statistical simulation.
The error of this approximation is LS = ||p(x|θ̄1, . . . , θ̄K) − p(x|θ1, . . . , θK)||. The
fast algorithm for the simulation of the random variates with p.d.d.f. p(x|θ̄1, . . . , θ̄K)
can be obtained by its approximation ( see [4]). If p̂(x) is the approximation of
p(x|θ̄1, . . . , θ̄K) with L-error Lapr = ||p̂(x) − p(x|θ̄1, . . . , θ̄K)|| ≤ δ · LS, then L =
||p̂(x)− p(x|θ1, . . . , θK) ≤ (1 + δ)LS.

A well-known example gives the normal p.d.d.f.

N (x|µ, σ2) = exp(−(x− µ)2/(2σ2))/
√

2πσ2, −∞ < x < +∞.

The sample estimates x̄ =
∑N

j=1 ηj and s
2 =

∑N
j=1(ηj − x̄)2/(N − 1) are independent

random variables. They are distributed as x̄ ∼ N (x|µ, σ2/N) and s2 ∼ σ2χ2
N−1/(N−

1). For the sample S40 of the normal random variates with µ = 1, σ = 2 the following
estimates were obtained: x̄ = 0.931, s = 1.93. The L-distance between densities is
equal to LS(x̄, s) = 4.20e− 2. Then 100 random values of LS for S40 were generated,
using the following simulation algorithm:

1. Obtain two standard normal variates by transformation
ξ1 :=

√
−2 ln(U1) cos(2πU2), ξ2 :=

√
−2 ln(U1) sin(2πU2),

2. Calculate x̄ := µ+ σ√
N
ξ1, s := σ√

2(N−1)
[
√

2N − 3 + ξ2],

3. Calculate LS = ||N (x̄, s2)−N (µ, σ2)||.

The histogram with ten intervals for the obtained sample of random L-values is
shown in the Figure 3.

Figure 3: Sample estimation of p(L) for N (x|x̄, s2).

The estimates of the quantiles are equal to L0.1 = 7.5e− 2, L0.2 = 1.3e− 1.
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4 Summary

The main conclusions of the present paper can be summarized as follows:
(1) The L-distance can be used in the problems of the probability densities estimation
over the random samples.
(2) The estimates of the L-distance can be used for creating the e�ective computer
algorithms for the simulation of the random variates.
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Abstract

This article covers several approaches to a problem of classi�cation of multi-
dimensional observation sequences described by Hidden Markov Models (HMM).
It was shown that the method based on derivatives of likelihood function loga-
rithm with respect to HMM parameters is e�ective when competing classes are
similar in some way. This paper continues work of our previous articles, where
we were doing research over one-dimensional observation sequences described
by HMM [1], [2], [3], [4] and multidimensional observation sequences described
by HMM [5], [6].

Keywords: Hidden Markov Model, classi�cation of sequences, derivatives.

Introduction

HMM conception was developed in 60s � 70s of 20th century independently by several
researchers (T.K. Vintsiuk [7], V.A. Kovalevsky [8] and L.E. Baum [9]). Sequences
classi�cation usually presents no di�culties when competing models are distinguish-
able enough (by probability). In that case, traditionally one would use a method
based on likelihood criteria. However, classi�cation results become spurious when
competing models are similar, i.e. belonging of some sequence to any of competing
HMMs becomes equally probable. Such situation usually occurs when observations
are distorted which also makes them hard to distinct or when real world objects or
processes are actually similar to each other in parameters and inner structure, which
leads to similar observations, produced by them. Thus, it is necessary to use di�er-
ent approaches, which would improve HMM capabilities of distinguishing the similar
alternatives. There are two approaches to that problem. First makes use of methods
that work with actual model: either change structure of used models (see, e.g. works
of V. Alexandrov [10], R. M. Neal [11]) or use other methods of model parameters
estimation (C.J. Walder [12], S. Ikbal [13], G.D. Zhou [14]) or combines those two
methods (C. Liu [15], S.P. Chatzis [16]). In other words, methods of �rst group are
oriented on more accurate description of object or process of interest. Second ap-
proach allows changing the decision rule by getting some information from models
and using it for classi�cation. For example by transition into a space of secondary at-
tributes, (see works of R. Solera-Urena [17], Ch. Ling [18], O. Aran [19]) followed by
classi�cation with the use of support vector machine. Second approach seems more
perspective to us, because there is a particular freedom both in choosing of attribute
space of classi�cation and in choosing of actual classi�er. This paper covers classi�-
cation of multidimensional sequences described by HMM in space of derivatives with
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respect to HMM parameters. We shall note that earlier works by other authors who
used such spaces were dedicated to classi�cation of one-dimensional sequences only.

1 Hidden Markov Models

Hidden Markov process represents a mathematical model that is a two-component
random process (X, Y ) with hidden component Y and observable componentX where
random processX is Markov random process [20]. HMM is a particular case of hidden
Markov process when X is Markov chain with �nite set of states, which is described
by a transition probabilities matrix. Current state of Markov chain qt is interpreted
as a hidden state of data source (object of interest) and moments of state changing
� as discrete events that occur on development of object of interest. The sequence of
hidden states modelled by such chain (i.e. realization of random process) is denoted
as Q = {q1, q2, ..., qT}, where T is the length of observation sequence. Random process
Y is real-valued (yt ∈ R) random process of �nite order (i.e. the density of transition
into a new state probability depends not only on one but on several previous states)
with discontinuous probability properties. Sequence O = {o1, o2, ..., oT} is a sequence
of observation states (i.e. realization of random process). Random process Y by
conditional probability P (ot | qt = si). Thus, HMM can be fully described by the
following parameters:

1) initial state distribution Π = {πj}, j = 1, N , where πj = P (q1 = ot); set of
hidden states S = {s1, s2, ..., sN} , N � number of hidden states in model;

2) state transition probabilities matrix A = {aij}, i, j = 1, N , where
aij = P (qt = sj | qt−1 = si);

3) probability density function of observation symbols B = {bi(t)} , where bi(t)
are density functions of conditional probabilities P (ot | qt = si), ot � element from
observation sequence that was observed at time t = 1, T .

This article covers case when conditional probability densities of observable sym-
bols are mixtures of probability distributions:

bi(t) =

Mi∑
m=1

τimg(ot; Θim), (1)

where τim is a weight of m-th component of mixture in i-th hidden state, Mi �
number of components in mixture for hidden state of si . Let us suppose that in (1)
the number of components for all hidden states are equal toM . This paper also deals
with the case when a mixture of normal distributions describes probability density
functions and observations are Z-dimensional. Thus, probability density function is
of following form:

g(ot;µim,Σim) = (2π)−0.5Z
∣∣∣Σim

∣∣∣−0.5

exp−0.5(ot−µim)Σ−1
im(ot−µim)T ,

where µim and Σim parameters are mean and covariance matrix respectively for m-th
component of mixture for i-th hidden state i = 1, N , m = 1,M .
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Thus, HMM is de�ned by non-observable (hidden) Markov chain, probability
distribution of observation symbols and initial state distribution: λ = (A,B,Π).

1.1 Classi�cation of sequences produced by HMM

Let us de�ne a problem of two-class classi�cation. We have two groups of training
sequences: �rst group was generated by HMM λ1 and second � by HMM λ2. It
is assumed that generation HMMs di�er from each other by parameters. Having
unknown model parameters λ1 and λ2, we �rst estimate them (for example, with the
use of Baum-Welch algorithm), and then classify some sequence O with the following
decision rule:

λ = arg max
i=1,2

(lnP (O | λi)) ,

where P (O | λi) � function of likelihood that sequence O was generated by model λi
.

Usually, there occurs no problem if competing HMMs considerably di�er by λ1

and λ2 parameters. For similar models the percent of correctly classi�ed sequences
may decrease to 50% level, i.e. models become indistinguishable. We shall name that
method as �traditional�.

As an addition to the traditional HMM classi�cation method we see the method
mentioned above as the most convenient and prospective in means of improving
HMMs discriminative abilities. It provides both some freedom in choosing the at-
tributes space for classi�cation and classi�er itself. We will use space of derivatives
of likelihood function logarithm with the respect to HMM parameters. Thus, char-
acteristic vector for some sequence O will be of following block form:

V =

(
∂lnP (O | λ1)

∂µ

∣∣∣
λ̂1

∂lnP (O | λ2)

∂µ

∣∣∣
λ̂2

)T
,

where derivative from likelihood function logarithm is taken with the respect to some
HMM parameter µ. It is calculated for �rst block with estimated parameters λ̂1 of
�rst model and for second block with estimated parameters λ̂2 of second (competing)
model. As classi�er we will use support vector machine.

1.2 Selection of attributes information subspace

Usually researcher does not know what attributes causes the di�erence between mod-
els (transition matrixes or means), so it is important to choose attributes that will
provide the best classi�cation. Apart from that, sometimes models di�er in large
quantity of attributes, but not every such di�erence is informative. Therefore, it is
important to choose information subspace of attributes, which would provide the best
classi�cation at the lowest cost (i.e. which includes the lowest number of attributes).

One of the key features of method that solves the problem is the criterion of
attributes subspace informativity. The criterion can be direct and indirect.
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Direct methods are based on cross-validation technique. Classi�ed sample is ran-
domly divided into training and testing parts. Training part is used to build the de-
cision rule and testing part is classi�ed with that rule. Keeping in mind the number
of incorrect classi�cation, the procedure is repeated with other training and testing
parts. After several repetitions, the number of incorrections are summed up. The
lower the sum is the better is the informativity of subsystem. Indirect methods are
based on the evaluation of patterns distribution attributes. Thus, for normal distri-
bution the Fisher information is a good criterion. The higher the distance between
means of patterns is and the lower the variances of patterns are, the more information
we can extract. Direct method is more resource consuming but it is believed that it
gives more accurate estimation of recognition quality. That is why we have chosen the
direct method of information subspace extraction, which is based on direct criteria
AdDel [21]. AdDel algorithm is the combination of two simpler algorithms Add and
Del.

Add algorithm (Addition). Suppose we have a N -dimensional attributes space
and we need to choose attributes that are the most su�cient for classi�cation. All
N attributes are checked for informativity and the attribute, which produced the
lowest number of incorrect recognitions, is added to information subsystem. Later it
is added by all N − 1 attributes. Resulted two-dimensional spaces are used to count
the wrong classi�cations (i.e. now we build a classi�cation based on two attributes).
The most informative pair of attributes is chosen. This process continues until we
get a system of n attributes.

Del algorithm (Deletion). Suppose we have a N -dimensional attributes space and
we need to choose n attributes that are the most su�cient for classi�cation. We shall
evaluate a classi�cation error when using all attributes. Then we shall step-by-step
delete each attribute from that system. The attribute which deletion gives the lowest
classi�cation error shall be chosen to be excluded from system.This process continues
until we get a system of n attributes.

Relaxation AdDel algorithm. Suppose we have a N -dimensional attributes space
and we need to choose n attributes that are the most su�cient for classi�cation.
With the help of Add algorithm, attributes space (initially empty) is added by most
informative n1 attributes. Then with the help of Del algorithm, n2 < n1 attributes
are excluded from it. Thus, one step increases attributes space by n2−n1 attributes.
This process continues until we get a system of n attributes.

2 Simulation results

We will now present the e�ectiveness of classi�er that is based on method that uses
space of derivatives of likelihood function logarithm with respect to HMM parameters.
The most informative space in our research was constructed by AdDel algorithm.
In addition, we compared e�ectiveness of this method and traditional one (based
on likelihood function logarithm). Also, e�ectiveness of classi�er that is based on
method that uses space of derivatives of likelihood function logarithm with respect
to HMM parameters without constructing the most informative attributes space. In
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that case, classi�cation is made in space of derivatives of likelihood function logarithm
with respect to HMM parameters, where the di�erence between models is included.

All simulations described below were conducted with following parameters: num-
ber of hidden states N = 3, dimensionality of observations Z = 3, number of com-
ponents in mixture of Gaussian distributions M = 3, number of training sequences
K = 100 and sequences length T = 100 . We de�ned parameters of competing
models and di�erences between them with the use of additional parameter of models
proximity dA as follows:

A =

0.1 + dA 0.7− dA 0.2
0.2 0.2 + dA 0.6− dA

0.8− dA 0.1 0.1 + dA

 .

For model λ1 proximity parameter was de�ned to 0, and for model λ2 di�erence from
model λ1 was expressed through additional proximity parameter dA.

AlDel algorithm modi�cation of derivatives method require several attributes that
can be included into information subspace. Thus, we will map corresponding at-
tributes to numbers below:

Aλ1 : 1−9, Aλ2 : 130−138;µλ1 : 10−36, µλ2 : 139−165; Σλ1 : 37−117,Σλ2 : 166−246;

πλ1 : 118− 120, πλ2 : 247− 249; τλ1 : 121− 129, τλ2 : 250− 258.

For example, the �rst element of characteristic vector V will be a derivative of
likelihood function logarithm with respect to a11 element of transition probabilities
matrix that was calculated with estimated parameters of λ1 model. One hundred and
thirtieth element of characteristic vector V will be a derivative of likelihood function
logarithm with respect to a11 element of transition probabilities matrix that was
calculated with estimated parameters of λ2 model. For AdDel algorithm, the values
of n1 = 2, n2 = 1 were chosen on bending of quality curve (i.e. we chose value, after
which the informativity of algorithm work stopped changing). Therefore, result tables
were �lled with the optimal number of attributes. The simulation was carried out,
where competing models di�ered only in elements of transition probabilities matrix
A. Results are shown in Table 1.

Results show us that method based on derivatives is still more e�ective than tra-
ditional ant its AdDel modi�cation is even more e�ective: the advantage is up to
5% more of correctly classi�ed sequences with dA = 0.05. In addition, we must note
that resulted information subspace consists not only of attributes that are di�erent
in reality: derivatives with respect to covariance matrix elements and to initial state
distribution elements (for example, when dA = 0.2). The results presented above
show that AdDel algorithm, used for choosing the attributes information space, in
addition to derivatives method work quite well for classi�cation of sequences, which
were generated by models that di�er in various parameters. At the same time, its
usage improves the e�ectiveness of this classi�cation method. In addition, combina-
tion of this method and AdDel algorithm proved to be resistant to disturbances in
observation sequences. In some cases, the combination classi�ed correctly up to 30%
more sequences compared to traditional method.
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Table 1: Dependence of the percents of correctly classi�ed sequences and numbers
of attributes on additional parameter of models proximity dA

Percent of correctly
Percent of correctly Percent of correctly classi�ed sequences Numbers chosen
classi�ed sequences classi�ed sequences with the use for the highest

dA with the use with the use of method based informativity
of traditional method of method based on derivatives of attributes

on derivatives (with the use
of AdDel algorithm)

0.01 53.5 56.5 66.5 91-99 251 121
247 125 2

0.03 53.0 66.0 71.5 7 131 148-150
109-117 10-12

184-192
0.05 65.5 73.5 79.5 131 7 9

100-108 121
123 16-18

0.1 84.0 87.5 91.0 134 135 138
148-150 1 130

0.2 96.5 97.0 99.5 1 5 7 135
55-63 82-90 118

3 Conclusions

In this paper, we described the new approach for classi�cation of multidimensional
sequences, which is based on HMM. Simulations showed that its e�ectiveness is pre-
served even if dimensionality of observations is increased. This approach proved to
be signi�cantly better for similar models (no matter in what parameters they dif-
fered), especially when AdDel algorithm was used for choosing of attributes space.
Thus, this work open up new perspectives for classi�cation of multidimensional se-
quences generated by Hidden Markov Models, which have many practical imple-
mentations. Classi�cation of multidimensional sequences proved especially e�ective
compared to traditional classi�cation method in several cases. For example, when
observation sequence was disturbed by probabilistic noise (with probability P = 0.1,
ε � Cauchy(0, 0.5)) and competing models were di�erent in transition probabilities
matrix with dA = 0.1 this method provided 88% of correctly classi�ed sequences
compared to 62% for traditional classi�cation. As to its AdDel modi�cation � it
provided 91.5% correctly classi�ed sequences (and only 7 attributes were needed for
this). To sum up, we can say that method, based on derivatives of likelihood function
logarithm with respect to HMM parameters, modi�ed by AdDel algorithm, showed
exceptional results and is a very perspective method for classi�cation of multidimen-
sional sequences, described by hidden Markov models, in case of di�erences in any of
parameters and in case of disturbed multidimensional sequences.
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Abstract

This paper is an extension of [1], where a new decisive algorithm was pro-
posed. In its operation, the unit resembles arti�cial neural networks. However,
the functioning of the algorithm proposed is based on di�erent concepts. It
does not use the concept of a net or a neuron. The theorem of learning for the
new competition algorithm is proved.

Keywords: theorem of learning, probabilistic convergence, arti�cial neural
network.

Introduction

Creation of arti�cial systems of pattern recognition remains a di�cult theoretical and
engineering problem. The necessity of pattern recognition arises in various �elds of
human activities: from military science and safety systems to digitization of analog
signals.

ANNs are logical algorithms whose operation is associated with biological concepts
of brain functioning [10, 11]. The complexity of these algorithms hampers theoretical
investigations of ANNs. It is di�cult for researchers to understand what actually
happens "inside" the network.

We proposed [1] a new decisive algorithm, a competition algorithm This algo-
rithm allows solving approximately the same problems as ANNs solve. The learning
and operation of this algorithm, however, are based on di�erent principles. These
new principles made it possible to simplify the algorithm and to make its operation
understandable.

1 Notations, de�nitions, auxiliary statements

The new competition algorithm is fuzzy. It can be identi�ed with the function CA :
Rn → [0, 1]. Like the ANN, the CA is subjected to a learning procedure.

The signal z is a numerical tuple, a point in Rn. The signal coordinates zk, k =
1, . . . , n are the parameters of the examined object; n is a �xed dimension of the
space of signals.

Let us use Z (Z ⊂ Rn) to designate the set of all admissible signals. Let Z be a
set measurable with respect to the Lebesgue measure. The set Z is the main space
for signals. Therefore, in what follows, we consider only the points-signals z ∈ Z and
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the measurable sets U, V, . . . ⊂ Z. Their measures are indicated by µ(U), µ(V ), . . . ,
respectively. Let us assume that 0 < µ(Z) <∞ by de�nition.

We divide the set Z into subsets X, Y : X ∪ Y = Z, X ∩ Y = ∅, µ(X) > 0:
for points from the sets X and Y , the answers to the main questions are positive and
negative, respectively. The set X is a decisive set. The idea of solving the recognition
problem is to give an answer to the main question for an arbitrary signal z ∈ Rn: is
it true that z belongs to X?

An auxiliary function ε(z) is an indicator or a sign of the signal z:

ε(z) =

{
+1, z ∈ X
−1, z ∈ Y

Each learning signal zk generates a scalar in�uence �eld around it [1]. The sign
of this �eld coincides with the sign ε(zk) of the signal zk.

Let us de�ne a function

h(z) =
1

|z|m
. (1)

Here m ≥ n is an arbitrary number and n is the dimension of the space of signals.
We �nd the meaning of the number m when proving the theorem of learning.

The intensity of the �eld induced by the learning signal zk at an arbitrary point
z ∈ Z is determined by the signal in�uence function [1]:

hk(z) = ε(zk) h(z − zk). (2)

Let z1, z2, . . . , zN be a �nite sequence of learning signals. Each of the signals zk

induces its in�uence �eld with the intensity hk(z) at the point z. The superposition
of these �elds is determined by summation. The intensity of the superposition of the
�elds at the point z is indicated by HN(z):

HN(z) =
N∑
k=1

hk(z) (3)

HN(z) is the in�uence function of the total set of the learning signals {z1, z2, . . . zN }.
F (t) is an auxiliary function of one variable with a speci�c s-shaped graph:

F (t) =
1

2

[
t√
t2 + 1

+ 1

]
fN(z) is an approximate decisive function corresponding to the learning signals

z1, z2, . . . , zN :

fN(z) =


F (HN(z)), z 6= zk, k = 1, . . . , N
1, z = zk ∈ X, k = 1, . . . , N
0, z = zk ∈ Y, k = 1, . . . , N

(4)

The ideal decisive function

χX(z) =

{
1, z ∈ X
0, z /∈ X

is the characteristic function [16] of the decisive set X.
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2 Learning theorem

In this section, we prove that the competition algorithm can be trained �to the best
possible extent� if the learning signals in Z are chosen in a special manner. In other
words, correct learning allows the fraction of correct answers to be brought close to
unity.

In proving the theorem, we use the following statement from the mathematical
analysis [17]. Let lim

k→∞
ak = 0 and ak ≥ bk ≥ 0 for all k. Then we have lim

k→∞
bk = 0.

We refer to the assertion of a sequence.
Theorem. Let {z1, z2, . . . } be an in�nite sequence of mutually independent

random points uniformly distributed on the set Z ⊂ Rn, 0 < µ(Z) <∞, Then the
sequence of approximate decisive functions fk(z) converges in terms of probability to
an ideal decisive function χX(z) at all points z ∈ Z except for, maybe, points of the
boundary Γ(X) of the sought set X.

In other words, if the learning points-signals are chosen in the above-described
manner, then the following limiting relations are satis�ed:

fk(z)
p→ 1 ∀z ∈ Int(X) fk(z)

p→ 0 ∀z ∈ Int(Y ) (5)

Here Int(C) is the set of internal points of the set C, i.e., points that belong to W
together with a certain neighborhood. Proof. Let x∗ ∈ X be an arbitrary function
that does not lie on the boundary of the setX. We are going to prove that fk(x

∗)
p→ 1.

If y∗ ∈ Y is a point that does not lie on the boundary of X, then the limiting relation
fk(y

∗)
p→ 0 can be proved in a similar way. Obviously, the theorem is valid if the

point x∗ coincides with one of the learning signals zk ∈ X, because in this case
fk(z

k) ≡ 1 for all k = 1, 2, . . . in accordance with de�nition (4). Let the point
x∗ ∈ X coincide with none of the learning signals zk. According to de�nition (4)
of the decisive function fk (see also [1]), statement (5) is equivalent to the following
limiting relation:

HN(x∗)
p→ +∞, N →∞ (6)

The convergence in terms of probability to an in�nite limit is determined in the course
of proving the theorem by analogy with the convergence to a �nite limit [19].

Thus, the proof of the theorem reduces to proving the limiting relation (6). With-
out loss of generality, we assume for convenience that

x∗ = 0. (7)

If x∗ 6= 0, we perform a parallel transposition of the coordinate system in Rn.
We divide the set of learning signals z1, z2, . . . , zN into subsets:

{z1, z2, . . . , zN} = {x1, x2, . . . , xNX} ∪ {y1, y2, . . . , yNY }, NX +NY = N (8)

The �rst group contains signals zk which fall into X; the second group consists
of signals zk which fall into Y . Write and transform the expression for HN(x∗).
According to de�nitions (2) and (3), we have

HN(x∗) =
N∑
k=1

hk(x
∗) =

N∑
k=1

ε(zk)

|zk − x∗|m
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As x∗ = 0 (see Eq. (7)), this expression can be simpli�ed:

N∑
k=1

ε(zk)

|zk − x∗|m
=

N∑
k=1

ε(zk)

|zk|m

Taking into account the relations ε(xi) = +1, ε(yj) = −1, and the division of the
set {z1, z2, . . . , zN}, we obtain

N∑
k=1

ε(zk)

|zk|m
=

NX∑
i=1

1

|xi|m
−

NY∑
j=1

1

|yj|m

For brevity, we designate

HX
N =

NX∑
i=1

1

|xi|m
, HY

N =

NY∑
j=1

1

|yj|m

(NX +NY = N)

Thus, we have
HN(x∗) = HX

N −HY
N (9)

Recall that, in accordance with the theorem conditions, the learning signals xi, yj

are random points; therefore, HX
N , H

Y
N are random quantities. Find the probability

limits for the expressions
1

N
HX
N and

1

N
HY
N .

First consider the expression

1

NX

HX
N =

1

NX

(h(x1) + . . . + h(xNX )) (10)

(see de�nition (1) of the function h) and �nd its limit. Let x be a random point
uniformly distributed on the set X. Then h = h(x) is a random quantity. Points
xi can be considered as sampled values of x. Expressions of the form (10) are used
as statistical estimates for calculating multidimensional integrals by the Monte Carlo
method [18] on the basis of the laws of large numbers.

According to Kolmogorov's theorem [19], a random quantity of the form (10)
converges in terms of probability to the corresponding integral of h if and only if
there exists a �nite mathematical expectation Eh.

This integral of h, however, diverges in the neighborhood of the singular point 0
at m ≥ n [17]; therefore, the �nite mathematical expectation Eh does not exist.

Calculate the limit of Eq. (10), using only random quantities with a �nite math-
ematical expectation.

Let us use S(ε) to indicate a sphere of radius ε > 0 in Rn with the center at the
point 0.

Eliminate the neighborhood S(ε) of the singular point 0 from X and indicate the
remaining set by Xε = X − S(ε) (Fig. 2). Consider the regularized function

hε =

{
h(x), x ∈ Xε

0, x ∈ Sε
(11)
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The function hε is bounded; therefore, the integral of hε over the domainX converges.
Denote its value by Iε:

Iε =

∫
X

hε(x)dx <∞

Figure 1: Division of the set X

As the integral of the function h diverges in the neighborhood of the point 0, the
following limiting relation is valid:

lim
ε→0

Iε = lim
ε→0

∫
X\Sε

h(x)dx = +∞ (12)

Choose an arbitrary number A > 0. By virtue of Eq. (12), there exists such a value
εA > 0, that the following inequality is satis�ed at ε < εA:

Iε > A (13)

The function hε corresponds to a regularized random quantity hε = hε(x) with a
�nite mathematical expectation Ehε. For hε, the conditions of the above-mentioned
Kolmogorov's theorem are satis�ed. Therefore, we have

1

NX

(hε(x
1) + . . . + hε(x

NX ))
p→ Ehε = Iε <∞

as NX →∞. In other words, for any �xed δ > 0, the limiting relation

P

(∣∣∣∣ 1

NX

(hε(x
1) + . . . + hε(x

NX ))− Iε
∣∣∣∣ > δ

)
→ 0 (14)
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holds as NX →∞. Choose a positive value of ε < εA and δ = Iε−A. Then, according
to Eq. (13), we have δ > 0.

Use a simple remark: for any random quantity a, the following inequality is
satis�ed:

P (|a| > δ) = P (a > δ) + P (a < −δ),

whence it follows that

P (|a| > δ) ≥ P (a < −δ)

It follows from Eq. (14) and from the last remark that the following inequality is
satis�ed:

P

(∣∣∣∣ 1

NX

(hε(x
1) + . . . + hε(x

NX ))− Iε
∣∣∣∣ > δ

)
≥

≥ P

(
1

NX

(hε(x
1) + . . . + hε(x

NX ))− Iε < −δ
)
≥ 0

Taking into account the limiting relation (14) and δ = Iε − A > 0 we �nd from the
statement on the sequence that

P

(
1

NX

(hε(x
1) + . . . + hε(x

NX ))− Iε < −δ
)

=

= P

(
1

NX

(hε(x
1) + . . . + hε(x

NX )) < Iε − δ
)

=

= P

(
1

NX

(hε(x
1) + . . . + hε(x

NX )) < A

)
→ 0

as NX →∞.
One more remark should be made: if the inequality a ≥ b is satis�ed for random

quantities a, b and if C is an arbitrary number, then we obtain

P (b < C) ≥ P (a < C).

As h(z) ≥ hε(z) (see Eq. (11)), it follows from this remark that

P

(
1

NX

(hε(x
1) + . . . + hε(x

NX )) < A

)
≥ P

(
1

NX

(h(x1) + . . . + h(xNX )) < A

)
Therefore, in accordance with the statement on the sequence, we have

P

(
1

NX

(h(x1) + . . . + h(xNX )) < A

)
≡ P

(
1

NX

HX
N < A

)
→ 0

Recall that the number A here is arbitrary; therefore, its value can be chosen to be
arbitrarily large. By analogy with determining the convergence in terms of probability
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to a �nite limit, we can assume that the last limiting relation means the convergence

of the sequence of random quantities
1

NX

HX
N to in�nity:

1

NX

HX
N

p→ +∞ (15)

Now we have to �nd the probability limit of the random quantity
1

N
HX
N (N =

NX +NY > NX). We rewrite the expression for
1

N
HX
N :

1

N
HX
N =

(
NX

N

)(
1

NX

HX
N

)

The limit of the multiplier

(
1

NX

HX
N

)
has been already found (see Eq. (15)). We

rewrite the multiplier

(
NX

N

)
:

NX

N
=
χX(z1) + . . . + χX(zN)

N

In the numerator of the last fraction, the terms χX(zk) are random Bernoulli quanti-
ties. Those NX of them for which zk = xi ∈ X are equal to unity, and the remaining
terms are equal to zero. According to the law of large numbers, we have

χX(z1) + . . . + χX(zN)

N
=
χX(x1) + . . . + χX(xNX)

N

p→

p→ E(χX(x)) =

∫
Z

χX(x)dx =
µ(X)

µ(Z)
> 0, (16)

because µ(X) > 0 and µ(Z) < ∞ by de�nition. Equations (15) and (16) yield the
sought limiting relation (in the sense de�ned above):

1

N
HX
N

p→ +∞ (17)

2. Now return to Eq. (9) and �nd the estimate from above for the expression jjHJj.
This estimate can be obtained without using the probability theory. Let us indicate
the distance from the point x∗ to the set Y by d:

d = inf
y∈Y
|y − x∗| = inf

y∈Y
|y − 0| = inf

y∈Y
|y| (18)

According to the conditions of the theorem, we have x∗ ∈ Int(X); therefore, d > 0.
Obviously, the following inequality is satis�ed:

HY
N =

NY∑
j=1

1

|yj|m
≤ NY ·max

yj∈Y

1

|yj|m
(19)
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Let us estimate both multipliers in the right-hand side of the last inequality. As
NX +NY = N (see Eq. (8)), then

NY ≤ N. (20)

As inf
y∈Y
|y| = d (see Eq. (18)), the inequality |yj| ≥ d is valid for all points yj ∈ Y .

Therefore, we have

max
yj∈Y

1

|yj|m
=

1

min
yj∈Y
|yj|m

≤ 1

dm
. (21)

From Eqs. (19)�(21), we obtain the estimate from above for
1

N
HY
N : Here the constant

C is independent of the number N of the learning points. Thus, we proved (17) that

HX
N

N

p→ +∞,

and inequality
HY
N

N
≤ C < +∞

is satis�ed for all N . It follows from here that

HX
N −HY

N

N

p→ +∞,

and, moreover,
[HX

N −HY
N ]

p→ +∞.
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Abstract

This paper studies how the lambda Wilks statistic distribution in the dis-
criminant function analysis changes under conditions of violation of data nor-
mality and how the variables with the low tolerance value in�uence on the
statistic distribution. Monte Carlo method has been used for statistical regu-
larities simulation. The article is also addressed the test power based on the
lambda Wilks statistic.

Keywords: lambda Wilks statistic, discriminant function analysis, viola-
tion of normality assumptions.

Introduction

The discriminant function analysis is a subdiscipline of the multiple statistical anal-
ysis, which allows us to study the di�erences between two or more object groups
considering several variables simultaneously [2].

As usual, classi�cation methods are associated with building one or more discrim-
inant functions, providing the possibility of assigning a new value to one of the object
groups.

The creation of discriminant functions is necessary for decision-making in the dis-
criminant function analysis. The signi�cance of the discriminant functions indicates
whether the di�erences between the average values of variables in the groups are re-
ally statistically signi�cant, or these di�erences are due to the random �uctuations
around an overall average value [2, 4]. The statistical signi�cance is tested using the
lambda Wilks statistic.

Basic assumptions of the discriminant function analysis are related to the data
normality, variance homogeneity and the absence of redudant variables (i.e. the
absence of variables with a low tolerance value). The previous experiments were made
when the �rst assumption was false and the assumption of independent variable and
variance homogeneity was true. The obtained results were published in [5].

This work is devoted to the results obtained under condition of violation of the
third assumption too. It is tried to answer the question how the input variable with
a low tolerance value in�uences on the �nal result and conclusion.
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1 Problem De�nition

1.1 The cases of null and alternative hypotheses

The null hypothesis is that the average values of the discriminant function are equal
for both groups. In order to enforce the terms of null hypothesis the simulation was
performed with equal average values of the variables for all groups. Those let the
null-hypothesis be presented in a general form as:

µ1k = µ2k = µ,

where k = 1, p, µik is the average value in the i-th group for the k-th variable; p is
the number of variables. The concrete alternative hypotheses are presented by the
expression:

H1 = µ1k = µ2k + cσ2
1k,

where c is a numerical coe�cient, σ2
ik is the variance in the i-th group for the k -th

variable. In doing so, the equality of average values is observed for one variable in
the case of the H11 - hypothesis, for two variable in the case of the H12 - hypothesis
and for all variables in the case of the H13-hypothesis.

1.2 Two-group Lambda Wilks Statistics

The assumption of variable normality and variance equality is postulated. The
lambda Wilks statistics is calculated in several steps to test the null hypothesis [2].

Primarily, it is necessary to build the scatter matrix T , its elements are calculated
using the formula:

tij =

g∑
k=1

nk∑
m=1

(
Xikm −X i

) (
Xjkm −Xj

)
,

where i, j = 1, p, Xikm is the value of the discriminant variable Xi for a m-th object
in the k-th class; X i is an average value of an Xi variable for all classes; n is total
observations; g is the number of classes.

After that the intra group variation matrix W is calculated. This matrix deter-
mines the variance of values within the classes. Its elements are calculated by the
formula:

wij =

g∑
k=1

nk∑
m=1

(
Xikm −X ik

) (
Xjkm −Xjk

)
,

where X ik is an average value of an Xi variable in the k-th class. The other notations
are similar to the one used previously.

The next step is the calculation of the B-matrix:

B = T −W,
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which determines the intergroup variance. Its elements are calculated according to
the formula:

bij = tij − wij.

The next step is solving a set of equations which presented in the following form:

(B − λiW ) vj = 0,

where λj is eigenvalue of the BW−1-matrix. Thus, the result of solving the set of
equations allows us to estimate the values of the eigenvectors, corresponding to the
discriminant functions. The formula

Λ =
2∏
i=1

1

1 + λi
,

is used to calculate the lambda Wilks statistic, λ1 ≥ λ2 ≥ . . . ≥ λp [2]. If the
null-hypothesis of equality of average values is true, then the lambda Wilks statistic

χ2 = −
{
n− p+ 2

2
− 1

}
ln (Λ) (1)

is distributed according to the χ2-law with the p degrees of freedom, where p is the
number of discriminant variables Xi.

2 Experimental Conditions

The discriminant function analysis with two groups and three variables (p = 3) has
been considered in this article. The investigations were performed under conditions of
the intergroup variance homogeneity. Experiments where data is distributed accord-
ing to the Normal law and to the law with �light� or �heavy� tails have been carried
out using the Double Exponential Law (De(λ)) with di�erent shape parameter value.
Its probability density function is

f (x, λ, θ1, θ2) =
λ

2
√

2θ2Γ (1/λ)
exp

{
−
(
|x− θ1|√

2θ2

)2
}
.

The cases of independence and multicollinearity random vector variables has been
considered. For case of random dependent vector variables the formula for the co-
variance matrix has been obtaned. The experiments were performed with a program
system developed in the framework of a common methodology for a statistical sim-
ulation. This technique is developed by a scienti�c school under the guidance of
Professor B. Yu. Lemeshko [3] in Novosibirsk State Technical University at the Fac-
ulty of Applied Mathematics and Computer Science. The program toolkit allows us
to simulate pseudo-random values which can be distributed according to the Gauss
law or any other laws.
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3 Main Results

3.1 The Results of Investigations in Case of Variables

Independence

The investigations have been conducted under condition of sample size equality for
all groups while data is distributed according to the law with �heavy� or �light� tails
(De(0.5) or De(10)), to the Normal law (De(2)) and to signi�cantly asymmetric laws
(in this case data is distributed according to the Exponential law). When conducting
the investigations, the assumption of variable independence is postulated.

Figure 1: The Lambda Wilks statistic distribution while data is distributed
according to the De(0.5)-law and n1 = n2 = 20.

There are some graphic deviations of the experimental lambda Wilks statistic dis-
tribution from the parent distribution if data is distributed according to the law with
�heavy� tails with the sample size (n1 = n2 < 100) being small. Pic. 1 does show
it. And you can also see despite the fact that the emperical distribution does not
converge with a theoretical distribution the maximum error is not more than 0.015
having calculated the �rst kind error using a theoretical distribution instead of the
empirical distribution. In addition, it should be noted that in the case of a big sample
size (n1 = n2 = 100) the experimental lambda Wilks statistic distribution is visually
the same as the theoretical χ2-distribution. The same character of the lambda Wilks
statistic distribution is also observed if data is distributed according to the signif-
icantly asymmetric law. The goodness-of-�t hypothesis between the experimental
lambda Wilks statistic distribution and the parent distribution is not rejected if data
is distributed according to the law with �light� tails or to the Normal law, with being
equal to 0.01. Pic. 2 shows the degree of agreement of the theoretical and empirical
statistic distribution if data is distributed according to the law with �light� tails.

In doing so, the lambda Wilks test power study with di�erent c-parameter values
has revealed that it does not depend on the law. Figure 3 illustrates the trend
depending on the c-parameter value if data is distributed according to the De(0.5)
law. As it was expected the more variables are a part of the alternative hypothesis
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Figure 2: The Lambda Wilks statistic distribution while data is distributed
according to the De(10)-law and n1 = n2 = 20.

(i.e. the assumption of the means equality in groups is not true for more variables)
the more statistic power. But if the mean values in groups di�er from each other by
the value which equals to double variance value the statistic power is almost one for
all alternative hypotheses.

Figure 3: The comparison of the lambda Wilks test power when data is distributed
according to the De(0.5)-law and n1 = n2 = 20 for di�erent alternative hypotheses

depending on the c- parameter value.

3.2 Simulation of Random Dependent Vector Variables

The simulation of pseudo-random normal vectors is based on the well-known gener-
ating algorithm [1]. Multivariate normally distributed random vector
X = [X1, X2, . . . , Xp]

T with p-dimension is completely determined by the vector

156



Applied Methods of Statistical Analysis

M = [µ1, µ2, . . . , µp]
T of mathematical expectations and covariance matrix Σ = [σij]

where i, j = 1, p.

Suppose, there are a set of random values {Zi} and Zi-value is distibuted according
to the standard Normal Law where i = 1, p. Then the vector X distributed according
to the multivariate Normal Law with the M and Σ parametes is determined by the
linear transformation

X = AZ +M. (2)

In (2) it is supposed that A is a lower triangular matrix.

Then coe�cients aij and covariance matrix elements are easy determined by the
recurrent procedure and (2)-d formula respectively:

aij =
σij −

∑g−1
k=1 aikajk√

σjj −
∑g

k=1 a
2
jk

, (3)

σij = E [(Xi − µi) (Xj − µj)] . (4)

One-dimensional samples cosisted of normal random variables {Zi} are simulated
by the method of inverse functions.

It is proposed to realise the multidimensional variable simulation procedure simi-
larly to the algorithm described above (2)-(3), (4) [1]. The variables are distributed
according to a law which is di�erent from the Normal Law with a mathematical ex-
pectation vector and covariance matrix. It has been proved the correctness of this
approach. It is also obtained conditions for the mathematical expectation vector and
covariance matrix to get the situation when the �rst vector is linear depended on the
second vector in the case of two dimensions. The similar conditions were obtained
by authors of the article when the third variable is depended on others in the case of
three dimensions. These results are shown below.

Vector X is distributed according to the multivariate Normal Law with the M
and Σ parameters and determined by the (2)-d linear transformation. Coe�cients
for matrix A are calculated using the (3)-d formula. We can get three equations by
substituting matrix A into the (2)-d formula:

X1 =
√
σ11Z1 + µ1,

X2 =
σ12√
σ11

Z1 +

√
σ22 −

σ2
12

σ11

Z2 + µ2,

X3 =
σ31√
σ11

Z1 +
σ32 − (σ31σ21) /σ11√

σ22 − σ2
21/σ11

Z2 +

+

√
σ33 −

σ2
31

σ11

− (σ32 − (σ31σ21) /σ11)2

σ22 − σ2
21/σ11

Z3 + µ3,

where variables Zi are distributed according to the standard Normal Law.
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Just after that we introduce the following equations:

σ31 = c1σ11, σ32 = σ22, σerr =
√
σ33 − σ22 − c2

1σ11,

µ3 = c1µ1 + µ2,

and assume that X1 and X2 are the independent variables. The next formula

σ12 = σ21,

follows from the previous equations.
The next step is to group like terms in order to get an expression for calculating

the linear dependent variable.

X3 = c1 (
√
σ11z1 + µ1) + µ2 +

√
σ22Z2 +

√
σ33 − c2

1σ11 − σ22Z3. (5)

The (5)-th formula can be represented as

X3 = c1X1 +X2 +Xerr, (6)

where the variable X3 is dependent on the variables X1 and X2. X1, X2 and Xerr

are distributed according to the Normal Law with (M1, σ11), (M2, σ22) and (0, σerr)
parametes respectively, c1 is a constant.

Thus, if it is requerid to simulate a three-dimensional sample which is like (5)
where the X3 is dependent on X1and X2 you should only de�ne a mathematical
expectation vector and a covariance matrix as

µ =

 µ1

µ2

c1µ1 + µ2

 , Σ =

 σ11 0 c1σ11

0 σ22 σ22

c1σ11 σ22 σ33

 .
Since our studies is conducted under true null hypothesis so

µ1 = µ2 = 0, µ =

 0
0
0

 .
Suppose, that

σ22 = kσ11,

in order to simulate di�erent values of data heteroscedasticity rate.
It should be noted, that to link the elements of the covariance matrix with a

tolerance value of a variable is another problem. It allows us to do investigation with
the given tolerance value. The tolerance value is calculated using the formula: 1−R2.

We can obtain the R2-value using the covariance matrix elements:

R2 =
σ11

σ33

(
k + c2

1

)
→ σ33 =

σ11

R2

(
k + c2

1

)
.
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It was decided to con�ne the problem and supposed that only variable X3 was depend
on variables X1and X2. It led to the next formula:

corr (X1, X3) = corr (X2, X3) . (7)

It is clearly seen that the restriction

c1 =
√
k and σ33 =

2kσ11

R2

follows from the (7)-th formula.

3.3 The Results of Investigations in Case of Data

Multicollinearity

For example, if R2 = 0.999 the covariance matrix for the �rst and second groups
looke like

Σ =

 1 0 1
0 1 1
1 1 2.002

 .

Studies show that even if the tolerance value for one of a variable is 0.001 (i.e.,
R2 = 0, 999) the redundant variable presence in the model has no e�ect on the
statistics distribution.

It was also studied the in�uence of di�erent scale values on statistical results (i.e.,
di�erent variance values correspond to di�erent variables). These variance values
di�er from each other up to 250 000 times, that is

σ22 = 250 000σ11,

for both groups. It means that 95.4% of observations for the �rst and the sec-
ond variables under condition of data normality should belong to the [−2, 2] and
[−1000, 1000] interval respectively. The empirical and theoretical statistics distribu-
tions do not di�er from each other in both cases (i.e., all variable are independent or
the third variable is dependent on others with R2 = 0.999).

Conclusions

In conclusion, we can give some recommendations concerning the application of the
lambda Wilks criterion. When determining the signi�cance of the discriminant func-
tions, you can use the statistical criterion correctly if observations in groups are
distributed according to the Normal law or to the similar law with �light� tails. In
contrast, if the distribution is very asymmetric or has �heavy� tails the application of
the lambda Wilks criterion is not recommended as it can yield to erroneous results.
This is most vividly seen with small sample sizes. The variables with the low toler-
ance value or variables measured on a di�erent scale do not in�uence on the statistics
distribution.

159



Monte Carlo method in problems of Applied Statistics

References

[1] Ermakov S.M., Mihailov G.A. (1982). Statisticheskoe modelirovanie. Nauka,
Moscow.

[2] Karimov R.N. (2002). Osnovy diskriminantnogo analiza [Fundamentals of dis-
criminant analysis]. SGTU, Saratov.

[3] Lemeshko B.Yu., Lemeshko S.B. (2011). Statistical data analysis, simulation
and study of probability regularities. Computer approach: monograph. NSTU,
Novosibirsk.

[4] Naresh K. Malhotra (2002). Marketing Research: An Applied Orientation.
Williams, Moscow.

[5] Volkova V.M., Sanina A.A. (2014). Research of the lambda Wilks statistic dis-
tribution under conditions of violation of basic assumptions in the discriminant
function analysis. Actual problems of electronic instrument engineering (APEIE-
2014). Vol. 1, pp. 548-551.

160



Applied Methods of Statistical Analysis

A Comparison of the �Fixed-E�ect� and
�Random-E�ect� Gamma Degradation Models1

Ekaterina V. Chimitova and Evgeniya S. Chetvertakova

Novosibirsk State Technical University, Novosibirsk, Russia
e-mail: chimitova@corp.nstu.ru, chetvertakova@corp.nstu.ru

Abstract

In this paper, the ��xed-e�ect� and �random e�ect� gamma degradation
models are compared in terms of the accuracy of estimation of regression param-
eters and trend parameters. We then propose an algorithm for testing goodness-
of-�t of the �random e�ect� gamma degradation model, which is based on the
parametric bootstrap procedure and application of Kolmogorov, Cramer-von
Mises-Smirnov and Anderson-Darling type tests by the sample of residuals.

Keywords: degradation process, gamma degradation model, �random-e�ect�
model, ��xed-e�ect� model, testing goodness-of-�t, reliability.

Introduction

The problems of quality control and research of reliability of technical devices are
very important nowadays, especially if a human life and health depend on their per-
formance. If we have highly reliable products, the failure data may not be su�cient
to assess the reliability function, because the failures occur extremely rare during
the experiment. There are two possible ways to get additional information about
the reliability of items: the �rst one is to carry out accelerated tests when items are
under the high stress and as a result failure occurs earlier; the second method is to
consider the degradation paths of items. The moment of time, when the degradation
path reaches a critical level, is called failure time. Both approaches can be com-
bined, observing degradation processes of the items and the failures under the high
stress. Temperature, pressure, voltage, mechanical stresses and others may act as
covariates. One of the most popular models describing a degradation process is the
gamma degradation model, where the gamma distribution is used as the distribution
of degradation increments. This model is described in [1], [5], [6], [8], in [9] the au-
thors consider the problem of mis-speci�cation of Wiener and gamma degradation
processes.

In degradation modeling and analysis, �random-e�ect� formulation facilitates the
handling of unit-to-unit variability in a convenient way. In [3], [10], the authors
consider the gamma degradation model with random e�ects, where the scale param-
eter is a random variable from gamma distribution. In this paper, we compare the
statistical properties of the maximum likelihood estimates for the parameters of the
��xed-e�ect� and �random-e�ect� gamma degradation models. Then, we formulate
the parametric bootstrap procedure for testing goodness-of-�t of the �random-e�ect�
gamma degradation model.

1This research has been supported by the Russian Ministry of Education and Science (project
2.541.2014K).
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1 Gamma degradation model

Stochastic process Z(t) characterizing degradation process is referred to as the gamma
degradation process, if

� Z(0) = 0;

� Z(t) is a stochastic process with independent increments;

� increments ∆Z(t) = Z(t+ ∆t)−Z(t) have the gamma distribution with prob-
ability density function

fGamma(t;σ; ∆ν(t)) =

(
t

σ

)∆ν(t)−1
e−t/σ

σ · Γ(∆ν(t))
,

where ∆ν(t) = ν(t + ∆t) − ν(t) is the shape parameter and σ is the scale
parameter.

If random variates ξ1 and ξ2 follow the gamma distribution with scale parameter
σ and shape parameters ν1 and ν2, correspondingly, then ξ1 + ξ2 follows the gamma
distribution with scale parameter σ and shape parameter ν1 + ν2. This property
explains the fact of using the gamma distribution as a distribution of increments.

Let degradation process is observed under a constant in time stress (covariate)
x, the range of values of which is de�ned by the conditions of the experiment. We
assume, that the covariate in�uences the degradation as in the accelerated failure

time model [7]: Zx(t) = Z
(

t
r(x;β)

)
, where r(x; β) is a positive covariate function.

The most popular models of the covariate function are:

� log linear model � r(x, β) = eβ0+β1x;

� power rule model � r(x, β) = eβ0+β1 lnx;

� Arrhenius model � r(x, β) = eβ0+β1/x.

Let the mathematical expectation of degradation process Zx(t) is

M (Zx (t)) = mx (t) ,

where mx (t) = σν
(

t
r(x;β)

)
is a positive increasing trend function and r(x; β) is a

positive covariate function.
The time to failure, which depends on covariate x, is equal to

Tx = sup{t : Zx(t) < z̃},

where z̃ is the critical value of the degradation path. Then, the reliability function
for gamma degradation model is given by

Sx(t) = P{Tx > t} = P{Zx(t) < z̃} = FGamma

(
z̃;σ,

mx(t)

σ

)
.
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In [3], [10], the unit-to-unit variability is included into the gamma degradation
model by considering the scale parameter σ as a random variable from the gamma
distribution with parameters δ and θ. In this case, the reliability function can be
written as

Sx(t) = P{Tx > t} = P{Zx(t) < z̃} = FGamma

(
z̃;M (σ) ,

mx(t)

M (σ)

)
,

where M (σ) is the mathematical expectation of σ.
Suppose, that we have the degradation path Zi(t) and covariate value xi for n

items, i = 1, n. The degradation path for i-th item is given by

(0, Zi
0), (ti1, Z

i
1), ..., (tiki , Z

i
ki

), j = 1, ki,

where ki is the number of moments of measuring degradation. Suppose, that the
initial value of the degradation index Zi

0 = 0, i = 1, n.
Let us denote the sample of increments of the degradation path as

Xn =
{
X i
j = Zi

j − Zi
j−1, i = 1, n, j = 1, ki

}
.

Following the assumption, that the observed random processes Zi
xi(t), i = 1, n are

the gamma degradation processes with the trend function mx (t; β, γ) and covariate
function r(x; β), we can estimate the model parameters, maximizing the logarithm
of the likelihood function

L(Xn) =
n∏
i=1

ki∏
j=1

∫ ∞
0

Γ(Xij;ω,∆ν(t))Γ(ω; δ, θ)dω =

=
n∏
i=1

ki∏
j=1

∫ ∞
0

X
∆ν(t)−1
ij

1

Γ(∆ν(t))Γ(θ)

1

δ−θ
ωθ−1ω∆ν(t)e−Xijωe−ωδdω =

=
n∏
i=1

ki∏
j=1

X
∆ν(t)−1
ij

1

Γ(∆ν(t))Γ(θ)

1

δ−θ

∫ ∞
0

ω∆ν(t)+θ−1e−(Xij+δ)ωdω =

=
n∏
i=1

ki∏
j=1

X
∆ν(t)−1
ij

1

Γ(∆ν(t))Γ(θ)

1

δ−θ
1

(Xij + ω)∆ν(t)+θ
Γ(∆ν(t) + θ) =

=
n∏
i=1

ki∏
j=1

X
∆ν(t)−1
ij

(Xij + ω)∆ν(t)+θ
B−1(∆ν(t); θ).

It is natural, that the degradation processes are di�erent for various units. Thus,
the construction of the degradation model with random e�ects seems to be reasonable.
However, the �random-e�ect� gamma degradation model is more complicated, and the
dimension of parameters vector is larger. So, we need to understand whether taking
into account the unit-to-unit variability allows to obtain more accurate estimates of
the trend and regression parameters.

163



Lifetime data analysis

By means of Monte-Carlo simulations, we have compared the accuracy of esti-
mates of the trend and regression parameters for ��xed-e�ect� gamma degradation
model and the gamma degradation model with random e�ects, when data are gen-
erated from the �random-e�ect� model. The next plan of experiment has been used
for simulation of the degradation path:

� scalar covariate x is equal to x1 = 1 and x2 = 2;

� items are randomly divided to 2 groups corresponding to 2 values of covariate;

� moments of measuring degradation for all items are equal to 10, 15, 25, 30.

The true values of parameters for both models were taken equal to σ = 1, β0 = 1,β1 =
1, δ = 0.1, θ = 10.

Let µ = (γT , βT ) denotes the vector of trend and regression parameters. We
have compared the accuracy of estimation of parameter µ for considered models,
calculating the Euclidean norm of relative deviation of estimates from the true value:

ψ = ‖µ− µ̂
µ
‖,

which was averaged by M = 10000 samples:

ψ̄ =
M∑
i=1

ψi, i = 1,M.

The obtained values of relative accuracy ψ̄ of estimates of model parameters µ̂ in
the case of the linear trend function

mx (t) =
t

eβ0+β1x

for the ��xed-e�ect� and �random-e�ect� gamma degradation models are presented
in Table 1.

The obtained values of relative accuracy ψ̄ of estimates of model parameters µ̂ in
the case of the power trend function

mx (t) =

(
t

eβ1+β2x

)γ0
for the ��xed-e�ect� and �random-e�ect� gamma degradation models are presented
in Table 2.

As can be seen from Tables 1 and 2, in the case of smaller sample sizes the better
estimates have been obtained for ��xed-e�ect� gamma degradation model and in the
case of the sample sizes n = 200 and n = 500, the better estimates have been obtained
for �random-e�ect� gamma degradation model. Such results can be explained by the
fact, that in the case of ��xed-e�ect� model we estimate only the scale parameter σ
of the degradation increments distribution, trend and regression parameters, but in
the case of �random-e�ect� model we estimate the scale and form parameters of the
scale distribution δ and θ, and also trend and regression parameters.
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Table 1: The relative accuracy of parameters estimates for gamma degradation
models in the case of the linear trend function

Sample size
Gamma degradation model

20 60 200 500
�Fixed-e�ect� model 0.0336 0.0161 0.0039 0.0021

�Random-e�ect� model 0.0514 0.0129 0.0021 0.0016

Table 2: The relative accuracy of parameters estimates for gamma degradation
models in case of the power trend function

Sample size
Gamma degradation model

20 60 200 500
�Fixed-e�ect� model 0.2999 0.1606 0.0581 0.0351

�Random-e�ect� model 0.3310 0.1814 0.0472 0.0288

Testing goodness-of-�t of the gamma degradation

model

An important stage in the construction of the gamma degradation model is testing
the goodness-of-�t hypothesis:

H0 : X i
j ∼ FGamma(t; σ̂, p̂

i
j), i = 1, n, j = 1, k,

where p̂ij =
mxi (t

i
j ;γ̂,β̂)−mxi (t

i
j−1;γ̂,β̂)

σ̂
.

The main problem of using the gamma degradation model is the absence of mathe-
matical methods for testing the statistical hypothesis of goodness-of-�t for the model.
In this paper, we propose an approach to testing goodness-of-�t of gamma degra-
dation model with covariates, which is based on the investigation of test statistic
distributions with computer simulation methods in interactive mode of testing hy-
pothesis. The goodness-of-�t tests of Kolmogorov, Cramer-von Mises-Smirnov and
Anderson-Darling type are recommended for testing this hypothesis [2].

Let us take the residuals of increments of the degradation path in the form:

Ri
j = FGamma(X

i
j; σ̂, p̂

i
j), i = 1, n, j = 1, ki.

If the hypothesis H0 is correct, then

Ri
j ∼ Rav(0, 1), i = 1, n, j = 1, ki.

Thus, we need to test the uniform distribution for the random variates Ri
j, i =

1, n, j = 1, ki. To test this hypothesis we use the Kolmogorov, Cramer-von Mises-

Smirnov and Anderson-Darling type tests [4]. Let R∗(1) ≤ R∗(2) ≤ ... ≤ R∗(N), N =
n∑
i=1

ki
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are the elements of variational series constructed by the sample

RN =
{
Ri
j, i = 1, n, j = 1, ki

}
.

The Bolshev statistic is used as a distance between empirical and theoretical distri-
butions in Kolmogorov test:

Sk =
6NDN + 1

6
√
N

,

where DN = max(D+
N , D

−
N), D+

N = max
1≤i≤N

{
i
N
−R∗(i)

}
, D−N = max

1≤i≤N

{
R∗(i) −

i−1
N

}
.

The Cramer-von Mises-Smirnov statistic can be written as follows:

Sω = Nω2
N =

1

12N
+

N∑
i=1

{
R∗(i) −

2i− 1

2N

}2

,

and the Anderson-Darling statistic has the form:

SΩ = −N − 2
n∑
i=1

{
2i− 1

2N
logR∗(i) +

(
1− 2i− 1

2N

)
log
(
1−R∗(i)

)}
.

When testing composite hypotheses, the distributions of test statistics depend
on several factors: the method for parameter estimation, the type and the number
of parameters being estimated and the speci�c value of the shape parameter (as in
the case of the gamma distribution). Therefore, for calculation of the p-value, the
distribution of test statistics under true null hypothesis can be simulated according
to the following algorithm:

1. Generate the sample of increments Xn basing on the gamma degradation model
under test and the appropriate plan of the experiment using the scale parameter,
generated from the gamma distribution for each item.

2. Estimate model parameters with the sample Xn using maximum likelihood
method.

3. Calculate the sample of residuals RN .

4. Calculate goodness-of-�t test statistics values (SK , Sω or SΩ) for the sample
RN .

5. Repeat points 1-4 M times, and obtain the empirical distribution GM(S|H0).

Thus, we can calculate the p-value αN = 1−GM(SN |H0), where SN is a value of test
statistics, calculated for the sample, which is used to test the hypothesis H0. If αN
is less than the signi�cance level α, then hypothesis H0 is rejected.

Let us study the dependence of test statistic distributions on the choice of covari-
ate function for degradation model with random e�ects. We have considered three
di�erent covariate functions: loglinear, Arrhenius and power rule models.

166



Applied Methods of Statistical Analysis

Figure 1: The empirical Kolmogorov distributions for �random-e�ect� gamma
degradation model in case of loglinear, Arrhenius and power rule covariate functions.

In this study, we have used the same plan of experiment as in the previous section.
Models parameters are equal to σ = 1, δ = 0.1, θ = 10. Regression parameters are
equal β0 = 1, β1 = 0.5 for loglinear and Arrhenius models; β0 = 1, β1 = −0.5 for
power rule model.

As can be seem from Figure 1, the form of the distribution of Kolmogorov statistic
changes for di�erent covariate functions. The same results were obtained for Cramer-
von Mises-Smirnov and Anderson-Darling tests.

Conclusions

In this paper, we have considered the problems of constructing the gamma degra-
dation model with random e�ects using the degradation data under the constant
in time stress. The comparison of the statistical properties of maximum likelihood
estimates of model parameters for the ��xed-e�ect� gamma degradation model and
gamma degradation model with random e�ects has been carried out. It has been
shown, that in the case of smaller sample sizes the more accurate estimates have
been obtained for the ��xed-e�ect� gamma degradation model and in the case of the
sample sizes n = 200 and n = 500, the better results have been obtained for the
�random-e�ect� gamma degradation model. So, the ��xed-e�ect� gamma degrada-
tion model can be recommended to use for samples with a small size. Probably,
the accuracy of the estimates for �random-e�ect� model will be improved for other
values of the scale and form parameters of the scale distribution. The method of test-
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ing the goodness-of-�t for the gamma degradation model with random e�ects using
Kolmogorov, Cramer von Mises-Smirnov and Anderson-Darling type tests has been
proposed. While investigating, it has been shown that the distributions of considered
test statistics depend on the trend and covariate functions, moments of measuring
degradation and the sample size.
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Abstract

We consider methods of categorical data analysis applicable for the survival
experimental design. The actuarial (or life table) estimator for groupped right
censored survival data that is consistent under very special cases only is not
perfect in the estination problem, but it is applicable anyway, because there is
no consistent estimator of survival function of failure time under general non-
parametric model of groupped survival data with independent right censoring.
We revisited the actuarial estimator for groupped right censored data and create
survival categorical tests based on the extended actuarial estimator.

Keywords: survival data, right censoring, independent censoring, hypothe-
sis testing, categorical tests, contrasts, Wald's test, actuarial estimator, Kaplan�
Meier estimator.

Introduction

Common experimental design in epidemiology is to screen a cohort of individuals
for disease endpoints during some time interval. Study participants are disease free
at the baseline (time point zero) and they are followed up until a failure time or
missing at follow up. In most cases failure times are not observed precisely and the
investigator observes time interval containing a failure time for each of not missed
at follow up individulals having sympthoms of desease at the endpoint. The case
of �xed inspection times measured from the baseline is widely applicable. The goal
is to quantify di�erence in rate of disease progression among a population of study
participants.

Let T be a failure time or time of appearance symptoms of disease. Distribution
of T depends on covariate z and can be given by a distribution function Fz(x) =
P (T ≤ x|z) or by a survival function Sz(x) = 1−Fz(x). Assume that the covariate z
is a categorical variable having d levels. We are interesting to compare distributions
of failure time under di�erent values of covariate. Let γT = mini∈1,...,d sup{x : Fi(x) <
1}. The null hypothesis is

H∗0 : S1(x) = . . . = Sd(x) for all x ∈ [0, γT ].

To formulate the problem in terms of categorical data analysis set 0 < t1 < . . . < ts <
γT . Consider p1|z = P (T ∈ [0, tj]|z) and pj|z = P (T ∈]tj−1, tj]|z), j = 2, . . . , s + 1,
where ts+1 =∞. We formulate weaker null hypothesis

H0 : pj|1 = . . . = pj|d for all j = 1, . . . , s
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or, in terms of the survival function,

H0 : S1(tj) = . . . = Sd(tj) for all j = 1, . . . , s. (1)

It is clear that H0 is closing to H∗0 if pj|z → 0 as s→∞.
A contingency table experimental design is universal for wide number of applica-

tions. There are examples of application of classical categorical tests in right censored
data case [8, 13, 14]. Some limitations on application of classical categorical tests for
right censored survival data are discussed in [11].

The right censored survival data model is commonly used for such kind of ex-
perimental design. Categorical tests using grouping for right censored survival data
are presented widely in literature. Likelihood ratio tests with grouped right censored
survival data were investigated in [15]. A chi-square type test for survival data due
to Habib & Thomas [7]. Advanced properties of chi-square type tests are obtained in
[1, 2]. Hollander & Pena [10] consider chi-square test statistic for simple null hypothe-
ses in censored data case and its limit behaviour. Contrasts based categorical tests on
independence for survival data obtained from limit theorems for Nelson�Aalen and
Kaplan�Meier estimators are given in [11]. Exact event (failure or censoring) times
are required for all these approaches.

In most cases event times are not observed exactly and an investigator is only
observes a time interval between successive observations containing an event time for
each of individuals. We consider the case of �xed observation times. There is no
consistent nonparametric estimator for survival function of failure time even in the
observation times by such kind of data. The Actuarial life table estimator was rather
famous in early classic of survival analysis [3, 5, 6]. Breslow & Crowley [4] investigate
conditions on distributions of failure and survival times to the actuarial estimator be
consistent under independent censoring for any choice of �xed observation times and
obtain asymptotic properties of the estimator.

We consider an extention of the actuarial estimator. In section 1 we introduce
an extended actuarial estimator and investigate conditions to the extended actuarial
estimator be consistent. Asymptotic properties of the extended actuarial estimator
and categorical survival tests for groupped right censored survival data are discussed
in section 2.

1 An Extended Actuarial Estimator

In this section we consider categorical methods applicable for interval censored data,
when intervals of censoring coincides with the categorical bounds. First we consider
right censored data under independent censoring. Let (Ti, Ui) be the independent
pairs of independent failure and censoring times respectively; (Xi, δi), where Xi =
Ti ∧ Ui and δi = 1I{Ti≤Ui}, i = 1, . . . , n, be the observed data.

An alternative representation of the Kaplan-Meier estimator. Introduce the se-
quential times of the observed events X(1) < . . . < X(m). Note

D∗i =
n∑
j=1

1I{Xj=X(i)}, Df
i =

n∑
j=1

1I{Xj=X(i),Tj≤Uj}, Dc
i = D∗i −D

f
i ,
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is number of observations (failures and censoring, respectively) at time X(i), i =
1, . . . ,m. The Kaplan�Meier estimator is given by

Ŝ(X(k)) =
k∏
i=1

(
1− Df

i

Y ∗i

)
.

The corresponding discrete distribution has atoms

δ(X(k)) = Ŝ(X(k−1))− Ŝ(X(k)) =
k−1∏
i=1

(
1− Df

i

Y ∗i

)
Df
k/Y

∗
k = Ŝ(X(k−1))D

f
k/Y

∗
k ,

at points X(k), k = 1, . . . ,m. Using the equations

1− Df
i

Y ∗i
=
Y ∗i −D

f
i

Y ∗i
=
Y ∗i −D∗i
Y ∗i

Yi −Df
i

Y ∗i −D∗i
=
Y ∗i+1

Y ∗i

(
1 +

D∗i −D
f
i

Y ∗i+1

)
,

one can write that

Ŝ(X(k)) =
Y ∗k+1

n

k∏
i=1

(
1 +

Dc
i

Y ∗i+1

)
and

δ(X(k)) =
Df
k

n

k−1∏
i=1

(
1 +

Dc
i

Y ∗i+1

)
.

It is the baseline formula for alternative sequential method to construct the Kaplan-
Meier estimator. We start from the empirical distribution by {X1, . . . , Xn} with
δ(X(i)) = D∗i /n, i = 1, . . . ,m. Then, for any i in order to increase the values X(i)

one use the following procedure. If Tk ≤ Uk and Xk = X(i) then one doesn't change
δ(X(i)). Otherwise, if Tk > Uk and Xk = X(i) then one distribute the corresponding
mass between all X(j), j > i, in proportion of number of failures having values X(j).

The actuarial estimator. Let 0 = x0 < x1 < . . . < xr < γT be some �xed
timepoints (observation times); I1 = [0, x1] and Ij = (xj−1, xj]. The survival function
in the �xed timepoints takes the following values:

S(xk) =
k∏
i=1

(1− λi),

where λi = (S(xi−1)− S(xi))/S(xi−1). The observed data are given by δi and κij =
1I{Xi∈Ij}, j = 1, . . . , r, i = 1, . . . , n. The Kaplan�Meier estimator is not applicable in
this case. Introduce the following notations:

D1k =
n∑
i=1

1I{Xi∈Ik,Ui>ak,δi=1}, D2k =
n∑
i=1

1I{Xi∈Ik,Ui∈Ik,δi=1}, Wk =
n∑
i=1

1I{Xi∈Ik,δi=0},

Y1k =
n∑
i=1

1I{Xi>xk−1,Ui>xk}, Y2k =
n∑
i=1

1I{Xi>xk−1,Ui∈Ik},
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Yk = Y1k + Y2k, Dk = D1k +D2k.

The actuarial estimator of λk discussed in [4] is

λ̂k = Dk/(Yk −Wk/2).

It was proved that the actuarial estimator is consistent for any x1, . . . , xr: xr ≤M <
γT i�

S(x) = 1/(1 + cG(x))1/2, for all x ∈ [0,M ],

where c is a constant. We consider the following extension of the actuarial estimator:

λ̂k(a) = Dk/(Yk − aWk), for some a ∈ [0, 1], k = 1, . . . , r.

By using the alternative representation of Kaplan�Meier estimator it is easy to see
that the case a = 0 (a = 1) is corresponding to Ti < Uj (Ti > Uj) for all i : δi = 1,
j : δj = 0 in terms of the Kaplan�Meier estimator, Xi ∈ Ik and Xj ∈ Ik, and the case
a = 1/2 is corresponding to the classical actuarial estimator. On the analogy of [4]
we note that

λ̂k(a) =
Y1k

Yk − aWk

· D1k

Nik

+
D2k

Yk − aWk

Because Dlk, Ylk and Wk are sums of independent and identically distributed random
variables λ̂k(a)→ λk(a) a.s. and

λk(a) =
P(T > xk−1, U > xk)

P(X > xk−1)− aP(U ∈ Ik, T > U)
λk +

P(T ∈ Ik, U ∈ Ik, T ≤ U)

P(X > xk−1)− aP(U ∈ Ik, T > U)

=
(1−G(xk))

(1−G(xk−1))− a
∫ xk
xk−1

S∗k dG
λk +

∫ xk
xk−1

F ∗k dG

(1−G(xk−1))− a
∫ xk
xk−1

S∗k dG

=
1−G∗k(xk)

1− a
∫ xk
xk−1

S∗k dG
∗
k

λk +

∫ xk
xk−1

F ∗k dG
∗
k

1− a
∫ xk
xk−1

S∗k dG
∗
k

,

where S∗k(x) = S(x)/S(xk−1), x ≥ xk−1, and F
∗ ≡ 1−S∗ are survival and distribution

functions of the truncated distribution of T respectively and G∗ is the truncated
distribution function of U . Then the corresponding bias of the estimator is given by

bk = λk(a)− λk =
a
∫ xk
xk−1

S∗k dG
∗
k −G∗k(xk)

1− a
∫ xk
xk−1

S∗k dG
∗
k

F ∗k (xk) +

∫ xk
xk−1

F ∗k dG
∗
k

1− a
∫ xk
xk−1

S∗k dG
∗
k

(2)

Under �xed F and G the estimator λ̂k(a) is consistent for λk if

a =
G∗k(xk)− F ∗k (xk)

−1
∫ xk
xk−1

F ∗k dG
∗
k∫ xk

xk−1
S∗k dG

∗
k

. (3)
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2 Categorical survival tests

Let 0 < t1 < . . . < ts < γT are such that Si(tk1) − Si(tk2) > 0 for all 1 ≤ k2 < k1 <
γT . We assume for simplicity that the set of breakpoints {t1, . . . , ts} coincides with
the set of observation times {x1, . . . , xs}. Generalization of tests below to the case
{t1, . . . , ts} ⊆ {x1, . . . , xs′}, s ≤ s′, is trivial. Note

pDk = P(X ∈ Ik, δ = 1) =

∫ xi

xi−1

(1−G) dF ;

pYk = P(X > xk−1) = S(xk)(1−G(xk));

pWk = P(X ∈ Ik, δ = 0) =

∫ xk

xk−1

S dG.

The asymptotic normality of the actuarial estimator (λ̂1(a1), . . . , λ̂r(ar)) under a1 =
. . . = ar = 1/2 was given in [4] and the asymptotic normality for an arbitrary
a1, . . . , ar ∈ [0, 1] is following in the same way

√
n(λ̂k(ak)− λk(ak))⇒ N(0, σ2

k) (4)

where σ2
k = λk(ak)/(p

Y
k − akpWk )− (pYk − a2

kp
W
k )λk(ak)

2/(pYk − akpWk )2, and λ̂k(a) are
asymptotically independent, k = 1, . . . , r. A consistent estimator σ̂2

k of σ2
k can be

obtained by using the actuarial estimator λ̂k(ak) and the empirical estimators p̂Yk and
p̂Wk of pYk and pWk respectively.

Introduce the parameters θi = (θi1, . . . , θis)
′, where θiz = Sz(ti;a) =

∏
l:xl≤ti(1−

λl|z(al)), λl|z(a) is the limit mean of the actuarial estimator discussed in section 1
under �xed z, a = (a1, . . . , ar) and ai = ai(z) ∈ [0, 1] can be di�erent under di�erent
levels of z. Tests based on the actuarial estimators require the null hypothesis

H̃0 : θj1 = . . . = θjd for all j = 1, . . . , s,

that is di�erent in general of the categorical null hypothesis H0 in (1), but its rejec-
tion implies rejection of the nonparametric homogeneity hypothesis H∗0 if the right
censoring distribution de�ned by G is not dependent on z. Note that (4) implies
convergence √

ni(θ̂i − θi)⇒ N(0,Σi)

with Σi = ‖σi:jj′‖ and σi:jj′ = θijθij′
∑j

k=1 σ
2
k/(1 − λk|i(ak)) if j ≤ j′. The consis-

tent estimator of Σi under ni →∞ can be obtained by using the actuarial estimator
λ̂k|i(ak) and σ̂

2
k|i, k = 1, . . . , s, i = 1, . . . , d. Introduce θ = (θ11, . . . , θ1s, . . . , θd1, . . . , θds)

′

and the corresponding estimator θ̂ = (θ̂11, . . . , θ̂1s, . . . , θ̂d1, . . . , θ̂ds)
′. Then,

√
n(θ̂ − θ)⇒ N(0,Σ), (5)

and Σ = diag(l1Σ1, . . . , lnΣd) is the block-diagonal matrix, li = n/ni for i = 1, . . . , d.
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Let ψi = Aθi, where A = ‖aij‖ is (d − 1) × d -matrix of linearly independent

contrasts, i. e.
∑d

j=1 aij = 0 for all i and rk(A) = d− 1. Then, H̃0 can be written in
terms of contrasts

H̃0 : ψ1 = . . . = ψd−1 = 0.

Associate with any aij the diagonal matrix Aij = aijIs, where Is is the identity matrix
of size s and construct the matrix B of size (d−1)s×ds from blocks Aij in appropriate
order. It is obviously that B is a matrix of linearly independent contrasts and the
null hypothesis can be rewritten in vector form

H̃0 : Bθ = 0.

Taking into account (5) we obtain that under null hypothesis

n θ̂
′
Q̂−1θ̂ ⇒ χ2

(d−1)s,

where Q̂ = B′(BΣ̂B′)−1B.
Analogous tests for

H̃∗0 : λj|1(aj) = . . . = λj|d(aj) for all j = 1, . . . , s,

can be obtained directly from (4).
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Abstract

In paper we consider a speci�c dependent informative competing risks model
in the presence of a covariate and propose three types of estimators for survival
function. We show uniform strong consistency and weak convergence of esti-
mators to the same Gaussian process.

Keywords: Competing risks, informative censoring, exponential-hazard,
product-limit, power-type estimators.

Introduction

Let {(Xi, Y1i, Y2i) , i ≥ 1} be a sequence of independent and identically distributed
triples of positive random variables (r.v.-s), where the components Xi, Y1i and Y2i are
supposed to be conditionally independent given a covariate Zi. The Xi 's are lifetimes
with a common continuous distribution function (d.f.) F (t) , t ∈ R+.The Yki 's, k =
1, 2, are censoring times with common continuous d.f.-s Gk (t) , k = 1, 2, t ∈ R+,
respectively. At the n-th stage of experiments the observed data consists a sample of
triples {(ξi, δi, Zi) , i = 1, ..., n} = C(n) with ξi = min (Xi, Y1i, Y2i) and

δi =


1, if Xi ≤ min (Y1i, Y2i) ,
0, if Y1i ≤ min (Xi, Y2i) ,
−1, if Y2i ≤ min (Xi, Y1i) .

In sample C(n) the r.v.-s of interest Xi 's are censored from the right by r.v.-s
min (Y1i, Y2i) and observable partially only in case of δi = 1. The estimation of
d.f. F and its functionals from sample C(n) is one of the main goals in survival analy-
sis. Let's de�ne the conditional d.f.-s of r.v.-s Xi and Yki, k = 1, 2, given a covariate
Zi = z as

F (t/z) = P (Xi ≤ t/Zi = z) , (t, z) ∈ R+ × R,

Gk (t/z) = P (Yki ≤ t/Zi = z) , k = 1, 2, (t, z) ∈ R+ × R.

We also suppose that the censoring by r.v.-s Y1i for a given covariate is informative,
i.e. the pairs (Xi, Y1i) follows the conditionally proportional hazards model (PHM)
in which the d.f.G1 (t/z) is related to F (t/z) as

1−G1 (t/z) = (1− F (t/z))β, (t, z) ∈ R+ × R. (1.1)
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Here β is a some �xed but unknown censoring parameter. This kind of partially
informative random censoring model with nuisance parameter (β,G2) in lack of co-
variate Zi was considered by authors [1,4,9,11]. Adapting some of ideas from [4] here
we propose three asymptotical equivalent estimators of F (t) through estimation of
conditional d.f. F (t/z) by exponential-hazard, product-limit and relative-risk power
estimators using data from sample C(n).

1 Estimators of Survival Function

Let H (t/z) is a conditional d.f. of ξi. Then by supposed independence of r.v.-s for
a given covariate and from (1.1) we have 1−H (t/z) = (1−K (t/z)) (1−G2 (t/z)) ,
where K (t/z) = P (min (Xi, Y1i) ≤ t/Zi = z) = 1 − (1− F (t/z)) (1−G1 (t/z)) =
1− (1− F (t/z))β+1, t ∈ R+, z ∈ R. For any d.f. L (t), let

τL = sup
{
t ∈ R+ : L (t) = 0

}
, TL = inf

{
t ∈ R+ : L (t) = 1

}
,

L (t−) = lim
s↑t

L (s) , ∆L (t) = L (t)− L (t−) .

Then by (1.1), τF = τG1 = τK , TF = TG1 = TKand τH = max (τF , τG2) ≥ 0,TH =
min (TF , TG2) ≤ ∞.Let Q (z) is d.f. of r.v.-s Zi. Then

F (t) =

∫
F (t/z)dQ (z) , Gk (t) =

∫
Gk (t/z) dQ (z) , k = 1, 2,

K (t) =

∫
K (t/z) dQ (z) = P (min (Xi, Y1i) ≤ t) ,

H (t) =

∫
H (t/z)dQ (z) = P (ξi ≤ t) .

In order to constructing the estimators of F (t), we need the following conditional
subdistribution functions:

H̃ (t/z) = P (ξi ≤ t, δi 6= −1/Zi = z) = P (min (Xi, Y1i) ≤

≤ min (t, Y2i) /Zi = z) =

t∫
0

(1−G2 (u/z)) dK (u/z),

˜̃H (t/z) = P (ξi ≤ t, δi = −1/Zi = z) = P (Y2i ≤ min (t,Xi, Y1i) / Zi = z) =

=

t∫
0

(1−K (u/z)) dG2 (u/z),

with H̃ (t/z) + ˜̃H (t/z) = H (t/z) for all t ∈ R+, z ∈ R. Let γ = 1
β+1

and pm =

P (δi = m) , m = −1, 0, 1. Then

P (δi 6= −1) =

∫
lim
t→∞

H̃ (t/z) dQ (z) =

∫ ∞∫
0

(1−G2 (u/z))dK (u/z)dQ (z) =
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=

∫  ∞∫
0

(1−G2 (u/z)) d
[
1− (1− F (u/z))β+1

]dQ (z) =

=
1

γ

∫  ∞∫
0

(1−G2 (u/z)) (1− F (u/z))βdF (u/z)

 dQ (z) , (2.1)

and

P (δi = 1) =

∫
P (δi = 1/Zi = z) dQ (z) =

∫
P (Xi ≤ min (Y1i, Y2i) /Zi = z) dQ (z) =

=

∫  ∞∫
0

(1− F (u/z))β (1−G2 (u/z)) dF (u/z)

dQ (z) . (2.2)

From (2.1) and (2.2), we get γ = P (δi = 1) /P (δi 6= −1) = P (δi = 1/δi 6= −1) . Hence
the parameter γ = 1

β+1
can be consistently estimated by statistics

γn =

∑n
i=1 I (δi = 1)∑n
i=1 I (δi 6= −1)

=
p1n

p0n + p1n

, (2.3)

where pmn = 1
n

∑n
i=1 I (δi = m) are estimators of probabilities pm,m = −1, 0, 1. Let's

de�ne cumulative hazard functions (c.h.f.-s)

Λ̃ (t/z) = − log (1−K (t/z)) = −1

γ
· log (1− F (t/z)) ,

˜̃Λ (t/z) = − log (1−G2 (t/z)) , (2.4)

and
Λ (t/z) = − log (1−H (t/z)) = Λ̃ (t/z) + ˜̃Λ (t/z) .

We suppose that d.f.Q (z) have a density q (z). Then c.h.f.-s (2.4) can be represented
as

Λ̃ (t/z) =

t∫
0

q (z) dH̃ (u/z)

q (z) (1−H (u/z))
=

t∫
0

dÃ (u; z)

B (u; z)
,

˜̃Λ (t/z) =

t∫
0

q (z) d ˜̃H (u/z)

q (z) (1−H (u/z))
=

t∫
0

d ˜̃A (u; z)

B (u; z)
, (2.5)

and

Λ (t/z) =

t∫
0

q (z) dH (u/z)

q (z) (1−H (u/z))
=

t∫
0

dA (u; z)

B (u; z)
,

where
A (u; z) = Ã (u; z) + ˜̃A (u; z) , Ã (u; z) = q (z) (1−G2 (u/z)) ,
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˜̃A (u; z) = q (z) (1−K (u/z)) and B (u/z) = q (z) (1−H (u/z)) .

These functions can be estimated by statistics

An (u; z) = Ãn (u; z) + ˜̃An (u; z) ,

Ãn (u; z) =
1

n

n∑
i=1

I (ξi ≤ u, δi 6= −1) πa (z;Zi) ,

˜̃An (u; z) =
1

n

n∑
i=1

I (ξi ≤ u, δi = −1) πa (z;Zi) , (2.6)

and

Bn (u; z) =
1

n

n∑
i=1

I (ξi ≥ u) πa (z, Zi) ,

where πa (z; t) = 1
an
π
(
z−t
an

)
with kernel function π (z) and bandwidth sequence a =

an ↓ 0 as n → ∞. By substitution of estimators (2.6) into formulas (2.5) we obtain
the estimators for c.h.f.-s

Λ̃n (t/z) =

t∫
0

dÃn (u; z)

Bn (u; z)
, ˜̃Λn (t/z) =

t∫
0

d ˜̃An (u; z)

Bn (u; z)
,

and

Λn (t/z) = Λ̃n (t/z) + ˜̃Λn (t/z) =

t∫
0

dAn (u; z)

Bn (u; z)
. (2.7)

In order to estimate the conditional d.f. F (t/z) we use representation

1− F (t/z) = (1−K (t/z))γ, (t, z) ∈ R+ × R, (2.8)

following from (1.1). For 1 − K (t/z) we use the following exponential hazard type
estimator of Altschuler-Breslow, product-limit type estimator of Kaplan-Meier and
relative-risk power type estimator of Abdushukurov (see, [1-6]):

1−K1n (t/z) = exp
(
−Λ̃n (t/z)

)
,

1−K2n (t/z) =
∏
u≤t

(
1−∆Λ̃n (u/z)

)
, (2.9)

1−K3n (t/z) =

[∏
u≤t

(1−∆Λn (u/z))

]Rn(t;z)

,

where Rn (t; z) = Λ̃n (t/z) (Λn (t/z))−1 is estimator of R (t; z) = Λ̃ (t/z) (Λ (t/z))−1,
∆Λ̃n (u/z) = Λ̃n (u/z)− Λ̃n (u− /z) ,∆Λn (u/z) = Λn (u/z)−Λn (u− /z). According

179



Lifetime data analysis

to (2.8) using estimators (2.3) and (2.9) we get corresponding estimators of 1−F (t/z)
as

1− Fln (t/z) = (1−Kln (t/z))γn , l = 1, 2, 3, (t, z) ∈ R+ × R. (2.10)

Finally, using statistics (2.10) we construct estimators of 1 − F (t) by averaging as
follows:

1− Fln (t) =

∫
(1− Fln (t/z))dQn (z) , l = 1, 2, 3, t ∈ R+, (2.11)

where

Qn (z) =
1

n

n∑
i=1

I (Zi ≤ z) , z ∈ R,

is the empirical estimator of d.f. Q (z). Note that in lack of censoring by r.v.-s Y1i-s
(i.e. G1 (t) ≡ 0) the estimator K1n (t/z) in (2.9) coincides with one considered in [11].

2 Asymptotic properties of estimators of survival

function

In order to investigate the asymptotic properties of estimators (2.11) we need the
following conditions.

Conditions I:
(I.1) The kernel function π is bounded and Lipschitz continuous of order 1 with

respect to the Euclidean distance on R.
(I.2)

∫
π (z) dz = 1,

∫
zπ (z) dz = 0,

∫
z2 |π (z)|dz <∞.

(I.3) The bandwith sequence {an, n ≥ 1} satis�es: an → 0 and logn
nan
→ 0 as

n→∞.
(I.4) The partial derivatives ∂F (t/z)

∂t
and ∂G2(t/z)

∂t
exist and are continuous in t for

each z.
(I.5) The functions q (z) , F (t/z) and G2 (t/z) have bounded continuous �rst and

second partial derivatives with respect to z.
(I.6) For any closed interval [a, b] ⊂ R+, there exists constants ρ, δ (ε) > 0 such

that

P (ξi > ρ/Zi = z) ≥ δ (ε) , ∀z ∈ [a, b] ,

with q (z) ≥ ε and ε > 0 arbitrary small.
Note that in view of (1.1) the conditions (I.4) and (I.5) for d.f.G1 (t/z) are hold

too. Moreover, from (I.6) we also have a chain of inequalities

1−K (ρ) = P (min (Xi, Y1i) > ρ) ≥ P (ξi > ρ) =

=

∫
q (z)P (ξi > ρ/Zi = z) dz ≥ ε ·

∫
{z:q(z)≥ε}

P (ξi > ρ/Zi = z) dz > 0.

The properties of estimators (2.11) are established from the corresponding properties
of estimators (2.3), (2.6), (2.7) and (2.9). In accordance with results of Cheng [7]
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under Conditions I we obtain asymptotic unbiasedness of Ãn,
˜̃An, An, Bn and hence

the uniform strong consistency of Λ̃n (t/z) and ˜̃Λn (t/z) over a rectangle [0, τ ]× [a, b]
with τ ∈ (0, TH) and rate of convergence as follows:

sup
(t,z)∈[0,τ ]×[a,b]

∣∣∣Λ̃n (t/z)− Λ̃ (t/z)
∣∣∣ a.s.

= O

((
log n

nan

)1/2
)

+O
(
a2
n

)
, (2.12)

sup
(t,z)∈[0,τ ]×[a,b]

∣∣∣ ˜̃Λn (t/z)− ˜̃Λ (t/z)
∣∣∣ a.s.

= O

((
log n

nan

)1/2
)

+O
(
a2
n

)
. (2.13)

Then

sup
(t,z)∈[0,τ ]×[a,b]

|Λn (t/z)− Λ (t/z)| a.s.= O

((
log n

nan

)1/2
)

+O
(
a2
n

)
, (2.14)

sup
(t,z)∈[0,τ ]×[a,b]

|K1n (t/z)−K (t/z)| a.s.= O

((
log n

nan

)1/2
)

+O
(
a2
n

)
, (2.15)

where (2.14) is consequence of (2.12), (2.13) and triangular inequality, (2.15) follows
from (2.12) and inequality |a− b| ≤ | log a− log b|, for 0 < a, b ≤ 1. It is easy to see
that statistics (2.3) is strong consistent and asymptotically unbiased estimator of γ.
From Consequence 3 in [3] for each m = −1, 0, 1 and any ε > 0 we have

P

(
|pmn − pm| >

(
ε log n

n

)1/2
)
≤ 2n−ε, (2.16)

also if min (pm, 1− pm) ≥ 2
(
ε logn
n

)1/2
, then

P
(
p−1
mn > 2p−1

m

)
≤ 2n−ε, (2.17)

and
P
(
(1− pmn)−1 > 2(1− pm)−1) ≤ 2n−ε. (2.18)

Hence from (2.16)-(2.18) by Borel-Cantelly lemma for m = −1, 0, 1 we have

|pmn − pm|
a.s
=O

((
log n

n

)1/2
)
,

and with probability one

1

pmn
<

2

pm
,

1

1− pmn
<

2

1− pm
.

Adapting characterization of simple proportional hazard model under independent
random censoring from the right (see, [1,3-6,8,9]) we get following property of con-
sidered conditionally partially informative competing risks model. For a given co-
variate Zi = z partially observable (only if δi 6= −1) r.v.-s min (Xi, Y1i) and in-
dicators I (Xi ≤ Y1i) are independent if and only if the representation (1.1) is sat-

is�ed. Hence under occurrence of events A
(i)
z = {Zi = z} ∩ {δi 6= −1} the r.v.-s
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ξi = min (Xi, Y1i, Y2i) and δi are conditionally independent if and only if the repre-
sentation (1.1) is satis�ed. This characterization property of considered model is very
useful in investigating of asymptotical properties of estimators (2.11).

In the next theorem we show that all three statistics Fnl (t) , l = 1, 2, 3, are
aconsistent estimators for the unconditional d.f.F (t).

Theorem. Under Conditions I statistics {Fln (t) , l = 1, 2, 3} are a uniformly
strongly consistent estimators for d.f. F (t) on [0, τ ]:

sup
0≤t≤τ

|Fln (t)− F (t)| →
n→∞

0, a.s.

Moreover we also prove weak convergence of normed processes{
Vln (t) =

√
n (Fln (t)− F (t)) , t ∈ [0, τ ] , l = 1, 2, 3

}
to the same Gaussian process.

References

[1] Abdushukurov A.A.(1998). Nonparametric estimation of the distribution func-
tion based on relative risk function Commun Statist:.Theory & Meth. Vol. 27,
N. 8, pp. 1991-2012.

[2] Abdushukurov A.A.(1999). On nonparametric estimation of reliability indices
by censored sample. Theory Probab. Appl.. Vol. 43, N. 1, pp. 3-11.

[3] Abdushukurov A.A., Nedzvedsky D.T. (2005). Asymptotic properties of empir-
ical processes on censored samples of ramdomsices. J. Math. Sciences. Vol. 127,
N. 1, pp. 931-939.

[4] Abdushukurov A.A., Makhmudova D. (2008). Semiparametric estimation of the
distribution function in the informative competing risks model. In: Statistical
Methods of Estimation and Hypoteses Testing. Perm. Perm State University.
pp. 98-106. (In Russian).

[5] Abdushukurov A.A.(2011). Nonparametric estimation based on incomplete ob-
servations. In: International Enciclopedia of Statistical Sciences. (Prof. Miodrag
Lovric, Editor). Springer. Pt.14. pp. 962-964.

[6] Abdushukurov A.A. (2011). Estimates of unknown distributions from incom-
plete observations and its properties.. LAMBERT Academic Publishing. 301p.
(In Russian).

[7] Cheng P.E. (1989). Nonparametric estimation of survival curve under dependent
censorship. J. Statist. Plann. Infer. Vol. 23, pp. 181-191.

[8] Csörg® S.(1988). Estimation in the Proportional Hazards Model of random
censorship. Statistics. Vol. 19, N. 3, pp. 437-467.

182



Applied Methods of Statistical Analysis

[9] Chather U., Pawlischko J. (1998). Estimating the survival function under a
generalized Koziol-Green model with partially informative censoring. Metrika.
Vol. 48, pp. 189-207.

[10] Jensen U., Wiedmann J. (2000). Estimation of a Survival Curve under Depen-
dent Cenoring Second Internat.Conf. on Math.Meth-s in Reliability. Bordeaux.
France. July 4-7. Vol. 2, pp. 571-574.

[11] Zhang H., Rao M.B. (2004). On generalized maximum likelihood estimation
in the proportional hazards model with partially informative censoring Metrika.
Vol. 59, pp. 125-136.

183



Lifetime data analysis

Asymptotic Results for Copula Estimator of Survival

Function under Random Right Censored

Observations at Fixed Covariate Values

Rustamjon S. Muradov

Institute of Mathematics and National University of Uzbekistan, Tashkent,
Uzbekistan

e-mail: r muradov@myrambler.ru

Abstract

In this work we consider estimator of survival function under random cen-
sored observations in the presence of covariate, where the dependence between
lifetime and censoring variable is expressed by a given Archimedian copula. We
present some asymptotic results of estimator.

Keywords: Censored observations, covariate, asymptotic representation,
weak convergence, Archimedian copula, Gaussian process.

Introduction

In survival analysis our interest focuses on a nonnegative random variables (r.v.-s)
denoting death times of biological organisms or failure times of mechanical systems. A
di�culty in the analysis of survival data is the possibility that the survival times can
be subjected to random censoring by other nonnegative r.v.-s and therefore we observe
incomplete data. There are various types of censoring mechanisms. In this article
we consider only right censoring model and problem of estimation of conditional
survival function when the survival times and censoring times are dependent and new
estimates of conditional survival function assuming that the dependence structure is
described by a known copula function. We also consider integral-type estimator of
survival function under random right censored observations at �xed covariate values,
where the dependence between a life time and a censoring variable may expressed by
a given Archimedean copula. We demonstrate almost sure asymptotic representation
which provides a key tool for obtaining weak convergence result for estimator.

1 A short introduction to the concept of copulas

Without a doubt the dependence relations between random variables plays a very
important role in many �elds of mathematics and is one of the most widely studied
subjects in probability and statistics. M. Fr�echet and G. Dall'Aglio (see [8]) did
some interesting works about this matter in the �fties, studying the bivariate and
trivariate distribution functions (d.f.-s) with given univariate margins. The answer
to this problem for the univariate margins case was given by A. Sklar creating a new
class of functions which he called copulas. The concept of copulas was introduced in
1959 (see [10]) to study the linkage between multivariate distribution functions and
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their univariate marginals. Since then, copulas have gained growing importance as
a tool for modeling statistical dependence of random variables in many �elds. We
begin with a short introduction to the concept of copulas. For more details with an
emphasis on the statistical and mathematical foundations of copulas see Nelsen [8].

De�nition 1. A copula C (u, v) : [0, 1]2 → [0, 1] is a bivariate distribution function
with uniform marginals.

A �rst example of copulas is the product copula C (u, v) = uv, which characterizes
independent r.v.-s when the d.f.-s are continuous. The importance of copulas in
statistics is described in Sklar's Theorem.

Theorem 1 (8). Let H be a joint d.f. with margins F and G. Then there exists a
copula C such that for all x, y in R,

H (x, y) = C (F (x) , G (y)) . (1)

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on
Ran (F ) × Ran (G) . Conversely, if C is a copula and F and G are d.f.-s, then the
function H de�ned by (1) is a joint d.f. with margins F and G. Thus copulas link
joint d.f.-s to their one-dimensional margins.

The representation (1) suggests that if the copula C were known, then substituting
continuous marginal estimators for F and G would yield a plug-in estimate of their
associated joint d.f. H. Moreover, in light of Sklar's result with arrive at the following
functional de�nition of a copula.

De�nition 2. Given a bivariate d.f. H with marginals F and G, the function de�ned
as

C (u, v) = H
(
F−1 (u) , G−1 (v)

)
,

for (u, v) ∈ [0, 1]2, where F−1 (u) and G−1 (v) are the inverse functions of F and G
respectively, is the copula corresponding to H.

In many applications, the r.v.-s of interest represent the lifetimes of individuals
or objects in some population. The probability of an individual living or surviving
beyond time x is given by the survival function S(x) = P (X > x) = 1 − F (x) ,
where, as before, F denotes the d.f. of X. Let C be the copula function of the
bivariate distribution of (X, Y ) . We have

H̄ (x, y) = P (X > x, Y > y) = 1− F (x)−G (y) +H (x, y) =

= S (x) + S (y)− 1 + C (1− S (x) , 1− S (y)) = C∗ (S (x) , S (y)) ,

where C∗ (u, v) = u+ v − 1 + C (1− u, 1− v)-survival copula function.

Let ϕ be a continuous, strictly decreasing function from [0, 1] to [0,∞]such that
ϕ (1) = 0.
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De�nition 3. The pseudo-inverse of ϕ is the function ϕ[−1] with Domϕ[−1] = [0,∞]
and given by

ϕ[−1] (t) =

{
ϕ−1 (t) , 0 < t < ϕ (0) ,

0, ϕ (0) ≤ t ≤ ∞.

Note that ϕ[−1] is continuous and no increasing on [0,∞], and strictly decreasing
on [0, ϕ (0)]. Furthermore,

ϕ
(
ϕ[−1] (t)

)
=

{
t, 0 < t < ϕ (0) ,
0, ϕ (0) ≤ t ≤ ∞, = min (t, ϕ (0)) .

If ϕ (0) =∞, then ϕ[−1] = ϕ−1.

De�nition 4. Copulas of the form C (u, v) = ϕ[−1] (ϕ (u) + ϕ (v)) are called
Archimedean copulas, where the function ϕ is called a generator of the copula
ϕ (1) = 0.

2 The right censoring model

In such research areas as bio-medicine, engineering, insurance, social sciences and
many others researchers are interested in positive variables, which are expressed as a
time until a certain event. For example, in medicine the survival time of individual,
while in industrial trials, time until breakdown of a machine are non-negative r.v.-s of
interest. But in such practical situations, the observed data may be incomplete, that
is censored. This is the case, for example, in medicine when the event of interest-death
due to a given cause and the censoring event is death due to other cause. In industrial
study, it may occur that some piece of equipment is taken away (that is censored)
because it shows some sign of future failure. Moreover, the r.v.-s of interest (lifetimes,
failure times) and censoring r.v.-s usually can be in�uenced by other variable, often
called prognostic factor or covariate. In medicine, dose of a drug and in engineering
some environmental conditions (temperature, pressure) are in�uenced to the observed
variables. The basic problem consist in estimation of distribution of lifetime by such
censored dependent data. The aim of paper is considering this problem in the case
of right random censoring model in the presence of covariable.

Let's consider the case when the support of covariate C is the interval [0, 1] and
we describe our results on �xed design points 0 ≤ x1 ≤ x2 ≤ ··· ≤ xn ≤ 1 at which we
consider responses (survival or failure times) X1, ..., Xn and censoring times Y1, ..., Yn
of identical objects, which are under study. These responses are independent and
nonnegative r.v.-s with conditional distribution function (d.f.) at xi, Fxi(t) = P (Xi ≤
t/Ci = xi). They are subjected to random right censoring, that is for Xi there is a
censoring variable Yi with conditional d.f. Gxi(t) = P (Yi ≤ t/Ci = xi) and at n-th
stage of experiment the observed data is

S(n) = {(Zi, δi, Ci), 1 ≤ i ≤ n},

where Zi = min(Xi, Yi), δi = I(Xi ≤ Yi) with I(A) denoting the indicator of event
A. Note that in sample S(n) r.v. Xi is observed only when δi = 1. Commonly, in
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survival analysis to assume independence between the r.v.-s Xi and Yi conditional
on the covariate Ci. But, in some practical situations, this assumption does not
hold. Therefore, in this article we consider a dependence model in which dependence
structure is described through copula function. So let

Sx(t1, t2) = P (Xx > t1, Yx > t2), t1, t2 ≥ 0,

the joint survival function of the response Xx and the censoring variable Yx at x.
Then the marginal survival functions are SXx (t) = 1 − Fx(t) = Sx(t, 0) and SYx (t) =
1 − Gx(t) = Sx(0, t), t ≥ 0. We suppose that the marginal d.f.-s Fx and Gx are
continuous. Then according to the Theorem of Sklar (see, section 1), the joint survival
function Sx(t1, t2) can be expressed as

Sx(t1, t2) = Cx(S
X
x (t1), SYx (t2)), t1, t2 ≥ 0, (2)

where Cx(u, v) is a known copula function depending on x, SXx and SYx in a general
way.

3 Asymptotic results for estimator

Assume that at the �xed design value x ∈ (0, 1), Cx in (2) is Archimedean copula,
i.e.

Sx(t1, t2) = ϕ[−1]
x (ϕx(S

X
x (t1)) + ϕx(S

Y
x (t2))), t1, t2 ≥ 0, (3)

where copula generator function ϕx is strict, i.e. ϕx(0) =∞ and hence ϕ
[−1]
x = ϕ−1

x .
From (3), it follows that

P (Zx > t) = 1−Hx(t) = Hx(t) = SZx (t) = Sx(t, t) =

= ϕ−1
x (ϕx(S

X
x (t)) + ϕx(S

Y
x (t))), t ≥ 0, (4)

Let H
(1)
x (t) = P (Zx ≤ t, δx = 1) be a subdistribution function and Λx(t) is crude

hazard function of r.v. Xx subjecting to censoring by Yx, that is

Λx(dt) =
P (Xx ∈ dt,Xx ≤ Yx)

P (Xx ≥ t, Yx ≥ t)
=
H

(1)
x (dt)

SZx (t−)
. (5)

From (4) and (5) one can obtain following expression of survival function SXx :

SXx (t) = ϕ−1
x [−

∫ t

0

SZx (u−)ϕ′x(S
Z
x (u))dΛx(u)] =

= ϕ−1
x [−

∫ t

0

ϕ′x(S
Z
x (u))dH(1)

x (u)], t ≥ 0, (6)

(see, for example, [1-4]). In order to constructing the estimator of SXx according to

representation (6), we introduce some smoothed estimators of SZx , H
(1)
x and regularity
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conditions for them. Similarly to Breakers and Veraverbeke [2], we will also use the
Gasser-Müller weights

ωni(x, hn) =
1

qn(x, hn)

∫ xi

xi−1

1

hn
π(
x− z
hn

)dz, i = 1, ..., n,

with

qn(x, hn) =

∫ xn

0

1

hn
π(
x− z
hn

)dz,

where x0 = 0, π is a known probability density function(kernel) and {hn, n ≥ 1} is a
sequence of positive constants, tending to zero as n→∞, called bandwidth sequence.
Let's introduce the weighted estimators of Hx, S

Z
x and H

(1)
x respectively as

Hxh(t) =
n∑
i=1

ωni(x, hn)I(Zi ≤ t),

SZxh(t) = 1−Hxh(t), (7)

H
(1)
xh (t) =

n∑
i=1

ωni(x, hn)I(Zi ≤ t, δi = 1).

Then pluggin in (6) estimators (7) we get corresponding estimator of SXx (t) as

SXxh(t) = 1− Fxh(t) = ϕ−1
x [−

∫ t

0

ϕ′x(S
Z
xh(u))dH

(1)
xh (u)], t ≥ 0, (8)

Remark that in the case of no covariate, estimator (8) reduces to estimator �rst ob-
tained by Zeng and Klein [11]. In the case of the independent copula ϕ(y) = −logy,
Zeng and Klein estimate reduces to a exponential-hazard estimate (see, [1,2,9,11]).
Also it is well-known that under independent censoring case Kaplan-Meier's product-
limit estimator and exponential-hazard estimators are asymptotical equivalent. There-
fore, we will show that estimator and copula-graphic estimator of Breakers and Ver-
averbeke[2] have the same asymptotic behaviours.

For the design points x1, ...xn, denote

∆n = min
1≤i≤n

(xi − xi−1), ∆n = max
1≤i≤n

(xi − xi−1).

For the kernel π, let

‖π‖2
2 =

∫ ∞
−∞

π2(u)du, mν(π) =

∫ ∞
−∞

uνπ(u)du, ν = 1, 2.

Moreover, we use next assumptions on the design and on the kernel function:
(A1) As n→∞, xn → 1, ∆n = O( 1

n
), ∆n −∆n = o( 1

n
).

(A2) π is a probability density function with compact support [−M,M ] for some
M > 0, with m1(π) = 0 and |π(u) − π(u′)| ≤ C(π)|u − u′|, where C(π) is some
constant.
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Let THx = inf{t ≥ 0 : Hx(t) = 1}. Then THx = min(TFx , TGx). We need some

smoothness conditions on functions Hx(t) and H
(1)
x (t). We formulate them for a gen-

eral (sub)distribution function Nx(t), 0 ≤ x ≤ 1, t ∈ R and for a �xed T > 0.
(A3) ∂

∂x
Nx(t) = Ṅx(t) exists and is continuous in (x, t) ∈ [0, 1]× [0, T ].

(A4) ∂
∂t
Nx(t) = N ′x(t) exists and is continuous in (x, t) ∈ [0, 1]× [0, T ].

(A5) ∂2

∂x2
Nx(t) = N̈x(t) exists and is continuous in (x, t) ∈ [0, 1]× [0, T ].

(A6) ∂2

∂t2
Nx(t) = N ′′x (t) exists and is continuous in (x, t) ∈ [0, 1]× [0, T ].

(A7) ∂2

∂x∂t
Nx(t) = Ṅ ′x(t) exists and is continuous in (x, t) ∈ [0, 1]× [0, T ].

(A8) ∂ϕx(u)
∂u

= ϕ′x(u) and ∂2ϕx(u)
∂u2

= ϕ′′x(u) are Lipschitz in the x-direction with a

bounded Lipschitz constant and ∂3ϕx(u)
∂u3

= ϕ′′′x (u) ≤ 0 exists and is continuous in
(x, u) ∈ [0, 1]× (0, 1].

It is clear that for existence of right hand side of representation (6) we must require

the conditions (A 4) for functions Hx(t) and H
(1)
x (t) in [0, 1] × [0, T ] with T < THx

and existence of ϕ′x(u) on [0, 1]× (0, 1].
We present almost sure representation result with rate.

Theorem 2 (1,2). Assume (A 1), (A 2), Hx(t) and H
(1)
x (t) satisfy (A 5)-(A 7) in

[0, T ] with T < THx , ϕx satis�es (A 8) and hn →∞, lognnhn
→ 0, nh5n

logn
= O(1). Then, as

n→∞,

Fxh(t)− Fx(t) =
n∑
i=1

ωni(x, hn)Ψtx(Zi, δi) + rn(t),

where

Ψtx(Zi, δi) =
−1

ϕ′x(SXx (t))
[

∫ t

0
ϕ′′x(SZx (u))(I(Zi ≤ u)−Hx(u))dH(1)

x (u)−

−ϕ′x(SZx (t))(I(Zi ≤ t, δi = 1)−H(1)
x (t))−

∫ t

0
ϕ′′x(SZx (u))(I(Zi ≤ u, δi = 1)−H(1)

x (u))dHx(u)]

and

sup
0≤t≤T

|rn(t)| a.s.= O

((
logn

nhn

)3/4
)
.

The weak convergence of the process (nhn)1/2Fxh(·)− Fx(·) in the space `∞[0, T ]
of uniformly bounded functions on [0, T ], endowed with the uniform topology is the
contents of the next theorem.

Theorem 3 (1,2). Assume (A 1), (A 2), Hx(t) and H
(1)
x (t) satisfy (A 5)-(A 7) in

[0, T ] with T < THx , and that ϕx satis�es (A 8).

(I) If nh5
n → 0 and (logn)3

nhn
→ 0, then, as n→∞,

(nhn)1/2{Fxh(·)− Fx(·)} =⇒Wx(·) in `∞[0, T ].

(II) If hn = Cn−1/5 for some C > 0, then, as n→∞,

(nhn)1/2{Fxh(·)− Fx(·)} =⇒W∗
x(·) in `∞[0, T ],
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where Wx(·) and W∗
x(·) are Gaussian processes with means

EWx(t) = 0, EW∗
x(t) = ax(t),

and same covariance

Cov(Wx(t),W
∗
x(s)) = Cov(W∗

x(t),W
∗
x(s)) = Γx(t, s),

with

ax(t) =
−C5/2m2(π)

2ϕ′x(S
X
x (t))

∫ t

0

[ϕ′′x(S
Z
x (u))Ḧx(u)dH(1)

x (u)− ϕ′x(SZx (u))dḦ(1)
x (u)],

and

Γx(t, s) =
‖π‖22

ϕ′x(SXx (t))ϕ′x(SXx (s))
{
∫ min(t,s)

0
(ϕ′x(SZx (z)))2dH(1)

x (z)+

+

∫ min(t,s)

0
[ϕ′′x(SZx (w))SZx (w) + ϕ′x(SZx (w))]

∫ w

0
ϕ′′x(SZx (y))dH(1)

x (y)dH(1)
x (w)+

+

∫ min(t,s)

0
ϕ′′x(SZx (w))

∫ max(t,s)

w
(ϕ′′x(SZx (y))SZx (y) + ϕ′x(SZx (y)))dH(1)

x (y)dH(1)
x (w)−

−
∫ t

0
[ϕ′′x(SZx (y))SZx (y)+ϕ′x(SZx (y))]dH(1)

x (y)

∫ s

0
[ϕ′′x(SZx (w))SZx (w)+ϕ′x(SZx (w))]dH(1)

x (w)}.
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Abstract

The generalized Pareto distribution (GPD) is widely used to model ex-
ceedances over thresholds. The estimation of the parameters of the GPD is
a di�cult problem, and existing methods for estimating parameters have the-
oretical or computational defects. In this article, we introduce the method of
inference for the GPD, proposed by Nagatsuka and Balakrishnan (2015, sub-
mitted paper), which can successfully estimates the parameters, constructs the
con�dence intervals and likelihood ratio tests, over the entire parameter space.
In this method, the estimates always exist uniquely, and the estimators are also
consistent over the entire parameter space. The method are compared with
some prominent methods through a Monte Carlo simulation study.

Keywords: Generalized Pareto Distribution, Exceedances over thresholds,
Consistency, Existence, Uniqueness.

Introduction

Statistical modeling of the largest or smallest values (extreme values) of certain nat-
ural phenomena (e.g., waves, �oods, earthquakes, winds, temperatures etc) is of in-
terest in various practical applications. For example, the distributions of high waves
and large �oods are important in the designs of dikes and dams, respectively. The
traditional approach to the analysis of extreme values is based on the generalized
extreme value distribution (GEVD), which is a limiting distribution for extreme val-
ues, including the Gumbel, Frechet and Weibull distributions ([3], [2], [1], and [4]).
Although the GEVD is appropriate to be �tted to the data consisting of the set of
maxima, there has been some criticism since using only maxima leads to the loss of
information contained in other values in the given data set. This problem is remedied
by considering some largest values in the given period instead of the largest value,
that is, considering all values larger than a given threshold (exceedances over the
threshold). The generalized Pareto distribution (GPD), which is a limiting distribu-
tion for exceedances over the threshold, o�ers a unifying approach to the modelling
of such values ([3], [2], [1], and [4]). This distribution was initially introduced by [9],
and has been widely used to analyze exceedances over the threshold in various areas
(see, for example, [10]). The cumulative distribution function (cdf) of the GPD is

192



Applied Methods of Statistical Analysis

Figure 1: Pdfs of GPDs for di�erent values of the shape parameter ξ, with σ = 1

given by

F (x; ξ, σ) =


1−

(
1− ξ x

σ

)1/ξ

, ξ 6= 0,

1− exp
(
−x
σ

)
, ξ = 0.

(1)

where ξ ∈ R and σ > 0 are the shape and scale parameters, respectively. For ξ ≤ 0,
the range is 0 ≤ x <∞, while for ξ > 0, 0 ≤ x ≤ σ/ξ. The corresponding probability
density function (pdf) is

f(x; ξ, σ) =


1

σ

(
1− ξ x

σ

)1/ξ−1

, ξ 6= 0,

1

σ
exp

(
−x
σ

)
, ξ = 0.

(2)

for ξ ∈ R and σ > 0.
The shape of the pdf varies with respect to the shape parameter ξ (see Figure

1). The smaller the value of ξ becomes, the heavier tailed the distribution becomes,
that is, more very large values can be observed, whereas the larger the value of ξ
becomes, the more light tailed the distribution becomes. In fact, −1/ξ is known as
the tail index, and we can know the risk in the situation from the value of ξ or the
tail index. For example, the small value of ξ (or the tail index) indicates that the
events associated with large values occur with high probability.

Although the GPD is useful for modeling exceedances over the threshold, it is
well known that parameter estimation for the GPD is a di�cult problem. We refer
the reader to [5] and [6], which are excellent survey papers on methods of parameter
estimation for the GPD. For ξ > 1, the maximum likelihood estimators do not exist.
For ξ ≤ −1/r, r ∈ N, the rth moment does not exist, and therefore, all the moment-
based estimators such as the method of moments (MOM) estimators, the probability
weighted moments (PWM) estimators and the L-moments estimators proposed by
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[7] exist only for ξ in certain ranges. Recently, two empirical Bayesian methods
of parameter estimation have been proposed by [11] and [12]. They have shown
good performances for moderate or small ξ (ξ ≤ 0.5), by Monte Carlo simulations.
However, for large ξ, their estimators have considerable large bias and RMSE even
if the sample size is large, shown later by a Monte Carlo simulation. This result
indicates that their estimators may not have consistency for large ξ. In spite of many
papers dealing with the parameter estimation for the GPD, there does not appear to
be any work wherein it is established formally that estimates always exist uniquely
and that the estimators are also consistent over the entire parameter space.

In this paper, we introduce the new method of estimation for the parameters of the
GPD, proposed by [8]. In this method, under mild conditions, the estimates always
exist uniquely, and the estimators also have consistency over the entire parameter
space.

The rest of this article is organized as follows. In Section 1, we describe the new
estimators and discuss some of their properties. In Section 2, we show that the new
method performs well in comparison with some prominent methods of estimation of
parameters, in terms of bias and root mean squared error (RMSE). Finally, some
concluding remarks are made.

1 Method of Estimation

In this section, we describe the new estimators of ξ and σ, and discuss some of their
properties. All proofs of theorems, lemmas, and corollaries are omitted due to space
constraints.

1.1 Estimation of the shape parameter

Let X1, · · · , Xn be i.i.d. random variables from the GPD with the cdf in (1), and
X1:n ≤ · · · ≤ Xn:n be the order statistics obtained by arranging the above Xi's in
increasing order of magnitude.

For any �xed j, 1 ≤ j ≤ n, we derive the joint density of S(j)
n , where S(j)

n =
(S1:n, . . . , Sj−1:n, Sj+1:n, . . . , Sn:n), and Si:n = Xi:n/Xj:n, i 6= j, 1 ≤ i ≤ n.

Theorem 1. For ξ ∈ R and any �xed j, 1 ≤ j ≤ n, the joint density of S(j)
n is given

by

φ
(
s(j)
n ; ξ

)
=


n!

∫
χ

1

|ξ|

(
u

ξ

)n−1 n∏
i=1

(1− usi)1/ξ−1 du, ξ 6= 0,

n!(n− 1)!

(
∑n

i=1 si)
n , ξ = 0,

s1 ≤ · · · ≤ sn,

where χ = {u : −∞ < u < 0, if ξ < 0, or , 0 < u < 1/sn, if ξ > 0}, s(j)
n =

(s1, . . . , sj−1, sj+1, . . . , sn), s1 ≤ · · · ≤ sn, and sj = 1.
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From Theorem 1, we can obtain the likelihood function of ξ based on S(j)
n as

l
(
ξ; s(j)

n

)
= φ

(
s(j)
n ; ξ

)
, (3)

where s
(j)
n are the vector consisting of the realized values of Si:n, i 6= j, 1 ≤ i ≤ n.

Then, the MLE of ξ based on S(j)
n , denoted by ξ̂, is obtained by maximizing l(ξ; s

(j)
n )

with respect to ξ, substituting S(j)
n for s

(j)
n .

It might be noted that the likelihood function l(ξ; s
(j)
n ) depends on j, and con-

sidered that which j is optimal. However, from Theorem 2, we note that we do not
need to worry about the choice of j, in the ML method based on S(j)

n .

Theorem 2. The MLE of ξ based on S(j)
n does not depend on j.

We further observe that the ML method based on S(j)
n is equivalent to the ML

methods based on Xi:n/Xi+1:n's and Xi+1:n/Xi:n's in the sense of the following theo-
rem.

Theorem 3. MLE of ξ based on Xi:n/Xi+1:n's (and Xi+1:n/Xi:n's) agrees with those
based on S(j)

n .

The following theorem gives the derivative of l(ξ; s
(j)
n ), which is continuous with

respect to ξ.

Theorem 4. For ξ ∈ R and any given s
(j)
n , the derivative l′(ξ; s

(j)
n ) = (∂/∂ξ)l(ξ; s

(j)
n )

is given by

l′(ξ; s(j)
n )

=


n!

∫
χ

(
−n
ξ
−
∑n

i=1 log (1− usi)
ξ2

)
1

|ξ|

(
u

ξ

)n−1 n∏
i=1

(1− usi)1/ξ−1 du, ξ 6= 0,

n!

∫ ∞
0

un−1

{
n∑
i=1

(
1− usi

2

)
usi

}
exp

(
−u

n∑
i=1

si

)
du, ξ = 0,

s1 ≤ · · · ≤ sn,

and is continuous with respect to ξ on R.

The following theorem and the ensuing corollary imply that the estimate of ξ

obtained by maximizing l
(
ξ; s

(j)
n

)
or solving the equation l′

(
ξ; s

(j)
n

)
always exists

uniquely over the entire parameter space.

Theorem 5. For ξ ∈ R, any �xed j, 1 ≤ j ≤ n, and any given s
(j)
n , the likelihood

equation l′
(
ξ; s

(j)
n

)
= 0 always has a unique solution with respect to ξ.

Corollary 1. For ξ ∈ R, and any �xed j, 1 ≤ j ≤ n, and any given s
(j)
n , the likelihood

function l
(
ξ; s

(j)
n

)
is unimodal with respect to ξ.

For proving the main result that the estimator of ξ has consistency, the following
lemma is needed.
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Lemma 1. For any �xed ξ 6= ξ0, where ξ0 is the true value of the parameter ξ, and
for any �xed j, 1 ≤ j ≤ n,

lim
n→∞

Pr
(
l
(
ξ;S(j)

n

)
< l
(
ξ0;S(j)

n

))
= 1.

Theorem 6. The estimator ξ̂ is consistent for ξ ∈ R.

1.2 Estimation of the scale parameter

Once we obtain the estimate of ξ, by using the method outlined above, we can adopt
the usual ML method to obtain the estimates of σ, in which the shape parameter ξ
is replaced by ξ̂. Then, the MLE of σ is given by, after replacing ξ by ξ̂,

σ̂ =



Solution of n−
(

1

ξ̂
− 1

) n∑
i=1

Xi(
σ/ξ̂ −Xi

) = 0, ξ̂ < 1 and 6= 0,

1

n

n∑
i=1

Xi, ξ̂ = 0,

ξ̂ Xn:n, ξ̂ ≥ 1.

Analogous to the estimator of ξ, it is observed that the estimate of σ always
exist uniquely and that the estimator of σ are also consistent for σ over the entire
parameter space.

Theorem 7. For ξ ∈ R, σ > 0 and any given the observations x1, . . . , xn, the
estimate of the σ, given by Eq.(4), where ξ̂ is substituted for its realized value, uniquely
exists.

Theorem 8. The estimator σ̂ is consistent for σ > 0.

2 Empirical Evaluation of the New Method of

Estimation

Here, we show an extensive Monte Carlo simulation study to evaluate the perfor-
mance of the new estimators of the parameters. In this Monte Carlo simulation
study, the new method (New) was compared with the following prominent methods
of estimation; the usual maximum likelihood method (ML), the L-moments method
proposed by [7] (Lmom), the Bayesian method proposed by [11] (Bayes 1), and the
Bayesian method proposed by [12] (Bayes 2).

Figures 2 and 3 depict the simulation results of the bias and the root mean squared
error (RMSE =

√
variance+ bias2) of the estimators of ξ and σ by all methods,

based on 1,000 Monte Carlo runs, for −3 ≤ ξ ≤ 5, σ = 1, and n = 100.
From these results, we observe that only the new method successfully obtains the

estimates and shows good performances with respect to bias and RMSE in all the
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cases. The simulation results also indicate that the competitors do not exist or do
not have consistency for certain ranges of ξ.

Figure 2: Bias and RMSE of the ML, L-moments, Bayes 1, Bayes 2 and the new
methods for the estimation of parameter ξ when n = 100 (No dot indicates that the

number of the estimates obtained was zero or quite small)

Figure 3: Bias and RMSE of the ML, L-moments, Bayes 1, Bayes 2 and the new
methods for the estimation of parameter σ when n = 100 (No dot indicates that the

number of the estimates obtained was zero or quite small)

Conclusions

We have introduced here a new method of estimation for the GPD, in which the
estimates of all the parameters in the new method always exist uniquely, and that they
also have consistency over the entire parameter space. We have shown a simulation
study to examine the performance of the new method and to compare it with some
other prominent methods, and the results have shown that only the new method
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successfully obtains the estimates and shows good performances with respect to bias
and RMSE in all the cases.

We will present the con�dence intervals for all parameters and likelihood-based
tests based on the new method at our talk.
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Abstract

Weibull distributions are wildly used in engineering and medical �elds.
Many researchers are interested in devising methods of testing and estimat-
ing parameters for applications to reliability and survival data. In this article
we will investigate small sample behaviors of testing and estimating Weibull
models based on the likelihood including censored data. The Lagrange mul-
tiplier (LM) test is simple and may have good performance according to our
experience recently. We will derive several LM tests for Weibull parameters;
shape parameter, scale parameter and mean parameter with handling censored
data. For comparing performance with other statistics we will conduct simu-
lations studies on nominal and actual signi�cance levels for the LM test, the
likelihood ratio test and the Wald test. In case of shape parameter with one
the derived LM test is very simple without any likelihood calculations, which
include iterations. We �nd that the LM test tend to assures α-size test in that
the true signi�cance levels are smaller than the prede�ned size of α for any sam-
ple size and the true α approaches the nominal α from undersides in accordance
with sample size n larger.

Keywords: Weibull distribution, LM test, Likelihood ratio test, Wald test,
Small sample.

Introduction

The Weibull distribution is largely used in the �eld of reliability engineering and
medical �led and have many literatures in the history. In this article we revisit
several important problems on testing and estimating of Weibull parameters, which
may be still left unsolved.

In the Rinne's textbook [16] the Weibull distribution is described in detail in-
cluding its genesis and more than hundreds or even thousands of papers have been
written on this distribution. The log-transformation of the Weibull distribution gives
the log-Weibull distribution or the extreme value distribution, which is belonging
to the location-scale family, and we can use the standard technique devised for the
location-sale family such as the general least squares (GLS) based on Gauss-Markov
theorem [12]. Later Lawless published many papers of the con�dence intervals of
parameters based on the extreme value distribution [7, 8, 9, 10]. Kalb�eisch and
Prentice [5] showed that the only log-linear models that are also proportional haz-
ards models are the exponential and Weibull regression models [6]. The Weibull
model plays a primary role in the survival analysis in that we can use this model
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in place of the Cox regression model by extending the scale parameter with regres-
sion covariates. Nagatsuka et al. [15] proposed the new method of estimation for
3-parameter Weibull distributions using order statistics.

Testing

In this article we consider 2-parameter Weibull modeling which can be expressed by
the following density function:

f(x; η, m) =

(
m

η

)(
x

η

)m−1

exp

{
−
(
x

η

)m}
(x > 0, η > 0, m > 0). (1)

Jarque and Bera [4] derived a new test statistic for normality against Pearson family
which includes normal, beta, gamma, Students's t and F distributions based on the
Lagrange multiplier methods (LM test). This statistic is very simple to compute
and asymptotically e�cient. In this article we can show that we can construct the
LM test for the Weibull distribution and also has good property especially for small
samples. The general asymptotic theory supports asymptotic e�ciency for Weibull
case. Firstly, we have a complete sample without any censoring for the Weibull
distributionW (m, η). For a given set of n independent observations, say x1, x2, . . . , xn
their likelihood would be expressed by

logL =
n∑
i=1

log f(xi; θ).

Here we note that θT = (η,m).

De�ne sj = ∂ logL
∂θj

, Ijk = E
[
−∂2 logL

∂θj∂θk

]
for j = 1, 2, k = 1, 2, and θ1 = η, θ2 = m.

Under the general conditions, the LM-test statistic is given by

LM = ŝT2

(
Î22 − Î21Î

−1
11 Î12

)
ŝ2, (2)

under H0 : m = m0, asymptotically as chi-square distribution with one degree of
freedom, χ2

1. ŝj and Îjk are the corresponding plug-in estimate by replacing θ with

its suitable constant estimate, θ̂. The derived LM-test statistic becomes

T1 =
6m2

0

π2n

{
η̂−m0

(
log η̂

n∑
j=1

xm0
j −

n∑
j=1

xm0
j log xj

)

+
n

m0

− n log η̂ +
n∑
j=1

log xj

}2

. (3)

For comparison we describe the likelihood ratio statistic and the Wald statistic:

λ =

sup
η

n∏
i=1

(
m0

η

)(
xi
η

)m0−1

exp
{
−
(
xi
η

)m0
}

sup
m,η

n∏
i=1

(
m
η

)(
xi
η

)m−1

exp
{
−
(
xi
η

)m} , (4)
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w =
π (m̂−m0)√

6m0
2

n

. (5)

Rinne([16],[18],[19]), introduced the table for testing an uncensored sample of size
n = 20. The ML estimate of m is m̂ = 2.5957 and the test statistic for H0 : m =
m0 = 2 is

m̂

m0

= 1.2979.

Consulting their table of `1(n, α) calculating the probabilities,

Pr{m̂/m ≤ `1(n, α)} = α,

we get `1(20, 0.95) = 1.449 and then cannot reject null hypothesis. Our LM-test
statistic is 1.694 < χ2

1(1− 2 ∗ 0.05) = 2.706. The likelihood ratio statistic −2 log λ is
2.088 < 2.706 and the Wald statistic is 1.708 > 1.645.

In the case of the special case of m = 1 (testing exponential distribution), the
above test statistic becomes simply as follows:

T ∗1 =
6

π2n

(
n+

n∑
j=1

log xj −
1

x̄

n∑
j=1

xj log xj

)2

, (6)

λ =
η̂nm̂

(x̄ m̂)n
n∏
i=1

xm̂−1
i

, (7)

and

w =
π (m̂− 1)√

6
n

. (8)

Here we note that the LM- test statistic is very simple to compute the statistic
because of no need of likelihood calculation demanding numerical iterations. For
previous data of White [19], m̂/m0 = 2.596 > 1.449, the LM-test statistic is 8.344,
the likelihood ratio test statistic is 20.0179, and the Wald statistic is 9.152 > 1.645.
All tests succeed in rejecting exponentiality (H0 : m = 1).

Mean parameter

The mean parameter is one of the most important parameters of distributions, but
inference on the Weibull mean has not been studied so well especially in small samples.
Harter and Dubey [3] created the vast table for testing Weibull mean parameter based
on the Weibull-T statistics. They consider the two cases for testing H0 : µ = µ0. One
case is that the standard deviation is known and another case is that the standard
deviation is not known. Both cases require the information on the shape parameter
m. Their example data set as regards 20 failure times in hours of electronic parts
of an equipment is as follows: 154, 419, 590, 603, 770, 845, 848,891, 899, 953, 954,
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982, 1044, 1059, 1126, 1127, 1294, 1678, 1831,1847. Here n=20, x̄=995.7 hours,
µ0=886.2 hours and the sample standard deviation s=429.0 hours. Then we can get
the Weibull-T statistic,

√
20

429.0
(995.7− 886.2) = 1.142,

and the null hypothesis cannot be rejected at the 10 percent level of signi�cance
against alternative H1 : µ > H0 = 886.2 consulting their table assuming m = 2. For
deriving the LM-test statistic of the mean parameter µ we will express the distribution
by two parameter m and µ:

f(x; m, µ) =

(
mΓ1

µ

)(
Γ1

µ
x

)m−1

exp

[
−
(

Γ1

µ
x

)m]
. (9)

Here we use the following notations:

Γ1 = Γ

(
1 +

1

m

)
, Γ̂1 = Γ

(
1 +

1

m̂

)
.

After some calculations we have the following LM test statistic:

T2 =
µ−2m̂

0

π2n

(
6H2

1
m̂
− 12H 1

m̂
+ π2 + 6

)(
nµm̂0 − Γ̂m̂1

n∑
j=1

xm̂j

)2

. (10)

Here Hα is the harmonic function:

Hα =

∫ 1

0

1− xα

1− x
dx = ψ(0)(1 + α) + γ.

The ψ(0)(·) is the digamma function and γ is Euler's γ (= 0.5771 . . .). The above test
statistic requires the restricted ML estimate of parameter m under the restriction of
µ = µ0. Basically the LM-test statistic is designed for two-sided testing, and then
we can use the two sided test setting 2α for signi�cance level. The above data set [3]
gives the following statistic value:

m̂ = 2.281,

T2 = 1.356 < 1.642 = χ2
1(0.80).

In case of censored data no table is available, but we can use the LM-test extended
to censored data which can expressed by followings:

T3 =

m̂µ−2m̂
0

(
dµm̂0 − Γ̂m̂1

n∑
j=1

xm̂j

)2

(m+ 1)n− d− 6m̂2(d+n(γ+ψ̂
(0)
1 −2))2

6d(m̂−ψ̂(1)
1 )+n

(
m̂

(
6(γ−2)γ+6

(
ψ̂
(0)
1

)2
+12(γ−1)ψ̂

(0)
1 +π2

)
+6ψ̂

(1)
1

) . (11)

Γ̂1 = Γ

(
1 +

1

m̂

)
, ψ̂

(l)
1 = ψ(l)

(
1 +

1

m̂

)
, l = 0, 1,

The ψ(1)(·) is the trigamma function.
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Con�dence interval

As for the con�dence interval we can easily construct it without any e�ort to make it.
All we need is just to calculate the testing statistic under some speci�ed parameters
and to solve the inequality including testing statistic:

Pr{T (m) ≥ t(α)} ≤ α.

In case of LM-test statistic we will illustrate this as Fig. 1. For the test statistic
function of m, say, T (m), we solve the following nonlinear equation:

T (m) = χ2
1(1− α).

In Fig. 1 two crossing points are depicted, which are corresponding to two con�-
dence bounds, 1.645 and 3.355 for the White data appeared in previous sections. We
note that this con�dence interval (1.645, 3.355) does not include m = 1 and does
include m = 2.

Figure 1: LM test statistic value and con�dence interval

Simulation Studies

We conducted simulations studies with with 1, 000, 000 number of replications for
each test statistic.

The Table 1 shows that LM-test assures the signi�cance levels in that it is always
less than the speci�ed α level. Other test statics will violate α-size test speci�cation
especially in case of small samples. For n = 3 we sometimes encounter faults in ML
calculations, but we can calculate the LM test statistic because of needs of estimation
for just one parameter. However we are required to estimate two parameters for other
test statistics.

Other simulation results also make clear that the LM-test does not depend on
the transformation of data or reparameterization such as log transformation of data
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Table 1: True signi�cance level estimated α by simulation in case of H0 : m = 1
under true Weibull with shape parameter m = 1.

nominal α size
n statistics 1% 2.5% 5% 10%

3 LM 0.00429 0.00764 0.01236 0.02071
LR - - - -
Wald - - - -

5 LM 0.00594 0.01063 0.01722 0.03549
LR 0.03150 0.06187 0.10366 0.17340
Wald 0.17927 0.21453 0.25003 0.29808

10 LM 0.00738 0.01372 0.02779 0.07243
LR 0.01837 0.04071 0.07361 0.13384
Wald 0.09265 0.12226 0.15478 0.20387

20 LM 0.00800 0.01804 0.03862 0.08687
LR 0.01386 0.03229 0.06120 0.11592
Wald 0.05076 0.07467 0.10383 0.15302

50 LM 0.00891 0.02190 0.04529 0.09493
LR 0.01136 0.02764 0.05428 0.10639
Wald 0.02630 0.04547 0.07228 0.12182

100 LM 0.00945 0.02318 0.04773 0.09737
LR 0.01051 0.02614 0.05191 0.10332
Wald 0.01799 0.03517 0.06100 0.11149

The notation �-� indicates all estimates are not available.

corresponding to extreme value distribution, and the orthogonalization of parameters
by Cox and Reid [1].

Conclusions

We investigated testing and estimating for the Weibull models and we found that the
LM-test statistic is simple and has good performance. In case of shape parameter
with one the derived LM test is very simple without any likelihood calculations, which
include iterations. We �nd that the LM test tends to assures α-size test in that the
true signi�cance levels are smaller than the prede�ned size of α for any sample size
and the true α approaches the nominal α from undersides in accordance with sample
size n larger.

Further investigations are required for the case of an LM-test version of Lawless
type conditional inferences.
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Abstract

The proposed maximum value test is a powerful test between the logrank
test and Gehan′s Generalized Wilcoxon test. It is a useful test because these
tests are preferable in di�erent alternative hypotheses. To apply the maximum
value test in the practice research for two-sample problem testing, a researcher
should know a behavior of the test statistics distribution. It is necessary for
a researcher to compute the p-value. In this paper, we research the statistics
distribution of the maximum value test using the Monte-Carlo method.

Keywords: two-sample problem, lifetime data, logrank test, Gehan′s Gen-
eralized Wilcoxon test, maximum value test, Monte-Carlo method.

Introduction

Two-sample problem testing is one of necessary statistical procedures which helps a
researcher to solve a problem, for example, to combine two samples or not. By using
hypothesis testing, a researcher may face the problem of choosing between parametric
tests and nonparametric tests and may face the problem of choosing a test into the
groups. The choice in favor of a particular test depends on following factors:

� a distribution-free test (the calculation of the test statistic based on properties
of all distributions of data);

� a power of the statistical test (higher this value, higher the probability that the
alternative hypothesis will be rejected when the alternative hypothesis is false);

� existence of the limit distribution of test statistics (if the condition is not sat-
is�ed, a researcher should simulate the test statistics distribution with certain
modeling parameters for hypothesis testing);

� a convergence rate of the test statistics distribution (if the test statistics dis-
tribution under a small sample size is not di�erent against the limit statistics
distribution, then there is no need to apply computational modelling methods
for two-sample problem testing).

In practice, it is necessary to use a distribution-free test, with a high power and a
�xed limit statistics distribution (a not simulated distribution with certain modelling
parameters).

However, there is not the most powerful test generally, therefore one uses methods
of increasing the test power using various strategy, for example:

� using a selector statistic among values of other test statistics;
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� using the certain test in the certain alternative hypothesis when a researcher
knows the more powerful test;

� etc.

The most commonly encountered in the literature and well-studied tests for two-
sample problem testing with lifetime data (the object of observation during the inves-
tigation may be failed) are logrank [1] test and generalized Wilcoxon test (for example,
Peto & Peto [2], Gehan [3]). In the literature, there are di�erent information about
these tests. In Lee [4] states the logrank test is more powerful than the Generalized
Wilcoxon tests if the hazard ratio is constant (for example, samples observations are
distributed exponentially). On the other hand, the Generalized Wilcoxon tests are
more powerful than the logrank test if the hazard ratio is not constant. In other pa-
pers [5, 6] states that the logrank test sensitives better di�erences in late time than
the Generalized Wilcoxon tests but the Generalized Wilcoxon tests sensitive better
di�erences in early time than the logrank test and this sensitivity of the tests does
not depend on the hazard ratio.

In Section 1, we present the maximum value test and the equation of the limit
distribution in general case. In Section 2, we formulate the problem and present
results.

1 Statistics

In this paper, we do not present statistics of the logrank test and Gehan′s Generalized
Wilcoxon test because these tests have been considered in [6] in detail. We should
just know that SG is a statistic of Gehan′s Generalized Wilcoxon test, SL is a statistic
of the logrank test and both statistics are standard normal distributed with the two-
sides critical areas.

1.1 The Maximum Value Test

Thus, using statistics of these tests, we proposed following statistical procedure [7]
of two-sample problem testing with lifetime data:

SMAX = max (|SG| , |SL|) ,

where SMAX is a value of the proposed maximum value test, SG is a value of the
Gehan Generalized Wilcoxon test and SL is a value of the logrank test.

The main idea of the maximum value test is to use a statistic value corresponding
to smaller p-value between two tests.

The random variable, that is a maximum of two standard normal absolute values,
is distributed with the following probability distribution function:

f(x; r) = ϕ(x)

(
Φ0

(
x

√
1− r
1 + r

)
+ Φ0

(
x

√
1 + r

1− r

))
, x ≥ 0, (1)
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where Φ0(x) =
x∫
0

ϕ(t)dt = 1√
2π

x∫
0

e−
t2

2 dt and r is a correlation value between distribu-

tions of SG and SL under null hypothesis.

2 Simulation

The proposed statistical test is a distribution-free test because this test is a nonpara-
metric test. Moreover, the test power is close of a maximum power value between
the Generalized Wilcoxon test and the logrank test. One can �nd such results in
[7]. Also, statistics distributions of these tests have high convergence rates for their
limit distributions [8], respectively. Now, we should make sure that a researcher may
freely apply the limit distribution of the maximum value test in the practice research
and a researcher should not simulate the limit distribution with certain parameters.
Taken into account the fact that the value of SMAX is a maximum of two absolute
standard normal distributed values (which are computed by on the same samples), we
conclude there is a correlation between these random variables. We have investigated
the e�ect of the alternative hypothesis on a correlation estimation value. For this
purpose, we have applied closest alternative hypotheses using various distributions
with following probability density functions: the family of Weibull distributions, the
family of Gamma distributions, the family of Lognormal distributions and the family
of Exponential distributions.

The results of simulation are the correlation estimation values for the various
alternative hypotheses, for various sample sizes (20-500 observations), for various
censored rates (0-50%), for various censored time distributions (Weibull and Gamma
distributions).

Having received the correlation estimation values, we have selected the maximum
rmax ≈ 0.94 and minimum rmin ≈ 0.86 values. For both values, we have con-
structed cumulative probability functions using the equation (1) and then assessed
the maximal di�erence between them. As a result, we have obtained that under the
test size a < 0.15 the maximal di�erence is less 0.01. One can see it on Fig 1. Such
a result allows us to conclude this equation (1) may be applied practically.

Conclusions

Two-sample problem testing is one of fundamental hypotheses in statistics. Such test-
ing is applied in industry, sociology and so on. The proposed method (the maximum
value test) is a powerful test between Gehan′s Generalized Wilcoxon test and the lo-
grank test and, as follows from the paper, the maximum value test has the statistics
distribution which is applicable to calculate a p-value for two-sample problem testing
without the statistics distribution simulation. The error of p-value calculation is not
more than 0.01.
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Figure 1: limits distributions of the maximum value test with the maximum rmax
and the minimum rmin simulated correlation values
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Abstract

In this paper, we have considered the most popular approach to nonpara-
metric estimation of conditional reliability function, proposed by Beran. We
give the analysis of dependence of an optimal bandwidth parameter from the
value of covariate, for which the conditional reliability function is estimated. An
adaptive method for selecting the optimal bandwidth parameter is presented in
this paper. The accuracy of the proposed method has been studied depending
on the plan of experiment(the sample size and the number of groups).

Keywords: conditional reliability function, nonparametric Beran estima-
tor, optimal bandwidth parameter.

Introduction

One of the most important parts of the statistical analysis of lifetime data in reliability
and survival analysis is studying the dependence of the reliability function on the
observed explanatory variables, which are also called covariates. Characteristics of
objects themselves, such as the type of material or age of patient, or external stresses,
such as temperature, pressure or treatment strategy, can be taken as covariates. There
are two types of approaches in statistical data analysis: parametric and nonparametric
models. The most widely used parametric regression models in reliability and survival
analysis are the accelerated failure time (AFT) model and the proportional hazards
(PH) model. However, the parametric approach requires knowledge of the functional
dependence of reliability function on covariates and the lifetime distribution. In
practice, this information is usually absent. In such situations, it is necessary to use
nonparametric methods.

One of the most popular nonparametric methods for estimation of conditional
reliability function is the Beran estimator [1]. The Beran estimator allows using
all information of sample with covariates. The properties of this estimator were
investigated by a number of mathematicians. The investigation of properties in the
case of random plan, when the values of covariate are not �xed, was presented in
[2]-[5]. In [6], the properties of the Beran estimator were studied, when the covariate
is random.

The application of the Beran estimator in practice is di�cult, because there is
no method for selection of bandwidth parameter in the case of determinant plans of

1This work is supported by the Russian Ministry of Education and Science (project 2.541.2014K).
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experiment. In [7], an asymptotical method for selection of the optimal bandwidth
parameter is suggested, but it is impossible to implement this method in practice as it
requires to known the form of reliability function. In [10], the bandwidth parameter
was chosen empirically. However, this parameter plays the key role in the accuracy of
the Beran estimate. In our previous paper [11], we proposed a method for selecting
an optimal bandwidth parameter, and in [13], we investigated the statistical proper-
ties of the Beran estimator with the usage of this method. However, this approach
allows choosing one value of parameter for the whole sample, regardless the value of
covariate. At the same time, the behavior of the conditional reliability function can
vary greatly depending on the value of covariate. Thus, it is necessary to develop an
adaptive method for selecting the optimal bandwidth parameter depending on the
value of covariate, for which the conditional reliability function is estimated.

1 Nonparametric Beran estimator

The main feature of lifetime data is the presence of right censored observations, which
can be represented as

(Y1, x1, δ1), (Y2, x2, δ2), . . . , (Yn, xn, δn),

where n is the sample size, xi is the value of covariate for i-th object, Yi is the failure
time or censoring time and δi is the censoring indicator, which is equal to 1, if the i-th
observation is complete, and 0 if it is censored. The nonparametric Beran estimator
allows estimating a conditional reliability function and is de�ned as follows [1]:

S̃bn (t|x) =
∏
Y(i)≤t

{
1− W i

n (x; bn)

1−
∑i−1

j=1W
j
n (x; bn)

}δi

(1)

where x is the value of the covariate, for which reliability function is estimated,
W i
n (x; bn) , i = 1, . . . , n are the Nadaraya-Watson weights, which are de�ned as fol-

lows [5]:

W i
n (x; bn) = K

(
x− xi
bn

)/ n∑
j=1

K

(
x− xj
bn

)
,

whereK
(
x−xi
bn

)
is the kernel function, satisfying to the regularity conditions: K(y) =

K(−y), 0 ≤ K(y) <∞,
∫∞
−∞K(y)dy = 1 , bn > 0 is the bandwidth parameter which

satis�es to lim
n→∞

bn = 0, lim
n→∞

nbn =∞.

In our previous papers [11], it was shown that the accuracy of the Beran estimation
strongly depends on the bandwidth parameter. Moreover, we proposed the method
for selection an optimal bandwidth parameter, which is based on the minimization
of the mean deviation of failure times Y1, Y2, ..., Yn from the nonparametric estimate
of the inverse reliability function S−1

x (p). According to this method, an optimal
bandwidth parameter can be obtained by solving the optimization problem [11]:
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boptn = arg min
bn

n∑
i=1

δi · |ĝ (p̂i|xi)− Yi|. (2)

where ĝ(p̂i|xi) is the estimate of the inverse reliability function:

ĝ (p̂i|xi) =
1

n

n∑
j=1

ωjn (p̂i) · Yj, (3)

where ωjn are the Priestley-Chao weights of the second order [8, 9]:

ωjn (p̂i) =
{
p̂(i) − p̂(i−1)

}
K

(
p̂i − p̂j
hNS

)
,

where hNS is the smoothing parameter, which is estimated by the minimal mean
integrated error method [12]:

hNS =

[
8π1/2R(K)

3µ2(K)2n

]1/5

σ̂,

where µ2(K) =
∫
x2K(x)dx, R(K) =

∫
K2(x)dx, σ̂ is the robust estimate of the

variance:

σ̂robust = med
i=1..n

∣∣∣∣p̂i − med
j=1..n, k=j..n

(
p̂j + p̂k

2

)∣∣∣∣ .
As it is seen from (3), this method allows choosing only one parameter for each

conditional reliability function. It doesn't take into account the value of covariate, for
which the conditional reliability function is estimated. However, an optimal band-
width parameter depends on the value of covariate. Let us consider some examples
to show this dependence.

The investigation of the properties of a bandwidth parameter is carried out by the
Monte Carlo simulations. As the true reliability model, we consider the parametric
Cox proportional hazards model [10]:

Sx (t) = (S0 (t))r(x;β) , (4)

with the covariate function r(x; β) = ln(1 + eβx) and the lognormal baseline distribu-
tion with the density function

f0(t) =
1√

2πθ1t
exp

(
− 1

2θ2
1

ln2

(
t

θ2

))
with parameters θ1 = 21.5, θ2 = 1.6.

Let us consider two plans of experiment: the covariate in the �rst case takes
the values from the set {0, 0.33, 0.67, 1} and in the second case � from the set
{0, 0.11, 0.22, 0.33, 0.44, 0.56, 0.67, 0.78, 0.89, 1}, the sample sizes are n =
20, 40, 80, 120, 200, 300, 400, the number of observations corresponding to di�erent
values of the covariate is equal to each other. Let m denotes the number of groups
corresponding to di�erent values of covariate.
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The true value of the optimal bandwidth parameter is de�ned as:

bjtrue = arg min
bj

(
sup
t<∞
·
∣∣∣S̃bj (t|x)− Sxj (t)

∣∣∣) . (5)

In Figures 1, 2, the values of the optimal bandwidth parameter (5) are shown for
the considered plans of experiment.

Figure 1: The value of bandwidth parameter bjtrue for 4 di�erent values of covariate
and di�erent sample sizes.

Figure 2: The value of bandwidth parameter bjtrue for 10 di�erent values of covariate
and di�erent sample sizes.

As it is seen from Figures 1-2, an optimal bandwidth parameter depends on the
value of covariate, for which the reliability function is estimated. The values of
optimal bandwidth parameter are di�erent for di�erent values of covariate. These
di�erences can be signi�cant for di�erent groups. For example, the optimal band-
width parameters for extreme values of covariate di�er by 80-100% from the optimal
bandwidth parameters for average values of covariate. In the case of 4 groups, the
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di�erence between optimal bandwidth parameters for adjacent values of covariate can
be between 3% and 70%. In the case of 10 groups, this di�erence can be between
3% and 21%. Moreover, as can be seen from Figure 1-2, for the considered reliability
model, the optimal bandwidth parameter is symmetrical relative to the average value
of covariate in the case of symmetric plans. Thus, it is su�cient to choose the opti-
mal bandwidth parameters only for a half of the values of covariate, for another half
the optimal bandwidth parameters will be the same. The dependence of the optimal
bandwidth parameter on the number of groups has been con�rmed. For example, for
the sample size n = 80 and 4 groups, the value of optimal bandwidth parameter is
equal to 0.61 for the value of covariate x = 0.33, however, for the same sample size
and the same value of covariate, but in the case of 10 groups, the optimal bandwidth
parameter is equal to 0.55.

So, it is necessary to develop an adaptive algorithm for selecting the optimal
bandwidth parameter for the Beran estimator.

2 An adaptive selection of bandwidth parameter

To develop an adaptive algorithm, it is possible to change the old one. The key
change is to minimize function (3) only for the failure times of items, observed under
the given value of the covariate x. Thus, the optimal bandwidth parameter can be
obtained by solving the following optimization problem:

bjopt = arg min
bn

n∗∑
i=1

δi · |ĝ (p̂bn(Yi|x))− Yi|, (6)

where n∗ is the number of observations, corresponding to the value of covariate x,
p̂bn(Yi|x) is the Beran estimate of the conditional reliability function under the co-
variate x. Nonparametric estimator of the inversed reliability function is obtained by
kernel smoothing for all observations:

ĝ (p̂bn(Yi|x)) =
1

n

n∑
i=1

ωi (p̂bn(Yi|x)) · Yi, (7)

where the Priestley-Chao weights are built only for the value of covariate x, but for
all observations:

ωi (p̂bn) =
{
p̂(i) − p̂(i−1)

}
K

(
p̂(i) − p̂bn

hn

)
,

where hn is the smoothing parameter.
Let us consider, how the algorithm selects an optimal bandwidth parameter for

each group. We compare results of proposed algorithm with the true bandwidth
parameter (5). In Figures 3-4, the di�erences between parameters (5) and estimated
parameters (6) in percent are shown. In Figure 3, the distances are shown for the
sample sizes n=20, 40, 80, 120, 200, 300, 400 and 4 groups, and in Figure 4 � for
sample sizes n=20, 40, 80, 120 and 10 groups.

216



Applied Methods of Statistical Analysis

In this research, we have estimated the optimal bandwidth parameter for the
values of covariate x = 0 and x = 0.33 in the case of the plan with 4 groups and for
x = 0,0.11, 0.22, 0.33, 0.44 in the case of the plan with 10 groups. As the optimal
bandwidth parameter is symmetrical relative to the average value of covariate in the
case of symmetric plans, we have taken the values of bandwidth parameter for the
other groups equal to the obtained estimates corresponding to symmetric groups.

Figure 3: The deviation in percent of estimated parameters (6) from the true
parameters (5) for 4 di�erent values of covariate and di�erent sample sizes

Figure 4: The deviation in percent of estimated parameters (6) from the true
parameters (5) for 10 di�erent values of covariate and di�erent sample sizes

As it is seen from Figure 3, the proposed method allows getting su�ciently ac-
curate values of bandwidth parameter. For example, the maximal distance between
estimated and true parameter is 37% and the number of observations for one group in
this case is only 5. If there are more observations in a group the maximum deviation
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is not larger than 24% for the extreme groups and not larger than 7% for the central
groups.

The large deviations in the extreme groups for the sample of 120-400 observations
can be explained by the fact that true values of the optimal bandwidth parameter
for these sizes are almost always less or equal than 0.33, which means that the Beran
estimation degenerates into the Kaplan-Meier estimation. In this case, any value
from the interval (0, 0.3(3)] can be taken as the optimal parameter. In all cases,
the optimal bandwidth parameter for the extreme groups and sample sizes n ≥ 120
turned out to be less than 0.33. It means that the method chooses the best parameter
in these cases.

From Figure 4, we can see a similar regularity: the worst estimates of the optimal
bandwidth parameter are obtained for extreme groups and the smallest sizes. With
the sample size growth, the accuracy of estimates for extreme groups increases. And
already for 80 observations in a sample, the deviation of estimated parameters (6)
from the true parameters (5) does not exceed 15%.

It is necessary to note, that the sample size growth may not lead to the increase
of the accuracy of selecting the optimal bandwidth parameter, since with the sample
size growth, not only the number of elements in considered group increases, but also
the number of elements in other groups increases too, what �clogs� the sample. This
remark explains the fact that for the extreme values of covariate, an accuracy of
estimating the optimal bandwidth parameter increases with the sample size growth,
since they have less clogging observations.

Conclusions

It has been shown that an optimal bandwidth parameter depends on the value of
covariate, for which the conditional reliability function is estimated. In this paper we
have proposed an adaptive method for selecting an optimal bandwidth parameter for
the Beran estimator in the case of a determinant plan of experiment. This method
is a modi�cation of the previously proposed method for bandwidth selection.

It has been shown, that the proposed adaptive method allows getting estimates
of optimal bandwidth parameter, which are close to the true optimal parameter for
any group of a plan, even for small sample sizes. At this moment the new method
has been studied only for symmetric plans. To use proposed algorithm for any plans
of experiment, it is necessary to carry out further investigations.
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Abstract

In this paper, we have constructed the parametric accelerated failure time
model for the reliability of a drilling tool basing on the results of drill relia-
bility experiment. The second-order polynomial model was considered as the
covariate function, and the baseline reliability function was taken from the fam-
ily of Weibull distributions. The goodness-of-�t of the model was tested with
the Kolmogorov, Cramer-von Mises-Smirnov and Anderson-Darling type tests
by the sample of residuals. Using the constructed model, we have found the
optimal cutting conditions (the feed rate and the rotational speed), which mini-
mize the economical costs. Moreover, the failure-free operation times have been
calculated for various probabilities under obtained optimal cutting conditions.

Keywords: accelerated failure time model, reliability of a cutting tool, feed
rate, rotational speed, goodness-of-�t testing.

Introduction

In [5], [10] � [12], the application of mathematical models for the reliability of a
cutting tool has been discussed by the example of drilling. Such models can be used
for the optimization of processing conditions and for the optimal design of experiment.
Usually, the lifetime of a drill is characterized by total length of holes, which were
made by the tool before its blunting. The lifetime of a drill depends on two factors,
such as the feed rate and the rotational speed.

In [5], various mathematical models for the dependence of the drill lifetime on
these factors, for example, the second-order polynomial model, the Konig-Depiereux
model and the exponential model, have been considered. However, the fact that we
need to construct some probabilistic model for reliability, because the drill lifetime is
a random variable, was not taken into account in mentioned papers.

The parametric accelerated failure time model is one of the most used probabilistic
models in reliability. This model allows to calculate all reliability indices for various
values of explanatory variables in the model. In [1, 4], the problems of parameter
estimation and testing goodness-of-�t of the parametric accelerated failure time model
have been considered for various designs of experiments.

Thus, the main goal of the paper is to de�ne the optimal drilling conditions (op-
timal values of the feed rate and the rotational speed) and to compute the reliability
indices of a cutting tool on the basis of parametric accelerated failure time model.

1This work is supported by the Russian Ministry of Education and Science (project 2.541.2014K).
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1 Accelerated failure time model

Let us denote by L the non-negative random variable, which de�nes the total length
of holes, made by the tool before failure (blunting). The reliability function is de�ned
in the following form [1]:

S(t) = P{L > t} = 1− F (t), (1)

where F (t) is the corresponding distribution function.
In the general case, the object reliability depends on some characteristics of this

object and experiment conditions. The e�ect of these factors on reliability is taken
into account by the vector of explanatory variables (covariates) x = (x1, x2, ..., xm)T .
The domain of each covariate in the vector is de�ned by the experiment conditions.

One of the most used reliability models is the AFT-model (Accelerated Failure
Time model). In the case of constant covariates, which are not dependent on time,
the parametric reliability AFT-model has the form

Sx(t) = S0

(
t

r(x; β)

)
, (2)

where S0(t) = 1−F0(t) is the baseline reliability function and r(·) is the non-negative
covariate function.

Let us construct the AFT-model basing on the results of the drill reliability ex-
periment, presented in [5], for various values of the feed rate x1 and the rotational
speed x2. This sample of lifetimes has 50 elements, which are given in Table 1.

Table 1: The data set of the drill reliability experiment. The lifetime L, mm (drill
d4.2 �R6M5�, steel �1X18N9T�, cutting �uid �NGL-205�, take-o� drill 10d). The
detail has type �bare lattice�, 686 reach-through holes of 20 mm.

x1, mm/rot
x2, rot/min

750 1098 1447 1795 2145

0.0280
570 1430 3600 1400 430
390 1370 1800 1200 250

0.0450
5560 8300 4700 4000 700
8500 6300 5700 3000 1100

0.0621
4040 5800 6130 3330 590
5640 7800 4230 4070 810

0.0790
3150 3420 2760 1350 470
3850 4180 3800 1650 690

0.0962
1910 130 100 30 9
3170 150 140 50 11

It should be noted that each observation in the sample is a failure, i.e. the lifetime
sample is complete (we have no censored observations in the sample).
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As shown in [5], the most preferable model for the dependence of drill lifetime
on considered factors is the second-order polynomial model. Therefore, we use the
covariate function in the following form

r(x; β) = exp
{
β1x

2
1 + β2x1 + β3x

2
2 + β4x2 + β5x1x2

}
. (3)

The baseline distribution was chosen as the Weibull distribution with reliability
function

S0(t) = exp

{
−
(
t
θ1

)θ2}
, θ1, θ2 > 0.

It is necessary to note here, that the AFT-model with the Weibull baseline dis-
tribution is equivalent to the popular proportional hazards Cox model [3].

Table 2 shows the obtained maximum likelihood estimates of parameters of the
AFT-model, values of the Wald statistic and corresponding p-values for testing in-
signi�cance of regression parameters.

Table 2: The parameter estimation of AFT-model

Parameter Estimation Wald statistic p-value
θ1 (scale) 0.2085 � �
θ2 (form) 1.7382 � �
β1(x2

1) -1971.5207 50.92 0.0000
β2(x1) 281.6922 46.51 0.0000
β3(x2

2) -1.3E-06 8.27 0.0040
β4(x2) 0.0049 11.87 0.0006
β5(x1x2) -0.0414 18.06 0.0001

As it is seen from Table 2, the obtained AFT-model is statistically signi�cant.
However, we need to test the goodness-of-�t hypothesis before using this model for
computation of reliability indices and optimization of cutting conditions. To test
goodness-of-�t we have used the sample of residuals, which can be written as follows

Ri = Xi
r(xi;β̂)

, i = 1, ..., n,

where Xi is the failure time for i-th object, xi is the values of covarite vector for
i-th object, and β̂ is the vector of maximum likelihood estimates of model regression
parameters.

If the tested model is indeed correct, the residuals should �t the baseline distribu-
tion. The composite hypothesis of goodness-of-�t of the Weibull distribution by the
sample of residuals can be tested with the Kolmogorov, Cramer-von Mises-Smirnov,
and Anderson-Darling type tests [2, 4].

The data set has no censored observations, therefore, we can use the obtained
in [7, 8, 9] models as the limiting distributions for goodness-of-�t test statistics. In
Table 3, the values of statistics of the Kolmogorov, Cramer-von Mises-Smirnov, and
Anderson-Darling type tests and corresponding p-values are shown.
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Table 3: Goodness-of-�t testing of AFT-model

Test Statistic p-value
Kolmogorov 0.498 0.823

Cramer-von Mises-Smirnov 0.042 0.639
Anderson-Darling 0.344 0.499

Thus, Table 3 shows that the hypothesis of goodness-of-�t of the Weibull AFT-
model with covariate function (3) is not rejected for signi�cance level α = 0.05.
Therefore, this model can be used for computation of reliability indices and opti-
mization of cutting conditions.

2 Optimization of cutting conditions

Optimal cutting conditions can be found by solving the following optimization prob-
lem:

Q(x1, x2)→ min
x1,x2

, (4)

where Q is the value of economic costs (in rubles per a detail) and has the following
form

Q =
C

x1x2

+
D

L̄ (x1, x2)
, (5)

where C,D are values, which depend on chosen optimization criteria and considered
costs [5], [10] � [13].

The obtained Weibull AFT-model with covariate function (3) was used to calcu-
late the mean time between failures, which can be written as

L̄ (x1, x2) = θ1r (x; β) Γ
(

1 + 1
θ2

)
,

where Γ(·) is the Euler gamma-function.
The values of C and D from (5) have the following form

C = C3L0, D = C3tuL0 + CpL0

K
+ L0C

′
3t3.

Table 4 shows the values of parameters, which are necessary for calculation of C
and D.

By minimizing (5) with calculated values C and D we obtain the optimal cutting
conditions in the form

x∗1 = 0.066, x∗2 = 1539, Q∗ = 254.

Here, mean time between failures L̄ = 5281 mm. Thus, the feed rate equal to
0.066 mm/rot and the rotational speed equal to 1563 rot/min provide the optimal
cutting conditions, for which economic costs are minimal and equal to 254 RUB.
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Table 4: Economic parameters

Parameter Description Value
C3 salary and overhead costs of driller 1.5 RUB/min

(15840 RUB/mon)
C
′
3 salary and overhead costs of grinder 1.5 RUB/min

(15840 RUB/mon)
L0 total length of holes for one diameter 12720 mm
tu tool-changing time 3 min
t3 tool-grinding time 7 min
Cp tool cost 50 RUB
K number of drill grinding before failure 4

In addition, we have calculated the times before failures for various values of
reliability function P using the constructed AFT-model. Table 5 contains the results
of this calculation for covariate values x1 = 0.066, x2 = 1539, which correspond to
optimal cutting conditions.

Table 5: Times before failure of a cutting tool

P 0.25 0.50 0.75 0.90 0.95
L, mm 6251 4194 2528 1418 937

Thus, the obtained values of the drill reliability, presented in Table 5, can be used
to predict the tool degradation, to plan replacement of the tools before failures, and,
�nally, to reduced costs of detail processing.

Conclusions

In comparison with the standard determinate models for the drill lifetime, the applica-
tion of probabilistic reliability models (AFT-model, for example) allows to compute
the reliability indices, to predict the failures and to plan preventive replacements.
This possibility is increasingly important with improving quality and costs of cutting
tools.

The construction of the AFT-model described in the paper, the goodness-of-�t
testing, the optimization of cutting conditions to minimize economical costs, and
computation of probability indices can be helpful for optimization some other tech-
nological processes. The proposed methods can be also used for other metal working,
such as turning, milling, and unrolling.
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Abstract

This paper is an overview of the statistical methods that are applied in
the software Fiabilitis. Fiabilitis has been developed through students project
during several academic years at University of South Brittany, France. The
work has been supervised by reseachers from the department of mathematics
and from the department of computer sciences. It is a free software available
on the internet.
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Introduction

Fiabilitis is a software devoted to statistical analysis of durations samples in the
context of reliability. It is developed by researchers from the Department of Math-
ematics (LMBA) and from the Department of Computer Sciences (IRISA) of the
University of South Brittany in Vannes, France. The sofware handles classical mod-
els used in the industry but it can be usefull in any �elds dealing with durations.
Fiabilitis provides graphical goodness of �t tests for parametric models (exponential,
Weibull, log-normal). It proposes inferences (estimations, con�dence intervals) for
the parameters (maximum likelihood, Bayesian methods). It o�ers the possibility to
analyse data from accelerated lifetest (ALT) commonly used in electronics. It also
addresses the important matter of designing step stress accelerated lifetest (SSALT).
In this paper we describe some of the statistical methods that are implemented in
the software.

1 Data and Graphical methods

Fiabilitis deals with di�erents kind of data. The software treates complete data that
can be continuous (exact time to the event of interest) or grouped (belonging to a time
interval of the durations). In both case three schemes of censorship are considered:
type I, type II and progressive censoring. Data are recorded in a spreadsheet. The
�gure 1 presents a Fiabilitis �le for the following example of complete data (times in
hours) ([10] pp. 185):

0.47 0.73 1.4 0.74 0.39 1.13 0.09 2.38

The table 1 displays an example of typical grouped data that can be treated with
Fiabilitis.
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Figure 1: Data entry : complete data.

Table 1: Example of grouped data with censoring

Times interval (hours] [0,168[ [168,500[ [500, 750[ [750,1000]

Number of failure 1 0 2 1

Number of censored data 0 2 4 6

The �rst step of the analysis is to apply a probability plot to assess the �tting to
a theoritical model [12]. In the present time, Fiabilitis suggests test for three classical
distributions: exponential, Weibull and log-normale. Let us recall that the graphical
test relies on the relationship between transformations of the reliability function and
durations. In Fiabilitis, the reliability function is estimated with the Kaplan-Meier
estimator [8]. For the probability plot, the following expression is used:

Rn =
∏
x(j)<x

(
1− dj

nj

)

where x(j) is the j-th failure time (not censored), dj is the number of failures at xj
and nj is the number of items at risk just before xj (including censored). For example
for the Weibull distribution with parameters (α, β), the relationship is:

log log 1/R̂(x(j)) = β log x(j) − β logα.

The �gure 2 displays a Fiabilitis output for a graphical test applied to the previous
example of complete data.

2 Estimation

Two approaches for estimating the parameters of the selected model through the
probability plot are available: a likelihood approach and a Bayesian approach. Maxi-
mum likelihood estimates and con�dence intervals for the parameters of exponential,
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Figure 2: Weibull graphical test applied to the previous example of complete data.

Weibull and log-normale distributions are provided. For the exponential distribu-
tion, a closed-form expression is available for the MLE in every case of censorship.
Con�dence intervals are computed with the Chi-2 and the normal approximation, de-
pending on the nature of the data. Remark that for the Type I censoring con�dence
intervals could be obtained with the sampling distribution computed by Batholomew
[2]. For the Weibull and the log-normale distributions, numerical methods are im-
plemented since no closed-form expressions exist for the MLE. Con�dence intervals
bounds are obtained using normal approximation. The second approach is Bayesian.
Let us consider f(x | θ), the distribution of the observation x = (x1, . . . , xn) and
π(θ), a chosen prior distribution. The posterior distribution is obtained by the Bayes
theorem:

π(θ) =
f(x | θ)π(θ)

f(x)
where f(x) =

∫
Θ

f(x | θ)π(θ)dθ.

Fiabilitis computes the Bayes estimators of the parameters as the expectation of the
posterior distribution (hypothesis of a quadratic loss function). In the next sections
details on the computations for the Weibull and for the log-normale distributions are
given. The table 2 summarizes the di�erent choices proposed by Fiabilitis.

Weibull

Let us suppose a uniform distribution on β. Let us denote η = αβ and consider a non
informative prior of the form 1/ηc, η ∈ [0,+∞[. The posterior distributions are :

π(η | x) =
1

Γ(k + c− 1) ηk+c

∫ b

a

Q(β) exp

{
−TTTβ)

η

}
dβ (1)
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Table 2: Prior and posterior distributions used in Fiabilitis

f(x | θ) π(θ) π(θ | x)

Exponential
Uniform Truncated gamma

Gamma Gamma

Weibull (α, β)

β known
Inverse-gamma

η inverse-gamma

β uniform expression (2)

η non informative expression (1)

log-normal (µ, σ2)

µ | σ2 normal normal

σ2 gamma σ2 inverse-gamma

non informative expression (4)

π(µ, σ2) ∝ 1/σ expression (5)

and

π(β | x) =
Q(β)[

TTTβ
]k+c−1

1[a,b](β) (2)

where TTTβ =
∑n

i=1 x
β
i , ϕ1,0(x) =

∫ b

a

βk
n∏
i=1

x
(1−δi)(β−1)
i /

[
TTTβ

]k+c−j
dβ

and Q(β) =
βk
∏n

i=1 x
(1−δi)(β−1)
i

ϕ1,0(x)
.

Monte Carlo methods are used to approximate the di�erent integrals involved in the
computations of the posterior distributions and their expectations.

Log-normale

A prior distribution of the form π(µ, σ2) ∝ 1/σ is considered on (µ, σ2) [13]. The
posterior distribution is then:

π(µ, σ | x) ∝ 1

σn+1
exp

{
− 1

2σ2

n∑
i=1

(log xi − µ)2

}
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which can be expressed as:

π(µ, σ | x) ∝ 1

σn+1
exp

{
− n

2σ2

[
(µ− `)2 + `2 − `2]}

(3)

with ` =
1

n

n∑
i=1

log xi et `2 =
1

n

n∑
i=1

(log xi)
2.

The expression (3) can be decomposed into:

π(µ | σ2, x) ∝ exp
{
− n

2σ2
(µ− `)2

}
(4)

π(σ2 | µ, x) ∝ 1

(σ2)(n−1)/2+1
exp

{
−n[(µ− `)2 + `2 − `2

]/2

σ2

}
(5)

(4) is a normale distribution with parameters (¯̀, σ2/n) and (5) corresponds to an
inverse-gamma distribution with parameters (a, b), a = (n− 1)/2 et b = n[(µ− ¯̀)2 +
¯̀2 − ¯̀2]/2.
A Gibbs algorithm is applied to obtain realisations of (µ, σ):
Initialisation : σ2(0) (the graphical estimate can be used)

At step (q) :

1. Draw µ(q+1) ∼ N (¯̀, σ2(q))

2. Draw z according a gamma distribution with parameters (a, b)
where a = (n− 1)/2 et b = n[(µ− ¯̀)2 + ¯̀2 − ¯̀2]/2

3. Compute σ2(q+1) = 1/z.

4. return to 1.

It is then possible to compute approximations of the expectations and therefore
bayesian estimates of µ and σ.

One of the di�cuties encountered by the practitioner in applying the bayesian
techniques is the choice of the values for the parameters of the prior distribution.
Fiabilitis deduces automatically these values from information given by the user.
These information are answers to easy questions. For example, it will be asked to the
user to propose an order of magnitude for the MTTF and how much he trusts his
guess. With these numbers, the values for the prior parameters are computed and
the Bayesian estimates are provided.

3 Step-stress Accelerated lifetest

Accelerated life test (ALT) is an experimental strategy to obtain information on the
life time of highly reliable products [11]. The material is submitted to higher-than-
usual environnental conditions (stress) inducing failures in a shorter time. The stress
can be modi�ed several times during the test. This is step-stress accelerated life test
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(SSALT) [3]. Many questions arise setting such tests. How many pieces should be put
on test? How many step? How long should they last? What should be the level of
stress in each step? Another point is the estimation of the parameters characterising
the lifetime.

Fiabilitis handles two models of ALT. The �rst one is the Arrhenius model where
the stress is the temperature [6]. The second one is the Peck model where the stress
is a combination of relative humidity and temperature [9]. These two ALT models
are very commun in electronics. The table 3 displays the ALT models available in
Fiabilitis.

Table 3: ALT

ALT Stress Model Parameter θ

Arrhenius Temperature T exp

{
−Ea
kT

}
Ea, λ0

Peck

Relative humidity RH

RHη exp

{
−Ea
kT

}
η, Ea, λ0

and temperature T

Fiabilitis can be used to design SSALT and to make inference. Optimal ALT are
obtained by minimizing the generalized variance that is to say the determinant of the
inverse the information matrix [1], [4], [5]. Two criteria are retained for the designing
part.

• For optimal step-stress length : the practitioner gives the number of steps, the
level of stress in each steps, a guess on the MTTF and on the activation energy.
The Fiabilitis returns the length of the step-stress.

• For optimal level of stress : the practioner gives the number of steps, the length
of the steps, a guess on the MTTF and a value for the activation energy. Then
Fiabilitis returns the level of stress in each step.

The durations in SSALT are modelised with a piecewise exponential model. The
MLE of the parameters are then computed.

Conclusions

The purpose of Fiabilitis is to provide a convenient tool for analysing durations. It is
addressed to engineers or any practitioners concerned by lifetime studies. One of the
strengths of the software is that it o�ers a very easy way to deal with the Bayesian
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approach. The prior parameters are brought out through simple indicators provided
by the user. The global structure of the software has been designed in order to
allow an easy implementation of new models (distributions, ALT, etc.). This is going
to be done in the future. We are also considering the adjunction of the statistical
treatments of data from stochastic processes. This new tools will �nd applications in
operational safety of big systems for example.
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Abstract

Our procedure of estimating is the maximum partial likelihood estimate which is
the appropriate estimate in the Cox model with a general censoring distribution
C, covariates X and an unknown baseline hazard rate λ0(t). We �nd conditions
for estimability and asymptotic estimability. The asymptotic variance matrix
of the MPLE is represented and properties discussed.
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Introduction

The Cox proportional hazards model is the most popular model for analyzing survival
data. Let λ(t|x) be the conditional hazard function of T given the covariate vector
X has the value x, de�ned as

λ(t|x) = lim
4t↓0

1

4t
P[t ≤ T < t+4t|T ≥ t,X = x].

The Cox model assumes the following form (Cox 1972):

λ(t|x) = λ0(t) exp(βT0 x), (1)

where exp(βT0 x) = exp(β01x1 + . . . + β0pxp) is the hazard ratio, λ0 is an unknown
baseline hazard function (the hazard function for an individual with x = 0) and
β0 ∈ Rp is an unknown parameter to be estimated.
The densities of the data are determined by the hazard rate completely. One can
describe the model by the hazard rates or in the equivalent way by densities. Some-
times the heuristic interpretation is easier with the hazard rates.
We start with observations, which were realizations of i.i.d. copies (Ti, δi,Xi), i =
1, . . . , n of (T, δ,X). Let Ti = min{T ∗i , Ci} where T ∗i is the individual i'th survival
time and δi = 1(T ∗i ≤ Ci) is the censoring indicator function (δi = 1 if event has
occurred, 0 if the lifetime is censored), where Ci is the individual i'th censoring time.
The Xi = (Xi1, . . . , Xip)

T is the individual i'th random covariate.
The parameter β0 will be estimated by the maximum partial likelihood estimate
which is the appropriate estimate in a Cox model with a general censoring distribu-
tion C, covariates X and an unknown baseline hazard rate λ0.
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Partial likelihood method

Let us derive the partial likelihood function. We denote the observed ordered lifetimes
by t(j), j = 1, . . . , d where d is the number of observed (uncensored) lifetimes. We
start with the presentation of the partial likelihood method as it was introduced by
D.R. Cox and we assume that all lifetimes are distinct, in other words there are no
ties and we have t(1) < t(2) < . . . < t(d).
Remark: When ties between event times are found in the data, alternate partial
likelihoods have been provided by a variety of authors; see Breslow (1974), Efron
(1977) and Cox (1972).
De�ne the risk set R(t) at time t as the set of subjects alive and under observation
at time t−, immediately prior to t:

R(t) = {i : Ti ≥ t}.

For the de�nition of the estimator we need only the risk set at the lifetime R(t(j)),
however it is de�ned for all t.
The partial likelihood, based on the hazard function (1) as de�ned by Cox, is ex-
pressed by

Ln(β) =
d∏
j=1

exp(βTx(j))∑
i∈R(t(j))

exp(βTxi)
(2)

where x(j) denotes the covariates associated with the individual whose lifetime is t(j).
Cox suggested treating the partial likelihood as a regular likelihood function and mak-
ing inference on β0 accordingly. Then we get the estimate of β0, often called MPLE
(maximum partial likelihood estimate) by maximizing the partial likelihood and use
the minus of the second derivative of the log partial likelihood as the information
matrix.
Let ln(β) = logLn(β). Then, we can write ln(β) as

ln(β) =
d∑
j=1

[
βTx(j) − log

{ ∑
i∈R(t(j))

exp(βTxi)

}]
. (3)

The score function Un(β) with components Unk(β) =
∂ln(β)

∂βk
, k = 1, ..., p is:

Unk(β) =
d∑
j=1

[
x(j)k −

∑
i∈R(t(j))

xik exp(βTxi)∑
i∈R(t(j))

exp(βTxi)

]
,

i.e.

Un(β) =
d∑
j=1

[
x(j) −

∑
i∈R(t(j))

xi exp(βTxi)∑
i∈R(t(j))

exp(βTxi)

]
. (4)
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The MPLE, β̂n, can be obtained by solving the given system of equations Un(β) = 0.

The observed information matrix In(β) =
(
Ingk(β)

)
p×p

is the negative of the matrix

of second derivatives of the log likelihood function and has the elements Ingk(β) =

−∂
2ln(β)

∂βk∂βg
:

In(β) =
d∑
j=1

[ ∑
i∈R(t(j))

x⊗2
i exp(βTxi)∑

i∈R(t(j))

exp(βTxi)
−

{ ∑
i∈R(t(j))

xi exp(βTxi)∑
i∈R(t(j))

exp(βTxi)

}⊗2]
(5)

with x⊗2 := xxT .
Under regularity conditions we know the asymptotic behavior of the MPLE β̂n. We
have

n1/2(β̂n − β0)
D−→ N(0,Σ−1(β0, λ0))

for the maximum partial likelihood estimate β̂n and

Σ(β0, λ0) = plimn→∞n
−1In(β0)

and

Σ(β0, λ0) = plimn→∞n
−1In(β̂n).

If one likes to estimate β0 then the basic property of the estimate is to have a well
de�ned asymptotic variance matrix Σ−1(β0, λ0).
The observed information matrix In(β) depends on the t1, . . . , tn, δ1, . . . , δn and
x1, . . . ,xn. This we express in the notation of the form

In(β) = In(β; t1, . . . , tn; δ1, . . . , δn; x1, . . . ,xn), (6)

but this we will write only in the cases when we need this dependence explicitly. In
general we use the shorter notation In(β).
The Xi, i = 1, 2, ... are covariates which characterize conditions of the considered pro-
cess described by the model. We assume here that these conditions can be controlled
as it is given in many technological or medical problems. If we will consider e.g. the
failure times of car tires for di�erent countries then we use the countries as covariates
and for estimating β0 we can choose the countries where we have to measure for es-
timating β0 in an optimal way. This means that the model (1) holds, the parameter
β0 is to be estimated and the covariates can be chosen. This can be considered as
a problem of experimental design, e.g. one chooses the places where one observes
the survival times. As usually in experimental design and estimation problems we
formulate the assumptions for estimability and derive the criteria for optimal choices
of covariates. These problems are discussed in Wichitsa-nguan, Läuter, Liero (2015).
An optimal design problem for censored observations was considered by Balakrishnan
and Han (2007).
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Representation of the observed information matrix

The basis for estimability is determined by the bias and the variance of the estimation.
We consider here the estimability of β0 with the MPLE β̂n and therefore we look at
the properties of the observed information matrix and their limit. In the next Lemma
the representation of the observed information matrix gives the similar representation
as one knows for the usual variance matrices.

Lemma 1: Let the points ξ1, . . . , ξm be elements in the support of X. Then the
observed information matrix with respect to the MPLE can be written as

In(β) =
1

2

m∑
r=1

m∑
s=1

κnrs(β)wrsw
T
rs (7)

with

wrs = ξr − ξs, (8)

Rl(tj) =
∑
i:xi=ξl

Yi(tj), (9)

κnrs(β) =
n∑
i=1

δi
Rr(ti)Rs(ti) exp(βT (ξr + ξs))

(
∑m

l=1Rl(ti) exp(βTξl))
2

. (10)

The proof follows by direct calculations. One recognizes in this representation,
that In(β) is a positive semide�nite matrix and we are able to formulate conditions
about the rank of In(β).
The coe�cients κnrs(β) can be expressed with relative frequencies instead of Rl(ti).
We denote

fil =
Rl(ti)∑m
j=1Rj(ti)

. (11)

Then calculations lead direct to

κnrs(β) =
n∑
i=1

δi
firfis exp(βT (ξr + ξs))

(
∑m

l=1 fil exp(βTξl))
2
. (12)

Estimability of β0

We are interested in estimating the unknown parameter β0 under the model (1)
with observations t1, . . . , tn, δ1, . . . , δn and x1, . . . ,xn. We will �nd conditions that
the MPLE is a unique solution of the partial likelihood equation. This is a fact of
identi�ability or estimability.

De�nition 1 Let t1, . . . , tn, δ1, . . . , δn and x1, . . . ,xn be the observed values and
In(β; t1, . . . , tn; δ1, . . . , δn; x1, . . . ,xn) be the observed information matrix. Then β0 is
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estimable by the maximum partial likelihood estimate if In(β) is nonsingular for all
β ∈ Rp.

Remark 1. In this case, In(β) is a positive de�nite matrix. This implies that the log
partial likelihood is a concave function of β and hence there exists a unique maximum,
which can be obtained by setting the �rst derivative of the log partial likelihood, i.e.,
score function U(β), to be zero.

De�nition 2 Let t1, . . . , tn, δ1, . . . , δn and x1, . . . ,xn be the observed values and
In(β; t1, . . . , tn; δ1, . . . , δn; x1, . . . ,xn) the observed information matrix. Then β0 is
asymptotically estimable by the maximum partial likelihood estimate if Σ(β, λ0) is
nonsingular for all β and λ0.

Denote L(S) be the linear space spanned by the elements of the set S.

Theorem 1 Let ξ1, . . . , ξm ∈ Rp be given in the support of X. Let δi = 1, fi1, . . . ,
fim > 0 for some i ∈ {1, . . . , n} , wst = ξs − ξt and m̃ = dimL{wst|1 ≤ s < t ≤ m}
Then

rank(In(β)) = min(p, m̃).

The assumptions in this Theorem 1 mean that we have at least in one time point
uncensored observations for all values ξ1, . . . , ξm. Under those assumptions, β0 is
estimable for m̃ ≥ p. The next Theorem 3 gives a slightly more general result.

Theorem 2 Let ξ1, . . . , ξm ∈ Rp be given in the support of X. If for any r, s with
1 ≤ r < s ≤ m there exists some i with δifirfis > 0, then

rank(In(β)) = min(p, m̃)

with wrs and m̃ as in Theorem 1.

A consequence of the Theorem 2 is that m ≥ p+ 1 is necessary for estima-
bility. For m ≤ p, the β0 is not estimable.

Asymptotic estimability

We will use a notation which expresses dependence on all unknown parameters.
We have H(t) = 1−H(t) which depends on ξl, β0 and λ0, and we write

H(t−|ξl;β0, λ0) = 1−H(t−|ξl;β0, λ0)

= (1− F (t−|ξl;β0, λ0))(1−G(t−)). (13)
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Sometimes we will use the shorter notation, but in the following theorem we take the
full description for clearness.

Theorem 3 Let the support of X be �nite with P(X = ξj) = qj for j = 1, . . . ,m;
qj > 0,

∑m
j=1 qj = 1. Then

Σ(β0, λ0) =
1

2

m∑
r=1

m∑
s=1

νrs(β0, λ0,q, ξ1, . . . , ξm)wrsw
T
rs (14)

with

νrs(β0, λ0,q, ξ1, . . . , ξm) =

∫ τ

0

H(γ−|ξr;β0, λ0)H(γ−|ξs;β0, λ0)qrqs exp(βT0 (ξr + ξs))∑m
j=1H(γ−|ξj ;β0, λ0)qj exp(βT0 ξj)

λ0(γ)dγ.

(15)

The importance of this Theorem consists in the consequences that under general
conditions the asymptotic estimability can be proven. We use H = 1−H and assume

H(t−|ξj;β0, λ0) 6= 0 for t ∈ [0, τ ], (16)

∫ τ

0

(1−G(γ−))λ0(γ)dγ > 0. (17)

Theorem 4: We assume (16) and (17). β0 is asymptotically estimable if and
only if

dimL({ξr − ξs, 1 ≤ s < r ≤ m}) = p. (18)

Asymptotic variance for general covariates

In Theorem 3 a representation of the asymptotic variance is given under the as-
sumption that the support of X is �nite. The support points are ξ1, . . . , ξm and we
have

(X = ξj) = qj for j = 1, . . . ,m

with qj > 0,
∑m

j=1 qj = 1. We denote by Q the measure in Rp, where

Q(ζ) =

{
qj, if ζ = ξj
0, otherwise .

Then we have the representations∫ τ

0

H(t−|ζ;β0, λ0) exp(βT0 ζ)dQ(ζ) =
m∑
j=1

H(t−|ξj;β0, λ0)qj exp(βT0 ξj),
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Σ(β0, λ0) =

∫ ∫
h(ζ,ρ,β0, λ0)(ζ − ρ)(ζ − ρ)TdQ(ζ)dQ(ρ) (19)

with

h(ζ,ρ,β0, λ0) =

∫ τ

0

H(γ−|ζ;β0, λ0) exp(βT0 ζ)H(γ−|ρ;β0, λ0) exp(βT0 ρ)∫
H(γ−|η;β0, λ0) exp(βT0 η)dQ(η)

λ0(γ)dγ

(20)

and ∫ ∫
h(ζ,ρ,β0, λ0)dQ(ζ)dQ(ρ) =

m∑
r=1

m∑
s=1

qrqsh(ξr, ξs,β0, λ0)

=
m∑
r=1

m∑
s=1

νrs(β0, λ0,q, ξ1, . . . , ξm).

In these representations the measure Q is a probability measure in (Rp,Bp), where
Bp is the Borel-σ-algebra in Rp. We see in (19) that Σ(β0, λ0) depends on the distri-
butions F and G. The dependence on the covariates is described in the probability
measure Q. For any Q this representation holds. Therefore one generalizes this rep-
resentation of Σ(β0, λ0) for any, possibly continuous, probability measures Q.

De�nition 5 Let be (Rp,Bp) a measurable space with the σ-algebra Bp of Rp.
For a probability measure Q over (Rp,Bp) we call Σ−1(β0, λ0, Q) with (20) and

Σ(β0, λ0, Q) =

∫ ∫
h(ζ,ρ,β0, λ0)(ζ − ρ)(ζ − ρ)TdQ(ζ)dQ(ρ)

the asymptotic variance matrix of the MPLE of β0 in the model (1) where the co-
variates X have the distribution Q. This matrix will be denoted by Σ(β0, λ0;Q) if we
will express the dependence on the distribution of the covariates.

With this asymptotic variance matrix Σ−1(β0, λ0, Q) we are able to characterize the
in�uence of a covariate X with the induced measure Q. Moreover we can compare
two measure Q1 and Q2 by comparing Σ−1(β0, λ0, Q1) with Σ−1(β0, λ0, Q2). This is
the basis for �nding optimal covariates.

Conclusions

In this paper the asymptotical estimability in Cox models is discussed. The essential
result consists in the explicit representation of the asymptotic variance matrix of
the maximum partial likelihood estimate. One recognizes the in�uence of censoring
and covariates. These representations are the basis for statistical inference problems
like testing and di�erent estimation problems. The problem of an optimal choice
of covariates can be handled now. Some results are contained in Wichitsa-nguan,
Läuter, Liero (2015) and will be extended.
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Abstract

An extension of the Cox model for describing time-varying coe�cients is
considered. For the estimation of these parameter functions the method of
local constant maximum partial likelihood is applied. For testing the possible
parametric form of the time-dependent coe�cient a score test is proposed. The
results are based on the asymptotic multivariate normality of the score function
at di�erent points.
Keywords: Time-dependent coe�cients; Cox model; local constant estimation

Introduction

In survival analysis the Cox proportional hazards model plays an important role in
exploring the relationship between a survival time T ∗ and a covariate X. This model
assumes that the regression coe�cients are constant over time, i.e., the hazard rate

λ(t|x) = lim
∆t↓0

1

∆t
P(t ≤ T ∗ < t+ ∆t|T ≥ t,X = x)

is de�ned by
λ(t|x) = λ0(t) exp(βT0 x) (1)

where λ0 is the so-called baseline hazard function, β0 is the p-dimensional vector of
regression coe�cients and x ∈ Rp. However, sometimes this assumption fails and the
coe�cients vary over the time. In the present paper we consider an extension of the
Cox model with time-varying coe�cients, i.e.,

λ(t;x) = λ0(t) exp(β0(t)Tx),

where the components of β0(t) = (β01(t), . . . , β0p(t))
T satisfy certain smoothness con-

ditions. For the estimation of the coe�cient function we apply the local partial
likelihood methods introduced by Cai and Sun (2003).

The aim of this paper is to present a test procedure for testing the null hypothesis
that the function β0(·) has a prespeci�ed parametric form. For simplicity of presen-
tation we will give the results for the case p = 1. Thus we have the test problem

H : β0(·) ∈ Bpar = {β(·, ϑ), ϑ ∈ Θ ⊆ Rk} K : β(·) /∈ Bpar.

The most important special case of this null hypothesis is that β0(·) is constant,
that is, that the classical Cox proportional hazards model is true.
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The test procedure will be based on the local partial score function. Consider-
ing this score function at a �nite number of di�erent points we will show that the
corresponding quadratic form converges in distribution to the χ2-distribution.

An extension of the model is to include time-dependent covariates, i.e. X = X(t).
In this paper we will concentrate on the statistical inference concerning the time-
varying coe�cient, thus for simplicity of presentation we consider a time-invariant
covariate.

In many applications, the survival times or failure times T ∗ are not fully observed;
instead they are censored. Thus we observe

(Ti,∆i, Xi) Ti = min(T ∗i , Ci), ∆i = I(T ∗i ≤ Ci) i = 1, . . . n

where I(·) is the indicator function. The random variables (Ti, Xi, Ci) are n indepen-
dent copies of (T,X,C) where C is a censoring variable. We assume that conditional
on X the survival time T ∗ and the censoring time C are independent.

It is convenient to introduce the following notations: With the indicator function
I(·) we de�ne the counting processes and the risk processes

Ni(t) = I(Ti ≤ t,∆i = 1) and Yi(t) = I(Ti ≥ t) i = 1, . . . , n.

The processes Ni and Yi are observed in some time interval [0, τ ], τ < ∞, such that
P(T > τ) > 0. The history up to time t is given by

Ft = σ{Xi, Ni(u), Yi(u), 0 ≤ u ≤ t, 1 ≤ i ≤ n}.

The intensity function of the counting process Ni is given by

αi(t) = Yi(t)λ(t;Xi) = Yi(t)λ0(t) exp(β0(t)Xi).

With the cumulative intensity function Ai(t) =
∫ t

0
αi(s)ds we obtain by the martin-

gale decomposition that the processes Mi de�ned by

Mi(t) = Ni(t)− Ai(t)

= Ni(t)−
∫ t

0

Yi(s) exp(β0(s)Xi)λ0(s)ds

are local martingales on the time interval [0, τ ].

1 Estimation of the function β0(·)
In this section we describe the method for the estimation of the function β0. The log
partial likelihood function in the classical proportional hazards model (1) is given by

l(β) =
n∑
i=1

∫ τ

0

[βXi − log(
n∑
j=1

Yj(s) exp(βXj))]dNi(s).

242



Applied Methods of Statistical Analysis

Now, consider the extended model with a time-dependent β(s). For s in a neigh-
borhood of t we have by Taylor expansion

β(s) ≈ β0(t) + β′(t)(s− t) = β1 + β2(s− t),

where β′ is the �rst derivative of β. Let h = hn be a bandwidth that controls the size
of the local neighborhood and let K be a kernel function, then the local constant log
partial likelihood function is given by

`n(β) =
n∑
i=1

∫ τ

0

Kh(s− t)[βXi − log
n∑
j=1

Yj(s) exp(βXj)]dNi(s) (2)

where β = β1 and Kh(s − t) = 1
h
K
(
s−t
h

)
and K is a kernel function satisfying some

regularity conditions speci�ed later.
The nonparametric local constant estimator of β(·) at the grid point t is the

maximizer of the function (2). To maximize `n we consider the corresponding score
function in more detail. For this purpose de�ne the sums

Snk(β, t) =
1

n

n∑
j=1

Yj(t) exp(βXj)X
k
j k = 0, 1, 2

and

En(β, t) =
Sn1(β, t)

Sn0(β, t)
.

With this de�nitions we rewrite the local constant log partial likelihood function

`n(β) =
n∑
i=1

∫ τ

0

Kh(s− t)[βXi − log(nSn0(β, s))]dNi(s),

and the estimate β̂(t) of β0 at the grid point t is the solution of the score equation
Un(β, t) = 0, where

Un(β, t) = n−1/2h1/2

n∑
i=1

∫ τ

0

Kh(s− t)[Xi − En(β, s)]dNi(s).

Note, we have already multiplied the score function by the normalizing factor√
h/n.

2 Limit distributions

In several papers the pointwise consistency and asymptotic normality of the resulting
estimator β̂(t) at a �xed point t were shown. These results are based on the asymp-
totic normality of the score function Un(β0, t) at t. Let us consider distinct points
t1, . . . , td and de�ne the vector

Un(β, t) = (Un(β(t1), t1), Un(β(t2), t2), . . . , Un(β(td), td))
T .
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As an extension of the limit theorem at a �xed point t, we prove that the distri-
bution of Un(β0, t) tends to a multivariate normal distribution with zero expectation
and covariance matrix S(β0, t). To formulate this statement and the consequences
we make use of the following assumptions

A1 The coe�cient function β0 is twice continuously di�erentiable on [0, τ ].

A2 The baseline function λ0 is twice continuously di�erentiable on [0, τ ].

B1 There exists a compact set B in R that includes a neighborhood of β0(t) for
t ∈ [0, τ ]. Further, sj(β, t) = ESnj(β, t) exists for j = 0, 1, 2 and

|Snj(β, t)− sj(β, t)| = OP(n−1/2) uniformly in (β, t) ∈ B × [0, τ ]

B2 The functions sj, j = 0, 1, 2, and their partial derivatives with respect to β are
continuous in B × [0, τ ].

B3 The functions sj(β0(·), ·) and sj(β, ·) for j = 0, 1 are twice di�erentiable with
respect to t ∈ [0, τ ].

B4 The function s2 is bounded and s0 is bounded away from zero.

C1 The function K is a symmetric density with bounded support, say [−1, 1].

C2 The bandwidth sequence satis�es h = hn

hn → 0 and nh1/5
n →∞.

The asymptotic variance of the vector is characterized by the the function

v(β, t) =
s2(β, t)

s0(β, t)
− e(β, t)2 with e(β, t) =

s1(β, t)

s0(β, t)
.

Theorem 1. Suppose that the assumptions A1,A2,B1− B4,C1,C2 are satis�ed.
If v(β0(tj), tj) > 0 for all j = 1, . . . , d. Then

Un(β0, t)
D−→Nd(0,S(β0, t)),

where
S(β0, t) = diag(σ2(β0, t1), . . . , σ2(β0, td))

and
σ2(β0, tj) = κ2 v(β0(tj), tj)s0(β0(tj), tj)λ0(tj)

with κ2 =
∫
K2(u)du.
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The asymptotic normality is shown for the stochastic parts

Ũn(β0, tj) = n−1/2h1/2

n∑
i=1

∫ τ

0

Kh(s− tj)[Xi − En(β0, s)]dMi(s);

the smoothness conditions on the underlying functions and the convergence behavior
of the bandwidth ensure that the remaining parts

n−1/2h1/2

n∑
i=1

∫ τ

0

Kh(s− tj)[Xi − En(β0, s)]dAi(s)

can be neglected. Moreover, for hn → 0 the components of the vector Un(β0, t) are
asymptotically independent.

Now, consider the weighted quadratic form

Tn(β0) = Un(β0, t)
TS−1(β0, t)Un(β0, t) =

d∑
j=1

U2
n(β0(tj), tj)σ

−2(β0, tj).

From the asymptotic normality of the vector Un(β0, t) we obtain the following
corollary:

Corollary 1. Under the assumptions of Theorem 1

Tn(β0)
D−→χ2

d.

The variance matrix S is unknown. It depends on the unknown limits of the sums
Snk, on the function β0 and on the baseline λ0. A consistent estimator of S(β0, t) is
given by

Ŝn(t) = diag(σ̂2
n(t1), . . . , σ̂2

n(td))

with

σ̂2
n(tj) = κ2 1

n

n∑
i=1

∫
Kh(u− tj)Vn(β̂n(tj), u)dNi(u)

where

Vn(β, t) =
Sn2(β, t)

Sn0(β, t)
−
(
Sn1(β, t)

Sn0(β, t)

)2

,

and β̂n(t) is the estimator of β0(t). Thus, we have the following statement:

Corollary 2. Under the assumptions of Theorem 1

T̃n(β0)
D−→χ2

d

where
T̃n(β0) = Un(β0, t)

T Ŝ−1
n (t)Un(β0, t).
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3 Score test based on the local partial likelihood

approach

Consider now the hypothesis that the coe�cient function β0(·) has a parametric form,
say β0(·) = β(·;ϑ). That is we test

H : β0(·) ∈ Bpar = {β(·, ϑ), ϑ ∈ Θ ⊆ Rk} K : β(·) /∈ Bpar (3)

To estimate ϑ underH we use the partial likelihood method in the hypothetical model
Bpar

λi(t) = λ0(t) exp(β(t, ϑ)Xi).

The partial likelihood function is given by

˜̀(ϑ) =
n∑
i=1

∫ τ

0

[β(s, ϑ)Xi − log(
n∑
j=1

Yj(s) exp(β(s, ϑ)Xj))]dNi(s),

let Wn be the corresponding score vector, i.e., its component Wnr r = 1, . . . , k is

Wnr(ϑ) =
∂ ˜̀(ϑ)

∂ϑr
=

n∑
i=1

∫ τ

0

[Xi − En(β(s, ϑ), s)]β̇r(s, ϑ)dNi(s)

where β̇r(t, ϑ) is the partial derivative of β(t, ϑ) with respect to ϑr. The estimator
ϑ̂n is the solution of the system of equations

Wnr(ϑ) = 0 r = 1, . . . , k. (4)

If the estimator ϑ̂n is
√
n-consistent, we can apply ϑ̂n in the test procedure. To

verify
√
n-consistency we will show that ϑ̂ is asymptotically normal. The proof is

based on the following steps: If the partial likelihood function ˜̀ is strictly concave,
then the solution to (4) is unique. The consistency follows by showing, that the
partial likelihood function converges to a concave function with a unique maximum
at the underlying ϑ0. To obtain the rate of convergence we consider the score function
Wn as a local martingale and prove that the matrix of the minus second derivatives
converges to a positive de�nite matrix.

Now, consider the test problem (3) and assume that the hypothesis H is true, i.e.,
there exists a ϑ0 such that β0(·) = β(·, ϑ0). We estimate ϑ0 by the maximum partial
likelihood method and obtain the following result:

Theorem 2. Suppose that the hypothetical functions in Bpar have continuous partial
derivatives of second order with respect to ϑ. Further assume that the partial likelihood
function is strictly concave. Let the assumptions A2 and B1-B4 be satis�ed. Then

√
n(ϑ̂n − ϑ0) = OP(1).
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Based on Theorem 2, it can be shown

T̂n
D−→χ2

d (5)

where
T̂n = Ûn(βϑ̂, t)

T Ŝ−1
n (t) Ûn(βϑ̂, t)

with

Ûn(βϑ̂, t) = (Un(β(t1, ϑ̂n), t1), Un(β(t2, , ϑ̂n), t2), . . . , Un(β(td, , ϑ̂n), td))
T .

Limit statement (5) implies the following asymptotic test procedure
Reject H, i�

T̂n ≥ χ2
d;1−α. (6)

Special case As a special case we consider the problem of testing whether the
classical Cox proportional hazards model is true, that is, Bpar is the set of all constants
ϑ.

H : β0(·) ≡ ϑ for some constant ϑ.

If the assumptions of Theorem 1 are satis�ed, then the test procedure is given by (6)

with Ŝ−1
n (t) as de�ned above and Ûn(βϑ̂, t) = Ûn(ϑ̂n, t) with elements

Un(ϑ̂n, tj) = n−1/2h1/2

n∑
i=1

∫ τ

0

Kh(s− tj)[Xi − En(ϑ̂n, s)]dNi(s) j = 1, . . . , d,

where ϑ̂n is the maximum partial likelihood estimator in the hypothetical model.
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Abstract

This paper describes the semiparametric dynamic regression or accelerated
life models that are very important in econometric duration analysis in esti-
mation of the risk of defaults, which plays an important role in the pricing
and hedging of credit risk see Gouriéroux and Josiak (2005). Dynamic regres-
sion models are applied often in economics, reliability and survival analysis,
see, for example, Lancaster (1979), Bagdonavicius and Nikulin (2002), Ceci
and Mazliak (2004), Martinussen and Scheike (2006), Zeng and Ling (2007),
etc. Evident that this approach can be very useful to modelling the default
probabilities. Accelerated life models relate lifetime distribution of the default
time to the time varying explanatory variables, called in reliability stresses, it
terms of which is described the past performance of the �rms and the banks the
information about the current market conditions or about some important eco-
nomic, political and social factors which in�uence on the risk of default. These
models are used for estimation of the e�ects of covariates (stresses) over the
time on survival and for estimation of survival via its e�ects on default rates
under given covariates values. In terms of the time dependent covariates are
described the possible direct and indirect economic (�nancial) loss for �rms,
or as one can say, conditional on reasonable available information, which have
to be taken in consideration in business risk analysis. For example, the time
depending stresses and degradation models can explain the in�uence of such
characteristics as quality, productivity, credibility, pro�tability of �rms, or the
dramatic decline in oil price in the market, or the business cyclic e�ects on
default rates.

Keywords: Accelerated life model, accelerated hazards, business risk, Cox
model, econometric duration analysis, time varying explanatory variable, risk
of defaults, survival data, semiparametric dynamic regression models.

1 Introduction

This paper describes the semiparametric dynamic regression or accelerated life mod-
els that are very important in econometric duration analysis in estimation of the risk
of defaults, which plays an important role in the pricing and hedging of credit risk
see Lancaster (1979), Horowitz (1998), Mosler (2002), Du�e and Singleton (2003),
Kiefer (1988), Gouriéroux and Josiak (2005), Ceci and Mazliak (2004), Royston and
Parmar (2002), Zhou, Chinnam and Korostelev (2012), Royston and Lambert (2011),
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etc... Dynamic regression models are applied often in reliability and survival analy-
sis, see, for example, Bedford and Cooke (2001), Bagdonavicius and Nikulin (2002),
Ceci and Mazliak (2004), Martinussen and Scheike (2006), Nikulin, Gerville-Reache,
Couallier (2007), Bagdonavicius, Kruopis and Nikulin (2011), Voinov, Balakrishnan
and Nikulin (2013), etc. Evident that this approach can be very useful to modelling
the default probabilities. Accelerated life models relate lifetime distribution of the
default time to the time varying explanatory variables, called in reliability stresses,
it terms of which is described the past performance of the �rms and the banks the
information about the current market conditions or about some important economic,
political and social factors which in�uence on the risk of default. These models are
used for estimation of the e�ects of covariates (stresses) over the time on survival
and for estimation of survival via its e�ects on default rates under given covariates
values. In terms of the time dependent covariates are described the possible direct
and indirect economic (�nancial) loss for �rms, or as one can say, conditional on
reasonable available information, which have to be taken in consideration in busi-
ness risk analysis. For example, the time depending stresses and degradation models
can explain the in�uence of such characteristics as quality, productivity, credibility,
pro�tability of �rms, or the dramatic decline in oil price in the market, or the busi-
ness cyclic e�ects on default rates. The reliability approach based on applications
of semiparametric dynamic regression and degradation models provides a basis for
some suggestions for further research on statistical estimation and prediction of the
default risk and gives an interesting possibility approach to obtain a statistical infer-
ence in dependence on situation in the market (see Nikulin et al.,(2009), Couallier et
al., (2014)). The considered models are very �exible and are applicable to estimate
possible �nancial losses of di�erent types of �rms in the real world economic, �nancial
and politic situations, described in terms of time dependent stresses. Using the ter-
minology of Singpurwalla (1995) we have the possibility to estimate the probability
of default risk in dynamic environments. The proportional hazards model is the most
important model in duration analysis. We consider some recent models based on the
Cox model. The proportional hazards model is generalized by assuming that at any
moment the ratio of hazard rates is depending not only on values of time-varying
covariates (stresses) but also on resources used until this moment. Relations with
generalized multiplicative, modi�ed proportional hazards, frailty, linear transforma-
tion, Sedyakin are considered. We consider semiparametric models for longitudinal
studies the relations between a longitudinal response process and a time-to-event.
We consider also the models with cross-e�ects of survival functions. These models
are applied for longitudinal studies of the economic and industrial data by Hsieh
(2001) , Huber et al., (2007), Wu (2007), Nikulin and Wu (2007), Bagdonavicius and
Nikulin (2002), Bagdonavicius, Kruopis and Nikulin (2011), Couallier et al.,(2013)
. We discuss also the applications of the so-called degradation models, which are
very useful in economics and business to make a comprehensive risk analysis when
economic damage grow. Such models allow assessing the probability of speci�c trau-
matic events and their impact on business (default) process. These models are well
adapted for statistical analysis of industrial �rms, insurance companies, banks fail-
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ure data (bankruptcy) in dynamic environments, to qualitatively and quantitavely
estimate possible �nancial and economic losses and damage due to economic, social,
politic, etc... changes over the time.

The explanatory variables (stress) may be modelled by stochastic processes, de-
terministic time functions or constants (possibly di�erent for di�erent individuals).
Denote by x(·) = (x1(·), ..., xm(·))T : [0,∞) → Rm, a deterministic time function
(possibly multidimentional) which is a vector of covariates itself or a realisation of a
stochastic process X(·) = (X1(·), ..., Xm(·))T when covariates (stresses) are modeled
by this stochastic process. We denote E = E{x(·)} a set of all possible or admissible
stresses. If a stress x(·) is constant in time, x(t) ≡ x, then we shall write x instead
of x(·). We denote E1 a set of all constant in time stresses, E1 ⊂ E.

The distribution of survival under covariates can be de�ned by the survival, cumu-
lative distribution, or probability density function. Nevertheless, the sense of models
is best seen if they are formulated in terms of so-called hazard rate function. This
notion is used widely in reliability and survival analysis. In econometrics , and in
particular in credit analysis, instead of the hazard rate function people use the term
forward default rate function or more simple term default rate function.

Denote by T the time to default. Then the probability of surviving function given
stress x(·) is de�ned as

Sx(·)(t) = P{T > t | x(u), 0 ≤ u ≤ t}, t > 0, x(·) ∈ E,

with Sx(·)(0) = 1 for any stress x(·) from the set E of all admissible stresses. So for
any t > 0 the value Sx(·)(t) denote the probability that the �rm will not default for
at least t years, if we measure the time in the years, for example,

The default rate function or intensity of default function under given stress x(·)
is de�ned as

λx(·)(t) = lim
h↓0

1

h
P{T ∈ [t, t+ h) | T ≥ t, x(u), 0 ≤ u ≤ t} = −

S ′x(·)(t)

Sx(·)(t)
.

From this de�nition it follows for any stress x(·) ∈ E and any t, t > 0, the value
λx(·)(t) is the rate of default arrival at time t conditional only on survival up to
time t. The default rate function is the most important reliability characteristics
of survival and its value λx(·)(t) gives the instantaneous exit rate per unit of time
evaluated at the time t. It is evident also that if the function λx(·)(·) is continuous
in t, then under the stress x(·) the probability of default in the interval [t, t+ ∆] for
small ∆,∆ > 0, conditional on survival to t, is approximately equal to λx(·)(t)∆. We
note here that sometimes λx(·)(·) is called also the forward default rate, see Lancaster
(1972), Du�e and Singleton (2003), the bankruptcy rate or failure rate of instruments,
see Gouriéroux and Josiak (2005). The default rate function is the most important
reliability characteristics. Denote by

Λx(·)(t) =

∫ t

0

λx(·)(u)du = − ln{Sx(·)(t)}, x(·) ∈ E,
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the cumulative rate of default under stress x(·). For any x(·) ∈ E the function Λx(·)(·)
is increasing in t, with Λx(·)(0) = 0, and Λx(·)(+∞) = +∞.

Each speci�ed model relates the hazard rate (or survival function) to the explana-
tory variable in some particular way. From this de�nition it follows immediately that

Sx(·)(t) = e−Λx(·)(t) = exp{−
∫ t

0

λx(·)(u)du}, x(·) ∈ E.

At the end of this section we note that we write Tx(·) instead of T to remind that we
study the time to default under the stress x(·), and hence the distribution of time
to default depends on x(·), x(·) ∈ E. We want to consider here the models on E
which are well adapted to study the microstructure of �nancial markets in terms of
observed stresses.

2 The Cox or the proportional default rate model

Under the proportional default rate model (traditionally PH model or Cox (1972)
model) on E the defaul rate under a stress x(·) has the form

λx(·)(t) = r{x(t)} λ0(t), x(·) ∈ E, (1)

where λ0(t) is a so called baseline default rate function, and r(·) is a positive function
on E.

The model implies that the ratio R(t, x1, x2) of default rates under di�erent �xed
constant stresses x1 and x2 is constant over time:

R(t, x1, x2) =
λx2(t)

λx1(t)
=
r{x2}
r{x1}

= const.

In most applications the function r is parametrized in the form

r(x) = exp{βTx}, where β = (β1, · · · , βm)T

is the vector of regression parameters. Under this parametrization we obtain the
classical semiparametric Cox model with time-dependent covariables:

λx(·)(t) = eβ
T x(t)λ0(t), t > 0, x(·) ∈ E. (2)

Usually the Cox model is considered as semiparametric: the �nite-dimensional pa-
rameter β and the baseline hazard function λ0 are supposed to be completely un-
known. Nevertheless, non-parametric estimation procedures when the function r is
also supposed to be unknown are sometimes used. Parametric estimation procedures
when λ0 is taken from some parametric class of functions is scarcely used because
the parametric accelerated failure time model (see in the following sections) is also
simple for analysis and more natural. In parametric case we recommend to chose as
parametric family for the baseline function the so-called Power Generalized Weibull
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(PGW) Family of Distributions, proposed by Bagdonavicius and Nikulin (2002). In
terms of the survival functions the PGW family is given by the next formula:

S(t, σ, ν, γ) = exp

{
1−

[
1 +

(
t

σ

)ν] 1
γ

}
, t > 0, γ > 0, ν > 0, σ > 0.

If γ = 1 we have the Weibull family of distributions. If γ = 1 and ν = 1 = 1, we
have the exponential family of distributions. This class of distributions has very nice
probability properties. All moments of this distribution are �nite. In dependence
of parameter values the hazard rate can be constant, monotone (increasing or de-
creasing), unimodal or

⋂
-shaped, and bathtub or

⋃
-shaped. At the beginning of a

�rm's life, it has a great risk of failure because of bad market investigation, absence
of management experiences, etc. When this initial period known as birn in period is
passed, the �rm has less risks of bankruptcy and win the market. It is a period of
prosperity. The hazard function λ(· · · ) is almost constant which corresponds to the
Exponential Distribution. In its end, the �rm will undergo competing risks. In this
description of its life cycle, its hazard function is U-shaped. The PGW distribution
family corresponds to this kind of modelling needs. Another interesting family, is the
so-called the Exponentiated Weibull Family of distributions, which was proposed by
Mudholkar & Srivastava (1995).

The Cox model is not much used analysing failure time regression data in relia-
bility. The cause is that the model is not natural when subjects are aging. Indeed,
from (1) it follows that for any t the default rate function under the time-varying
stress x(·) at the moment t does not depend on the values of the stress x(·) before the
moment t but only on the value of it at this moment:

P(T ≤ t+ s | T > t) = 1− e−
∫ t+s
t eβ

T x(u)λ0(u)du,

where λ0 is the baseline hazard function which does not depend on stress. For this
reason we can say that PH model has the absence of memory property. Nevertheless,
in survival analysis the Cox model usually works quite well, because the values of
covariates under which estimation of survival is needed are in the range of covariate
values used in experiments. So the use of a not very exact but simple model often
is preferable to the use of more adequate but complicated model. It is similar with
application of linear regression models in classical regression analysis: the mean of
dependent variable is rarely a linear function of independent variables but the linear
approximation works reasonably well in some range of independent variable values.

In reliability, accelerated life testing in particular, the choice of a good model
is much more important than in survival analysis. For example, in accelerated life
testing units are tested under accelerated stresses which shorten the life. Using such
experiments the life under the usual stress is estimated using some regression model.
The values of the usual stress is not in range of the values of accelerated stresses, so
if the model is misspeci�ed, the estimators of survival under the usual stress may be
very bad.

252



Applied Methods of Statistical Analysis

If on the bases of graphical analysis or goodness-of-�t tests the PH model is
rejected and one has a reason to suppose that the ratios of hazard rates are not
constant, other models should be used.

3 Accelerated Failure Time Model

The PH model has the absence of memory propriety: the hazard rate at any
moment does not depend on the values of the stress before this moment. It is more
natural to suppose that the default rate at any moment t should depend not only
on the value of stress at this moment but on the probability to survive up to this
moment. Under stress x(·) this probability is Sx(·)(t). It characterizes the summing
e�ect of values of stress (of the history) in the interval [0, t] on survival. The equality
Λx(·)(t) = − lnSx(·)(t) implies that the cumulative default rate also characterizes this
summing e�ect. So it can be supposed that the default rate at any moment t is a
function of the value x(t) of a stress and the value of the cumulative default rate
Λx(·)(t).

The generalized Sedyakin's model namely supposes it (see Sedyakin (1966), Bag-
donavi£ius (1978), Bagdonavi£ius & Nikulin (1998)):

λx(·)(t) = g
(
x(t),Λx(·)(t)

)
. (3)

This model with g completely unknown is too general to do statistical inference. But
if we choose some regression model for constant covariates, the form of the function
g can be made more concrete.

Suppose that under di�erent constant covariates x ∈ E0 the survival functions
di�er only in scale:

Sx(t) = S0 (r(x)t) , (4)

If the GS model holds on a set E,E0 ⊂ E of covariates then (4) holds on E0 if and
only if the function g has the form g(x, s) = r(x)q(s) (see Bagdonavi£ius & Nikulin
(1998)).

We obtain the following model:

λx(·)(t) = r{x(t)} q{Λx(·)(t)}. (5)

Solving this di�erential equation with respect to Λx(·)(t), and using the relation be-
tween the survival and the cumulative hazard functions we obtain that the survival
function has the form

Sx(·)(t) = S0

(∫ t

0

r(x(u))du

)
, (6)

where the function S0 does not depend on x(·). The function r changes locally the
time-scale.

The model (6) (or, equivalently, (5)) is called accelerated failure time (AFT)
model.
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The function r is often parametrized in the following form:

r(x) = e−β
T x,

where β = (β1, · · · , βm)T is a vector of unknown parameters.
Under the parametrized AFT model the survival function is

Sx(·)(t) = S0

(∫ t

0

e−β
T x(u)du

)
, (7)

and the default rate is

λx(·)(t) = e−β
T x(t) λ0

(∫ t

0

e−β
T x(u)du

)
, (8)

and for constant covariates

Sx(t) = S0

(
e−β

T x t
)
.

So in the case of constant covariates the AFT model can also be written as a loglinear
model, since the logarithm of the failure time Tx under constant covariate x can be
written as

ln{Tx} = βTx+ ε, (9)

where the survival function of the random variable ε does not depend on x and is
S(t) = S0(ln t). In the case of lognormal failure-time distribution the distribution of
ε is normal and we have the standard linear regression model. The equality (8) im-
plies that if the survival function under any constant covariate belongs to parametric
families such as Weibull, loglogistic, lognormal, then the survival function under any
other constant covariate also belongs to that family.

Di�erently from PH model, the AFT model is mostly applied in survival analysis
as a parametric model: the function S0 (or the distribution of ε) is taken from some
parametric class of distributions and the parameters to estimate are the parameters
of this class and the regression parameters β.

In the case of semiparametric estimation the function S0 is supposed to be com-
pletely unknown and the regression parameters as the function S0 are the parameters
to estimate in the model (7). The semiparametric AFT model is much less used in
survival analysis then the Cox model because of complicated estimation procedures:
modi�ed variants of likelihood functions are not di�erentiable and even not contin-
uous functions, the limit covariance matrices of the normed regression parameters
depend on the derivatives of the probability density functions, so their estimation is
complicated.

The parametric AFT model is used in failure time regression analysis and accer-
erated life testing. Under special experiment plans even non-parametric estimation
procedures are used. In such a case not only the function S0 but also the function r
in the model (6) would be completely unknown. Among many e�ective risk analysis
models, accelerated life time model presents itself for its good properties in duration
analysis in �nance market research, for example.

254



Applied Methods of Statistical Analysis

The AFT model is a good choice when the lifetime distribution class is supposed
to be known. Nevertherless, it is as restrictive as the PH model. The assumption
that the survival distributions under di�erent covariate values di�er only in scale is
rather strong assumption. So more sophisticated models are also needed.

4 Generalized proportional hazards model

4.1 De�nitions

The AFT and PH models are rather restrictive.
Under the PH model lifetime distributions under constant covariates are from the

narrow class of distributions: the ratio of the default rates under any two di�erent
constant covariates is constant over time.

Under the AFT model the covariate changes (locally, if the covariate is not con-
stant) only the scale.

Generalized proportional hazards (GPH) models allow the ratios of the default
rates under constant covariables to be not only constant but also increasing or de-
creasing. They include AFT and PH models as particular cases.

As was discussed in the previous section, the survival function Sx(·)(t) (or, equiv-
alently, the cumulative rate of default function Λx(·)(t)) characterizes the summing
e�ect of stress values in the interval [0, t] on survival. So suppose that the default
rate function at any moment t is proportional not only to a function of the covariate
applied at this moment and to a baseline default rate, but also to a function of the
probability of survival until t (or, equivalently, to the cumulative rate of default at
t):

λx(·)(t) = r{x(t)} q{Λx(·)(t)} λ0(t). (10)

We call the model (10) the generalized proportional hazards (GPH) model, see
Bagdonavi£ius V. and Nikulin M (1999). Particular cases of the GPH model are the
PH model (q(u) ≡ 1) and the AFT model (λ0(t) ≡ λ0 = const).

Under the GPH model the survival functions Sx(·) have the form

Sx(·)(t) = G

{∫ t

0

r(x(τ))dΛ0(t)

}
, (11)

where

Λ0(t) =

∫ t

0

λ0(u)du, G = H−1, H(u) =

∫ − lnu

0

dv

q(v)
.

We denote by H−1 the function inverse to G.

4.2 Relations with the linear transformations and frailty

models

Models of di�erent levels of generality can be obtained by completely specifying q,
parametrizing q, or considering q as unknown.

255



Econometric methods and modeling

Completely specifying q we obtain rather strict models which are alternatives to
the PH model and the �eld of their application is relatively narrow (see Bagdonavicius
and Nikulin (1994)). Under constant stresses such models are the linear transforma-
tion (LT) models. Indeed, if q is speci�ed and r is parametrized by r(x) = eβ

T x then

under constant stresses the survival functions have the form Sx(·)(t) = G
{
eβ

T xΛ0(t)
}

with G speci�ed. This implies that the random variable Tx can be transformed by
the function h(t) = ln{H(S0(t))} to the random variable of the form

h(Tx) = −βTx+ ε, (12)

where ε is a random error with the parameter-free distribution function Q(u) =
1 − G(eu). It is the linear transformation (LT) model of Dabrowska and Doksum
(1988). Examples of the LT models:

1) PH model (G is a Weibull survival function, ε has the extreme value distribu-
tion);

2) logistic regresion model (G is a loglogistic survival function, ε has the loglogistic
distribution):

1

Sx(t)
− 1 = r(x)

(
1

S0(t)
− 1

)
.

3) generalized probit model (G is a lognormal survival function, has the normal
distribution):

Φ−1 (Sx(t)) = log (r(x)) + Φ−1 (S0(t)) ,

where Φ is the standard normal cumulative distribution function.
The last two models are alternatives to the PH model. They are widely used

for analysis of dichotomous data when the probability of "success" in dependence of
some factors is analyzed. If application of the PH model is dubious then better is to
use a (not very) wider GPH model which is obtained from the general GPH model
not by complete speci�cation of the function q but taking a simple parametric model
for it.

Let us consider relations between the GPH models and the
frailty models (Hougaard(1986)) with covariates.

The hazard rate can be in�uenced not only by the observable stress x(·) but also
by a non-observable positive random covariate Z, called the frailty variable. Suppose
that the default rate given the frailty variable value is

λx(·)(t|Z = z) = z r(x(t))λ0(t).

Then

Sx(·)(t) = E exp{−Z
∫ t

0

r(x(τ)) dΛ0(τ)} = G{
∫ t

0

r(x(τ))dΛ0(τ)},

where G(s) = Ee−sZ .
So the GPH model can be de�ned by speci�cation of the frailty variable dis-

tribution. All considered here models are used often in unemployment studies, for
example.
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4.3 The GPH models with monotone hazard ratios

The following parametrizations of r and q give submodels of the GPH model with
monotone ratios of default rates under constant covariates. Using only one parameter
and power or exponential functions for function q parametrization several important
models are obtained.

4.3.1 The �rst GPH model

Suppose that q(0) = 1 (if it is not so, we can include q(0) in λ0, which is considered
as unknown). Taking a power function q(u) = (1 +u)−γ+1 and r(x) = eβ

T x we obtain
the �rst GPH model:

λx(·)(t) = eβ
T x(t)(1 + Λx(·)(t))

−γ+1λ0(t). (13)

It coincides with the PH model when γ = 1. The supports of the survival functions
Sx(·) are [0,∞) when γ ≥ 0 and [0, spx(·)) with �nite right ends spx(·), spx(·) < ∞,
when γ < 0. Finite supports are very possible in accelerated life testing: failures
of units at di�erent accelerated stresses are concentrated in intervals with di�erent
�nite right limits.

Suppose that at the point t = 0 the ratio R(t, x1, x2) of the default rates under
constant stresses x1 and x2 is greater then 1:

R(0, x1, x2) =
r(x2)

r(x1)
= c0 > 1.

The ratio R(t, x1, x2) has the following properties:

a) if γ > 1, then the ratio of the default rates decreases from the value c0 > 1

to the value c∞ = c
1
γ

0 ∈ (1, c0), i.e. the hazard rates approach one another when t
increases.

b) if γ = 1 (PH model), the ratio of the default rates is constant.

c) if 0 ≤ γ < 1, then the ratio of the default rates increases from the value c0 > 1

to the value c∞ = c
1
γ

0 ∈ (c0,∞), i.e. the default rates go away one from another when
t increases.

d) if γ < 0, then the ratio of the default rates increases from the value c0 > 1 to
∞, end the in�nity is attained at the point spx2 = Λ−1

0 {−1/((γ)r(x2))}. The default
rates go away one from another quickly when t increases.

The �rst GPH model is a generalization of the positive stable frailty model with
explanatory variables: the GPH model with γ = 1/α > 0 is obtained taking the
frailty variable Z which follows the positive stable distribution with the density

pZ(z) = − 1

πz
exp{−αz + 1}

∞∑
k=1

(−1)k

k!
sin(παk)

Γ(αk + 1)

zαk
, z > 0,

where α is a stable index, 0 < α < 1.
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4.3.2 The second GPH model

Under the �rst GPH model the support of the survival functions is in�nite when
γ ≥ 0 and �nite when γ < 0. The limit is γ = 1. So it is interesting to take a model
with the following parametrization: q(u) = (1 + γu)−1. We obtain the second GPH
model:

λx(·)(t) = eβ
T x(t)(1 + γΛx(·)(t))

−1λ0(t), (γ ≥ 0). (14)

It also coincides with the PH model when γ = 0. The supports of the survival
functions Sx(·) are [0,∞).

The ratio R(t, x1, x2) = λx2(t)/λx1(t) has the following properties:

a) if γ > 0, then the ratio of the default rates decreases from c0 > 1 to the value√
c0 ∈ (1, c0), i.e. the default rates approach one another when t increases.

b) if γ = 0 (PH model), the ratio of the default rates is constant.
The second GPH model equivalent to the inverse gaussian frailty model with

explanatory variables: the GPH model with γ = (4σθ)1/2 > 0 is obtained taking the
frailty variable Z which follows the inverse gaussian distribution with the density

pZ(z) =
(σ
π

)1/2

e
√

4σθz−3/2e−θz−
σ
z , z > 0.

4.3.3 The third GPH model

Taking the exponential function q(u) = e−γu and r(x) = eβ
T x we obtain the third

GPH model:
λx(·)(t) = eβ

T x(t)−γΛx(·)(t) λ0(t). (15)

It coincides with the PH model when γ = 0. The supports of the survival functions
Sx(·) are [0,∞) when γ ≥ 0 and [0, spx(·)) with �nite right ends when γ < 0.

Suppose that R(0, x1, x2) = r(x2)/r(x1) = c0 > 1.
The ratio R(t, x1, x2) has the following properties:

a) if γ > 0, then the ratio of the default rates decreases from the value c > 0 to
1, i.e. the default rates approach one another and meet at in�nity.

b) if γ = 0 (PH model), the ratio of the default rates is constant.

c) if γ < 0, then the ratio of the default rates increases from the value c0 > 1 to
∞, end the in�nity is attained at the point spx2 = Λ−1

0 {−1/(γr(x2))}. The default
rates go away one from another quickly when t increases.

The third GPH model is a generalization of the gamma frailty model with ex-
planatory variables: the GPH model with γ = 1/k > 0 is obtained taking the frailty
variable Z which follows the gamma distribution with the density

pZ(z) =
zk−1

θkΓ(k)
e−z/θ, z > 0.

All the three GPH models are considered as semiparametric: �nite-dimensional pa-
rameters β and γ and unknown baseline function Λ0 are the unknown parameters.
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4.4 Regression models with cross-e�ects of survival

functions

Let us consider models for analysis of data with cross-e�ects of survival functions
under constant covariates.

4.5 First model with cross-e�ects of survival functions

The �rst model with cross-e�ects of survival functions (CE model) can be obtained
from the �rst GPH model considered in the previous section replacing the scalar pa-
rameter γ by eγ

T x(t) in the formula (13), where γ ism-dimensional (see Bagdonavi£ius
and Nikulin (2002)):

λx(t) = eβ
T x(t){1 + Λx(t)}1−eγT x(t) λ0(t), γ = (γ1, ..., γm)T . (16)

Suppose that at the point t = 0 the ratio of the default rates

R(t, x1, x2) = λx2(t)/λx1(t)

under constant covariates x1 and x2 is greater then 1:

R(0, x1, x2) = eβ
T (x2−x1) = c0 > 1 and γT (x1 − x2) < 0.

In this case the ratio R(t, x1, x2) decreases from the value c0 > 1 to 0, i.e. the
hazard rates intersect once. The survival functions Sx1 and Sx2 also intersect once in
the interval (0,∞) (more about see in Bagdonavi£ius and Nikulin (2002).)

Other CE models can be obtained using the same procedure for the second and
the third GPH models.

4.6 Second CE-model

Hsieh (2001) considered the following model with cross e�ects of the survival functions
generalization of the PH model

Λx(t) = eβ
T x(t){Λ0(t)}eγ

T x(t)

. (17)

It is a generalization of the PH model taking the power eγ
T x(t) of Λ0(t) instead of the

power 1.

Note that the di�erence between this second model and the �rst CE model is the
following. In the case of the second CE model the ratios of the default rates and even
the ratios of the cumulative rate of defaults go to ∞ (or 0) as t → 0. In the case of
the �rst CE model these ratios are de�ned and �nite at t = 0. This property of the
�rst CE model is more natural and helps avoid complications when seeking e�cient
estimators.
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4.7 Changing shape and scale models

Natural generalization of the AFT model (4) is obtained by supposing that dif-
ferent constant stresses x in�uence not only the scale but also the shape of survival
distribution, see Mann et al (1974):

Sx(t) = S0

{(
t

σ(x)

)ν(x)
}
,

where σ and ν some positive functions on E1. Generalization of this model to the
case of time-variale covariates is the changing shape and scale (CHSS) model, Bag-
donavi£ius and Nikulin (1999):

Sx(·)(t) = S0

(∫ t

0

r{x(u)}uν(x(u))−1du

)
. (18)

In this model the variation of stress changes locally not only the scale but also the
shape of distribution.

In terms of the default rate functions the model can be written in the form:

λx(·)(t) = r{x(t)} q(Λx(·)(t)) t
ν(x(t))−1, (19)

where q(u) = λ0(Λ−1
0 (u)), Λ0(t) = − lnS0(t), λ0(t) = A′0(t).

If ν(x) ≡ 1 then the model coincides with the AFT model with r(x) = 1/σ(x).
The CHSS model is not in the class of the GPH models because the third factor at
the right of the formula (19) depends not only on t but also on x(t).

The CHSS model is parametric, if S0 is taken from some parametric class of
survival functions and the functions r and ν are parametrized, usually taking r(x) =
eβ

T x, ν(x) = eγx. The model is semiparametric, if the function S0 is considered as
unknown and the functions r and ν are parametrized:

λx(·)(t) = eβ
T x(t) q(Λx(·)(t)) t

eγ
T x(t)−1, (20)

For various classes of S0 the CHSS model includes cross-e�ects of survival func-
tions under constant covariates. For example, it is so, if the survival distribution
under constant covariates is Weibull, loglogistic (Λ0(t) = t, ln(1 + t), respectively).

Parametric analysis can be done using the method of maximum likelihood. Semi-
parametric analysis is more complicated because the same problems as in the case of
AFT semiparametric model arise: modi�ed variants of likelihood functions are not
di�erentiable and even not continuous functions, the limit covariance matrices of the
normed regression parameters depend on the derivatives of the probability density
functions.
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5 Models with time-dependent regression

coe�cients

5.1 PH model with time dependent regression coe�cients

Flexible models can be obtained by supposing that the regression coe�cients β
in the PH model (2) are time-dependent, i.e. taking

λx(·)(t) = eβ(t)T x(t)λ0(t), (21)

where

βT (t)x(t) =
m∑
i=1

βi(t)xi(t).

If the function βi(·) is increasing or decreasing in time then the e�ect of the ith
component of the explanatory variable is increasing or decreasing in time.

The model (21) is the PH model with time-dependent regression coe�cients.
Usually the coe�cients βi(t) are considered in the form

βi(t) = βi + γigi(t), (i = 1, 2, ...,m),

where gi(t) are some speci�ed deterministic functions as t, ln t, ln(1 + t), (1 + t)−1, for
example, or realizations of predictable processes. In such a case the PH model with
time dependent coe�cients and constant or time dependent explanatory variables can
be written in the usual form (2), where the role of the components of the "covariables"
play not only the components xi(·) but also xi(·)gi(·). Indeed, set

θ = (θ1, · · · , θ2m)T = (β1, · · · , βm, γ1, · · · , γm)T ,

z(·) = (z1(·), · · · , z2m(·))T = (x1(·), · · · , xm(·), x1(·)g1(·), · · · , xm(·)gm(·))T . (22)

Then

βT (u)x(u) =
m∑
i=1

(βi + γigi(t))xi(t) = θT z(u).

So the PH model with time dependent regression coe�cients of above given form can
be written in the form

λx(·)(t) = eθ
T z(t)λ0(t), t ≥ 0. (23)

We have the PH model with time-dependent "covariables" and constant "regression
parameters". So methods of estimation for the usual PH model can be used. Note
that the introduced "covariables" have time-dependent components even in the case
when the covariable x is constant over time.

Alternative method is to take βi(t) as piecewise constant functions with jumps
as unknown parameters. In such a case the PH model is used locally and the ratios
of the default rates under constant covariates are constant on each of several time
intervals.
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5.2 AFT model with time dependent regression coe�cients

Similarly as in the case of the PH model �exible models can be obtained by supposing
that the regression coe�cients β in the AFT model (7) are time-dependent, i.e. taking

Sx(·)(t) = S0

{∫ t

0

e−β
T (u)x(u)du

}
, t ≥ 0, (24)

where

βT (t)x(t) =
m∑
i=1

βi(t)xi(t).

As in the case of the PH model with time-dependent coe�cients, the model (24) with
βi(t) = βi + γigi(t) can be written in the form of the usual AFT model

Sx(·) = G

{∫ t

0

e−θ
T z(u)du

}
. (25)

where θ and z are de�ned by (22).
Alternative method is to take βi(t) as piecewise constant functions with jumps as

unknown parameters. It is evident that now we have many interesting possibilities
to use di�erent models with time depending stresses to studies the microstructure of
�nancial markets.

6 Additive hazards model and its generalizations

An alternative of the PH model is the additive defaults or hazards (AH) model:

λx(·)(t) = λ0(t) + βTx(t), (26)

where β is the vector of regressor parameters. If the AH model holds then the
di�erence of default rates under constant covariates does not depend on t. As the
PH model this model has the absence of memory property: the default rate at the
moment t does not depend on on the values of the covariate before the moment t.

Usually the AH model is used in the semiparametric form: the parameters β and
the baseline default rate λ0 are supposed to be unknown.

Both the PH and AH models are included in the additive-multiplicative hazards
(AMH) model (Lin and Ying (1996)) :

λx(·)(t) = eβ
T x(t)λ0(t) + γTx(t). (27)

Even this model has the absence of memory propriety so rather restrictive.
A modi�cation of the AH model for constant covariates is the Aalen's additive risk

(AAR) model (Aalen (1980)): the default rate under the covariate x is modeled by a
linear combination of several baseline rates with covariate components as coe�cients:

λx(t) = xTα(t). (28)
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where α(t) = (λ1(t), · · · , λm(t))T is an unknown vector function.
Both AH and AAR models are included in the partly parametric additive risk

(PPAR) model (McKeague and Sasieni (1994)):

λx(t) = xT1 α(t) + βTx2, (29)

where x1 and x2 are q and p dimensional components of the explanatory variable x,
α(t) = (λ1(t), · · · , λq(t))T , β = (β1, · · · , βp)T are unknown.

Analogously as in the case of the PH model the AH model can be generalized by
the generalized additive hazards (GAH) model:

λx(·)(t) = q{Λx(·)(t)}(λ0(t) + βTx(t)), (30)

where the function q is parametrized as in the case of GPH models.
Both the GPH and the GAH models can be included into the generalized additive-

multiplicative hazards (GAMH) model (Bagdonavicius and Nikulin (1997)):

λx(·)(t) = q{Λx(·)(t)}
(
eβ

T x(t)λ0(t) + δTx(t)
)
. (31)

In both GAH and GAMH models the function q is parametrized as in the GPH
models: q(u) = (1 + u)−γ+1, (1 + γu)−1, e−γu, and the GAH1, GAH2, GAH3 or
GAMH1, GAMH2, GAMH3 models are obtained.

7 Remarks on parametric and semiparametric

estimation

The literature on parametric and non-parametric estimation for the above con-
sidered models is enormous. Methods of estimation depend on experiment plans,
censoring, covariate types, etc. We do not give here all these methods but give two
general methods of estimation (one for parametric and other for semiparametric case)
which work well for all models.

If the models are considered as parametric then the maximum likelihood estima-
tion procedure gives the best estimators.

Let us consider for simplicity right censored survival regression data which is
typical in survival analysis (more complicated censoring or truncating schemes are
considered similarly):

(X1, δ1, x1(·)), · · · , (Xn, δn, xn(·))),

where
Xi = Ti ∧ Ci, δi = 1{Ti≤Ci} (i = 1, · · · , n),

Ti and Ci and are the failure and censoring times, xi(·)-the covariate corresponding
to the ith object, Ti ∧ Ci = min(Ti, Ci), 1A is the indicator of the event A.

Equivalently, right censored data can be presented in the form

(N1(t), Y1(t), x1(t), t ≥ 0), · · · , (Nn(t), Yn(t), xn(·), t ≥ 0),
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where
Ni(t) = 1{Xi≤t,δi=1}, Yi(t) = 1{Xi≥t}.

In this case for any t, t > 0

N(t) =
n∑
i=1

Ni(t) and Y (t) =
n∑
i=1

Yi(t)

are the number of observed failures of all objects in the interval [0, t] and the number
of objects at risk just prior the moment t respectively.

Suppose that survival distributions of all n objects given xi(·) are absolutely
continuous with the survival functions Si(t, θ) and the default rates λi(t, θ), speci�ed
by a common possibly multidimensional parameter θ ∈ Θ ⊂ Rs.

Denote by Gi the survival function of the censoring time Ci. We suppose that the
function Gi and the distributions of xi(·) (if they are random) do not depend on θ.

Suppose that the multiplicative intensities model is veri�ed: the compensators of
the counting processes Ni with respect to the history of the observed processes are∫
Yiλidu. The likelihood function for θ estimation is:

L(θ) =
n∏
i=1

λδii (Xi, θ)Si(Xi, θ)

=
n∏
i=1

(∫ ∞
0

λi(u, θ) dNi(u)

)δi
exp

{
−
∫ ∞

0

Yi(u)λi(u, θ) du

}
The maximum likelihood (ML) estimator θ̂ of the parameter θ maximizes the

likelihood function. It veri�es the equation:

U(θ̂) = 0,

where U is the score function:

U(θ) =
∂

∂θ
lnL(θ) =

n∑
i=1

∫ ∞
0

∂

∂θ
log λi(u, θ){dNi(u)− Yi(u)λi(u, θ)du. (32)

The form of the default rates λi for the PH, AFT, GPH1, GPH2, GPH3, CE, CHSS,
AH,AMH, AAR, PPAR, GAH, GAMH are given by the formulas (2),(7),(13),(14),
(15), (16),(20),(26),(27),(28), (29), (30), (31). The parameter θ contains the re-
gression parameter β, the complementary parameter γ (for some models) and the
parameters of the baseline rate function λ0, which is taken from some parametric
family.

Let us consider a general approach (Bagdonavi£ius and Nikulin (2002)) for semi-
parametric estimation in all given models when the baseline default function λ0 is
supposed to be unknown. The martingale property of the di�erence

Ni(t)−
∫ t

0

Yi(u)λi(u, θ)du (33)
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implies an "estimator" (which depends on θ) of the baseline cumulative hazard Λ0.
Indeed, all the above considered models can be classi�ed into three groups in depen-
dence on the form of λi(t, θ)dt. It is of the form

g(xi(s),Λ0(s), 0 ≤ s ≤ t, θ)dΛ0(t)

(for PH, GPH, CE models), and dΛ0(fi(t, θ)) (for AFT, CHSS models) or

g1(xi(s),Λ0(s), 0 ≤ s ≤ t, θ)dΛ0(t) + g2(xi(s),Λ0(s), 0 ≤ s ≤ t, θ)dt

(for AH, AMH, AR, PPAR, GAH, GAMH models), Λ0 possibly multi-dimensional
for the AR and PPAR models). We remind that the estimation for the PH and
AFT models with time-dependent regression coe�cients and time-dependent or in-
dependent covariates is analogous to the estimation for the PH and AFT models with
constant regression coe�cients and properly chosen time-dependent "covariates".

For the �rst group the martingale property of the di�erence (33) implies the
recurrently de�ned "estimator":

Λ̃0(t, θ) =

∫ t

0

dN(u)∑n
j=1 Yj(u)g(xj(v), Λ̃0(v, θ), 0 ≤ v < u, θ)

.

For the second group

Ã0(t, θ) =
n∑
i=1

∫ t

0

dNi(hi(u, θ))∑n
l=1 Yl(hl(u, θ))

,

where hi(u, θ) is the function inverse to fi(u, θ) with respect to the �rst argument.
For the third group (AH, AMH, GAH, GAMH models)

Λ̃0(t, θ) =

∫ t

0

dN(u)−
∑n

i=1 g2(xi(v),Λ0(v), 0 ≤ v < u, θ)du∑n
j=1 Yj(u)g1(xj(v),Λ0(v), 0 ≤ v < u, θ)

.

A little more complicated situation is with AR and PPAR models. The "estimator"
Λ̃0 is obtained in the following way (McKeague and Sasieni (1994)): let us consider
a submodel

λ0(t) = α(t) + ηϕ(t),

in which η is a one-dimensional parameter and ϕ, α are m-vector of functions.
The score function obtained from the parametric likelihood function for the pa-

rameter η (AR model) is

U(η) =
n∑
i=1

∫ ∞
0

ϕT (t)x(i)(t)

λi(t)
(dNi(t)− Yi(t)(x(i)(t))TdΛ0(t)),

and the score functions for the parameters η and β (PPAR model) are:

U1(η, β) =
n∑
i=1

∫ ∞
0

ϕT (t)x
(i)
1

λi(t)
(dNi(t)− Yi(t)(x(i)

1 )TdΛ0(t)− βTx2Yi(t)dt) = 0,
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U2(η, β) =
n∑
i=1

∫ ∞
0

x
(i)
2

λi(t)
(dNi(t)− Yi(t)(x(i)

1 )TdΛ0(t)− βTx(i)
2 Yi(t)dt) = 0. (34)

If Λ0 is unknown and we want to estimate it, the estimator should be the same for
all ϕ. Setting U(η) = 0 (AR model) or U1(η, β) = 0 (PPAR model) for all functions
ϕ implies that for all t

x(i)(t)

λi(t)
(dNi(t)− Yi(t)(x(i)(t))TdΛ0(t)) = 0,

or
x(i)

λi(t)
(dNi(t)− Yi(t)(x(i)

1 )TdΛ0(t)− βTx(i)
2 Yi(t)dt) = 0,

which implies the "estimators" (AR model):

Λ̃0(t) =
n∑
j=1

∫ t

0

(
n∑
i=1

x(i)(u)(x(i)(u))TYi(u)(λi(u))−1

)−1

x(j)(u) (λj(u))−1 dNj(u)

or (PPAR model)

Ã(t) =
n∑
j=1

∫ t

0

(
n∑
i=1

x
(i)
1 (x

(i)
1 )TYi(u)(λi(u))−1

)−1

x
(j)
1 (λj(u))−1 (dNj(u)− βTx(j)

2 Yj(u)du).

Note that for PH, GPH1, GPH2, GPH3 models

g(x(s),Λ0(s), 0 ≤ s ≤ t, θ) = eβ
T x(t), eβ

T x(t)(1 + γ

∫ t

0

eβ
T x(u)dΛ0(u))

1
γ
−1,

eβ
T x(t)(1 + 2γ

∫ t

0

eβ
T x(u)dΛ0(u))−

1
2 , eβ

T x(t)(1 + γ

∫ t

0

eβ
T x(u)dΛ0(u))−1,

respectively. For the CE model

g(x(s),Λ0(s), 0 ≤ s ≤ t, θ) = eβ
T x(t){1 + Λx(·)(t)}1−eγT x(t) ,

where the function Λx(·) is de�ned by the equation∫ t

0

eβ
T x(u){1 + Λx(·)(u)}1−eγT x(u)dΛ0(u) = Λx(·)(t).

If x is constant in time then for the CE model

g(x,Λ0(s), 0 ≤ s ≤ t, θ) = eβ
T x{1 + e(β+γ)T xΛ0(t)}e−γ

T x−1.

For the AFT and CHSS models

fi(t, θ) =

∫ t

0

e−β
T x(u)du,

∫ t

0

e−β
T x(u)ue

γT x(u)−1du.
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For the AH, AMH, AR, PPAR, GAH and GAMH models

g1(xi(s),Λ0(s), 0 ≤ s ≤ t, θ) = 1, eβ
T x(t), xT , xT1

and
g2(xi(s),Λ0(s), 0 ≤ s ≤ t, θ) = βTx(t), βTx(t), 0, βT2 x(t),

respectively. For the GAMH1 model (formulas are analogous for the GAMH2,
GAMH3, GAH1, GAH2, GAH3 models):

g1(xi(s),Λ0(s), 0 ≤ s ≤ t, θ) = eβ
T x(t) g(xi(s),Λ0(s), 0 ≤ s ≤ t, θ),

g2(xi(s),Λ0(s), 0 ≤ s ≤ t, θ) = δTx(t) g(xi(s),Λ0(s), 0 ≤ s ≤ t, θ),

where

g(xi(s),Λ0(s), 0 ≤ s ≤ t, θ) =

(
1 + γ(

∫ t

0

eβ
T x(u)dΛ0(u) + δT

∫ t

0

x(u)du)

) 1
γ
−1

.

For the PH, GPH and CE models the weight ∂
∂θ

log λi(u, θ) in (32) is a function of
xi(·)(v),Λ0(v), 0 ≤ v ≤ u and θ. So the modi�ed score function is obtained replacing
Λ0 by its consistent estimator Λ̃0 in the parametric score function (32).

In the case of the AFT, CHSS, AH, AMH, AR and PPAR models the weight
depends not only on Λ0 but also on λ0 and (or) λ′0. But the more important thing is
that λi(u)du do not depend on λ0 and λ

′
0. So construction of the modi�ed likelihood

function can be done by two ways. The �rst way is to replace Λ0 by Λ̃0 and λ0 and
λ′0 by nonparametric kernel estimators which are easily obtained from the estimator
Λ̃0. The second, much more easy way is to replace λ by 1, λ′ by 0 and Λ0 by Λ̃0 in
the score function (32) (or (34) for the PPAR model, in the case of the AR model
there are no parameters left to estimate). The e�ciency loses very slightly in this
case of such simpli�ed weight.

Computing of the modi�ed likelihood estimators is simple for the PH, GPH and
CE models. It is due to the remarkable fact that these estimators can be obtained
by another way: write the partial likelihood function

LP (θ) =
n∏
i=1

[∫ ∞
0

g{xi(v),Λ0(v), 0 ≤ v ≤ u, θ}∑n
j=1 Yj(u)g{xj(v),Λ0(v), 0 ≤ v ≤ u, θ}

dNi(u)

]δi
, (35)

and suppose at �rst that Λ0 is known. Replacing Λ0 in the score function by Λ̃0

exactly the same modi�ed score function is obtained as going from the full likelihood!
So computing the estimator θ̂ the score equation is not needed. Better maximize
the modi�ed partial likelihood function which is obtained from the partial likelihood
function (35) replacing Λ0 by Λ̃0. The general quasi-Newton optimization algorithm
(given in Splus) works very well seeking the value of θ which maximizes this modi�ed
function (Bagdonavi£cius, Hafdi, Himdi and Nikulin (2002)).

The most complicated case is the case of AFT and CHSS models: the modi�ed
score functions are not di�erentiable and even continuous. So the modi�ed maximum
likelihood estimators are the values of θ which minimize the distance of the modi�ed
score function from zero. Computational methods for such estimators are given in
Lin and Geyer (1992).
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Abstract

In this article we consider the problem of predicting Russian Bank bankruptcy
prior to the actual occurrence of this event. A mathematical model based on the
o�cially published data characterizing the banks activity is developed and it is
used to estimate the probability of a Russian Bank bankruptcy. In Conclusion,
the main results concerning the possible further application of the developed
method are formulated for predicting bank bankruptcy in practice.

Keywords: Bank, bank bankruptcy, Discriminant Function Analysis, Logit
model, Probit Model, likelihood function, classi�cation problem, factors, two-
valued dependent variable.

Introduction

Banking system has an important function in the Nation's Economy. Consequently
it requires very careful attention. A sudden bank failure leads to loss of con�dence
in the entire banking system and it causes the reduction in private savings and the
ine�cient allocation of funds that in turn does not contribute to the strengthening
of the economy. So, it is natural that we want to have some more or less universal
technics in order to estimate banking institutions and predict a bank failure. This
could be an additional tool for the Central bank to revoke the license as well as a
good useful instrument for an independent rating agency's work.

The o�cial statistic data concerned the banking institutions is usually reported
on public websites and at �rst glance it is only o�cial dry information that does
not carry much meaning and especially it does not contain any information about a
possible bank bankruptcy. However, it is not so if we consider this information in
detail and analyse it.

Currently, binary choice models are used to solve such problems. They are Logit
and Probit Models and the Discriminant Function Model which is only a particular
case of the previous models [1, 2, 3, 4, 5, 7]. It is logical that at some point a natural
question will arise which of the models are preferred for solving this problem. We
chose two main criterion to select a model. They are the �unpretentiousness� of a
model to the input data and the classi�cation quality. The Discriminant Function
Model is obviously loser in this case [2, 3, 4]. According to the model it is supposed
that data satis�es the main assumptions of the Discriminant Function Analysis such
as continuity and independence for input factors and their normal distribution. It
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should be noted that these assumptions make the model non-working for real con-
ditions [8, 9]. Logit and Probit Models apply less restrictions on input data and
therefore they are more �exible [8, 9]. In addition, it is known that the consid-
ered models are based on the Logistic and Normal distribution respectively. So, it
is reasonably to think about possibility of constructing a model based on any other
distribution. The new model was tested before and was compared with the existing
models in terms of classi�cation quality on the model data [10]. In this work we
study the classi�cation quality of the new model and compare it with results obtained
by using already known models to solve the problem of predicting the Russian banks
bankruptcy probability.

1 Problem De�nition and Metodology

We denote by y a bankruptcy indicator for a bank to solve this problem. The output
dependent variable y takes one of two possible values. They can be 1 if a bank is
bankrupt or 0 when a bank is not bankrupt and �nancially stable organization with
a good reputation on the �nancial services market respectively. The Russian banks
were selected for statistical analysis and part of them was declared bankrupt in 2013.
Two sets of data characterizing the work of �nancial institutions in 2011 and 2012
were considered. The total number of banks was 37 (m = 37) and 10 of them were
declared bankrupt (this was approximately 27% of the total volume of the sample).

The following indicators based on the o�cially published statistics on the banking
institutions were calculated [6]:

� AU1 is the ratio of the cash amount on the balance-sheet of the credit institution
to the total amount of assets;

� AU2 is the ratio of equity capital to the total amount of liabilities of the credit
institution;

� AU3 is the ratio of the total amount of own funds revaluation reserves/�xed
assets (and intangible assets, tangible reserves and similar values which are
written as a single line of the assets bank balance) / to the equity capital
(aggregated sum of own funds) of the credit institution;

� AU4 is the ratio of the current year retained earnings total sum (at liability side
of the balance-sheet) to the aggregated value of bank liabilities;

� AU5 is the ratio of the previous years retained earnings total sum (except for
the retained earnings of the current year, which is written as a separate line)
to the total value of the bank assets;

� AM2 is the ratio of the credit institution own funds revaluation reserves to the
total value of liabilities;

� AM3 is the ratio of the credit institution equity capital (the sum of own funds)
to the total value of bank assets;
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� AM4 is the ratio of the current year and previous years retained earnings sum
of liability side of the balance-sheet to the credit institution total value of lia-
bilities.

We will consider a vector of variables
xi = (AUi1, AUi2, AUi3, AUi4, AUi5, AMi2, AMi3, AMi4) as an input factors vector
for each i-th bank. We denote the variables AU1-AM4 for X1−X8 for the convenience
of data processing and obtain the vector xi = (Xi1, Xi2, Xi3, Xi4, Xi5, Xi6, Xi7, Xi8)
where xij ∈ R is a value of the j-th factor for the i-th observation, i = 1, 37, j = 1, 8.

It is easy to see when we can establish a relation between the occurrence or non-
occurrence of a bank bankruptcy and the main factors describing the banks activity
it will be possible to forecast these events. We build a model to estimate a probability
of bank bankruptcy (y = 1). Since what y is a binary variable it is logical to use the
Logistic Model. The basic equation of the model is

P {yi = 1 |xi} = F (zi) ,

where F (z) is a cumulative distribution function for the Standard logistic distribution
describing the probability of the speci�ed event from values of input factors, zi is
de�ned as a linear combination of the input factors

zi = θxTi = θ1xi1 + . . . θnxin,

where θ = (θ1, θ2, . . . , θn) are unknown coe�cients. The θ1, θ2, . . . , θn parameters
are �tted based on the independent variable values and the corresponding values
of the dependent variable y. The maximum likelihood method is usually used to
estimate θ parameters so, that they maximize the value of the likelihood function.
However, it is common to use an equivalent logarithmic expression for calculating the
likelihood function:

lnL (θ) =
m∑
i=1

yi lnF
(
θxTi

)
+ (1− yi) ln

(
1− F

(
θxTi

))
.

It is easy to see that theoretically it can be taken any distribution function as
F (z) which is not equal to 0 or 1 on the entire argument domain. The Logistic or
Normal distribution are traditionally chosen as F (z) for the Logit and Probit models,
respectively. In this this paper the Laplace distribution is proposed as an alternative
distribution function [11]:

F (z) =

{
1
2

expα(z−β), x ≤ β

1− 1
2

exp−α(z−β), x > β
,

where α and β are unknown parameters (α > 0, −∞ < β <∞).

Let Err

(
arg max

θ
(lnL (θ, α, β))

)
is the magnitude of the classi�cation error

(that is the part of incorrectly classi�ed observations) obtained by any model. Since
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the distribution function depends on the parameters they can �tted by a special way
in order to minimize this error:(

α̂, β̂
)

= arg min
(α, β)

(
Err

(
θ̂, α, β

))
(1)

Since we agreed that the probability of bankruptcy or not bankruptcy for a se-
lected bank will be described by the function of the Laplace family distribution we
try to build a model with the optimal coe�cients and the law parameters values (1).

It should be noted that there are some conditions when the model described above
does not work at all due to the fact that the value of F (z) function argument can
take on a big value or vice versa with the certain factors and coe�cients values.
The distribution function takes its on extreme values which �break� the likelihood
function. In this case, it is a good practice to perform a preliminary normalization
of the input factors. The classi�cation accuracy of the proposed method was already
discussed earlier [10]. Next, we consider the the accuracy of the method using the
previous data.

2 Experimental Results

Table 1 shows the values of the Err indicator when solving the classi�cation prob-
lem with estimated values of the unknown coe�cients and the Laplace distribution
parameters values for both data sets. There is a nomenclature in the next tables
where Logit means that the model is built based on the Logistic distribution, Probit
means that the model is built based on the Normal distribution, Laplace1 means
that the model is built based on the Laplace distribution with �xed parameter values
(α = 1, β = 0), Laplace2 is the (1)-st task solution.

Table 1: The Err values for the model included all input factors

Year Logit Probit Laplace1 Laplace2 Laplace1 / Laplace2
2011 0.135 0.135 0.054 0.027 2
2012 0.162 0.108 0.027 0.027 1

Table 2: The Err values for a model with factor variables

Year Logit Probit Laplace1 Laplace2 Laplace1 / Laplace2
2011 0.054 0.162 0.054 0.027 2
2012 0.083 0.083 0.055 0.055 1

Since the obtained results are very unstable the model should be simpli�ed, that
is to analyze the data and reduce the number of explanatory variables. The variable
inclusion and exclusion methods show that only AU1 and AU3 variables are signi�cant
when building a linear model. However, if we consider the pair correlation matrix in
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detail then it is clear to see that there are not any compelling reasons for exception
the rest variables. The factor analysis was performed for this reason and three new
variables were selected. Next, we perform the classi�cation procedure once again and
compare its classi�cation quality with the results obtained above. The 2-nd, 3-rd
and the 4-th tables show the classi�cation quality, estimated coe�cients values and
the Laplace law parameters for solving the Laplace2 problem.

Table 2 shows that the model based on the Laplace distribution is constantly
better in terms of classi�cation quality at all the test sets. An additional parameters
�tting procedure for the Laplace distribution family improves the obtained good result
by up to 2 times. It amounts to only 1 incorrectly classi�ed case compared with 3
cases for another models. The new obtained result is signi�cantly more stable than
the result for the original model and does not almost depend on initial estimates for
unknown coe�cients and law parameter values.

Table 3: The coe�cient values for a model with factor variables (data of 2011)

2011 Logit Probit Laplace1 Laplace2∗
const -1.140 -1.327 -0.353 -0.345
FAC1 6.070 2.069 5.538 5.348
FAC2 7.043 2.358 6.440 6.407
FAC3 -1.387 -1.750 -0.262 -0.222

∗α = −0.031, β = 1.038

Table 4: The coe�cient values for a model with factor variables (data of 2012)

2012 Logit Probit Laplace1 Laplace2∗
const -1.145 -0.633 -0.921 -0.837
FAC1 1.237 0.751 0.887 0.806
FAC2 1.597 0.834 1.296 1.178
FAC3 3.446 1.883 2.739 2.490

∗α = 0, β = 1

Conclusions

The investigation shows that the proposed method is e�ective and give good results
when solving the classi�cation problem not only on the model data [10] but also
on the real data in practice. The new method works really well and improves the
classi�cation quality up to 2 times. It is a good result especially if we speak about
such an important event which is to declare a bank bankrupt before it happens in
actual fact.
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Abstract

In this paper we describe the tendencies on dairy market in Russia: transi-
tion from separate independent dairy plants supplying small regions, to national
units and then to international enterprises. Globalization helps to implement
world's best practices in R&D and gain competitive advantage with suppli-
ers due to consolidation of purchasing volumes of raw and pack. Such global
companies need at least several plants to cover national consumers demand in
Russia. One of the most important topics for transnational dairy companies is
de�ning optimal number of plants, places of their location and building e�cient
supply chain scheme. Optimization model was created using genetic methods
of search. It showed the optimal network of production plants on the terri-
tory of the country. Results of the model showed that the optimal scenario
di�ers from existing model and requires signi�cant changes to be implemented.
Model can be implemented to the whole national dairy industry branch as part
of government policy, or by a private enterprise to optimize its logistic and
manufacturing expanses.

Keywords: supply optimization, dairy products production, sourcing mod-
els.

Introduction

Globalization of world trade and production processes brings speci�c features to
supply chain development. In Russia now most dairy plants that used to be state
or independent entities are now parts of transnational corporations.It requires the
new way of managing their production lines utilization and products portfolio. New
approach that helps to optimize �nish products manufacturing and transportation
expenses is sourcing management. This part of supply chain helps company with
several production plants to manage their production lines utilization and �nd op-
timal logistic routs from factory to clients (or hub warehouses). In short term that
means daily production scheduling between several plants depending on demanded
consumption in each territory, logistic costs from plants to customers, free capacity
in plants, di�erence in production expenses between factories and materials availabil-
ity. In long term sourcing management helps to estimate needs and payback from
capital investments in constructing of new plants, installing of new production lines,
their reallocation between di�erent plants and demand in transport and warehouse
capacity.
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Sourcing management enables enterprises with several production sites optimize
their supply chain operations, purchasing costs for raw & pack and production ex-
penses. It is especially important in current economic situation, when from one hand
competitiveness has increased on the dairy market and from the other hand the coun-
try is in crises period when production companies must pay the primary attention to
all expenses and control the price of its products on the shelf.

According to current result of the research done by [11] logistic, warehousing and
production expenses play a signi�cant role in �nished good price (15-25%) for dairy
products in Russia, their optimization is very important for company competitiveness.
Signi�cant results in their optimization can be achieved �rst of all if the company
clearly understands consumers' needs, can prepare reliable forecast of sales and then
can convert it into production plan.

In the article bellow we studied how to convert the long term (3-5 years) forecast
of sales into production plan. The analyses showed that current number and location
of dairy plants in Russia is far from optimal. The model was created that helped to
de�ne the optimal number of dairy plants taking into account logistic and production
costs.

The model is important for the country, because food supply including dairy
production is one of the top priority in the state policy. This branch of economics is
under counter-sanctions now, meaning restriction for import from European Union.
Now it causes growths in production volumes, but at the same time makes it very
important to have a special long term state policy of dairy branch support.

1 Dairy products classi�cation

Dairy products are very important part of human nutrition and in Russia is very
popular. 68% of population in the country [15, 17] consume at least 3 dairy products
a day. According to current research [18] key indicators for dairy products in Russia
that consumers take into account are price and freshness. For milk production com-
panies that means primary importance to build optimal and e�cient supply chain,
determine number, types and places of location for their plants.

We start our research with dairy products classi�cation, depending on the features
important for supply chain and operations planning. Such as their shelf life, consis-
tence and type of packaging. Dairy companies determine several product categories
with di�erent approach for their production and sourcing management:

� products with long shelf life (more than 2 months): UHT milk and milk cock-
tails, condensed milk, skimmed milk powder, etc.;

� products with medium shelf life (4-8 weeks): butter, spoonable yogurts, drink-
able yogurts, cheese, whey drinks, etc.;

� products with short shelf life (3 weeks and less) baby dairy, pasteurized milk,
etc..
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Study of consumers behavior and actual trends on dairy market shows that clients
become more interested in local products, they associate local traditional products
with naturality and freshness, while traditional products that comes from other re-
gions seem to consumers unnatural and not healthy. According to national survey
made in 2013, 59% of consumers of dairy products would like to know not only the
production plant, but also farm and even cow that provided milk for that exact SKU.

This brings new challenges for dairy companies in Russia. On the one hand, there
are many milk plants left from soviet period, but on the other hand, the expanses are
too high for their modernization and regular maintenance.

2 Speci�c features of dairy production in Russia

Boisterous growth in volumes of sales that Russia faced in 00th practically in every
sphere of goods and services was caused mainly by extensive development and growth
of distribution to the remote places of the country. In that period main attention
of companies' management was concentrated on regional expansion and development
(www.rbc.ru). In such conditions operational expenses were not in focus. By 2010
many companies, especially on FMSG market, reached the upper level of possible
distribution and double digit growth changed to insigni�cant decrease or �at sales
trend. In current conditions, transnational corporations are not interested in high
investments in plants modernization, while in Russia nearly 100 dairy factories didn't
have any reconstruction in the last 40 years.

Main speci�c of supply processes in Russia is poor development of transport in-
frastructure and low reliability of local suppliers. Average deviation in lead time
when using rail way is more than 8 days and average speed of materials �ow inside
the country is 17,8 km per hour [19]. Another Russian speci�c is long distance be-
tween production sites and customers and low concentration of population in most of
the regions. Huge distance in the country makes companies operating on milk mar-
ket to have several production sites, because on average, the requirements from retail
chains is to deliver �nished milk products with at least 70% freshness and have 14
days shelf life at maximum. Spread of production volumes between several plants has
a negative impact on materials turnover: 31 days in Russia, 12-16 days in USA and
Europe (www.danone.com). Suppliers' service level that shows a percentage of orders
ful�lled on time, in the exact quantity and perfect quality is also lower, than average
in the developed countries (only 78% of orders in 2012 in Russia satisfy parameters
mentioned above, while in US and Europe this KPI was close to 98%).

The main indicator of supply chain e�ciency is customers' service level that shows
the percentage of orders from the clients that were ful�lled at once. In values of this
indicator Russia is close to developed countries level. But in Russia there is no frozen
horizon for orders from clients that explains di�erence between average accuracy of
forecast of sales (table 1).

Russia was one of the world's leader in growth of milk products consumption
till 2012, nevertheless further industry development is limited by weak state support
of farmers. Milk production companies now su�er from shortage of fresh milk from
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Table 1: Indicators, characterizing materials supply of milk factories in 2012
(www.danone.com)

Indicators Russia Europe USA

Average distance from clients to milk plant, km 868 229 276

Average distance from suppliers to milk plants, km 637 289 309

Average speed of materials �ow across the country, km/hour 17,4 33,5 31,8

Materials turnover, days 31 12 16

Suppliers service level (SSL), % of perfect orders 78 96 94

Customers service level (CSL), % 94 97 97

farms and concentrate in pro�tability projects. One of such project is implementation
of hub model for materials �ow management. Great variety of materials which have
di�erent logistic parameters requires their multidimensional classi�cation analyses to
be executed �rstly.

3 Multidimensional classi�cation of dairy plants in

Russia

As of 2014, in Russia 348 dairy plants was operating. Multidimensional analysis was
done on the next step of the research to determine structure homogeneous groups
of plants by their industrial parameters and volumes of production. The results
of the analysis will help to determine leading plants and those who need serious
reconstruction or closing. Following indicators were included:

� x1 - capacity utilization, %;

� x2 - number of years since last reconstruction, years;

� x3 - �shed goods produced during last 12 months, tons;

� x4 - average weighted distance to milk suppliers, km;

� x5 - number of people living in 500km distance from plant, number.

Materials testing for anomalous observation using Grubbs criteria and criteria of
Tietjen-Moore (Ayvazyan and others, 2001) helped to determine such observations,
mainly for x3 indicator. Most observations which were detected as anomalous were
closed for reconstruction (they were excluded from further analysis) or work season-
ally. Such dairy plants formed a special cluster �Seasonal plants� (cluster four).

For normalized values of indicators multidimensioned cluster analysis were done,
that helped to divideplants into three structurally homogenous clusters by values of
selected indicators:

First cluster �modern plants� (14% of total dairy plants) included sites with high
capacity utilization (74% average), 2-10 years since last modernization. Low distance
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to milk farms and high number of people living not farer than 500km from that plants
show that these plants are e�cient and optimal from sourcing point of view

Second cluster �medium utilized plants� (58% of total dairy plants) contains sites
that have medium level of their capacity utilization, located close to consumers but far
from the milk suppliers. For such plants due to economic changes it is reasonable to
relocate some of their capacities closer to farms and organize milk processing factories
that will supply people of that region with fresh milk with production farm reference.
That re�ects modern tendencies and consumers' expectations. Dairy products that
can be produced at farm: pasteurized milk, thermostatic sour cream and curds.

Third cluster �not e�cient plants� (28% of total plants) was formed by sites with
low capacity utilization, last reconstruction done more than 30 years ago. Their num-
ber is big, with more than 50 thousand employees, so optimization of their operations,
their relocation or modernization should be part of direct state support program, oth-
erwise in few years taking into account current tough economic conditions that plants
are in high risk of closing. That will have a negative social and �nance impact on
nation economy.

To create such state support program and determine transition steps, it is very
important to analyze and forecast consumers' needs from one hand, and optimize
dairy products national sourcing from the other hand.

4 Sourcing optimization model

In the third cluster of plants �not e�cient plants� were plants that are rather close to
consumers, but far from milk farms, with high depreciation of �xed assets. Without
state support and special program that plants are likely to be closed, so it is important
to estimate is it worth to modernize them, change their production portfolio, close
them or relocate their production capacities to other plants.

To estimate sourcing model the following assumptions were done [9]:

� �ves scenarios for plants of cluster #3 are considered: modernization for current
production portfolio, modernization for new portfolio, capacity relocation to
another plants, capacity relocation to new location (construct new plant in
other location using production lines from plant of cluster #3) or plant closure;

� plants and production portfolio of plants from cluster #1, 2 & 4 are considered
as constants;

� consumers demand, places of their location and transportation costs are con-
sidered as constants;

� One kind of �nished products and fresh milk from farms are considered, no
option to mix di�erent milk or dairy products producers in one truck;

� horizon to calculate e�ciency is 5 years;
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� milk farms to plants of cluster 3 will be assigned automatically based on nearest
farms with extra milk supply capacities;

� consumers are assigned automatically to plants based on unsatis�ed demand
left after supply from plants of cluster #1, 2, 4;

� As places for plants relocation are regarded big cities (with population over 300
thousand people) and existing milk farms.

Thus, to solve the problem, the following objective function should be estimated:

J =
5∑
t=1

M∑
i=1

N∑
j=1

mi,j +
N∑
j=1

L∑
k=1

5∑
t=1

cj,k +
N∑
j=1

Rj → min (1)

where t - number of years to analyze optimization e�ciency; M - number of milk
farms; N - number of plants from cluster #3; mi,j - cost of milk delivery from farm
i to plant j; L - number of clients (consumers of dairy products); cj,k - cost of dairy
products delivery from plant j to client k Rj - cost of plant reconstruction or closure.

The problem has a great variety of possible solutions (more, than 4.6× 1034), so
to �nd an e�cient supply scheme a genetic algorithm was used. It allows to start
a process of directed search of possible solution that will have the best value of the
objective function. Following steps were done according to rules of genetic algorithms
usage:

1. created a way for solution codding that uniquely determine the value of objec-
tive function;

2. created sets of generations of possible solutions (so called populations);

3. determined the rules of population evolution;

4. started continuous process of new generation;

5. created a rule of algorithm stoppage.

Using genetic algorithms to solve economic problems gain accelerating interest
and become an object of scienti�c researches in Russia [7] and in other countries of
the world. Often genetic algorithms are considered as a part of imitation models.
For economic problems with great number of di�erent possible solutions, genetic
algorithm can provide several choices that are very close to each other in the value
of objective function, but provide absolutely di�erent results. This gives a possibility
to decision-makers to choose the best option also taking into account another factors
that were not included in the initial model. To start the evolution process of directed
search of optimal supply scheme possible solutions were presented in the coded way
(table 2).

Where N � number of plants from cluster#3, The whole matrix containing all
materials for each plant is regarded as one solution. On the next step of research
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Table 2: Principles of solution codding for genetic algorithms

Plant
number

Type of
change

New portfolio type (for change type #2) /
Plant for capacity relocation (for change
type #3) / Place of relocation (town num-
ber for change type #4)

Code of
solution

1 1 0 1-1-0
2 5 0 2-5-0
3 2 3 3-2-3
... ... ... ...
N 16

two populations of possible solutions were generated, each 1000. For each solution
the value of objective function was calculated. Based on Russian roulette principle
solutions were selected and theytook part in new generation creation. After 1000
iterations, solutions from population #1 and population #2 were merged that helped
to further improve the value of the objective function. Dynamic of the average values
for each generation is presented in �gure 1.

Figure 1: Average value of the objective function during genetic modeling

After 2250 iterations improvement of the objective function from generation to
generation became insigni�cant, thus the algorithm was stopped. As a result of the
modelling the solution was selected that had the lowest value of objective function.
This choice o�ers supply scheme where some of the existing plants from cluster #3
should be closed, some of them relocated to farms (as milk processing plants), some
should change their portfolio of products.
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5 Results of the model, its stability and comparison

of statistic indicators

After applying genetic algorithms of directed search to the problem of determination
sourcing scheme for plants of cluster �not e�cient plants�, the best solution provided
results that suggest:

� modernization of capacities for current production portfolio � 19 dairy plants
(20% of plants from cluster #3);

� change of portfolio type for 6 dairy plants (mostly that supposes transition from
sour cream and pasteurized milk to butter and cheese production, which are in
de�cit after ban from deliveries from EU);

� plants closure with production lines relocation to existing factories - 20;

� plants closure with production lines relocation to milk farms (new milk pro-
cessing plants construction) �37;

� plants closure � 14.

So, according to model result, only 14 plants should be closed as not e�cient, other
factories could be either modernized or relocated to another places with expected
payback period less than 5 years.

Table 3: Values of Indicators before and after (planned) supply model
implementation in Russia for plants of cluster #3

Indicator Real monthly
value 2012

Theoretical
monthly value,
suggested by model

Average weighed distance from milk
farms to dairy plants, km

486 260

Average weighed distance from dairy
plants to consumers, km 189 220 Pro-
duction capacity utilization, %

36% 61%

Number of employee involved, people 51 380 36 720
Initial rate of return, % 3.6% 8.2%

As described in table 3, calculated results for most indicators improved signi�-
cantly after implementation of sourcing optimization model. Average weighed dis-
tance from milk farms to dairy plants decreased signi�cantly due to the fact, that
model suggested to relocate many plants to milk farms. But at the same time dis-
tance to consumers increased by 31 km because in as is model all plants are located
in cities, while in to be model many plants are outside of the towns.It also positively
re�ected production lines utilization and initial rate of return.
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Suggested sourcing scheme is not very sensitive to market changes, because
changes in consumers' demand have long trends, and model should be recalculated at
least once a year to determine state policy and directions of supply for this important
branch of national economy.

Conclusions

Determine and implement e�cient state support is very important for all branches
of economy, but it is essential for food products manufacturing industries. After ban
for some categories of food from EU, that used to be a signi�cant supplier especially
on dairy market, it is important to have a speci�c long-term program that will help
to create a strong, modern and competitive dairy industry in Russia.

In the article current dairy industry was analyzed: speci�c Russian features of
supply, number of dairy plants, places of their location, current production portfolio
and consumers' expectations and trends in their demand. As a result of a many-
dimensions cluster analyses it was proved, that a big number of plants in Russia
(97 plants, 28% of all dairy factories) are not e�cient now with low utilization of
production capacities, and low initial rate of return.

In the research a special approach o�ered to determine optimal number of dairy
plants in Russia, and for plants of cluster #3 �not e�cient plants� suggested one of
�ve options: modernization for current production portfolio, modernization for new
portfolio, capacity relocation to another plants, capacity relocation to new location
(construct new plant in other location using production lines from plant of cluster
#3) or plant closure. According to results obtained using genetic algorithms, 20%
of not e�cient plants should be closed, 6% should change their production portfolio,
21% should close with their production line relocation to another existing factories,
39% of plants should be closed with new milk processing sites constructed close to
milk farms using their existiong production lines, and 15% of plants should be closed.

Model is not sensitive to changes of the input data and needs to be recalculated
at least once a year to maintain state policy depending on changes in demand, con-
sumers' expectations and other parameters. This method of research is not unique
and can be easily modi�ed for using and implementing in any other branch of econ-
omy that has several production plants. Further globalization of trade will make such
models more important for transnational corporations.
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Abstract

The model for determining the economic e�ciency of implementation of the
curriculum for higher education programs is proposed. The regression model
using the Generalized Lambda-distribution of the results of the Centralized
Testing students as explanatory factors is applied to predict changes in the
number of students and as consequence forecasting the e�ectiveness of imple-
mentation of the educational program. Groups of educational programs with
similar changes in the student's contingent in the learning process were sepa-
rated by using clustering. The results of investigation of the proposed algorithm
were presented.

Keywords: Educational process, Generalized Lambda-distribution, clus-
tering, regression model.

Introduction

Nowadays, researchers are directing their attention to estimating quality of accommo-
dated educational service. One of these kind indicators is known as job placement of
graduates [1]. However, this indicator permits to estimate only �nal result, but does
not give information about educational process, which needs to making management
decisions about correction of curriculums, programmes of work and others aspects of
educational activities.

An important role in normative per capita �nancing [2] plays number of students
index for separate educational programs. Imbalance parameters of curriculums and
number of students lead to economic ine�ciency of educational process and, as a
result, to degradation education quality.

In this work new approach is proposed, where dependence between number of
students index for separate educational programs and results of Centralized Test-
ing (after school) as entrance examination is considered. This approach admits to
estimate complexity of separate program and to forecast number of students.

The practice needs of these kind investigations making instrument to support
management decisions, which could be built in University's information system for
users who has not enough knowledge in statistical analysis methods.

1The report study was supported by the Russian Foundation for Basic Research, research project
no. 14-07-31171 mol-a.)
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1 Problem de�nition

The algorithm for making prognoses of economical e�ciency of realization educational
process is needed to develop. This algorithm lets to take estimation parameters of
future number of students for separate educational programs.

Economical e�ciency model of educational process
Characteristics of students' contingent are number of education program i = 1...n,

n � quantity of educational programs in University, number of entrance year
j = 1...m and year k = 1...tij. Characteristics of curriculums for educational pro-
grams in respective entrance year can be di�erent. The number of students in a
particular course curriculum is let as sijk.

The educational program will be characterized by the total amount of hours on
the course k teaching load (hijk):

hijk = a
′

ijk + a
′′

ijk

(sijk
b′′

)
+ a

′′′

ijk[
sijk
b′′′

] + a
′′′′

ijksijk, (1)

where a
′
is volume of lection hours, a

′′
� volume of practice hours, a

′′′
� volume of

laboratory work, a
′′′′

� standard time for individual work with the student, b
′′
� stan-

dard number of student in the educational group, b
′′′
� standard number of student

in the class.
In the context of normative per capita �nancing to save an acceptable payment

one hour and avoid overloading teachers is needed to load volume per academic year
for a particular educational program does not exceed the value directly depends on
the number of students: αisijk.

To solve the problem of obtaining the forecast of educational process e�ciency
we will use the minimum number of students in the educational process which is
cost-e�ective. This quantity, which denoted by s

′

ik, can be taken by solving following
equation:

s
′

ik = a
′

ijk + a
′′

ijk

(
sijk

b′′

)
+ a

′′′

ijk

(
sijk

b′′′

)
+ a

′′′′

ijksijk.

Model of changing number of students' contingent
The model of changing students' contingent is proposed. The main factor in this

model is number of students distribution depended on results of Centralized Testing
as entrance examination. This approach also allows to implicitly consider the factor
of interaction between students.

Let the number of students distribution according to the scores on the exam has
universal Lambda distribution (GL-distribution), which depends on four parameters
λ1, .., λ4 and is de�ned in terms of distribution quantiles [3,4]:

Q (u, λ1, λ2, λ3, λ4) = λ1 +
1

λ1

(
uλ3 − 1

λ3

−
(1− u)λ4 − 1

λ4

)
, 0 ≤ u ≤ 1.

The probability density function is:
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f (x) =
λ2

uλ3−1 + (1− u)λ4−1
, 0 ≤ u ≤ 1, x = Q (u, λ1, λ2, λ3, λ4) .

Depending on the values of the function GL-distribution describes a class of dis-
tributions, such as normal, exponential, student, chi-square, gamma, logistic, beta
and others.

We denote as X i = {X i
1, X

i
2, ..., X

i
s} sample of students' results of Centralized

Testing for each i-th educational program, which quantity equal to n. Coe�cient of
change in the number of students in i-th the educational program for j-th admitted

year between courses k and k+1 is denoted by uijk =
sijk+1

sijk
. On the assumption of the

existence of groups of educational programs, for each of which there is a dependence of
the next course contingent and distribution of the results of the exam on the current
course, we can write this relationship as:

ulijk = θTl Lijk + εi (2)

where l � number of education program group, Lijk � set of GL-distribution param-
eters, i � number of education program, j � entrance year, k � course, εl � random
component.

Thus, the algorithm needs to determine the similarity of both groups change in
the distribution of the results of Centralized Testing, and the number of students for
each educational program from course to course, and parameter estimation of (2) in
these groups.

2 Adaptive algorithm for predicting changes in the

number of students

The following algorithm to solve the problem is proposed by authors:

1. Step 1. Identi�cation of the GL-distribution of students according to the results
of the Centralized Testing for each educational program, each admitted year and
each course is completed. Since the GL-distribution is completely described by
the �rst initial and the second, third, fourth central moments, parameters of
the GL-distribution are estimated by using the method of moments [4]. The
number of students in each course of educational program is denoted by sijk.

2. Step 2. Set of data to determine the similarity of changes in the distribution
groups is obtained for j = j0, where j0 corresponds to the least admitted year:

dk =

{
sijk

sij1
,
λ1ij1 − λ1ijk

λ1ij1

,
λ2ij1 − λ2ijk

λ2ij1

,
λ3ij1 − λ3ijk

λ3ij1

,
λ4ij1 − λ4ijk

λ4ij1

}
, k = 2...4.

3. Step 3. For set of data from step 2 clustering using k-means method [5] with
the number of clusters l from 2 to the number of educational programs is run.
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The ratio inter-cluster to the intracluster variances for a set of data from step
2, which appropriate set of next admitted year, is computed to determine the
optimal number of clusters after the clustering for the next l.

4. Step 4. Estimation model (2) parameters θ̂l is taken for each educational pro-
gram group from step 3 by using adaptive algorithm [6]. This algorithm allows
to obtain estimates for violations of the assumptions of normality of the random
variable error εl.

5. Step 5. Predicting of violation of the educational program e�ectiveness for
the next course for each educational program is performed by using obtained
estimates previously. The program is e�ective if the following inequality
θ̂Tl Lijksijk ≥ s

′

ik is true.

2.1 Results of investigations

For research the results of the adaptive algorithm work the data set of the student
contingent of the Novosibirsk State Technical University (NSTU) and curriculum
parameters for 2011-2014 admitted year was used. These data were obtained from the
information system NSTU. Number of education program is 55, number of students
stream is 226, number of students is 10249.

The example of changing identi�cation of the GL-distribution of students ac-
cording to the results of the Centralized Testing for educational program �Computer
Science and Engineering� from 2011 entrance year, which was taken from step 1 of
proposed algorithm, is presented on �gure 1.

Figure 1: Changing identi�cation of the GL-distribution of students according to
the results of the Centralized Testing from 2011 entrance year

As seen in Figure 1, the distribution of the General Testing results at entrance
to university (in 2011) is symmetric, as evidenced by the values of the parameters
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λ3 ≈ λ4. Further, after sending down part of the students, the distribution becomes
asymmetrical, λ3 6= λ4.

After the clustering of data (steps 2 and 3) the optimum number of clusters of
educational programs was determined as 4. Figures 2 and 3 is shown diagrams of
range changes in the number of student within clusters obtained and the entire set
of data as a whole.

Figure 2: Diagrams of range changes the number of students for 4 clusters of
educational programs, l - number of educational programs in the cluster

Figure 3: Diagram of range changes the number of students for all educational
programs

It is seen from �gures 2 and 3 that within the framework of clusters range of
changing in number of students is much smaller than that observed for all educational
programs.
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We calculate the parameters of a regression model (2) using the least squares (LS)
method and adaptive method based on GL-distribution. The values of the obtained
coe�cients are shown in table 1.

Table 1: Results of estimation regression model parameters

Method Parameters Cluster No.1 Cluster No.2 Cluster No.3 Cluster No.4

θ̂1 0,927 0,766 1,051 1,139

Adaptive θ̂2 0,006 0,004 0,006 0,006

θ̂3 0,025 0,039 0,019 0,144

θ̂4 0,435 0,057 -0,050 -0,057

θ̂1 0,807 0,984 1,135 1,143

LS θ̂2 0,005 0,005 0,006 0,005

θ̂3 -0,001 0,074 0,028 0,141

θ̂4 0,467 0,050 -0,026 -0,068

We obtain forecasts e�ectiveness of the achievement of educational programs using
estimation of obtained previously parameters and expression (3). Following results
are taken by comparison known and predicted number of students' contingent and
shown in table 2.

Table 2: Results of e�ectiveness forecast

Perform data clustering Estimation method Incorrect forecasts ine�ectiveness,%

Not perform LS 11.61

Not perform Adaptive 17.74

Perform, 4 clusters LS 12.25

Perform, 4 clusters Adaptive 10.97

As seen from Table 2, the implementation of the provisional application of clus-
tering and adaptive estimation method gives the smallest forecast error e�ectiveness
of the implementation of the educational program.

Conclusions

In this work the adaptive algorithm for predicting changes in number of students
has been proposed. Results of proposed algorithm investigation are discussed. The
advantage of the algorithm is simplicity. Instead of predicting the probability of
sending down of individual students analysis is taken for groups of students in general.
At the same time the use of pre-clustering identi�es groups of educational programs
which demonstrates changes in the characteristics of students.
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The algorithm can be extended for using as a regressors distribution parameters
of the student contingent on other quantitative factors. Also, this algorithm can be
modify for e�ectiveness predicting using penalty function f(x):∑

t

(∑
i=nt...nt+1,j,k

hijk ( ˆsijk+1)− αi ˆsijk+1

)
where t - faculty number, ˆsijk+1 = θ̂Tl Lijksijk. This approach allows to take into
account contiguity of educational programs and compensation for insu�cient number
of students one program for su�cient amount the other, for example within faculties.
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Abstract

The problem of choosing methods for correlation estimation has been solved
for mixed data pertaining to the college graduate's employment. Analysis of
such data often reveals the relationship between indicators. In such case it is
di�cult to implement resource-monitoring and to interpret results. In order to
choose the necessary and su�cient set of indicators the correlation analysis is
usually used. A distinctive feature of studies of the graduate situation in the la-
bor market is a combination of di�erent measurement scales of indicators. This
leads to the problem of the correlation analysis for mixed data. Using boot-
strapping the properties of sample estimates of Spearman's rank coe�cient and
polychoric correlation coe�cient have been investigated obtained by the maxi-
mum likelihood, least squares, least absolute deviation and minimum chi-square
methods. A comparative analysis of the estimates has been conducted. The
study is focused on problem cases with signi�cant di�erence of the estimate's
distributions which are identi�ed by the sign test. Recommendations have been
given regarding their applicability for the analysis of mixed data.

Keywords: polychoric correlation, ordered categorical data, count data,
employment, monitoring, graduate.

Introduction

In recent years, in order to analyze the e�ciency of higher education institutions the
students' opinions, success stories, information about their situation in the labor mar-
ket are increasingly involved. Thus, as a rule, to assess the parameters of graduate
employment a number of self indicators measured by Likert scale are used [1]. Many
such indicators are correlated, thus their number can be reduced to provide a less
expensive monitoring. The problem of reducing the number of indicators is solved
on the basis of their correlation matrix using factor analysis. Depending on the mea-
surement scale, there are di�erent measures of association between variables. Likert
scale is ordered categorical, so polychoric correlation coe�cient is most suitable.

To reduce the distortion of employment parameters' measure due to subjective
judgment, as opposed to the standard approach, this study is focused on objective
measures of employment (value of salary, workweek, etc.). Consequently, the mixed
data are obtained, that is measured in di�erent scales. Therefore it is necessary
to choose the correlation measure which allows to handle such data. Further, the
possibility of using for this case polychoric correlations has been studied. Let us take
a closer look at their de�nition and methods of estimation.
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1 Problem de�nition

Consider the relationship between two indicators of graduate employment, for exam-
ple, the management level and the amount of salary. Suppose that these indicators
are dimensionless, described as continuous random variables ξ1 and ξ2 with bivariate
standard normal distribution. Due to the imperfection of the measurement scale (for
example, use of an ordinal scale, Likert scale, rounding values of wages, etc.) during
the survey researchers can not obtain continuous values of indicators. There are dis-
crete random variables x1 and x2 obtained by grouping, i.e. the partition of the range
of values of random variables ξ1 and ξ2 into intervals. Let the number of such groups
(possible values x1 and x2) be n1 and n2. It is assumed that x1 takes values from 1 to
n1, x2 � from 1 to n2. If the bounds of these intervals are αi1, i = 0, 1, . . . , n1, αj2,
j = 0, 1, . . . , n2, then the probability of the indicator values measured in the survey
is

P (xk = i) = P (α(i−1)k < ξk < αik) = Φ(αik)− Φ(α(i−1)k), k = 1, 2

where Φ(·) is standard normal distribution function, α0k = −∞, αnkk = +∞. The
probability of each combination of random variables x1 and x2 is de�ned as

pij = P (x1 = i, x2 = j) = P (α(i−1)1 < ξ1 < αi1, α(j−1)2 < ξ2 < αj2) =

= Φ2(αi1, αj2, ρ)− Φ2(α(i−1)1, αj2, ρ)− Φ2(αi1, α(j−1)2, ρ) + Φ2(α(i−1)1, α(j−1)2, ρ),

(1)

where Φ2(z1, z2, ρ) is bivariate standard normal distribution function with correlation
ρ between random variables ξ1 and ξ2.

During survey the proportion of answers, or relative frequency, dij is observed with
i-th value of the random variable x1 and j-th value of x2. Usually such proportions
are represented in the form of contingency tables. The problem is to estimate the
unknown parameters of the bivariate distribution of random variables x1 and x2 based
on observed values dij. Estimate of ρ in this model is called the polychoric correlation
coe�cient. In current study we consider a two-step approach [5]. The �rst step is to
�nd estimates for the interval boundaries αik as quantile of corresponding marginal
empirical distributions:

α̂i1 = Φ−1

(
i∑
l=1

n2∑
j=1

dlj

)
, i = 1, . . . , n1 − 1,

α̂j2 = Φ−1

(
j∑
l=1

n1∑
i=1

dil

)
, j = 1, . . . , n2 − 1.

In the second step estimates of the interval bounds are substituted into (1) and
estimation of correlation coe�cient ρ̂ is obtained. The current estimation methods
have a number of restrictions for mixed data processing. Let us analyze possibilities
of methods and justify the ways to overcome restrictions.
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2 Methods of correlation estimation

The most popular method of polychoric correlation estimation is maximum likelihood
(ML). For the joint discrete distribution of random variables x1 and x2 under the
assumption of independence of observations the log-likelihood of the sample [5] is

lnL = C +

n1∑
i=1

n2∑
j=1

dij ln pij (2)

where C is a constant. In this case each dij is a �xed value for the concrete sample.
Obviously, if during survey some combination of the random values x1 and x2 is not
observed, then the corresponding contingency table cell will be zero, and theoretical
probability value (1) will not a�ect the value of the function (2). In other words,
the log-likelihood function is not sensitive to the value of a random variable with
zero frequency. At the same time, it will be sensitive to those frequencies such that
theoretical probabilities are close to zero. That is on the tails of joint distribution.
If the probability pij will be close to zero at nonzero frequency dij, weight of such
terms in the ratio (2) tends to −∞. Even much worse case is estimation based on
the method of minimum chi-square [3] (minχ2). Here, the loss function

χ2 =

n1∑
i=1

n2∑
j=1

(pij − dij)2

pij

is minimized. Consequently, squares of residual with almost zero probability will have
the greatest weights. This problem is somewhat weakened by using other measures of
di�erences between the observed and theoretical values of probabilities [2]. The most
natural would be to take the distance between the vector of observed frequencies D =
(d1, d2, . . . , dn1) with di = (di1, . . . , din2) and the vector of corresponding probabilities
P = (p1, p2, . . . , pn1) with pi = (pi1, . . . , pin2). To determine the distances Lp-norm is
normally used and de�ned for any vector Z with elements zi as ‖Z‖p = (

∑
i z

p
i )

1/p.
Then we obtain the loss function of the form

∆ = ‖P −D‖p. (3)

The case of minimizing (3) by p = 2 corresponds to the method of least squares (LS),
by p = 1 we obtain the method of least absolute deviation (LAD). It is expected that
the use of LAD results to less sensitivity to non-zero frequencies on the tails of the
joint distribution.

As alternative of polychoric correlations the Spearman's coe�cient is considered,
which is de�ned as the Pearson correlation coe�cient between ranks of the values
of the variables. Its advantage is the ease of computation. Also through the use
of ranks instead of the raw data (for example, salary) skewness of distributions and
heavy tails must not distort the estimation results. However, it is known the method
do not work very well with ties (duplicate values).

The described techniques have been implemented in the statistical environment
R. To calculate the values of bivariate standard normal distribution function the
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algorithm have been used which is proposed in [4]. To speed up the calculations
based on this algorithm the vectorized function was built that returns a matrix of
probabilities pij. A one-parameter optimization was carried out using a basic function
optimize{stats} in the interval ρ ∈ (−1, 1).

3 Empirical data

As an empirical base the data from a graduate survey at Novosibirsk and Irkutsk have
been used. The sample size was 640 valid observations. The graduate employment
parameters on the �rst place of employment was investigated. 18 variables were
selected that are measured in di�erent scales. The variables are divided into groups
depending on the number of categories (levels).

� Ordered categorical (up to 5 levels): indicator of wage growth, form of employ-
ment, nationality of ownership, level of management's position, type of labor
contract, frequency of attraction to work overtime, number of sta� in organi-
zation, frequency of career promotion.

� Count (5 to 30 levels): number used in the job search channels of employment,
duration of job search, duration of adaptation in the organization, measure of
using a professional capacity, failure rate of employers in �nding jobs.

� Continuous with the rounded values (more than 30 levels): workweek, salary on
and after probation, duration of work in organization, maximum wage value.

Although continuous indicators with rounded values seem to be less problematic
for the correlation analysis but the situation gets worse in the presence of outliers.
Figure 1 illustrates the problem of heavy-tailed distribution on the example of wages.
Since the data are discrete, then it is necessary to display on the scatter plot the
observed frequencies of various combinations of values. For this purpose di�erent
markers are used which become larger and darker with increasing value of the relative
frequency. Bounds of relative frequency intervals, expressed as a percentage, are given
in the legend to Figure 1. Although in general both substantive and from Figure 1
a close linear relationship is evident, but it is expected that outliers in salary after
probation should increasingly a�ect the correlation estimation by minimum chi-square
and less the estimation of Spearman's coe�cient because of its rank character.

During the analysis of relationships between ordinal variables the problem of the
dominance of a certain category occurs. For example, 64.2% of the respondents con-
cluded inde�nite labor contract with the organization and 82.5% of graduates work
full-time. Contingency table between the type of labor contract and form of employ-
ment is shown graphically in Figure 2. Here area of the rectangle is proportional to
the frequency. It can be seen that the proportion of full-time workers is reduced with
a decrease of the contract term. However the Spearman's coe�cient will probably
indicate a weak correlation due to problems of ties (many identical values).

Moreover the problem of leptokurtic distribution occurs, e.g. for the workweek:
67.3% of the respondents have a 40-hour day. At the same time, the range of work
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Figure 1: The scatter plot of salary on and after probation

hours is very large, from 0 to 80 hours a week. And if we analyze the relationship
between this indicator and a categorical variable with the dominant level (for exam-
ple, a form of employment), we have di�culty by using a number of methods for
correlation estimating due to their sensitivity to non-zero frequencies on the tails
of the joint distribution of the indicators. Although this relationship is obvious for
economic reasons, but a number of polychoric correlation estimates will probably
underestimate it (for example, estimates on the basis of minχ2 and ML).

4 Comparative analysis of the results

The considered methods of correlation estimation was analysed using statistical tech-
nique of bootstrapping. For this purpose a random samples with replacement are
drawn from the available data with the same sample size. The number of samples
was N = 500. For each sample the correlation matrix between the 18 analyzed vari-
ables were estimated by di�erent methods. As a result, the empirical distributions
of estimates were recovered. On their basis, the 95% con�dence intervals were con-
structed for each of the estimates. If zero was not included in the con�dence interval,
the conclusion about the signi�cance of the correlation coe�cient was made. Table
1 shows the fraction of signi�cant coe�cients ρ̂∗ of all the possible 153 coe�cients.
The largest number of signi�cant coe�cients is contained in the correlation matrix
estimated by ML, the smallest is by LAD. It suggests that LAD-estimates have large
standard errors. In general, they are about 1.5-2 times higher than by other methods.

For application of factor analysis the signi�cance of coe�cient estimates is not so
much important as their absolute values, because if they are bigger, then the explained
variance of extracted factors will be greater. It allows the use of a smaller number
of indicators for the diagnosis of employment. In order to characterize how di�erent
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Figure 2: The contingency table of the type of labor contract and form of
employment

Table 1: Characteristics of correlation matrices estimated by di�erent methods

Spearman ML LS LAD minχ2

Fraction of ρ̂∗ 0.379 0.399 0.301 0.222 0.373
λmax 2.81 (0.10) 3.11 (0.14) 3.44 (0.16) 3.51 (0.15) 2.74 (0.18)
|R| 0.051 (0.008) 0.009 (0.003) 0.0003 (0.0005) 0.0003 (0.0006) 0.035 (0.013)

elements of the correlation matrix would have to be, the maximum eigenvalue λmax of
correlation matrix R is used. It is proportional to percentage of explained variance of
the principal component. Table 1 summarizes the characteristics of the middle value
(median) and dispersion (MAD, mean absolute deviation, is given in parenthesis)
of λmax. The correlation matrices obtained by LAD and LS are characterized by
maximum variance accounted for by the �rst factor, i.e. correlation estimates are on
the average larger in absolute value. Minimum values of λmax are obtained by the
methods the minimum chi-square and Spearman, i.e. these methods underestimate
the correlation on the mixed data.

However, the use of LAD and LS leads to the fact that the correlation matrix
loses the property of positive semi-de�nite. It makes impossible to perform a factor
analysis. Table 1 shows the median (MAD is given in parenthesis) of correlation
matrix determinants |R|. The results of Spearman's coe�cient and minimum chi-
square are least problematic, where negative values rarely occur (median is much more
MAD). For ML-estimates negative values of |R| are observed in 4.4% of cases, it is
also quite acceptable. The use of methods based on minimizing (3) leads to the fact
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that in the 20-25 % of samples |R| < 0. So it is recommended to compute the nearest
correlation matrix in the weighted Frobenius norm using a function nearPD{Matrix}.
However, it should be emphasized that the values of estimates could signi�cantly
distort.

To compare the results of estimation by di�erent methods the hypothesis of the
equality of correlation estimate distributions were tested. Since the estimation by
di�erent methods was performed on the same samples, the estimates can not be
considered as independent. And to test the hypothesis sign test was used. It is based
on the di�erence

Z
(ij)
k = ρ̂

(i)
k − ρ̂

(j)
k , k = 1, . . . , N, i, j = 1, . . . , 5, j > i

where ρ̂
(i)
k is the correlation coe�cient estimated for k-th sample by i-th method. The

test statistic is the normalized sum of such di�erences. In case of signi�cant deviation
from zero the inequality of distribution concludes.

The largest share of estimated coe�cients with unequal distributions is obtained
by ML and minχ2 (97.4%). Closest estimates are obtained by LS and LAD, although
the proportion of estimates with unequal distributions is also very high (0.843). To
characterize these di�erences a location estimate is calculated as the median of values
Z

(ij)
1 , . . . , Z

(ij)
N . Table 2 shows the maximum positive and negative values of the

location. In the upper triangle of the matrix i corresponds to the method speci�ed in
the string, j � in the column, at the bottom � vice versa. In many cases values of
location are very large. They just correspond to problem situations described above.

Table 2: Comparison of estimation methods by the sign test

Spearman ML LS LAD minχ2

Spearman - 0.143 0.142 0.159 0.263
ML -0.200 - 0.145 0.177 0.305
LS -0.473 -0.418 - 0.129 0.739
LAD -0.467 -0.414 -0.069 - 0.735
minχ2 -0.201 -0.174 -0.285 -0.322 -

Thus most signi�cant estimates of location (greater than 0.3 or less than −0.4)
appear by analyzing the relationship between the form of employment and the work-
week. The estimate by the minimum chi-square was not signi�cant, Spearman's and
ML estimates were on average about 0.33 and 0.38, estimates obtained by LS and
LAD were more than 0.8. Consequently, as expected, the method minimum chi-
square was the most sensitive to nonzero frequencies at the tails of joint distribution.
ML is less sensitive, but still underestimates the correlation.

About the problem with the predominance of certain categories (Figure 2), the
largest location is characteristic of Spearman's coe�cient compared with estimates
obtained by minimum chi-squared method and ML, it is about −0.2. Finally, es-
timates of correlation between wages on and after the probation obtained by the
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minimum chi-square are clearly underestimated (average is 0.48). Spearman's coe�-
cient and ML are more robust and give an average estimate of 0.74. Methods based
on the minimization of (3) completely ignore outliers and provide the highest values
of coe�cients.

Conclusions

The obtained results allow us to give some recommendations about the applicability
of correlation estimation methods for mixed data. Thus, Spearman's correlation coef-
�cient and polychoric coe�cient estimated by the minimum chi-square method have
the advantage of positive semi-de�nite correlation matrix. However, by using their
the low absolute values of correlation estimates are usually obtained. As a result
factor analysis on such correlation matrices leads to low explained variance of the
principal component. Maximum likelihood method gives acceptable correlation ma-
trix in terms of the properties of the positive semi-de�nite. In general, the estimated
correlation coe�cients are su�ciently large in absolute values which provides a high
percentage of explained variance of the principal component. But ML gives failures
in the heavy-tailed distribution and dominance of one category over the other. LAD
and LS are less sensitive to such problems. They provide the highest proportion of
explained variance of the principal component. However, in every �fth case positive
semi-de�niteness of the correlation matrix is not ensured.

Therefore, for the analysis of mixed data it is necessary to search a compromise
between the ML and methods based on minimization of the distance from the ob-
served frequencies to theoretical probabilities. This version should provide a positive
semi-de�niteness of the correlation matrix and the low sensitivity to non-zero fre-
quencies in the tails of the joint distribution. This should be the subject of further
research into the correlation analysis on the mixed data.
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Abstract

Education system is one of the most important parts of socialization and
society's life. It's also a�ected the economic potential and the ability to generate
social or material capital. Modern education system is e�ective, but in any
case we can suggest that there are some perspectives for its development. The
main idea of this study was to show what do we can change in educational
process to make it more successful. The aim of the study was to determine
factors that can in�uence on the students' educational e�ectiveness. To achieve
this aim international PISA survey data were used in which more than 60
countries (including Russia) participated. This article presents how educational
environment can in�uence on perspectives of changes in the knowledge degree
on the base of PISA data.

Keywords: students' knowledge degree, PISA survey, educational environ-
ment, teacher's strategy, interest in education, educational process.

Introduction

It is generally agreed today that education is the important process of our life. This
was the reason that in last decade we could notice a lot of researches about tendency
of changes in this sphere. As one of the most signi�cant project was the Programme
for International Student Assessment (PISA study). It has been holding since 2000
in more than 60 counties and engaged about million 15-years students. Now we have
di�erent approaches based on this study, but most of them consider general tendency
and are not focused on results in one country (e.g. Russia)[4,5,7].

The aim of this study was to determine which school environmental factors can
in�uence on the knowledge degree. To achieve this aim following tasks were set:

� emphasize all indicators which can be important for changes of knowledge
degree;

� determine how exactly chosen factors can in�uence the knowledge degree.

The general hypothesis was that one of the most important factors which can de�ne
e�ectiveness of the educational process is the teacher's strategy (how teacher interact
with students in the classroom).
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1 Materials and methods

To con�rm proposed hypothesis PISA survey data were used which is available to
download on the OECD website [2]. The survey questionary consists of 54 questions
from di�erent areas, such as living standard, social status of the student's family,
school environment and student's knowledge degree. In regard to knowledge degree
there are questions about three general directions: mathematic, reading and science.
The analysis presented in this article based on questions about mathematical knowl-
edge, because in PISA survey this sphere was shown more detailed than other [4].

For further analysis survey data for 2012 year was taken. The total sample of 485
490 participants includes 5 231 students from Russia (mean age 16 years, 2 617 males
and 2 614 females). Sample of the Russian students allows us to emphasize main
tendency in Russian educational system. For this purpose from all variables question
which may characterizes students' knowledge degree was chosen. This question in-
cludes such statements as: "I get good grades in mathematics", "I learn mathematics
quickly", "I have always believed that mathematics is one of my best subjects" etc.

2 Main factors that ensure the level of knowledge

To identify which statements about knowledge degree can in�uence the level of knowl-
edge polychoric correlation and factor analysis (proportion of variance explained =
58%) were used to formed one principal component based on initial variables. Next
we should indicate all links between dependent variable and other items. To achieve
it partial correlation analysis with Spearman's coe�cient in SPSS program was ap-
plied that allow us to show in one table all correlations that exist between di�erent
items. Thus the list of signi�cant factors, except items which didn't have any links
with dependent variable was obtained.

As signi�cant following factors were emphasized:
Interest in the learning process (Spearman's corr. 0.2-0.3, p=0.001). This group

includes such items as: "I enjoy reading about mathematics", "I do mathematics
because I enjoy it" etc. Besides, students noticed that mathematics can be useful
for their future career: "Learning mathematics is worthwhile for me because it will
improve my career", "I will learn many things in mathematics that will help me get a
job". Thereby terminal and instrumental values of the learning process have positive
correlation with students' knowledge in mathematics.

In�uence of the social environment. By this we mean positions of the parents and
friends on the educational item: in case when student's parents or friends like math-
ematics, he or she demonstrates high knowledge degree (for parents position Spear-
man's corr. 0.2, p=0.000, for friends position Spearman's corr. 0.12-0.2, p=0.01).

Next two factors are the time, which students spend on their homework and
preparation for exams (Spearman's corr. 0.21-0.37, p=0.000), and how students may
handle with big volume of information or can easily link facts together (Spearman's
corr. 0.17-0.27, p=0.000).

Except above factors the links with dependent variable also exist for such items
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as: "I participate in a mathematics club", "I play chess". Despite those correlations
these questions cannot be used as factors because it's hard to determine direction of
the in�uence (participating in a mathematic club in�uence the knowledge degree or
straight conversely). In other words we have bilateral causality between such type of
questions an dependent variable.

This way we had the list of factors which correlated with knowledge degree, but
their number is still too big to use them for creating a regression model. Besides, each
group includes several questions, and some of them re�ect similar sense (furthermore,
it may be the reason of multicollinearity or deformation of regression model). As
one of solutions in this case dimension reduction procedure (factor analysis) was
applied. Another reason why we can use this procedure is that it forms one variable
with quantitative scale (which is convenient for regression analysis) instead several
question with ordinal scale.

Both factor analysis and regression model were performed using a free software
environment for statistical computing R. Selected variables were joined in several
groups on the ground of their means and questions that they belong. Further one or
two integrated factors which re�ect level of severity current index were formed. They
are present below:

F1 - interest in the learning process (proportion of var. 58%);
F2 - ability to process information (proportion of var. 53%);
F3.1; F3.2 - in�uence of the social environment (friends and parents position,

cumulative var. 63%);
F4 - time which students spend on the preparation for classes (proportion of var.

55%).

3 Regression analysis

Thus �ve factors which re�ected di�erent spheres of the students' school live were
formed. These indicators were used for creating linear regression model with stepwise
method of variable selection (that allow us to exclude insigni�cant variables). As a
result following model was received:

Ŷ = −0.01 + 0.33F1 + 0.18F2 + 0.34F4.

Ŷ - the level of knowledge (dependent variable)
t-value for factors: t1 = 16, 1; t2 = 9, 4; t4 = 15, 7
Adjusted R-squared presented model: 0.497, F -statistics 535.6, model is signi�-

cant at the 99.9% con�dence level.
Regression model allows us to determine how current factors can in�uence on

changes of dependent variables. In this case we can say that the knowledge degree
depends on: interest in mathematics, time which students spend on the classes and
homework, the ability to process information. Link between knowledge degree and
ability to handle a lot of information may be explained by students' learning capacity
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and lack of interest in further analysis. With regard to other factors such as interest in
learning and time which students spend on preparation for classes we can use them to
form certain educational space. Moreover, those factors can be useful as instrument
of students' motivation. In�uence of the social environment (friends and parents
position) was excluded from the regression model as variable with low signi�cance.

4 Cluster analysis

To understand how we can in�uence such complex factor as interest in education
process another type of classi�cation (cluster analysis) was used. This analysis allows
us to combine respondents in groups with similar opinion or level of rank of selected
indicators. As those indicators items about students' interest in mathematics ("I
enjoy reading about mathematics" etc.) were used. As a result all cases were divided
on three main groups, which are: students who are interested in mathematics as
science (n = 1138), those who think that mathematics is important for their future
career (n = 1196), and students who don't interest in mathematics at all. Thereby all
links between group which students belong and teacher's strategy (by this we mean
di�erent instruments which teachers use during classes) were de�ned. Also cross-tabs
analysis was used to show how evaluations of variables can change, as well as the
correlations and links between them.

Thus, with this data we can suggest that low but systematic links between stu-
dents' interest in learning and teacher's educational strategy (Spearman's corr. 0.15-
0.22, chi-square 47-93) exist. Further there are some elements of this strategy:

� The teacher shows an interest in every student's learning (Spearman's corr.
0.15);

� The teacher continues teaching until the students understand (Spearman's corr.
0.21);

� The teacher tells how to get better and gives feedback on students' strengths
and weaknesses in mathematics (Spearman's corr. 0.2);

� Students work in small groups (Spearman's corr. 0.2) ;

� The teacher asks students to decide on own procedures for solving problems
and presents problems in di�erent contexts (0.16).

In addition to teachers' strategy, interest in education associated with position
of parents and friends (Spearman's corr. 0.2, p = 0.001). Parents' position is the
complex factor which is also linked with knowledge degree and time spending on ed-
ucation. As to time on preparation for classes this factor also correlates with teach-
ers' strategy, especially with his/her feedback on students' strengths and weaknesses
(Spearman's corr. 0.125, p = 0.01) and task with multiple solutions (Spearman's
corr. 0.13, p = 0.005).
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Conclusions

Excluding factors on which we cannot in�uence, we have the list of factors that can
be useful for increase of knowledge degree. They are: interest in education, students'
motivation to learn and complex task with multiple solutions.

The hypothesis which we suggested in the beginning of this study (the knowl-
edge degree depends on the teachers' strategy) wasn't con�rmed. In fact this factor
shows indirect in�uence through interest in education. Thus, besides student's ability,
classes' e�ectiveness and teachers' quali�cation are important to create environment
that will prosper to increase students' interest in education.
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Abstract

This paper considers the estimation problem for a trigonometric signal in
a discrete time from observations with an additive noise described by a sta-
tionary autoregressive process with unknown parameters and unknown distri-
bution. We propose a one-step sequential procedure to estimate signal coe�-
cients, which provides a given mean-square accuracy of estimates for any values
of the nuisance parameters. An asymptotic formula for the mean duration of
the procedure has been obtained.

Keywords: sequential estimation, prescribed mean-square accuracy,
trigonometric regression, stopping time, autoregressive noise.

Introduction

There is a large literature devoted to the development of e�cient methods for es-
timating parameters in a discrete time regression scheme with a signal modeled by
a trigonometric polynomial [1]-[3]. This problem has been thoroughly investigated
when the noise is a sequence of independent identically distributed random variables.
The estimation problem of a regression with dependent noises having unknown spec-
tral densities has not been solved yet and many questions still remain open.

There is a large literature devoted to the estimation of parameters in deterministic
regression schemes. In application one of the most popular is the least squares method
(LSM). The least squares estimates have been investigated in many papers and their
properties are well understood for the regression models with known properties of
noises. The estimation problem becomes less tractable if the noises are dependent
with the spectral density depending on unknown parameters.

The paper [4] provides an example of estimating the mean in an autoregression of
the �rst order with unknown autoregressive parameter, which shows that the LSM
does not ensure a given accuracy for any �xed number of observations in the presence
of the nuisance parameters. One of the ways to overcome these di�culties is to apply
the sequential analysis approach.

In [5] a sequential procedure for estimation of periodic signal in autoregressive
noise with unknown parameters is proposed. The procedure has good asymptotic
properties and guarantees a speci�ed mean-square estimation accuracy for any val-
ues of the nuisance parameters. This procedure, however, can be quite complex to
implement in the case of many unknown parameters, since it comprises two stages
and requires a system construction from a random number of LS estimates.

This paper considers the problem of estimating a periodic signal in a regression
model with the autoregressive noise whose parameters are unknown. We propose a
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sequential sampling scheme with a special stopping time which ensures the estima-
tion of unknown signal parameters with a prescribed mean square precision. The
asymptotic formula for the mean duration of the procedure has been obtained.

1 Problem Formulation. Construction of the

Sequential Procedure

Consider the problem of estimating the parameters µ1, µ2, βj1, βj2, j = 1, ..., r of
a signal

S1 = µ1 + (−1)n µ2 +
r∑
j=1

βj1 cosωjn+ βj2 sinωjn (1)

by observations of the process
xn = Sn + ξn, (2)

where ξn is the stable autoregressive process of order p obeying the equation

ξn = λ1ξn−1 + ...+ λpξn−p + εn. (3)

Here {εn} is the sequence of independent identically distributed random variables,
Eεn = 0, Eε2n = σ2; λ1, ..., λp are the unknown parameters such that all roots of the
characteristic polynomial

P (z) = zp − λzp−1 − ...− λp, (4)

lie inside the unit circle. ωj are known parameters such that 0 < ωj < π, ωi 6= ωj,
i 6= j.

It is well known [1] that any periodic signal with integer period T can be approx-
imated by the trigonometric polynomial (1). In this case r =

[
T−1

2

]
, ωj = 2πj

T
, [a] is

the integer part of a number a.
In view of (1) and (3), the observed process (2) satis�es the equation

xn = m1 + (−1)nm2 +
∑r

j=1 (γj1 cosωjn+ γj2 sinωjn) +
∑p

k=1 λkxn−k + εn, n ≥ p+ 1,

m1 = µ1

(
1−

p∑
l=1

λl

)
,m2 = µ2

(
1−

p∑
l=1

(−1)lλl

)
,

γj1 = βj1 (1−
∑p

l=1 λl cosωjl) + βj2
∑p

l=1 λl sinωjl,

γj2 = −βj1

(
1−

p∑
l=1

λl sinωjl

)
+ βj2

(
1−

p∑
l=1

λl cosωjl

)
.

Introducing the notation

Yn =

(
Φn

Xn−1

)
, Xn =

 xn
:

xn−p+1

 ,Φn =

 φ1(n)
:

φ2r+2(n)

 ,
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φ1(n) = 1, φ2(n) = (−1)n, φk(n) = cosωk−2n, if 3 ≤ k ≤ r + 2,

φk(n) = sinωk−r−2, if r + 3 ≤ k ≤ 2r + 2,

one can rewrite this equation as

Xn = α′Yn + εn, n ≥ p+ 1, α ∈ Λ, (5)

where α = (m1,m2, γ11, γ12, ..., γr1, γr1)′ is the column-vector of unknown parameters
of size (2r + 2) × 1; Λ is some set of parameters meeting the requirements imposed
on the parameters λ1, ..., λp in (3)-(4).

Least squares estimator (LSE) of the vector α of unknown parameters based on
the observations of processes Xk, Yk, k = 1, ..., n in (5) is given by the formula

α(n) = M−1
n

n∑
k=1

YkxK . (6)

Here Mn =
∑n

k=1 YkY
′
k is the sample Fisher information matrix of size l × l,

l = 2r + 2 + p. We will assume that the minimum eigenvalue λ1 (Mn) of matrix Mn

satis�es the conditions λ1 (Mn)→∞ if n→∞ P-a.s.

In view of (5), it will be noted that, in general, the inverse matrix M−1
n in (6) is

random. Due to this fact, analysis of the LSE becomes problematic. To overcome
these di�culties we propose a sequential LSE based on a special stopping rule. By
making use of the upper bound for the bias norm of LSE obtained in [6], one gets

‖α(n)− α‖2 ≤ ‖M−2
n ‖ · ‖mn‖2,where mn =

∑n
k=1 Ykεk.

We de�ne the stopping rule as

τ = τ(h) = inf

{
n ≥ 1 :

∥∥M−2
n

∥∥ 1
2 ≤ 1

h

}
, h > 0. (7)

Sequential LSE α∗(h) for parameter α is given by the formula

α∗(h) = M̃−1
τ(h)

τ(h)∑
k=p+1

βkYkxk,where M̃−1
τ(h) =

τ(h)∑
k=p+1

βkYkY
′
k , βk =

{
1 if k < τ(h),

ν(h) if k = τ(h).

(8)
Here ν(h) is the factor, 0 < ν(h) ≤ 1, which is found from the equation

∥∥∥∥(∑τ(h)−1
k=1 YkY

′
k + ν(h)Yτ(h)Y

′
τ(h)

)−2
∥∥∥∥ 1

2

= 1
h
.
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2 Theoretical Properties of the Sequential

Estimation Procedure

The properties of the sequential design (7)-(8) depend on the threshold value h.
Further we assume that the vector of unknown parameters α in (5) belongs to some
known compact subset of the set of the admissible values of the parameter vector.
The properties of the analysis of the sequence plan (7)-(8), relating to the mean
duration of procedure, and its accuracy are given in the following theorems.

Theorem 1. Let (εn)n≥1 be a sequence of independent identically distributed ran-
dom varuables, Eεn = 0, Eε2n = σ2, Eε8n <∞, Λ be a set of admissible values of the
parameter vector α. Then for any compact set K ⊂ Λ

limn→∞ supα∈K

∣∣∣Eα τ(h)
h
− ‖F−2‖

1
2

∣∣∣ = 0.

Here F is the limit matrix of the form

F =

∥∥∥∥ M0 M1

M1 F0 +DM0D

∥∥∥∥ ,where M0 = diag
(
1, 1; 1

2
, ..., 1

2

)
,

Vk =


1 0 0 0
0 (−1)k 0 0
0 0 V1(k) V2(k)
0 0 −V2(k) V1(k)

 ,

V1(k) = diag (cosω1k, ..., cosωrk) , V2(k) = diag (sinω1k, ..., sinωrk) ,

A =

(
λ1 ... λp
Ip−1 ... 0

)
,Γ =

m1 m2 γ11 γ12 ... γr1 γr2
0 ... ... ... ... ... 0
0 ... ... ... ... ... 0

 ,

D =
∑

k≥0A
kΓV (k),M1 = M0V

′(1)D′, F0 = limn→∞
1
N

∑N
n=p+1 ζnζ

′
n P− a.s.,

ζn = Aζn−1 + ηn, ζp = 0, ηn = (εn, 0, ..., 0)′ .

Theorem 2. For any compact set K ⊂ Λ the mean-square accuracy of sequential
plan (7)-(8) satis�es the inequality

supα∈K Eα
(
‖α∗(h)− α‖2) ≤ bk

h
(1 + o(1)) ,

where bk = supα∈K φ(α), φ(α) = Q(α) ‖F−2‖1/2
, o(1) → 0 as h → ∞, the function

Q(α) is de�ned by the equation Q(α) = trF0 + 2r + 2 + (2r + 2)2
(
‖D‖2 + c

1−q

)
.

Remark. According to Theorem 2 the mean square accuracy may be controlled by
choosing a threshold h accounting for the number bK can be calculated in advance.
In this case the mean duration of the procedure grows linearly as h increases.
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Conclusions

The paper proposes a sequential procedure for estimating the parameters of a trigono-
metric signal in a regression model with an autoregressive noise. A special stopping
time based on the observed Fisher information is used to control the mean-square
accuracy of the estimates of unknown parameters.

The results may be applied in the problems of control and identi�cation of dynamic
systems.
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Abstract

Adaptable for predictive calculations, econometrical models for Russia's
economy growth (1999-2014) are o�ered in this article. The models take into
consideration oil prices, demographic changes, world economy growth, foreign
direct investment, and economy policy, and account for 90% of the variation of
economic growth from 3Q 1999 to 1Q 2015. Forecasts of economic growth until
2024 are built, and this also includes predicative estimations for explanatory
factors.

Keywords: Russia, GDP grow, GDP per capita grow, oil prices, labor
force, foreign direct investment, economy policy.

Introduction

The article o�ers an econometrical model of economic growth in Russia (3Q 1999 �
1Q 2015) adaptable for predictive calculations. The model includes indicators of oil
prices, demographic changes, world economy growth, foreign direct investment, and
economy policy.

The impact of oil prices on economic growth in Russia is beyond doubt. This e�ect
is described in detail in [6], and the authors believe that the model of economic growth
should include both price changes and the absolute values of oil prices. Depending on
changes in price are oil and gas revenues, and on the level of oil prices � the dynamics
of investment in �xed assets. In most econometric models of economic growth in
Russia, in [4; 9] in particular, change in the oil price is an important factor.

The dynamics of the labor force in the Russian Federation as a factor of economic
growth has not yet received adequate attention in econometric modeling. The present
work �lls in this gap. It is possible that, with time, the demographic factor will
become increasingly important.

Economic policy is re�ected in the model by a factor of time, owing to a certain
method of constructing this variable.

As an indicator of economic growth the percentage change in the volume of the
Russian economy compared with the same quarter of the previous year is used.

Also, a forecast for economic growth in Russia until 2024 is built in the paper.
To this end, projections for the independent variables are made too.

Data of Rosstat and World Bank are used.
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1 The model, variables, interpretation of results

The proposed model of economic growth in Russia (3Q1999�1Q2015) has the form:

∆gdp% = a0 + a1 ∗ brent+ a2 ∗ brent(t− 1) + a3 ∗∆brent% + a4 ∗ gdpWgr +

a5 ∗ forinv + a6 ∗∆empl% + a7 ∗ toempl(t− 4) + a8 ∗ trend+ ε, (1)

where ∆gdp% � percentage change in the volume of the Russian economy compared
to the same quarter of the previous year (SQPY);

brent � the price of Brent crude oil in the quarter, dollars per barrel;
brent(t− 1) � the price of Brent crude oil in the previous quarter;
∆brent% � percentage change in the Brent price in comparison with SQPY;
gdpWgr � global economic growth this year, %;
forinv � foreign direct investment in the Russia's economy, % of GDP in the year;
∆empl% � percentage change in employment in the Russian economy compared

with the SQPY;
toempl(t−4) � the ratio of economy volume to the employee number in the SQRY;
trend � re�ects the economy policy quality, there are two variants in the models,

ln(d; t) in the Model 2 and dummy in the Model 3 (d; t is set to 1 from 3Q 1999 to
1Q 2004, then 1 is added in each subsequent quarter, dummy is set to 0 from 3Q
1999 to 1Q 2004, then 1 in subsequent quarters);

ε � the residuals of the equation;
a0 is the constant, an � coe�cients given in Table 1.

Table 1: Models of economic growth in Russia

Model 1 Model 2 Model 3
Coe�cients t-statistic Coe�cients t-statistic Coe�cients t-statistic

Constant 9.37**** 4.132 1.85 0.747 2.58 1.123
brent � � 0.0143 0.620 � �

brent(t− 1) 0.0170 1.161 0.0486** 2.308 0.0212* 1.740
∆brent% 0.0405**** 5.115 0.0368**** 4.774 0.0428**** 6.497
gdpWgr 0.835**** 3.507 1.159**** 5.157 1.194**** 5.699
forinv 0.167 0.721 0.347* 1.694 0.631*** 2.977

∆empl% 1.308**** 4.571 0.856*** 3.130 1.105**** 4.590
toempl(t− 4) �0.0883**** �3.766 �0.0263 �1.107 �0.0297 �1.317

ln(d; t) � � �2.166**** �4.636 � �
dummy � � � � �4.50**** �5.134

N = 63 N = 63 N = 63
R2 = 0.861 R2 = 0.903 R2 = 0.906
AdjR2 = 0.846 AdjR2 = 0.888 AdjR2 = 0.894
D −W = 1.258 D −W = 1.032 D −W = 1.322

*, **, ***, **** � signi�cance level 10%, 5%, 1%, and 0.1% respectively

The constructed models con�rm that the most important factor in the growth of
the Russian economy is oil price. Only one variable ∆brent% can account for 48% of
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the variation ∆gdp%. Also the result obtained previously Kazakova and Sinelnikov-
Mourylev that the economic growth in Russia is under the impact of not only the
change in oil prices, but also their absolute level has been con�rmed. It is not the
current level of prices, but prices in the previous quarter that are of signi�cance.

Also justi�ed has been the statement of Kudrin and Gurvich [5] that for Russia's
economy not only oil prices, but the global economic dynamics as well are important.

When the relatively short time series are brought into focus, not infrequently,
in order to get a more accurate assessment, various mathematical tools are applied,
such as cointegration models. In this case, we chose a di�erent path: a regression
equation by the method of least squares including variables, re�ecting the change in
the Russian economic policy which began with the events related to the arrest of
Khodorkovsky (25 October 2003). Perhaps even more important was not the arrest
itself but the dismissal of Prime Minister Mikhail Kasyanov (Feb. 24, 2004), who
earlier had repeatedly and publicly stated that the "Yukos case" harmed the invest-
ment attractiveness of Russia. Indeed, this history has demonstrated the world the
insecurity of property rights in Russia. It is exactly from that time that such negative
phenomena as corruption and the excessive role of government in the economy have
begun to grow. The latter, Kudrin and Gurvich [5] described as follows: �The ma-
jor impediment to growth is marked weakness of the market environment, explained
primarily with dominance of state-owned and quasi-state companies.�

If we subtract the impact of changes in oil prices from the index of economic
growth, we will see that the results of the economic policy pursued since 2004 have
been growing less satisfactory (Fig. 1); there is a clear downward trend. A similar
trend, but mirrored, has been laid out in the explanatory variable ln(d; t), which
combines the features of a dummy variable and the factor of time (Fig. 2).

Figure 1: The residuals of the equation ∆gdp% = 3.12 + 0.0864 ∗∆brent%
(R2 = 0.478)

In fact, this variable re�ecting the dominant trend has become a kind of framework
that allowed the impact of other factors to reveal more precisely in the model 2.

The variable trend is missing in Model 1 and presented in a di�erent form in
Model 3.
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Figure 2: The values of the variable ln(d; t)

The values of Durbin-Watson statistics indicate the presence of autocorrelation in
all three models. If you align the residuals of the Model 1 by using the moving average
(Fig. 3), you will see two major waves of a descending line which can be explained by
two political shocks that Russia's economy experienced in the period under review,
�Yukos case� and War with Georgia. It is also possible that this is the result of some
factors (foreign direct investment and oil prices) are undervalued in Model 1. The
deterioration of Russia's image entails a reduction in the investment attractiveness
of the country for international investors. That happened, in particular, in 2005.
Variable ∆empl% needs quali�cation. When unemployment is high, it is not the

Figure 3: The residuals of Model 1

number of employees that has an impact on the economy but it is the economic
growth that a�ects the change of employment. However, at low unemployment,
decline in the labor force will be an additional factor limiting the opportunities for
economic growth. According to Model 2, reducing the number of employees by 1%
will be accompanied by a reduction of economic growth to 0.856 percentage points.
In theory, reducing the number of employees could be more signi�cantly o�set by
the increase in labor productivity. However, this requires investment. Therefore, a
favorable investment climate is indispensable.

Variable toempl(t − 4) re�ects the achieved level of economic development. Like
in many other models of economic growth [2; 8; 10], the impact of this variable is
negative. As has been said above, there is a close correlation between some variables
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in the period under review. It is possible that over time, when the random correlations
weaken, the overall picture may be slightly di�erent.

2 Projections for the explanatory variables and

economic growth in Russia until 2024

Oil prices in winter 2014/2015 came as a surprise to many experts who had pre-
viously expected a slow decline, but not collapse. It is di�cult to predict how fast
and high prices could rise again. It is only evident that the previous $ 110 per barrel
in the next 10 years will not be met, because the situation on the world market has
changed dramatically. Now, in principle, there are no players who can raise and main-
tain prices at a high level as the price due to the development of new technologies
will never be oligopoly. And the risk premium, which was part of the price in the
2007�2014 years, had disappeared forever, as the level of world production will no
longer depend on the situation in the politically unstable regions. Thus, in the next
few years the market will be looking tentatively for the equilibrium of the market
price. To simplify, we can assume that in the period from March 2008 to September
2014 the average price ($ 96.7 per barrel Brent) was as high as consumers agreed to,
and the future equilibrium price can be as low as it will be acceptable (breakeven)
for a su�cient number of competing manufacturers. And it will depend solely on
production technologies. Monograph [3] discusses in detail the pricing of oil, and also
gives highly contradictory assessments of international experts as to what may be the
equilibrium price in the foreseeable future. In paper [1] the bottom bracket payback
for the extraction of shale oil in the US is estimated to be $35 in 2006 prices. The
following options of economic growth forecasting in Russia are calculated under the
assumption that the price of Brent will at �rst grow about the same path as in 2009,
and then stop at the level of either $96 or $83 or $70 (Fig. 4).

Figure 4: Real prices of Brent and 3 variants of the forecast of the writer, $ per
barrel

World economic growth in all versions of our forecast is taken as 3.5% in 2015,
then 3.75% per year (it was the average world economic growth from 1960 to 2014).
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Reducing the number of labor resources in Russia is inevitable. This issue is
discussed in detail in the writer's paper [7]. We can assume that the labor force is
proportional to the size of the age group 18�64, as economic activity outside this age
group is negligible. When calculating the forecast number of the age group 18�64 we
accept the following conditions:

� the number of inhabitants of the Crimea is not taken into account;

� for the base case (forecast A) we take the coe�cients of advancing age to be
the same as the average in 2011�2013, l. e. a decrease of net migration will be
fully o�set by a decline in mortality;

� at lower forecast (B), age-speci�c death rates are the same as in 2010, and
international migration will be zero.

As shown in Figure 5, the number of the age group 18�64 in both forecast variants
will decline for years 2015�2024 signi�cantly: by 9.2% for the base variant and 12.2%
for the lowest.

Figure 5: The population of the age group 18�64 at the beginning of the year. To
2014 � Rosstat data, from 2015 � designed by the writer

However, the number of employees does not depend solely on the size of the labor
force, but also on the level of economic activity and unemployment. The level of
economic activity of women, among other factors, depends on the level of fertility.
We must bear in mind here that women are granted leave to care for a child up to the
age of three. The number of births in the quarter qborn will be estimated through a
simpli�ed formula (2), the coe�cients of which are found empirically for the period
1Q1999�1Q2015:

∆qborn2034(t;t−4) = 0.259 + 0.0910 ∗∆qgdp.pc(t−3;t−7), (2)

where ∆qborn2034(t;t−4) � change in the number of births per 1,000 women aged 20-34
in comparison with SQPY;

qgdp.pct � the ratio of GDP in the quarter t to the population (thous. rubles in
2008 prices);

∆qgdp.pc(t−3;t−7) � the increase in the value of qgdp.pct in the quarter in which a
decision about the birth of a child is made, in comparison with SQPY.
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Note that in the 1999�2013 years, from 79.3 to 83.3% of all children were born to
women in the age group 20�34.

For the level of foreign direct investment we make the following assumptions:

� for the high variant (a), we assume that forinv = 0 in 2015, and 3.37% in the
following years (this was the meaning of this variable in 2013);

� for the base case (b) we assume that forinv = 0 in all years; Such a situation
may arise if the Minsk Agreement will not be implemented.

The results of calculations for the 36 variants of the forecast are shown in Figure 6.

Figure 6: 36 variants of the Russian economy forecast, GDP (2004) = 100%

Conclusions

The paper suggests models for a plausible forecast of economic and demographic
development of Russia in mutual relationship. The models of economy growth contain
a variable that re�ects the overall negative impact of the policy pursued by the central
government since 2004. If the policy does not change the prospects for the Russian
economy are as following � in the most favorable and, unlikely, scenario (1Aa, Model
3), the population will decline by 1.0 million people for 10 years and the GDP will
grow by 10.9%; in the worst scenario (3Bb, Model 2), the population will decrease
by 6.2 million people, and the GDP will decrease by 25%. To improve the model we
must bind not only fertility, but also migration and mortality, to the level of economic
development. In addition, the variable re�ecting the level of demographic load needs
improvement.
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Abstract

The study employs an algorithm for creating a composite measure which al-
lows to rank regions according to their �scal characteristics. Using the method
proposed �scal territorial disparities in Siberian Federal District has been ana-
lyzed.

Keywords: �scal potentials, revenue potentials, regional �scal indepen-
dency, composite measure, ranking.

Introduction

To reach optimal decisions about governing budget process at sub-national (regional)
level requires tools for measure and comparison regional �scal capacity. We propose
an algorithm for creating a composite measure which allows to rank regions according
to their �scal characteristics. In this case regional �scal capacity is considered in the
context of conditions of revenue potential mobilization. It takes a set of indicators
which is di�erent from previous studies in the literature. We propose 29 indicators
divided into three units according di�erent aspects of considered issue. Various alter-
native methods of normalization and aggregating creating a composite measure were
used.

The results of analysis have allowed to �nd the following: to emphasize the regions-
leaders and the regions-outsiders in Siberian Federal District; to show how much do
the conditions of revenue potential mobilization vary across regions; to stress regional
advantages and disadvantages. The source data came from the o�cial statistics for
2011 - 2012 yr.

1 Review

Studies with inter-regional comparisons often include a process of aggregating infor-
mation, the convolution of a set of selected data in one or some integral indicators
and obtaining multidimensional summative measure.

There is a wide range of methodological approaches to composite measures divided
on two distinct branches:

� a formal approach, when designing an integrated indicator is obtained by the
methods of factor analysis, principal components etc.;
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� an approach based on semantic analysis of the problem, when integrated indi-
cators are the result of various transformations of the selected indicators and
weights in additive or multiplicative convolution forms are set by experts or
based on intuitive or qualitative reasoning of the researcher. The second ap-
proach �contains a certain degree of subjectivity and can often lead to di�erent
results when analyzing the same problem� [4]. However, because of its simplic-
ity, compared to the �rst one, it is rather popular in cases of decisions-makers
analysis. Some researchers supplement and adjust the methods of second ap-
proach by procedures of statistical analysis [1].

The International Statistics to date has accumulated a signi�cant experience in
constructing integral measures which compare and rank country performance in areas
such as health, quality of life, industrial competitiveness, corruption, sustainable
development, globalization, innovation and etc. Composite indicators are developed
and used by the international organizations, such as the HDI - Human Development
Index (UN), TAI - Technology Achievement Index (OECD). Their feature is the ease
of calculation and the use of indicators that are available and comparable for a wide
set of countries.

In Russia integral estimates for inter-regional comparisons are widely used in the
methods of distribution of funds within the framework of intergovernmental relations,
as well as in the work of individual researchers on the di�erent problems of the regional
socio-economic development. A general algorithm for building a composite indicator
is similar in all the considered methods and include the following steps:

� data selection;

� normalization;

� integration of normalized data.

A number of normalization and integration methods exist. The objective is to
identify the most suitable procedures to apply. For example, di�erent normalisation
methods will produce di�erent results for the composite indicator. Therefore, overall
robustness tests are recommended to carry out to assess their impact on the outcomes
[3].

2 Data normalization

The indicators in a data set often have di�erent measurement units. Therefore nor-
malization is required in most cases of data aggregation. The most widespread meth-
ods are the followings.

1. Distance to a reference measures the relative position of a given individual
indicator (xi) vis-a-vis a reference point. The reference region could be the average
or highest region of the group:

xn =
xi
x̄

(1)
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or

xn =
xi
xmax

(2)

Thus, if the excess value of the indicator over the other is seen in a negative light,
normalization is performed in reverse order:

xn =
x̄

xi
(3)

or

xn =
xmax
xi

(4)

2. Standardisation (or z-scores) converts indicators to a common scale with a
mean of zero and standard deviation (σ) of one:

xn =
xi − x̄
σ

(5)

3. Min-Max normalisation �could widen the range of indicators lying within a
small interval, increasing the e�ect on the composite indicator more than the z-score
transformation� [3]:

xn =
xi − xmin
xmax − xmin

(6)

Normalisation of indicators using the average, maximum and minimum values
prevalent in the practice in analysis for public administration decision-makers.

3 Weighting and aggregation

Existing techniques may use an additive or a multiplicative approach of aggregation.
There is a widespread use for this purpose di�erent formulas of average. For

example, when building Sectoral innovation index [2].used a simple arithmetic aver-
age. In the methods comprising the step of assigning indicators weights coe�cients
of signi�cance with its attendant procedures (for example, the assessment of di�er-
ences of expert opinion), applies the weighted arithmetic mean, weighted averages of
standardized indicator values. When constructing the Gender-related Development
Index integration occurs in the form of average weighted harmonic, where values are
weighted for the proportion of men and women in the total population of the country.
Researchers that do not use the opinions of experts and give the equal weights often
use geometric average formula.

Reviewing the experience of constricting composite measures for the analysis of
territorial disparities we o�er a simple approach, to-can be used to get detailed oper-
ational information for estimating, comparing and monitoring the level and features
of regional �scal capacity.

322



Applied Methods of Statistical Analysis

4 The indicators

The general objective of the selected indicators is to re�ect conditions of revenue
potential mobilization in a region (table 1).

Table 1: Selected indicators for inter-regional comparison of �scal capacity and
conditions of revenue potential mobilization

Unit Group Indicators
I Revenue 1. Level of �scal capacity, level of local bud-

gets revenues
X1-X3

su�ciency for 2. Region disparities in �scal capacity X4-X5

public goods 3. Proportion of tax potential to public ex-
penditure

X6

and services 4. Contribution of regional taxes X7-X8

5. Fiscal discipline and tax evasion X9-X12

II Tax potential 6. Corporate �nancial capacity X13-X15

exhaustiveness 7. Households �nancial capacity X16-X17

8. Performance of tax administration X18-X20

III Tax burden 9. Tax burden level X21-X22

and investment 10. Investment activity X23-X29

5 The territorial disparities between the regions of

the Siberian Federal district

Within each of the three units, for each of the individual indicators, key features of
distribution were calculated: maximum and minimum characteristic values, average,
median, the variation coe�cient, asymmetry factor. The result shew territorial dis-
parities appear to be generally larger than initially expected - a number of parameters
di�er signi�cantly.

The high level of variation appears with the indicators that are indirectly as-
sociated with the development of the regional economy and the �nancial status of
the taxpayer. Extremely strong di�erences in the amount of pro�t per organization
may be due to high variation in the amounts of tax evasion. A marked degree of
regional di�erences evident in the indicator of the size of the shortfall in income that
may indicate signi�cant regional di�erences tax policy selected regions of the Russian
Federation. It is noticeable that the Siberian Federal district unpro�table di�erent
from the national average indicators of overdue payables of enterprises and the share
of population with incomes below the subsistence minimum.

A moderate homogeneity of the regions appears in total tax burden - a share
of taxes and fees in gross regional product. High level of variation in other, more
particular indicators of the tax burden (25, 26, 28, 29) suggest that di�erences in
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the tax environment in selected regions. The high variation in the degree of tax
revenues disparities by activity indicates signi�cant di�erence Siberian regions on the
tax potential economic structure.

6 Methods of aggregation

For the creating an integral indicator three approaches was used: options A, B and C
to investigate their comparability. Under option A the normalization of the indicators
was carried out by comparing them with the average. In this case we used a geometric
aggregation (also called deprivational index):

xj = k

√√√√ k∏
i=1

xni (7)

where Xj is an intermediate integral indicator on a unit j, k is the number of
indicators that characterize a unit j.

The option B uses standardization (z-score) method to normalize the values of
the indicators.

Intermediate aggregation in this case is proposed by summing the positive and
negative deviations and averaging the values obtained:

Xj = ±
n∑
i=1

xni
k

Option C provides the data normalization by the Min-Max method. Intermediate
aggregation was carried out by using the arithmetic average.

Methods of normalization and intermediate aggregation denote the way of the
further data aggregation. Method B is not possible to assign di�erent weights to the
integral estimates Xj, and the �nal aggregated indicator (IB) will be de�ned as the
distance:

IB =
3∑
j=1

Xj

When using the normalized values in form of distance to the average or Min-Max
values (options A and C) �nal aggregated indicator can be calculated as a summation
of weighted intermediate aggregation values (the most widespread method of linear
aggregation):

IA,C = X1 ∗ 0.2 + x2 ∗ 0.5 +X3 ∗ 0.3

when the weights re�ect the ability of regional authorities to in�uence the situation
in short-time term.
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7 The results of intermediate and �nal aggregations

Table 2 shows the intermediate aggregated indicators, generated for each unit of
individual indicators by three options (A, B, C).

Table 2: Aggregated value of di�erent aspects of conditions of revenue potential
mobilization, 2011

Aggregated indi-
cators for Unit
I Revenue su�-
ciency for pub-
lic goods and ser-
vices X1

Aggregated indi-
cators for Unit II
Tax potential ex-
haustiveness X2

Aggregated indi-
cators for Unit
III Tax burden
and investment
X3

A B C A B C A B C
Republic of Altay 0.957 0.098 0.515 0.855 0.110 1.502 1.452 0.322 0.972

Republic of Buryatia 0.075 -0.018 0.490 1.287 0.218 1.542 1.339 0.408 1.006
Republic of Tyva 0.917 -0.446 0.368 1.638 -0.505 1.192 2.002 0.666 1.070

Republic of Khakasia 1.154 0.115 0.534 0.937 0.069 1.398 1.400 0.581 1.059
Altay Territory 1.011 -0.009 0.494 0.982 0.037 1.475 1.321 0.221 0.952

Zabaikalsk Territory 1.174 0.326 0.590 1.100 -0.068 1.447 1.307 -0.245 0.840
Krasnoyarsk Territory 0.874 0.056 0.518 1.199 0.362 1.559 1.389 0.324 1.005

Irkutsk Region 1.016 0.073 0.528 1.256 0.507 1.592 1.281 -0.037 0.888
Kemerovo Region 1.049 0.280 0.580 1.208 0.111 1.475 1.305 -0.251 0.851
Novosibirsk Region 0.957 0.100 0.534 0.972 0.112 1.430 1.286 -0.032 0.891

Omsk Region 0.953 -0.012 0.498 1.093 0.098 1.488 1.290 -0.626 0.713
Tomsk Region 0.863 -0.556 0.345 1.366 0.606 1.632 1.250 -1.236 0.599

Regions were ranked according the levels of their aggregated indicators (Table 3).

The results of intermediate aggregation and ranking allow to estimate the posi-
tion of the Siberian regions within each condition group both in relation to each other
and in dynamics. According to the criteria of �Revenue su�ciency for public goods
and services� �rst places were taken by Zabaikalsk Territory, Kemerovo Region and
Republic of Khakasia. Their advantage - a very high ratio of local budgets incomes of
the total revenues. The Siberian regions that took the last places are Tomsk, Omsk
regions and Republic of Tyva. The latest one is characterized by an extremely low
degree of budgetary provision and, in general, unsatisfactory evaluations almost all
aspects of tax and budget process. The Omsk and Tomsk regions, in spite of its sig-
ni�cant tax potential, are at a disadvantage: they have a high degree of centralization
of regional tax revenues and a high degree of concentration of tax capacity in certain
types of economic activity.

The leading regions in terms of �Tax potential exhaustiveness� are Republic of
Buryatia, Tomsk and Irkutsk regions. They took �rst places thanks to the level of
tax discipline and performance of tax administration as well as the relatively low level
of corporate overdue debt. Absolute outsider in this case is Novosibirsk region, in
addition it is the �leader� according the size of tax evasion and the minimum level of
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Table 3: Intermediate ranking of regions (2011)

Ranks for Unit I
Revenue su�ciency
for public goods
and services

Ranks for Unit II
Tax potential ex-
haustiveness

Ranks for Unit III
Tax burden and in-
vestment

A B C Rm A B C Rm A B C Rm
Republic of Altay 7 5 7 6 11 11 5 9.2 2 5 5 4.4

Republic of Buryatia 3 10 10 8.6 2 1 4 2.1 5 3 3 3.4
Republic of Tyva 10 11 11 10.8 12 8 12 10 1 1 1 1

Republic of Khakasia 2 3 3 2.8 10 5 11 7.8 3 2 2 2.2
Altay Territory 6 8 9 7.9 8 6 7 6.7 6 6 6 6

Zabaikalsk Territory 1 1 1 1 6 7 9 7.4 7 9 10 8.9
Krasnoyarsk Territory 11 7 6 7.5 5 2 3 2.9 4 4 4 4

Irkutsk Region 5 6 5 5.5 3 3 2 2.7 11 8 8 8.6
Kemerovo Region 4 2 2 2.4 4 10 8 8.2 8 10 9 9.3
Novosibirsk Region 8 4 4 4.8 9 9 10 9.3 10 7 7 7.6

Omsk Region 9 9 8 8.7 7 12 6 9.2 9 11 11 10.6
Tomsk Region 12 12 12 12 1 4 1 2.5 12 12 12 12

average pro�t per organization in the region.

Tables 2 and 3 show a highest level of Tax burden in Kemerovo, Omsk and Tomsk
regions. It is a kind of payment for their leading position in terms of total amounts
of tax revenues which, in large part, are not for their own regional budget, but for
further distribution at the Federal level.

Further the intermediate aggregated indicators were weighted and combined into
a �nal composite variable scores IB and IA,C which were converted in ranks .

The distribution of Siberian regions, respectively the composite measure of the
conditions for the mobilization of tax potential obtained by averaging ranks is pre-
sented in the Table 4.

Conclusions

The results of methods suggest that some aspects of the conditions for the mobi-
lization of revenue capacity appear di�erently in the Siberian regions. We �nd two
types of regions: 1) the regions with stable ranking position in time (the Republic
of Tyva, Republic of Khakassia, Omsk, Tomsk region), 2) the regions which radi-
cally change their position (Irkutsk and Kemerovo Regions). It is concluded that
to date in considered context the Krasnoyarsk territory is the undisputed leader of
the Siberian Federal district. The Republic of Tyva that can really be designate as
subsidized region by its nature. Other Siberian regions have a number of advantages
and disadvantages that should be analyzed separately for each subject of the Russian
Federation, to identify the best ways to improve the situation and achieve the highest
possible level of �scal independence.

The method proposed provides an opportunity to improve the analysis of territo-
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Table 4: Rating of Siberian regions, respectively the level of conditions for the
mobilization of tax potential (2011 � 2012 yr.)

Rm Average
rank between
options A, B, C

General rating

2011 2012 2011 2012
Republic of Buryatia 2.0 4.0 1 2
Krasnoyarsk Territory 2.7 5.0 2 4

Irkutsk Region 3.3 10.3 3 12
Republic of Khakasia 4.7 4.7 4 3
Kemerovo Region 6.3 1.3 5 1
Republic of Altay 7.0 8.3 6 9
Altay Territory 7.3 5.3 7 5

Zabaikalsk Territory 7.7 6.0 8 6
Tomsk Region 8.0 10.0 9 11

Novosibirsk Region 9.0 7.3 10 8
Omsk Region 9.7 9.7 11 10

Republic of Tyva 10.3 6.0 12 7

rial �scal disparities. The results of these studies can be directly applied in subna-
tional governments activity.
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Abstract

A computer based decision support system is proposed the basic tasks of
which are adaptive model constructing and forecasting of �nancial and economic
processes. The system is developed with the use of system analysis principles,
i.e. the possibility for taking into consideration of some stochastic and informa-
tion uncertainties, forming alternatives for models and forecasts, and tracking
of the computing procedures correctness during all stages of data processing. A
modular architecture is implemented that provides a possibility for the further
enhancement and modi�cation of the system functional possibilities with new
forecasting and parameter estimation techniques. A high quality of �nal result
is achieved thanks to appropriate tracking of the computing procedures at all
stages of data processing: preliminary data processing, model constructing, and
forecasts estimation. The tracking is performed with appropriate set of statis-
tical quality parameters. Examples are given for modeling and forecasting of
nonlinear and nonstationary �nancial and economic processes. The examples
show that the system developed has good perspectives for the practical use.
It is supposed that the system will �nd its applications as an extra tool for
decision making when developing the strategies for enterprises of various types.

Keywords: model, forecasting, �nancial and economic processes, system
analysis principles.

Introduction

The forecasting problems are to be solved practically in all areas of human activi-
ties. However, the problems of mathematical modeling, estimation and forecasting
process dynamics are particularly urgent for micro- and macroeconomics, banking
sphere, insurance, investment companies, industrial enterprises that are functioning
in conditions of tough competition, and many others kind of activities. There are
many ideologically di�erent approaches to mathematical description of processes dy-
namics and their volatility that are based on known statistical and recently developed
techniques of intellectual data analysis.

Volatility forecasts are used widely as a measure of various kinds of �nancial risks
in the frames of Value-at-Risk (VaR) and other methodologies. The market and some
other types of risks are estimated with di�erent modi�cations of VaR methodology
that provides a possibility to reach practically acceptable quality of risk estimates [1,
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2]. For forecasting �nancial processes and enterprises bankruptcy the nonlinear clas-
si�cation type models have found wide application, for example, logistic regression as
well as support vector machine (SVM), fuzzy logic, neural networks and neuro-fuzzy
techniques, Bayesian networks, decision trees and combinations of the approaches
mentioned [3 - 5].

Selection and application of a speci�c technique for process description and fore-
casts estimation depends on application area, availability of statistical data, quali�-
cation of personnel, who work on the �nancial analysis problems, and availability of
appropriate applied software. Better results for estimation of �nancial processes fore-
casts is usually reached with application of ideologically di�erent techniques combined
in the frames of one computer based system. Such approach to solving the problems
of quality forecasts estimation can be implemented in the frames of modern decision
support systems (DSS). DSS is a powerful instrument for supporting decision making
as far as it combines a set of appropriately selected data processing procedures aiming
to reach �nal result of high quality � objective high quality alternatives for a decision
maker. Development of a DSS is based on modern theories of system analysis, infor-
mation processing systems, estimation theory, mathematical and statistical modeling
and forecasting, decision making theory as well as many other results of theory and
practice of processing data and expert estimates [6, 7].

The paper considers the problem of DSS constructing for solving the problems of
modeling and forecasting processes evolution in time with the possibility for applica-
tion of alternative data processing techniques, modeling and estimation of parameters
and states for the processes under study.

1 Problem formulation

The purpose of the study is as follows: 1) analysis and development of requirements
to the modern decision support systems; 2) development of the system architecture;
4) selection of mathematical modeling and forecasting techniques for �nancial and
economic processes; 3) illustration of the system application to solving the problem
of �nancial and economic processes forecasting with statistical data.

2 General requirements to modern DSS

Such systems should satisfy the following general requirements: 1) - contain highly
developed bases of data, mathematical models, quality criteria and rules, as well as
necessary computational procedures; 2) - their interface should be user friendly, con-
venient and simple for use, as well as adaptive for the users of various levels (e.g.,
engineering and managerial sta�); 3) - the hierarchy of a system functioning should
correspond to the hierarchic process of human decision making; 4) - the system should
possess an ability for learning in the process of its functioning, i.e. accumulate appro-
priate knowledge regarding possibilities of solving the problems of de�nite (selected)
class; 5) - the organization and techniques for computing procedures should provide
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for appropriate rate of computing that corresponds to the human requirements with
regard to the rate of alternatives generation and reaching the �nal result; 6) - com-
puting (precision) quality should satisfy preliminary established requirements; 7) -
intermediate and �nal results of computations should be controlled with appropriate
sets of analytic quality criteria, what will enhance signi�cantly quality and reliability
of the �nal result; 8) - DSS should generate all necessary for a user forms and types
of intermediate and �nal results representations with taking into consideration the
users of various levels; 9) - the system should contain the means for exchange with
data and knowledge with other information processing systems via local or global
computer nets; 10) - DSS should be easily expandable with new functions.

Satisfaction of all the requirements mentioned above provides a possibility for
e�ective practical application of a system developed and enhancing general behavior-
istic e�ect of the DSS as a whole for a speci�c company or an enterprise.

3 General and special purpose mathematical tools

for DSS

All mathematical methods that are hired for development and implementation of
DSS could be divided into two following groups: - general purpose methods that pro-
vide for implementation of system functions, and special purpose methods that are
necessary for solving speci�c problems regarding data processing, model construct-
ing, alternatives generating, selecting the best alternative for implementation and
forecasting of the implementation consequences.

The group of the general purpose methods includes the following methods: - data
and knowledge collecting and editing procedures; - preliminary data processing tech-
niques such as digital �ltering, normalization, imputation of missing values, detecting
special e�ects (regime switching, seasonal e�ects, trends etc); - the methods for ac-
cumulating information regarding previous applications of DSS to problem solving
for the retrospective use; - computer graphics techniques; - techniques for syntactic
analysis to be used in command interpreter; - methods for organizing communications
with other information processing systems via local and global nets; - logical rules to
control the system functioning. The set of the methods mentioned could be modi�ed
or expanded depending on speci�c application.

Selection of the application de�ned mathematical methods for a DSS depends
on the speci�c system application area, possible problem statements regarding data
processing, model building, processes forecasting, and alternatives generation. How-
ever, it is possible to state that in most cases of DSS development it is necessary to
use the following mathematical methods: - methods and methodologies for mathe-
matical (statistical and probabilistic) modeling using statistical/experimental data;
- forecasting techniques on the basis of the models constructed with possibilities for
combining the forecasts computed with di�erent techniques; - operations research
optimization techniques and dynamic optimization (optimal control) methods; - the
methods for forecasting/foresight of decision implementation consequences; - the sets
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of special analytic criteria to control the processes of computations performed at each
stage of data processing and alternative generation aiming to reach high quality of
�nal results.

All the methods and methodologies mentioned are described well in special mod-
ern literature. For example, time series modeling and forecasting are presented in
many references, more particularly in [8, 9]. The task for a DSS developer is in ap-
propriate selection of model classes, modeling and optimization techniques, quality
criteria as well as relevant methodologies for organizing computational processes.

4 General and special purpose mathematical tools

for DSS

Decision making process includes rather sophisticated procedures that could be par-
tially or completely iterative, i.e. executed repeatedly when the alternative found is
not satisfactory for a decision making person (DMP). DSS can return automatically
(or on DMP initiative) to the previous stages of data and knowledge analysis.

The whole process of making and implementing decision could be considered as
consisting of the stages given below.

1. A thorough analysis of the decision problem using all available sources of in-
formation, collection of data and knowledge relevant to the problem. At this
stage it is also important to consider and use former solutions to the problem
if such are available. The information regarding former solutions of similar
problem can be helpful for correcting problem statement, to select appropriate
techniques for data analysis, to speed up alternative generation, and to decline
the alternatives that turned out to be ine�ective in the past.

2. Selection of a class (classes) of mathematical models for the problem description,
and analysis of a possibility for the use of available (previously developed)
models. The models could belong to di�erent classes as far as they can be
formulated in continuous or discrete time, be linear or nonlinear, they can be
developed according to the structural or functional approach etc. In some cases
it is necessary to construct complex simulative model that would include a set
of simpler models of various classes.

3. Development of new models for the problem (process, object, system) under
study what includes structure and parameter estimation for candidate models
using available data (and possibly expert estimates) and knowledge of various
types. The alternative structures of candidate models provide a possibility for
selecting the best one of them for generating alternative decisions (forecasts,
control actions, risk estimates etc) on their bases.

4. Analysis of the candidate models constructed and selecting of the best one of
them with application of a set of statistical quality criteria and expert opinion
(estimation). At this stage again more than one model can be selected for
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the further use as far as the best model (for a particular application) can be
found only after application of the candidates for solving particular problem,
i.e. after alternatives generating and estimating possible consequences of their
implementation.

5. Application of the model (models) selected to solving forecasting and/or con-
trol problem (when necessary). If the forecasts or controls computed are not
satisfactory we should return back to stage one or stage three, and repeat the
process of model constructing. At this stage another set of statistical quality
criteria should be applied to the analysis of forecasts or controls determined.

6. Generating of a set of alternatives with the use of the model (models) con-
structed and various admissible initial conditions and constraints on variables.
In a case of controls generating the alternatives could be built with di�erent
optimality criteria, utility functions or other criteria.

7. Analysis of the alternatives generated with the experts of an enterprise or a
company, and �nal selection of the best one for practical implementation. In
a case when no alternative is acceptable we should return back to the model
constructing or alternative generating stages. New knowledge or data can be
required for the next iteration of computing the decision support.

8. Planning of actions and estimation of �nancial, material and human resources
that are necessary for implementation of the alternative selected. Determining
of a time horizon (horizon of control) necessary for implementing the decision
made.

9. Implementation of the decision made: current monitoring of availability and
spending the necessary resources, estimation of necessary time frames, register-
ing and quality estimation of intermediate and �nal results.

10. Application of possible analytic and expert quality criteria to estimation of �nal
results.

11. Analysis of the �nal results achieved by the company experts, and �nal elucida-
tion of advantages and disadvantages of the alternative implemented; analysis
of the decision making and implementing process, and forming forecasts (fore-
sights) for the future.

12. Writing the �nal report on the tasks performed.

5 Architecture of DSS for forecasting of �nancial

and economic processes

DSS architecture is a generalized large-scale representation of system elements with
links between them. Architecture gives a notion for the general purpose of system con-
structing and its basic functions. DSS functionality is controlled by user commands,
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correctness of which is monitored by the command interpreter which constitutes a
part of user interface. The user commands are implemented by the main operation
module that coordinates functioning of all system elements. The speci�c commands
and actions can be the following: expanding and modi�cation of bases available in the
system; initiation and starting of data and knowledge processing procedures; model
constructing, forecasts estimation and alternative generating; viewing intermediate
and �nal results of computing; retrospective analysis of previous results of decision
making; comparing of current results with previous.

The system interface is considered as its basic element from the point of view of
its presentation to the user. This is justi�ed by the fact that interface construction
in�uences substantially convenience as well as rate and e�ectiveness of user interaction
with the system [10]. The principles of interface constructing and its implementation
create a separate special task that is not considered here.

6 Coping with uncertainties

The problem of identifying and taking into consideration various uncertainties is a
very important one and is practically always present in decision making procedures.
Here we do not consider the cases when uncertainties are taken into consideration
with expert estimates. Though expert estimates are not excluded from the process of
alternative generation. For example, expert estimate can be used for selecting special
types of mathematical models that for some reason cannot be chosen automatically
due to sophisticated structure or necessity to apply special estimation procedures.
Expert judgment can also be useful for �nal selection of the best alternative from the
set of generated decisions.

Statistical data uncertainties such as skipped measurements, extreme values and
high level jumps of unknown origin could be processed with appropriately selected
statistical procedures. There exist a number of data imputation procedures that help
to make collected data complete. For example, very often skipped measurements for
time series can be generated with appropriately selected distributions. Processing
of jumps and extreme values helps with adjusting data stationarity and to estimate
correctly probability distribution.

Application of Kalman �lter requires knowledge of covariance for state distur-
bances and measurement errors. As far as these parameters are often unknown it is
useful to apply appropriate adaptive estimation algorithms that provide acceptable
estimates for the statistical parameters. An experience of practical application of the
�lter shows that it better to use separate procedure for covariance estimation to avoid
divergence of �ltering algorithm.

Fuzzy logic can be hired for coping with the level uncertainties for variables when
we consider linguistic variables instead of numerical ones. There are possibilities for
transforming fuzzy values into numerical and vice versa. Thus, there is no problem
for processing fuzzy and exact variables in the frames of one computing procedure.

Probabilistic types of uncertainties regarding whether or not some event will hap-
pen can be taken into consideration with various probabilistic models. Among them
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are analysis of distributions, Bayesian networks and other possibilities. From the
computational point of view it is easier to process discrete variables as far as they
accept a �nal number of values. In this case probabilities are assigned to outcomes
using a probability mass function (PMF). Mass function tells us what �weight� (or
a mass) should be assigned to each outcome. The sum for all the masses is 1,0. In
a case of dealing with continuous variables, that may accept in�nite number of val-
ues, we use probability density function (PDF). An integral over the density function
should be equal to 1,0. When more than one random variable is considered we have
to use joint distribution functions.

Generally speaking the modern instrumentation for coping with uncertainties is
very powerful and it should be used in the frames of decision support systems for
enhancing their possibilities with respect to reaching the best models and forecasts,
and the best possible decisions.

7 Data, model and forecasts quality criteria

To achieve reliable high quality �nal result of forecasting at each stage of compu-
tational hierarchy separate sets of statistical quality criteria have been used. Data
quality control is performed with the following criteria:

- database analysis for missing values using developed logical rules, and imputation
of missed values with appropriate techniques;

- analysis of data for availability of outliers with special statistical tests, and
processing of outliers to reduce their negative in�uence on statistical properties of
data;

- normalizing of data in a case of necessity;
- application of low-order digital �lters (usually that's low-pass �lters) for sepa-

ration of observations from measurement noise;
- application of principal component method to achieve desirable level of orthog-

onalization between the variables selected;
- computing of extra indicators for the use in regression models.
It is also useful to test how informative is the data collected. Very formal indicator

for data informativeness is sample variance. It is considered formally that the higher
is the variance the richer is data with information. Another criterion is based on
computing derivatives with a polynomial that describes data in the form a time
series. For examples, such polynomial may describe rather complex process trend as
follows:

y ( k ) = a 0 +

p∑
i= 1

aiy ( k − i ) + c 1k + c2 k
2 + ... + cm k

m + ε ( k ), (1)

where y ( k ) is the main variable; a i, c i are model parameters; k = 0, 1, 2, ... is
discrete time which is linked to real continuous time t via data sampling period T s
as follows: t = k T s; ε ( k ) is a random process that integrates in�uence of external
disturbances to the process being modeled as well as model structure and parameters
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errors. Autoregressive part of the model (1) describes the deviations that are imposed
on a trend, and the trend itself is described with the m-th order polynomial. In this
case maximum number of derivatives can be m, though in practice actual number of
derivatives is de�ned by the largest number i of the parameter c i, that is statistically
signi�cant.

To select the best models constructed the following statistical criteria are used:
determination coe�cient (R 2 ); Durbin-Watson statistic (DW ); Fisher F -statistic;
Akaike information criterion (AIC ), and residual sum of squares (SSE ). The forecasts
quality is estimated with hiring the following criteria: mean squared error (MSE );
mean absolute percentage error (MAPE ); and Theil inequality coe�cient (U ). To
perform automatic model selection the following combined criterion is proposed:

VN (θ, DN ) = e|1−R
2|+ln(1+

SSE

N
)+e|2−DW |+ln(1+MSE)+ln(MAPE)+eU , (2)

where θ is a vector of model parameters; DN − is a dataset of power N . The power
of the criterion was tested experimentally and proved with a wide set of models and
statistical data. Thus, the three sets of quality criteria are used to insure high quality
of �nal result.

8 Coping with uncertainties

When considering mathematical models it is important to use a uni�ed notion of
model structure which we de�ne as follows:

S = { r, p, m, n, d, z, l } ,

where is model dimensionality (number of equations); is model order (maximum order
of di�erential or di�erence equation in a model); is a number of independent variables
in the right hand side; is a nonlinearity and its type; is a lag or output reaction delay
time; is external disturbance and its type; are possible restrictions for the variables.

The process of constructing a model in the form of BN can represented with
the following steps: 1) - a thorough analysis of the process (object) under study
aiming to detecting of its special functioning features and identi�cation of parent and
daughter variables; 2) - search and analysis of existing process models and determining
the possibility of their usage in DSS; 3) - determining degree of relations between
the process variables using special tests and expert estimates; 4) - reduction of the
process dimensionality whenever this is possible; 5) - scaling and discretization of
the data available when necessary; 6) - determining semantic restrictions on the
future model; 7) - estimation of candidate model (directed acyclic graphs) structures
using appropriate optimization procedures and score functions; 8) - candidate models
analysis and selection of the best one using model quality criteria (including values
of score functions); 9) - application of the model(s) constructed to solve the problem
stated; 10) - computing inference with the model(s) constructed with regards to
the variables selected, quality analysis of the result. In our case the �nal result of
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the model application is computing of client default probability with the conditions
established by other model variables. According to alternative problem statement
BM can be constructed for estimation of operational or other type of �nancial risks.

Support vector machine. Support vector machine (SVM) belongs to the group of
techniques that determines classes with the limits for spaces. It also can be used for
constructing SVM based regression models to solve forecasting problem. The support
vectors are created with the vectors of data that lay on these limits. The classi�cation
result is successful if the space between the limits is empty. Usually SVM is hired
to solve the problems of linear classi�cation and regression analysis. The basic idea
of SVM is in transformation of input vectors to the space of higher dimension with
subsequent search of separating hyperplane with maximum distance in this space.
Two parallel hyperplanes are built on both sides of separating hyperplane, and the
separating hyperplane is the one that maximizes the distance between the two extra
parallel hyperplanes. The algorithm is based on maximization of distance between
the parallel hyperplanes what minimizes mean classi�cation error.

Conclusions

The methodology for constructing of decision support system for mathematical mod-
eling of economic and �nancial processes that is based on the system analysis prin-
ciples: hierarchical system structure, taking into consideration of probabilistic and
statistical uncertainties, generating of decision alternatives, and tracking of compu-
tational processes for all the stages of data processing.

The system proposed has a modular architecture that provides a possibility for
the easy extension of its functional possibilities with new model parameter estimation
methods, forecasting techniques, and alternative generating. High quality of the �nal
result is achieved thanks to appropriate tracking of the computational processes for
all data processing stages: preliminary data processing, model structure and param-
eter estimation, computing of short- and middle-term forecasts, as well as thanks
to convenient for a user intermediate and �nal results representation. The system
is based on di�erent (ideologically di�erent) techniques of modeling and forecasting
what creates a good base for combination of various approaches to achieve the best
results. The examples of the system application show that it can be used successfully
for solving practical forecasting problems.

The DSS can be used for decision making support in various areas of human
activities including strategy development for industrial enterprises, transportation
and investment companies etc. Further extension of the system functions is planned
with new forecasting techniques based on probabilistic technologies.
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Abstract

Features of formation of tourist tra�c in the territorial aspect are considered.
The econometric model of the average length of stay in hotels is built. The main
factors a�ecting the duration of the stay of tourists in the regions are identi�ed
and analyzed.
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Introduction

The relevance of domestic tourism, assimilating �nancial resources on its own territory
and develop local infrastructure, today more than ever evident. Complex indicators
of activity for the emerging domestic tourism destinations Russia have not made yet.
This is due to the fact that the calculation of tourist tra�c in general, and on the
domestic market alone is not accurate enough and is focused mainly on income from
international outbound tourism. Development of local travel agencies and, especially,
tour operator networks, is at an early stage of formation. Therefore, the main in-
dicator of the interest in the tourist center in Russia today can only be the average
length of stay in hotels.

This �gure is signi�cant in European tourist �ow measurement systems [1-4],
because it is considered as the most visible and identi�able. This indicator is linked
to the policy airlines' excursion fare "(agreement with hotel accommodation facilities
to increase overnight stays), and they are trying to increase the rate of event programs
and various of other accents in the sights of tourist centers. This indicator is shown
in the brochures as an indicator of the interest of tourists in the Tourist Center, and
as an indicator of investment attractiveness of the region.

1 Panel data model for the average length of stay

In the constructing of the model, average length of stay data were used from the
site of the Federal Service of State Statistics (http://cbsd.gks.ru/). Baseline data are
available for analysis, have a panel structure. In this regard the panel data model
with �xed e�ects was chosen as the main model [5, 6].

In the role of e�ects of objects were the e�ects of regions objects (76 regions of
Russia involved in the analysis). Time moments match with years from 2002 to 2013.
Input factor re�ecting the development of the region road infrastructure was also
included in the model.
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The equation of the model is as follows:

yit = µ+Ri + At + θρit + εit, (1)

where yit - the average length of stay (number of nights/number of placed persons)
in a objects of collective accommodation; i - number of the region (i = 0, . . . , 75;
number i = 0 corresponds to the Altai Region); t - number of the year (t = 0, . . . , 11
number t = 0 corresponds to 2002 year); µ - unknown general mean; Ri - the e�ect of
the i-th region; At - the e�ect of the year with the number t; ρit - the density of paved
public roads per 1,000 sq.km. territory �i� in year �t�; θ - unknown parameter; εit -
random error with respect to which the assumptions are valid: in all cases errors are
independent and identically distributed with zero mean and variance σ2

ε : εit ∼ (0, σ2
ε),

i = 0, . . . , 75, t = 0, . . . , 11.
The fact that the corresponding matrix of independent variables has linearly de-

pendent columns is a feature of the model (1). The consequence of this is the im-
possibility of uniquely estimation of the model parameters. The solution is possible
if to make a reduction of the model [7]. Reduction procedure is to move to a new
dummy variables re�ecting the e�ects of the di�erence of each of the quality factors
with some chosen level. For regional factors such baseline was selected Altai region,
for the time factor - in 2002. After the reduction of the model (1) takes the form

yit = µ+ ri + at + θρit + εit, (2)

where ri = (Ri − R0) - dummy variable re�ecting the di�erence of i-region's e�ect
with the e�ect of the Altai Region (i = 1, . . . , 75; at = (At−A0) - analogous a dummy
variable for the year t (t = 1, . . . , 11).

2 The results of econometric analysis

Statistical estimation of parameters and statistical hypothesis testing in this study
were performed using the statistical package R [8]. After the calculations were as
follows.

The coe�cient of determination, re�ecting the quality of the constructed model
was equal to 0.9001. Statistics F -test during the test on the signi�cance of the model
is 85.33. Hypotheses about the relevance of all input factors is not rejected for the
probability of error of 0.001 or less. The regional factor has the greatest explanatory
power. It accounts for 74.11% of the explained variance. This is followed by the time
factor (7.82%) and road infrastructure factor (0.17%).

A detailed analysis of the estimates of the model parameters (2) allowed a number
of conclusions. Kabardino-Balkaria, Stavropol and Krasnodar region stand out from
all the regions. They are the "old" tourist centers of the Soviet era and is actively
are reforming of tourist and recreational infrastructure in order to resume the former
tourist tra�c. Kurgan, Tambov, Bryansk region and the Jewish Autonomous Region,
are the regions of border trade with Kazakhstan, China and Belarus. Length of stay
is signi�cantly higher than the average in Russia (see Figure 1).
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Figure 1: Dynamics of the average length of stay in the areas of resort and
therapeutic types

Over time, the length of stay in the tourist centers in the whole of Russia is
gradually reduced from an average of 6 to 4 days. The rate of decline is increasing,
and has a de�nite linear form (see Figure 2).

Development of road infrastructure in comparison to other factors has the least
impact, but that impact can not be ignored. Increasing of the road density works upon
reduce of the average length of stay. Transport accessibility increases the proportion
of tourists "Weekend" with a short stay. Increased mobility of tourists.

If we consider the average length of stay of tourists in the regions of Russia,
the situation is as follows. Maximum length of stay of citizens there in the North
Caucasus Federal District, and is approximately 9 days. This is due to the presence
of the Stavropol Territory (10 days on average), and Kabardino-Balkaria (9 days),
with are the maximum "points" in the spectrum of weeks long stay in Russia (see
Figure 3).

The same can be said about the Southern Federal District with an average for the
Krasnodar Territory about 8 days. Thus both of these regions in terms of reducing
the overall length of stay in accommodation facilities of the Russian Federation can
be considered the most a�uent (average decline of about 30 percent compared to
45% in Russia for ten years from 2002 to 2013).

All other federal districts have approximately the same average length of stay
(from 3.5 to 6 days), showing an equal potential for di�erent segment groups: business
objectives, recreational, cultural and historical, a longer stay is the result only of
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Figure 2: The e�ects of time factor by years

medical and beach tourism. We should also note, mark the situation in the Volga
Federal District, where there is the sharpest decline in 2002-2013gg. (42%) due to
a decrease in length of stay in the Perm region and the republic of Udmurtia with
9.5-10 days in 2002, respectively, to 4.9 and 5.2 days in 2013.

Conclusions

Reducing of the average length of stay in the Russian regions by 45% in 10 years, due
to the increase of the total mobility of the population, reducing the time of holidays
and the transition to a European standard short rest twice a year, or a weekend
getaway. The tourism as enjoying of the cultural, historical and recreational value
of the territory, in this case acts as an additional product to the main part of the
business - tourism, the Tourist Center without commercial and business attractions,
or an established brand hyped event, can expect to attract on tourists only in case of
possession of exceptional natural and recreational or medical balneological resources.

Thus, the initial hypothesis of the interdependency road and stay of tourists, as
the possibility of the development of domestic automobile tourism is not completely
accurate. First accommodation facilities considered in those places where there are
roads, and secondly a signi�cant "regional bias" shows the bene�ts the policy of
promotion and branding of regions, as one of the most e�ective tools for attracting
tourists and residents of destination in its own recreation.
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Figure 3: Average length of stay in the Russian regions (average for the 2002-2013
biennium)
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Abstract

In article is o�ered direction of the development to theories of the stochastic
resemblance for e�cient decision of the problems of the estimation and checking
quality complex technical systems in process of their creation and usages. It
Is O�ered, is theoretically motivated and experimental is con�rmed criterion
of the stochastic resemblance in the manner of relations function distribution
parameter (the features) of the systems. The most Further development to
theories of the stochastic resemblance will allow to advance in study nonlim-
iting distribution, which little are described in classical theory of chances and
mathematical statistics.

Keywords: product, system, control, quality, test, stochastic similarity,
invariant similarity, modelling, the similarity theorem, criterion.

Introduction
Modern development of technics is characterised by sharp complication of the

problems solved at manufacturing of products, high requirements to their reliability,
deadlines of creation and introduction in operation, aspiration to reduce an expense
for product working out at satisfaction of the set conditions. Existing methods of an
estimation and quality assurance of a product by results of tests appear often ine�-
cient in the conditions of the determined experiment or the available diverse, statis-
tical information limited on volume on results of physical modelling, prototyping and
tests of a small number of samples. One of solutions of a problem of maintenance of
quality and reliability at a design stage and manufacturing of products is application
of the theory of similarity and modelling.

The doctrine about similarity and modelling has started to be created more four
hundred years ago. Leonardo da Vinci, Michelangelo, Galileem became attempts to
prove methods of modelling and to apply them in various areas: to architecture,
the mechanic, geometry, astronomy. However the �rst scienti�c formulations of a
condition of similarity have been received by I.Newton in its work �the Mathematical
beginnings of natural philosophy� in which it considers movement of material bodies
and establishes laws of their similarity. It had been opened ways of application and
modelling of mechanical systems and their criteria.

Academician M.V.Kirpichev [1] in the works has shown that the similarity theory
is the experiment and modelling theory. She speci�es, how it is necessary to put
experience, to process the skilled data, and also to generalise and extend the received
results to other objects.

Now the most urgent problem is development of the theory of similarity with
reference to research problems of the big, di�cult and non-uniform systems and
objects.
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Despite variety of the works devoted to methods of reduction of volumes and
duration of tests of products for an estimation and control of their reliability, there
are no the e�ective methods which are based on the uniform approach to the deci-
sion of problems on the basis of association of the diverse information by results of
experimental working o�, available in the limited volume.

As a whole, the similarity theory shows that any functional dependence between
physical parametres of investigated object can be presented in the form of depen-
dences between the criteria of similarity made of physical parametres. Thus, dis-
tinguish full, incomplete (partial, local, functional), approached and other kinds of
similarity used in corresponding ways of modelling [3].

The special place occupies the stochastic similarity which description is given as
in �the theory of stochastic similarity�, and in �the stochastic theory of similarity�.
The essence of both statements is reduced to the description of similarity of stochastic
objects by methods of probability theory and the mathematical statistics. Using geo-
metrical interpretation, we will notice that speech in this case can go about similarity
of set of the polygons which parties have the casual sizes.

In the generalised concept similarity of the phenomena is de�ned as proportional-
ity each other all sizes characterising the phenomena, and proportionality factors (a
similarity constant) keep constant value in all points of system for the certain name of
sizes, but are various for sizes of the di�erent name. Similarity of the phenomena it is
possible to express also and so-called invariant similarity (idem) that means "same".

It is necessary to distinguish concepts �a similarity constant� and �invariant simi-
larity�. The constant keeps constant value in all points of system, but it will be other
when one steam of the similar phenomena another is replaced. Similarity constants
are not any. Communication of the sizes entering into constants of similarity, is de-
�ned by law of the physical phenomenon and expressed in the form of the equations.
Presence of such equation establishing dependence between sizes, imposes certain
restrictions and on similarity constants.

Here communication of concepts �a similarity constant� and � invariant similarity�
stochastic the similar phenomena with regress of the random variables characterising
these phenomena is traced. Really, let two phenomena characterised by two systems
(vectors) of casual parametres (sizes)(X1, X2, ..., Xi, ..., Xn) and
(Y1, Y2, ..., Yj, ..., Yn) identical dimension are observed n. Normalized the correlation
matrix looks like [8]

‖rij‖ =

∥∥∥∥∥∥
r11 ... r1n

... ... ...
rn1 ... rnn

∥∥∥∥∥∥ (1)

Where rij - correlation factor between Xi and Yj.
Then a diagonal matrix ‖rij‖ with elements rij = 0 if i 6= j, contains factors of

correlation, the best approach of linear regress x on y with regress factors βij = rij
σx
σy

where σx and σy - mean square deviations of random variables x and y accordingly
[10].

Let's consider substantive provisions of the theory of similarity.

344



Applied Methods of Statistical Analysis

The �rst theorem of similarity is formulated as follows [3]: at the similar
phenomena criteria of similarity are numerically identical (necessary conditions of
similarity).

The similar phenomena are characterised by a number of certain properties.

1. The sizes de�ning the phenomena in all points of system in which processes
of the given phenomenon proceed, concern in homologic points the sizes with the
same name from group of the similar phenomena, as constant numbers. Each size
is answered with the number, various for each pair of the phenomena. Thus it is
necessary to mean that the studied phenomena proceed and in geometrically similar
systems.

2. The sizes characterising the considered phenomenon, are independent from each
other, and between them there are certain communications. If these communications
can be expressed in the form of mathematical dependences the last letter are identical
to the similar phenomena.

The essence of the second theorem of similarity (π - theorems) consists in
carrying over of the data of individual experience on all phenomena similar to it,
with the help the criteria equations. That is, functional dependence between sizes
characterising process can be presented in the form of dependence between the criteria
of similarity made of them.

The third theorem of similarity establishes signs on which it is possible to learn,
whether two phenomena each other are similar. The theorem recognises that the
equations which connect among themselves sizes of the �rst phenomenon are known,
and these equations of communication answer also to living conditions of unlimited
number similar to the �rst phenomenon, i.e. existence of group of the similar phe-
nomena is possible.

Besides, following additional positions to the basic theorems of similarity [3] are
known.

1. Di�cult systems are similar, if subsystems corresponding to them are similar
and the criteria of similarity made of sizes, not entering in any of subsystems are
equal.

2. Similarity conditions, fair for systems with constant parametres, it is possible
to extend and to systems with variable parametres under condition of coincidence of
relative characteristics of variable parametres.

3. Similarity conditions, fair for isotropic (homogeneous) systems, can be extended
to anisotropic (non-uniform) systems if anisotropy in compared systems is rather
identical. That is, it actually a condition of association of non-uniform stochastic
objects (selection).

Conditions of similarity of the phenomena.

1. Geometrical similarity of systems and alphabetic similarity of the equations of
communication (a necessary condition).

2. Similarity of conditions of unambiguity of the phenomenon allocating it from
group of others (a necessary condition). If these conditions same, as well as at the
�rst phenomenon, only numerical values of the sizes entering into them, at the second
phenomenon others these sizes name monovalently. Accordingly, unambiguity condi-
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tions name conditions of monovalency of the phenomenon. The choice of constants of
similarity in similar systems is not any, for there are the causing equalities demand-
ing that the indicators of similarity received from the equations of communication,
equaled to unit. From here:

3. A necessary condition of similarity is equality to unit of indicators of the
similarity made of constants of sizes, entering into an unambiguity condition. This
requirement is answered with equality of criteria which carry the name de�ning for
their invariancy is included into the conditions de�ning similarity of the phenomena.

Thus, the third theorem of similarity consists that those phenomena which
occur in geometrically similar systems are similar, submit to the same equations of
communication at which monovalents are in numerically constant relation and the
criteria made of them are equal.

Hence, the phenomena are similar, if their expressed in relative units and mono-
valency criteria are identical.

The presented principles of similarity in stochastic sense are based that the parame-
tres entering into criteria of similarity, are random variables, and criteria of similarity
- functions of these random variables [3].

Then similarity stochasticcertain physical systems should be based on equality of
functions of distribution of the parametres (sizes) characterising these systems.

The decision of a problem of an estimation of stochastic similarity of two systems
characterised in casual parametres, is spent by check of a statistical hypothesis about
equality of functions of distributions of these parametres. For this purpose it is
necessary to know the law of distribution of the chosen criterion.

Thus, in stochastic statement by a similarity condition equality of functions of
distribution of random variables (parametres) is. If to compare two classes of ob-
jects for which as a result of tests estimations of functions of distribution of their
parametres the condition of the approached stochastic similarity according to the
�rst can be written down similarity theorems in the form of a�nity of selective cri-
teria of similarity on probability [4] are received. According to the third theorem
of similarity a su�cient condition of similarity of two systems is equality of any two
corresponding criteria of similarity of these systems made of their key parametres and
initial (boundary) conditions. De�ning criteria are made of sizes independent among
themselves which enter into unambiguity conditions (geometrical parities, physical
parametres, regional conditions, initial and boundary).

Having chosen as criteria of stochastic similarity of function of distribution of
some parametres, it is possible to write down a condition (criterion, the indicator)
stochastic similarity in the form of the relation

Q =
F1(x1, x2, ..., xn)

F2(y1, y2, ..., yn)
(2)

Where F1(·) and F2(·) � functions of distribution of parametres (characteristics)
of objects by number n.

Let's note communications of criterion (2) with existing concepts.
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1. Expression (2) represents in regular intervals the most powerful criterion of the
relation of credibility [9].

2. At Q = 1 expression (2) degenerates in identity which is used as likelihood
integrated transformation of random variables from di�erent general totalities. For
example, in Figure 1 procedure of transformation of a random variable x1 with dis-
tribution function F1(x1) in a random variable x2 with distribution function is rep-
resented F2(x2).

3. At F2(·) = 1 expression (2) degenerates in the stochastic superindicator [5]
which is used for identi�cation of laws of distribution for samples mainly small volume.

It is obvious that the size Q in expression (2) is casual. Then, having entered
into consideration function of distribution of this relation (criterion of stochastic
similarity), it is possible to estimate criterion, using concept of the signi�cance value
αused for check of statistical hypotheses.

According to a lemma [9] random variable z = F (x) where F (x) - distribution
function, is in regular intervals distributed in an interval [0; 1]. Then, according to
expression (2) there are two independent random variables z1 andz2, in regular inter-
vals distributed in an interval [0; 1]. It is necessary to de�ne the law of distribution
private q = z1

z2
, under a condition z1 ≤ z2. (3)

Let's notice that the condition z1 ≤ z2 is postulated from reasons of reception
of foreseeable area of distribution of a random variable q. Further advantage of
introduction of this condition will be shown. The density of joint distribution of the
ordered random variables z1 also z2 looks as follows [6]

f(z1, z2) = 2!fz1(z1)fz2(z2) = 2, (3)

Where fz1(z1) = 1 and fz2(z2) = 1 � density of distribution of independent random
variables z1 and z2.

In a general view the density of distribution of the relation q looks like [7]

g(q) = −
0∫

−∞

z1f(z1,qz1)dz1 +

∞∫
0

z1f(z1, qz1)dz1.

Having substituted in this expression the formula (3), and, having rejected the
�rst integral as z1 ∈ [0; 1], we will receive

g(q) =

1∫
0

z1f(z1, qz1)dz1 =

1∫
0

2z1dz1 = 2 · z
2

2

∣∣∣∣∣∣
1

0
= 1 . (4)

That is, the relation from two independent random variables in regular intervals
distributed in an interval [0; 1], there is a random variable in regular intervals dis-
tributed in an interval [0; 1].

For acknowledgement told in Figure 1 the typical histogram of distribution of the
random variable q, constructed by results of computing experiment is resulted.
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Figure 1

It is possible to show that the statistics of criterion Kolmogorov for hypothesis
check about uniform distribution of a random variable q is equal

λ = D
√
n = |max(∆)|

√
n = 0, 07

√
100 =0, 7.

Probability P (λ) = 0, 711 that much more level α = 0, 1. Therefore the bases to
reject a hypothesis about uniform distribution of a random variable q in an interval
[0; 1] is not available [8].

For comparison in Figure 2 the histogram of empirical distribution of the simple
relation of two independent in regular intervals distributed in an interval [0 is resulted;
1] random variables.

Apparently from the �gures, the given distribution of the general with the uniform
has no anything. Besides, at it long enough �tail� that would complicate decision-
making because of weak discernability of threshold values of criterion on �tail�.

Thus, results of computing experiment (imitating modelling) testify to justice of
expression (4) for the description of density of distribution of criterion (2).

Now for hypothesis check about stochastic similarity of two objects characterised
by two samples of supervision, it is enough to compare settlement value of criterion
(2) with theoretical, having integrated density (4) on the area limited to a signi�cance
value α. It is obvious that for the uniform law it does not represent any di�culties.

Generalising told, it is necessary to notice that the theory of stochastic similarity
is some generalisation of probability theory and the mathematical statistics on the
similarity theory. It is intermediate between full uncertainty and probability the-
ory with mathematical statistics (which operate with laws of distribution and their
parametres) and allows to do a conclusion about similarity of stochastic objects in
certain conditions.
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Figure 2

Its use gives the chance carrying out of certain manipulations with stochastic
similar objects. The further development of the theory of stochastic similarity will
allow to promote in research of nonlimiting distributions which are a little described
in classical probability theory and the mathematical statistics. Especially that their
part which will give the chance to manipulate samples of small volume and censor
samples, taking from them an information maximum.
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Abstract

Existing methods of an estimation of quality (e�ciency) of samples in the
determined statement appear unacceptable in uncertain conditions of their use.
Working out of such samples is based on performance of requirements on reach-
ing some quality. The choice of this or that variant is based on procedures of
estimation which product indicators and criterion substantiation (or criteria)
includes comparisons. The greatest complexity is represented thus by a choice
of a way of data of private indicators to generalised (criteria) on which the
decision is made. In article the concept of a method of potential distribution of
probabilities and stochastic similarity in comparison problems is resulted.

Keywords: potential distribution of probabilities, stochastic similarity,
product indicators substantiation, criteria of comparison.

Introduction
Modern development of technics is characterised by complication of the problems

solved by various samples which owing to integration of the diverse and distributed
elements more and more can be considered as di�cult systems. Working out of such
samples, as a rule, is based on performance of requirements to destination (achieve-
ment of some quality), which satisfaction, generally, in probably various ways. The
choice of this or that variant is based on the estimation which procedure includes
product indicators and criterion substantiation (or criteria) comparisons. The great-
est complexity is represented thus by a choice of a way of data of private indicators
to generalised (criteria) on which the decision is made.

Existing methods of an estimation of quality (e�ciency) of samples in the de-
termined statement appear unacceptable in uncertain conditions of their use that
causes necessity of working out of ways of the decision of a problem for the stochastic
statement which urgency is dictated by the requirement of timely reaction of market
conditions in the conditions of a rigid competition and uncertainty of demand and
application of samples to destination.

The problem of comparison of samples consists in a general view in:
formation of product indicators, characterising the most important properties;
choice of criterion of comparison (the generalised indicator);
estimation of compared samples.

Results of the decision of a problem are used for acceptance of this or that decision
depending on a research objective.

1. Potential distribution of probabilities
The information situation at which use potential distribution of probabilities, is

characterised by that are known only given about corresponding characteristics of
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analogues is exemplary [1]. In this case it is represented expedient to put forward
a hypothesis about linear convolution of some private dimensionless indicators. For
de�nition of weight factors of such convolution there is enough of various methods.
All of them are based on this or that model of behaviour of environment which, as
a rule, is postulated in the informal image. Meanwhile objectivity the models con-
structed with use of a principle of a maximum of uncertainty possess. One of possible
approaches of an estimation of the speci�ed weight factors who is based on this prin-
ciple, the method of potential distribution of probabilities is. The maintenance of a
considered situation thus can be presented the following scheme.

Is available n samples of products who on the shape and appointment can be
considered as analogues of some prototype. Set of characteristics (product indicators)
de�ning its degree of quality (e�ciency) is put each of these samples-analogues in
conformity. Let such characteristics will be m. We will designate through xij
(i = 1, n) j = 1,m � private indicators of compared objects. The initial data thus
it is convenient to have in the form of a matrix

X =


x11 x21 ... xn1

x12 x22 ... xn2

... ... ... ...
x1m x2m ... xnm

 .
The weight j � of that characteristic in distribution of means to achievement

of demanded level of an indicator of quality of samples generally is unknown. It
is required to compare available samples-analogues taking into account objectively
existing uncertainty.

The principle of potential distribution postulates for comparison use of criterion
of Bajesa as the complex indicator re�ecting quality of this or that sample. It has
the following appearance

bi =
m∑
j=1

pj rij, (1)

Where rij � dimensionless indicators, and rij = xij/xBj if the increasexij leads to
growth b and rij = xBj/xij if the increasexij leads to reduction b;

xBj � the characteristic of the base sample in which quality any of the presented
samples is considered.

Then weight factors pj, (j = 1,m), re�ecting certain model of behaviour of envi-
ronment, are by maximisation of entropy of Shennona

H = −
m∑
j=1

pj ln pj → max; (2)

At restrictions

m∑
j=1

pj = 1 ;
m∏
j=1

r
pj
j = const.
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It is possible to show that expression for estimations of weight factors has the
following appearance

pj =

(
n∑
i=1

rij

)−1
 m∑
j=1

(
n∑
i=1

rij

)−1
−1.

(3)

Restrictions in (2) postulate a condition of normalization and a constancy of the
compound. Physically the last means that the relative increment of weight j − −
of that characteristic to proportionally relative increment of an indicator concerning
level of the same characteristic on all set of considered samples, and proportionality
factor depends on the reached level.

The lack of a subjective choice of the base sample is inherent in the given method
that, however, does not in�uence quality standard by a principle �is better-is worse�.

2. Stochastic similarity
Now the most urgent problem is development of the theory of similarity with

reference to research problems of the big, di�cult and non-uniform systems and
objects. As a whole, the similarity theory shows that any functional dependence
between physical parametres of investigated object can be presented in the form of
dependences between the criteria of similarity made of physical parametres [3].

The special place occupies the stochastic similarity which objects of research in
considered statement are samples of supervision of the random variables, supposing
any physical interpretation.

Known principles of similarity in stochastic sense are based that the parametres
entering into criteria of similarity, are random variables, and criteria of similarity -
functions of these random variables [2]. Then similarity stochasticcertain physical
systems should be based on equality of functions of distribution of the parametres
(sizes) characterising these systems.

The decision of a problem of an estimation of stochastic similarity of the systems
characterised in casual parametres, is spent by check of a statistical hypothesis about
equality of functions of distributions of these parametres [4].

It is necessary to notice that at considered above potential distribution of proba-
bilities and stochastic similarity much in common. Really, transition to dimensionless
indicators rij in expression (1) is that other, as the similarity relation. Besides, an
essence of the second theorem of similarity (π � theorems) is carrying over of the
data of individual experience on all phenomena similar to it, with the help criteria
the equations. That is, functional dependence between sizes characterising object
can be presented in the form of dependence between the criteria of similarity made
of them [2].

Conclusion
It is possible to show that at comparison by a method of potential distribution of

probabilities of two objects which private characteristics are proportional with factor
c, their complex indicators (1) will di�er also with this factor. It means that stochastic
similarity, being a special case of potential distribution of probabilities, establishes a
parity between objects in the conditions of proportional (with the factor equal to a
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constant of similarity) of change of their characteristics.
Thus, stochastic similarity, being one of methods of research of di�cult systems,

allows to solve problems of their comparison by a direct estimation of a parity of
similar indicators.
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Abstract

In article the e�ective nonparametric method of identi�cation of models of
refusals of radio-electronic equipment of means of automation of management
is proved by dynamic systems. The essence of the o�ered method consists that
on the small samples presented in the form of a variation number, practically
always it is possible to �nd such transformation in which result the statistics
which is not dependent on parametres of distribution of general totality will
turn out. Function of distribution of such statistics it is represented expedient
to de�ne as a result of statistical modelling if its analytical construction is
complicated.

Keywords: model of refusals, identi�cation, a nonparametric method, dy-
namic system, the superindicator.

Known experience of working out and application of separate mathematical re-
ceptions for identi�cation of models of refusals of radio-electronic equipment of means
of automation of management by dynamic systems [1] is by this time stored. How-
ever till now there was no uniform methodical basis of reception of discrimination
functions. The problem becomes complicated that decisions are correct only under
condition of the account of set of characteristics between which stochastic communi-
cation is possible. It is necessary not only to reveal and estimate this communication,
but also to consider in the course of the decision of problems of synthesis and the
analysis of electronic systems.

Owing to that character of signals does not give in to the strict regular descrip-
tion, it makes sense to use for formalisation by probability theory elements. Having
entered into consideration casual character of investigated parametres xi, it is pos-
sible to apply known receptions of their formal description. It is obvious that the
fullest information on casual process the density of distribution of its co-ordinates
f(x1, x2, ..., xn). However bears complexity of use of multidimensional distributions
consists in known di�culties of their identi�cation and limitation of forms of the obvi-
ous description. So, perhaps, unique generalisation of multidimensional distribution
in an explicit form is the multidimensional density of the normal law

f(x1, x2, ..., xn) = Ce−Q(x1−a1,x2−a2,...,xn−an),

Where
Q(x1, x2, ...xn) =

∑n
k,l=1 qklxkxl � Positively certain square-law form;

a1, a2, ..., an � Population means of random variables x1, x2, ..., xn;
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Factors C also qkl = qlk are expressed through dispersions σ2
1, σ

2
2, ..., σ

2
n and corre-

lation factors rkl between xk and xl.
Normal distribution plays a fundamental role in the theory of probability and the

mathematical statistics since substantive provisions of these sections of mathematics
are based on the assumption of normal distribution of general totality. However the
information situation in which conditions the decision is made, often does not allow
to postulate unequivocally an assumption about normal distribution.

Complexity and heterogeneity of conditions of realisation of electronic systems
causes necessity of research, for which basis it is expedient to put speci�c methods
of the statistical analysis. Experience of carrying out of similar researches in various
areas of a science and technics has allowed to reveal a number of positions which
can e�ectively be applied to an estimation of dynamics of processes of functioning of
electronic systems. However feature of fast ageing of the information and its limited
volume causes application of the methods using invariant statisticians of the theory
of stochastic indication [2].

The essence of the given approach consists that on the small samples presented
in the form of a variation number, practically always it is possible to �nd such trans-
formation in which result the statistics which is not dependent on parametres of
distribution of general totality will turn out. Function of distribution of such statis-
tics it is represented expedient to de�ne as a result of statistical modelling if its
analytical construction is complicated. That is the given approach belongs to the
class of nonparametric methods of check of hypotheses about a kind of the law of
distribution.

Basis of construction of the transformation leading to formation of the invariant
statistics, the variation number x

(m)
1 ≤ x

(m)
2 ≤ ... ≤ x

(m)
m made of sample of inde-

pendent random variables serves x1, x2, ..., xm. The density f(x1, x2, ..., xm) of joint
distribution of members of a variation number is de�ned by expression

f(x1, x2, ..., xm) = m!
m∏
i=1

fi(xi) ,

Where fi(xi) � density of distribution of a random variable xi;
m � Quantity of supervision in sample.
To get rid of parametres of distribution of general totality it is possible, having

subjected to members of a variation number to intermediate transformation. So, for
example, for sample of random variables xi in volume m=2 of general totality with
exponential distribution law such transformation looks like

ℵ =
x1

x2

, x1 ≤ x2.

Really, having applied N.V. Smirnova's return transformation to random variables
x1 and x2, we will receive expression

ℵ =
ln(1− α1)

ln(1− α2)
,
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Which does not depend on parametres of exponential distribution, but depends
only on the random variables α1 ≤ α2 in regular intervals distributed with joint
density of probability

fα(α1, α2) = 2! .

It is similarly possible to show that for sample in volume m=3 of general totality
with the uniform law of distribution intermediate transformation looks like

ℵ =
x

(3)
2 − x

(3)
1

x
(3)
3 − x

(3)
1

=
α2 − α1

α3 − α1

,

Whereα1 ≤ α2 ≤ α3 � the ordered random variables in regular intervals dis-
tributed in the range of [0,1].

For sample of the same volume of general totality with the normal law of distri-
bution:

ℵ =
x

(3)
2 − x

(3)
1

x
(3)
3 − x

(3)
1

=
η2 − η1

η3 − η1

,

where η1 ≤ η2 ≤ η3 � the ordered random variables distributed under the standard
normal law.

The increase in supervision in sample allows to build set of intermediate transfor-
mations under the similar scheme. Such set is characterised by integrated function
of joint distribution G(ℵi, i = 1,m− r), where r � number of parametres of distri-
bution of general totality. Owing to an ambiguous arrangement of critical zones for
ℵi, i = 1,m− r at a preset value G it is represented expedient to apply a method
of stochastic indication according to which G(ℵi, i = 1,m− r) acts in a role of the
superindicator [1,2].

Stochastic superindicator S represents probability of the event which outcome
depends on a parity of two or several random variables. In our case the superindicator
acts in a role of nonparametric criterion of the consent. Legitimacy of its use is based
on the following statement.

The statement. Let it is required to check up a hypothesisH ′0 : G(S) ≡ G1(S1),
where G1(x) � function of hypothetical distribution of a random variable x. We
will enter into consideration random variables S = G(x) and S1 = G1(x). Then,
if equality G(x) = G1(x) expression H ′0 : F (S) ≡ F1(S1) where F (S) and F1(S1) �
functions of distribution of superindicators is fair is carried out S and S1. Hence,
hypothesis check H0 is equivalent to hypothesis check H ′0.

Process of formation of superindicator S, its function of distribution F (S) and
the nonparametric criterion of the consent based on it for some organic laws of dis-
tribution of general totality, and also research of its capacity, are in detail stated in
[2].

Let's notice that superindicators for various laws of distributions can be in a
similar way generated. However to receive �nal analytical dependences not always it
is obviously possible. In such cases the problem can be solved numerical methods.
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Besides, in the presence of some aprioristic data about a class of distribution of
general totality, for example, when parametres of the prospective law are known, to
check up a hypothesis it is possible, having spent transformations of available random
variables in uniform, normal or exponential. Then enough to use the corresponding
superindicator for identi�cation of the transformed random variables.

Really [3,4], sample x
(n)
1 ...x

(n)
n of random variables of general totality with the

normal law of distribution N (m, ), where m � a population mean let is given; n �
rms a deviation.

If sequence of random variables x
(n)
1 ...x

(n)
n to present in the form of a variation

number

x
(n)
1 < ... < x

(n)
k < ... < x(n)

n ,

Where x
(n)
k =

n−1∑
i=1

x
(n)
i

k
and k = n-2,

Then density of joint distribution of the relation

ℵ =
x

(n)
k − x

(n)
1

x
(n)
n − x(n)

1

, ℵ ∈ [0, 1], n = 3, ...∞

Looks like

f(ℵ) =

(
k+1
k
− ℵ

)
arctg

√
k
√
ℵ2 − 2ℵ+ k+1

k
·
(
ℵ2 − 2ℵ+ k+1

k

) .
The proof.
It is necessary to enter random variables into consideration:

y1 =
η

(n)
k√
k
− η(n)

1 ; y2 =

η
(n)
k√
k
− η(n)

1

η
(n)
n

; ℵ =

η
(n)
k√
k
− η(n)

1

η
(n)
n − η(n)

1

.

Then

η
(n)
1 = y1

(
1

y2

− 1

ℵ

)
, η

(n)
k = y1

√
k

(
1 +

1

y2

− 1

ℵ

)
, η(n)

n =
y1

y2

.

Hence, Jakobian

∂
(
η
(n)
1 ,η

(n)
k ,η

(n)
n

)
∂(y1,y2,ℵ)

=

∣∣∣∣∣∣∣∣
1
y2
− 1
ℵ − y1

y22

y1
ℵ2(

1 + 1
y2
− 1
ℵ

)√
k − y1

y22

√
k y1

ℵ2
√
k

1
y2

− y1
y22

0

∣∣∣∣∣∣∣∣ = −
√
k

y21
y22ℵ2

.

Means

f (y1, y2,ℵ) = 1
Cη
f
(
η

(n)
1 , η

(n)
k , η

(n)
n

)
·

∣∣∣∣∣∣∣∣
1
y2
− 1
ℵ − y1

y22

y1
ℵ2(

1 + 1
y2
− 1
ℵ

)√
k − y1

y22

√
k y1

ℵ2
√
k

1
y2

− y1
y22

0

∣∣∣∣∣∣∣∣ =
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=
3! e−

y2
2
d y2

1

√
k

(2π)
3/2 y2

2ℵ2Cη

.

Therefore f (y2,ℵ) = 3
πCη

√
k

y22ℵ2d
√
d
,

Where d =
y22(kℵ2−2kℵ+k+1)+y2(kℵ2−2kℵ+k+1)+kℵ2+2ℵ2

y22ℵ2
.

Further designations are entered: a = kℵ2 − 2kℵ+ k + 1;

b = 2kℵ2 − 2kℵ − 2ℵ;

c = 2ℵ2 + kℵ2;

b1 = b/a and c1 = c/a.

Then f (y2,ℵ) = 3
πCη

ℵy2
√
k

a
√
a(y22+b1y2+C1)

√
y22+b1y2+C1

.

Hence, f(ℵ) = 3
√
kℵ

πa
√
aCη

{
y1 − b1

2
y2

}
andf(ℵ) =

3
√
kℵ·4(2kℵ2−2kℵ−2ℵ)
πCη
√
a(b2−4ac)

,

Where b2 − 4ac = 4ℵ2 {−2ℵ2k + 2kℵ − (k + 1)}.
Means f (ℵ) = 3

πCη

( k+1
k
−ℵ)

πCη
√
ℵ2−2ℵ+ k+1

k (ℵ2−2ℵ+ k+1
k )

.

Considering, as F (ℵ) = 6
πCη

arctg

(
ℵ√

ℵ2−2ℵ+ k+1
k

)
Cη = 6

π
arctg

√
k, we receive a

de�nitive kind of expression forf (ℵ) =
k+1
k
−ℵ

arctg
√
k(2ℵ2−2ℵ+ k+1

k )
√

2ℵ2−2ℵ+ k+1
k

.

Hence F (ℵ) =
arctg ℵ√

ℵ2−2ℵ+ k+1
k

arctg
√
k

.

Procedure of check of a hypothesis about an accessory of sample of general normal
set consists in the following.

On sample of random variables a x
(n)
1 ...x

(n)
n variation number is under construction

x
(n)
1 < ... < x

(n)
k < ... < x

(n)
n ,

Wherex
(n)
k =

n−1∑
i=1

x
(n)
i

k
and k=n-2 also it is calculated ℵ =

x
(n)
k −x

(n)
1

x
(n)
n −x

(n)
1

.

Value of the superindicator pays o�

SP = F (ℵ) =
arctg ℵ√

ℵ2−2ℵ+ k+1
k

arctg
√
k

.

Critical value of superindicator SKP =a, where and - a signi�cance value is de�ned.
Are compared settlement SP and critical SKP values of the superindicator. Thus,

if SP < SKPthe hypothesis about the normal law of distribution of initial sample is
rejected; if SP> SKP there are no bases to reject the put forward hypothesis.

Expansion of possibilities of application o�ered for identi�cation of models of
refusals (including is likelihood-physical) method radio equipment is reached by car-
rying out preliminary operational (algebraic or integro-di�erential) transformations
of the initial information.
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Abstract

The Plan of the statistical reception checking - a set of the rules, on which
check the party and come to a conclusion about her(its) acceptability or unac-
ceptability. Consequently, problem consists in motivated choice of the variant
of the plan of the checking, which takes into account the information about
reliability from usage product. Firm operating the system of the provision to
reliability product di�erent purpose possible at presence to feedback, which
allows to develop and correct the system of the selective checking in process
production (the repair). The Purpose given work was a show to need of the
account to serviceability product at organizations of the system of the reception
checking the enterprise.

Keywords: sustainable functioning of the system, ensuring reliability, sam-
pling plan, statistical acceptance control.

Steady functioning of system of maintenance of reliability of products of di�erent
function probably in the presence of the debugged feedback which by data about
refusals and the malfunctions arisen for the industrial reasons and revealed in op-
eration, allows to develop and correct system of selective control in the course of
manufacture (repair).

The system of selective control represents a set of plans of selective control and
corresponding schemes [1]. In turn, the plan of statistical acceptance control is a set
corrected, on which supervise party and the decision on its acceptability or unaccept-
ability make. And the scheme of selective control � the procedure establishing rules
of switching from one plan for another, and returnings to the initial plan. Hence, the
problem consists in a well-founded choice of a variant of the plan of control which
considers data on reliability from operation of products.

As variant of the plan of control is called set of dependences between volume
of sample and nparty volume N , at various values of a rejection degree of quality
qm(level of discrepancies [2]), corresponding to a preset value of risk of the consumer
[β3]. Thus, for a choice of the plan of control it is necessary to de�ne [3]:

Value of risk of the consumer β;
Value of a rejection degree of quality qm;
Rejection variant.
Value of risk of the consumer β is established by competent bodies or the agree-

ment between the supplier and the consumer. For de�niteness we will be set by less
rigid requirement of the consumer to quality of controllable production β = 0, 1.
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Value of a rejection degree of quality qm should be chosen, proceeding from a
boundary degree of quality which represents as much as possible admissible share of
defective products in party.

Thus, value of a rejection degree of quality qm should not exceed value of
a boundary degree of quality. Or on the contrary, on the value of a boundary
degree of quality calculated by data from operation to establish value of rejection
level equal to it qm.

The choice of a variant of rejection demands separate consideration and in the
given work is not resulted.

Let's consider an example of scoping of sample for control of a lot of products in
the size N = 165 in which it has been while in service revealed D = 25 defective for
the industrial reasons. For sample scoping we will calculate value of boundary level

qm =
D

N
· 100% =

25

165
· 100% = 15%. (1)

It is obvious that qm > β · 100%. Therefore selective control for party with such
level of defective products it agree GOST 16493-70 [3] it is not provided.

According to later GOST P 50779.52-95 [2] account of operational reliability of
products by working out (updating) of the plan of acceptance control is carried out
by the task of an estimation of expected actual (entrance) level of discrepancies in the
shown party (the next party from sequence of parties). Thus recognise that if by the
time of creation of the plan the estimation of actual (entrance) level of discrepancies of
the party which have arrived on control is known, use it. In the absence of such given
by an expert method choose an interval of this estimation and the corresponding
plan. Further this plan is necessary for specifying periodically on the basis of the
subsequent estimations.

Under table 1 [2] at value of risk of the consumer β = 0, 1 trust degree to the
supplier is established T2. From table 4 at volume of party N from 151 to 280 we
choose plan A.21 and the scheme for normal control A.81.

According to plan A.21 and scheme A.81 at level of discrepancies by data from
operation (1) and to standard level NQL = β ·100% = 10% there is a situation, when
qm > NQL in which any of admissible plans, including continuous control, does not
provide high probability of acceptance.

Thus, according to operating GOSTs the party with such level of defects
(discrepancies) should be exposed to continuous control.

By the way, for a considered case of inadmissibility of defective products in sample
(d = 0) to the cores is GOST 16493-70 [3] which urgency is con�rmed by its reprinting
in 2011. In this document of the table are made with the minimum value of volume
of sample n = 20. Believing that in standards it is impossible to provide all variants
of control, we will solve a problem analytically in the following statement.

From the party in the size N containing according to operation D of defective
products, the sample in volume n taken without returning is taken n. All products
from this sample are exposed to control check about revealing of discrepancies (de-
fects). Let in sample it has appeared d defective products. Then distribution of
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probabilities of number of occurrence of defective products in sample is described by
hypergeometrical distribution with function [4]

P {d(n) = d} =

(
D
d

)(
N −D
n− d

)
(
N
n

) , (2)

Where

(
a
b

)
= a!

b!(a−b)! .

For the plan of type of unitary sample in case of inadmissibility of defective
products in it d = 0. Probability of display at least one defect

Q = 1− P {d(n) = 0} (3)

In sample of the decreasing volume, since some moment, decreases (Figure 1) see.

Figure 1: Probability to �catch� at least one defective product in sample. Physically
it means that the the smaller number of products from party is exposed to control,

the it is less probability to reveal presence defective in it.

Having set by level β = P {d(n) = 0} = 1 − Q which in acceptance control is
treated as risk of the consumer [2], it is possible to de�ne sample volume n, at check
of products from which the defective should not be. In particular, at β = 0, 1 sample
volume should be not less n = 14. It means that for party in the size N = 165
of products from which in operation it has been revealed D = 25 defective, control
should subject casually chosen one product from everyone 12. Thus, if at least one
of the products which are exposed to control, appears defective all party (a rejection
variant in the given problem is rejected is not considered).
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Let's consider the decision of the same problem with use of elements of the theory
of stochastic similarity [5]. Factor of stochastic similarity of control sample of checked
party

K =
Q1
l

Q1
N
,At, Q1

l < Q1
N (4)

Where indexes at Qdesignate a variant of the plan of control (to control one
product casually chosen from each l products of sample) is exposed l. It is obvious
that sample volume in this case (n = N

l
with a rounding o� to the whole value).

The schedule of this function is presented in the Figure 2 which step character
is caused by step-type behaviour of hypergeometrical distribution. The analysis of
Figure 2 shows that with reduction of volume of sample (n it is de�ned by a variant of
the plan of control �1 of l�, i.e. with increase l at the �xed size of party N) the factor
of stochastic similarity decreases. Physically it means that the samples generated
thus with increase l re�ect stochastic essence of controllable party ever less.

Figure 2

Having put that the size in K expression (4) is casual, for a substantiation of
value of the size l characterising a variant of the plan of control, it is possible to
use a consequence of postulation and hypothesis check about stochastic similarity
considered samples. For this purpose it is necessary to know the law of distribution
of a random variable Q. According to a lemma [the 6] random variable Q representing
probability, is in regular intervals distributed in an interval [0; 1]. Then distribution
of a random variable K grows out of the following theorem.

The theorem. The relation from two independent random variables in regular
intervals distributed in an interval [0; 1], there is a random variable in regular intervals
distributed in an interval [0; 1].

The proof. Let two independent random variables and x1x2, in regular intervals
distributed in an interval [0 are given x1x2; 1]. The density of their joint distribution
after streamlining (x1 ≤ x2) looks as follows [8,9]
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f(x1, x2) = 2!fx1(x1)fx2(x2) = 2, (4)

Where and fx1(x1) = 1 � fx2(x2) = 1 density of distribution of independent
random variables and x1x2.

The density of distribution of a random variable y = x1
x2

looks like [7]

g(y) = −
0∫

−∞

x1f(x1,yx1)dx1 +

∞∫
0

x1f(x1, yx1)dx.

Having substituted in this expression density of joint distribution (4), and, having
rejected the �rst integral as x1 ∈ [0; 1], we will receive

g(y) =

1∫
0

x1f(x1, yx1)dx1 =

1∫
0

2x1dx1 = 2 · x
2

2

∣∣∣∣∣∣
1

0
= 1 . (5)

Expression (5) corresponds to density of uniform distribution of the relation y.
The theorem is proved.

Now, proceeding from justice of the postulated hypothesis about stochastic sim-
ilarity considered samples with probability (1 − αfor equal risks of the supplier and
the consumer α = β = 0, 1), it is possible to solve a return problem of de�nition of
the size lcharacterising a variant of the plan of control. For this purpose it is enough
to resolve the equation (4) rather graphic l (Figure 2 see) or numerical way. It is
possible to show that for the set conditions l = 12. It means that one product in a
random way taken from each 12, making checked party should be exposed to control.
In this case from party in the size N = 165 sample in volume n = 14 of products,
in the absence of defects in which will be generated n = 14, the party is considered
accepted.

It is easy to be convinced that the received result coincides with the decision under
formulas (2) and (3) under a condition in Q1

N = 1 expression (4). It is natural, since
the probability of occurrence at least one defective product in party with D = 25
defects is authentic. If necessary, when Q1

N 6= 1, it is possible to extend the o�ered
approach and for an estimation of stochastic similarity samples, generated on di�erent
variants of control among themselves, instead of with party. For the same reason the
form of curves in Q(n) Figure 1 and in K(l) Figure 2 coincides.

Let's consider in�uence of operational reliability on necessity of updating of a
variant of the plan of control. For this purpose in Figure 3 dependences of factors
of stochastic similarity samples, generated on various variants of control of the same
party in volume N = 165 in which operation the various number D of defective
products has been revealed are presented N = 165D.

The analysis of Figure 3 shows that more reliable products are necessary
for supervising more often (curves are displaced towards reduction of number l
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Figure 3: In�uence of operational reliability on variant of the plan of control

of products of which one gets out for control). Rather the reverse, as unsophisticated
experts in the statistican imagine, believing that in highly reliable products defect is
shown seldom, and expenses for control can be saved.

Really, in Figure 4 the function l(D) corresponding to variants of control at factor
of similarity samples of controllable party is presented l(D)K = 1−α = 1−0, 1 = 0, 9.
Apparently is almost linear in the given range of change D dependence.

Figure 4: Dependence of a variant of control (sizel) from number the defects D
revealed in operation of a lot of products

For this function that is characteristic (as it is paradoxical sounds) that for main-
tenance of stochastic similarity of control sample of checked party (i.e. that sample
really re�ected the maintenance of defective products in party) at increase in level
of discrepancies in q it (shares of defective products) volume of control sample it is
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possible to reduce (increasel) in comparison with earlier appointed. And on the con-
trary, if in operation reduction of number D of the revealed defects in party (decrease
in level of discrepancies q) the volume of control sample is necessary for increasing
is registered Dq. That is more reliable products demand special attention (because
of a rarity of display of defects), therefore for authentic revealing of discrepancies it
would be required..

From here there is the economic nuance, consisting that high-quality products
costly not only to make, but also to supervise their quality. Therefore GOST considers
this feature of acceptance control and in table 1 [3] the nearest value for level (1) is
qm = 10%. On set (β = 0, 1 there corresponds to a column And tables) in a line "122
and more" corresponding to the size of party N = 165, value of volume of sample
n = 25 that corresponds to a variant of the plan of control �1 of 6�.

At decrease in level to (qm = 8%decrease in number of defective products in party)
at the same size of party in N = 165 line �138 and more� value of volume of sample
n = 40 that corresponds to a variant of the plan of control �1 of 4�.

That is, the improvement of quality of the manufacture which have led to decrease
of number of defective products in party by results of operation, demands increase of
control of products. Di�erently: it is necessary to con�rm display of more rare events
with the increased volume of the statistical data.

Contrary to this logic, in practice often arrive di�erently: in the absence of the
information on defects in party (i.e. quality high) some heads, aspiring to bene�t,
reduce volume of control sample, i.e. carry out acceptance control less often. For
example, change a control variant �1 product from 5� to a variant �1 product from
10� on the ground that in one let out party of the state order there were no defective
products. Here so! On one party � at once twice to reduce sample volume. Be
accepted, such decision would lead to that for considered party, agree tables 1 [3],
reduction of volume of sample in 2 times would raise rejection level in qm 2,5 times.
It would mean that for the same party instead of registered in operation 25 defective
products because of industrial deviations at a variant of acceptance control �1 product
from 5� could be passed to 62 defective products at a control variant �1 product from
10�.

Not propaganda for performance standards GOST, and display of necessity of
the account of operational reliability of products at the organisation of system of
acceptance control of the enterprise was the purpose of the given work. Without
understanding of essence of selective control and adding elements of the theory of
stochastic similarity in it situations of acceptance of erroneous decisions are possible.
And for responsible products such decisions are fraught with infringement of their
safe operation.
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Abstract

In article safety of operation of di�cult technical systems is considered.
By the present moment in the theory of reliability the subject, the purpose,
methods and research problems were created, but in the theory of safety they are
in a development stage. The theory of adoption of statistical decisions on small
number of supervision still needs now scienti�c justi�cation and development.
Complexity of statement and the solution of problems of creation of the best
estimates at this volume of statistical material is caused by that the required
decision in strong degree depends on concrete type of distribution, the volume
of selection and can't be object of rather general mathematical theory.

Keywords: di�cult technical systems, theory of reliability, theory of adop-
tion of statistical decisions, distribution type, selection volume.

Introduction
The safe operation of complex engineering systems largely depends on the reliability
of their constituent elements. The development of the theory of security as a scienti�c
on-Board is similar to the recognition and establishment of reliability as a science.
And, if so far in the theory of reliability has formed the subject matter, purpose,
methods and objectives of the research, it is safe they are in development. This
state of teaching caused a relatively �young age� of this research area, the feature
information and the need to develop and unsaturated extremal-tion methods for
safety assessment.

Feature information security is characterized by the notion of an event, the occur-
rence of which is the danger. For example, in aviation, in the classi�cation of failures
on the implications of concepts are used:
aviation incident (accident, accident);
the incident (non-localized failures, �res, shut down the engine in �ight, failures of
components and systems that do not have duplication);
emergency landing, etc.

The investigations have to spend in the face of very limited information on the
so-called �tail� of distributions. This implies two aspects of the problem of safety
assessment:
for a quantitative assessment is necessary to develop methods that provide the possi-
bility of such assessment on small number of observations with the required accuracy;
for interval estimation methods necessary, adequately describing the marginal region
of distributions based on limited information.

Generally speaking, statistical information on accidents and incidents are very
limited and heterogeneous, because of the events leading up to them, as a rule, soli-
tary or rarely repeated. Therefore, the safety assessment is currently being carried
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out on a qualitative level, because for the quanti�cation mathematical apparatus in-
formation is not enough.
The theory of making statistical decisions on small number of observations, for many
tasks which are typical leasimpresa posing the problems currently still requires sci-
enti�c substantiation and development. The complexity of formulating and solving
the challenges of building the best estimates in this statistical volume of material is
due to the fact that the desired solution is often to a great extent depends on the
speci�c type of distribution, sample size and cannot be the object of a fairly General
mathematical theory.

It is considered that the beginning of the theory of small samples was initiated in
the �rst decade of the twentieth century the publication of the work W. Gosset, in
which he placed the t-distribution. At the time, Gosset worked as a statistician in
Breweries. He experimented with the idea of a signi�cant reduction in the number
of samples taken of a very large number of barrels, stocks brewery, to selectively
control the quality of porter. In the end, he has published the results of their study
compared a sample of quality control using the t-distribution for small samples and
traditional z-distribution (normal distribution) anonymously, under the pseudonym
�Student� (Student - hence the name t-student distribution).

At the time the question was raised about how much should be sampled, so that
it can be considered small. A de�nite answer to this question simply does not exist.
However, the conventional boundary between small and large samples considered to
be n=30. The reason for this is to some extent an arbitrary decision is the result of the
comparison t-distribution with the normal distribution. A simple visual inspection of
the tabular value of t allows us to see that this approximation is quite fast, starting
with n=30 and above. Therefore, the sample volume of less than 30 observations are
small.

However, the statistics of accidents and incidents operates in much smaller vol-
umes. It is, literally, about a few cases. In these conditions requires neosynthesis
methods based on extreme distributions. That is, pardon the pun, extreme condi-
tions, dictate the use of extreme methods to estimate distributions of extreme values
of random variables. All this, it seems, should be the subject of study of extreme
statistics.

For awareness of the problem it is useful to consider the statement and the possible
way of solving one of the classical problems in the theory of reliability, which has
independent signi�cance in evaluating the safety of objects. In the operation of
aircraft of a particular type occur failures (failure), leading to accidents. For the
entire period of observation, there are no more than 3...5 cases, but the impact is
signi�cant (i.e. a�ecting safety). It is necessary with a given con�dence probability
to estimate the boundary of the safe operation of the product.

As can be seen from the statement of the problem the extremity of the conditions
is that the sample size does not allow to count on acceptable from the viewpoint of
reliability, the solution of the classical method based on the marginal distributions.
Most preferred in this case is information approach using the principle of maximum
uncertainty (the principle of Jaynes), based on consideration of the Shannon entropy.
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This approach is the least sensitive to the initial assumptions, and in General allows
to take into account any number of available information [3].

The formalism of the principle of maximum uncertainty (maximum entropy) pos-
tulates that the least questionable representation of the probabilities will be such a
representation that maximizes the uncertainty in the light of all given information.
In this case, the entropy serves as a measure of uncertainty. The essential di�erence
of the maximum principle of uncertainty is the possibility of obtaining a priori es-
timates of the distribution of information in situations for which there are various
restrictions in the form of a probability measure, a separate torque characteristics,
etc., in the form of equalities and inequalities. From a mathematical point of view,
using the principle of maximum uncertainty, the task of such restrictions leads to the
solution of classical and non-classical optimization problems (extremum problems).
The basis for analysis was the empirical observation. Consider the empirical density
distributions of the smallest (extreme) values in samples of di�erent size n obtained
by simulation modeling of a General population with exponential distribution law.
Their �attened view is presented in �gure 1.

Figure 1: The Empirical density distribution of the lowest the values in the sample

It is easy to see that with increasing sample size, ceteris paribus, the smallest
distribution of a random variable is shifted to the y-axis.

Theoretical justi�cation of the issue are the following considerations. In General
case, the distribution function of the smallest value in the sample size n has the form
[1]

Ftmin
(tmin) = 1− [1− F (tmin)]n (1)

and the density, respectively

ftmin
(tmin) = n [1− F (tmin)]n−1 · f(tmin) (2)

371



Information and statistical analysis of complex systems

where F (·) and f(·) is the function and the density of the initial distribution.
Then the density distribution of the smallest value in the sample from exponenti-
exponentially distributed General population can be written as follows

ftmin
(tmin) = nλe−nλtmin (3)

where λ = 1
T
� the parameter distribution;

T � the mathematical expectation of a random variable t.
Physically formula (3) means that the smallest value in the sample is shown with

intensity proportional to the sample size.
Graphs of the theoretical density functions (3) are presented in �gure 2.
Analysis of �gures 1 and 2 shows the identity of the nature of the empirical and

theoretical distributions of the lowest values in samples from a General population
with exponential distribution law. Consider the quantile function of the distribution
of the smallest value for the sample from an exponential population. To do this, in
the expression (1) substitute the function of the exponential distribution and �nd the
inverse function of quantiles

Figure 2: Theoretical density distribution of the lowest the values in the sample

Tmin = −T
n

ln(1− α) (4)

The graph of this function depending on n are depicted in �gure 3.

The nature of the in�uence of the sample size together with the level of signi�cance
α is illustrated by �gure 4.
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Figure 3: The Function of the quantiles of the distribution of the smallest value of
the sample from exponential General population

Figure 4: Dependence of the quantile function of the sample size

Analyzing �gures 3 and 4, we can conclude that, as be�ts a rational function of
the form
quantile function (4) has asymptomatic properties if n > 10.

When the sample sizes n < 5 not asymptomaticity dependence (4) becomes no-
ticeable. Especially signi�cant is the region of in�ection of functions of quantiles
n ∈ [2, 5]. As for the speci�c point n = 2, a particular point, it should be noted that
it lies on the edge of the range n ∈ [1, 2], where su�cient linearity of the function (4)
gives reason to resort to approximations.

To do this, using the principle of maximum uncertainty (maximum entropy), one
can show that the asymptotic representation of the function of quantiles in the case
when the initial distribution is known only to the mathematical expectation T of a
random variable has the form [3]

Tmin =
nT

n− 1

[
1− (1− α)

n−1
n

]
(5)
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Is of practical interest, the consideration of the asymptotic properties of the
functions and the density function of a random variable Tmin Thus, by substitution
F (Tmin) = α in (5), we have distribution function

F (Tmin) = 1−
(

1− n− 1

nT
Tmin

) n
n−1

(6)

di�erentiating which, it is easy to deduce the density of the desired distribution

f(Tmin) =
1

T

(
1− n− 1

nT
Tmin

) 1
n−1

(7)

Let us show, that functions (6) and (7) are normalized in interval

Tmin ∈
[
0;

n

n− 1
T

]
In the particular case, when the minimum sample volume , density (7) is a linear

dependence of

f(Tmin) =
1

T
− 1

2T 2
Tmin

and the distribution function is quadratic

F (Tmin) = 1−
(

1− 1

2T
Tmin

)2

In the limit (when ) density (7) takes the following form

f(Tmin) =
1

T

and distribution function

F (Tmin) =
Tmin

T
(8)

what is asymptotically corresponds to the uniform distribution.
The distribution of the smallest value in the sample in General bilateral. However,

in terms of solved problems we are interested in the left border, which characterizes
the smallest (extreme) random variable. Therefore, we believe F (Tmin) = α

2
Then for

uniform distribution law (8) the expression is true

T̂H =
α

2
T (9)

which with su�cient accuracy for practice approximates the dependence (4) in the
range

α ∈ [0; 0, 2] .

Theoretical values under conditions from (6) have the following form
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TH = 2T

(
1−

√
1− α

2

)
(10)

Figure 5 presents the theoretical and asymptotic functions of quantiles of the dis-
tribution of the smallest random variable from the sample exponentially distributed
Noi General population. There is also shown the discrepancy of their ∆TH = TH−T̂H ,
for clarity, multiplied by 10.

It is easy to see that the di�erence∆TH between the theoretical and asymptotic
values for the minimum sample volume n = 2 in almost range used α ∈ [0; 0, 2] is not
more than 3%.

Figure 5: Theoretical Graphs and asymptotic functions quantile

Thus, the analysis did not reveal contradictions in the representation of the func-
tion of the quantiles of order statistics in the form of asymptotic dependence (9)
theoretical positions and the results of the computational experiment. He con�rmed
the su�cient accuracy of the method for extreme case sample size n = 2.

The results of the study can serve as a basis for the practical use of the proposed
approach when con�rming the safety and reliability of highly reliable products in
extreme cases, sampling, when the nature of the distribution is not known nothing
but the mathematical expectation of a random variable.
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Abstract

The paper considers an approach allowing to build reliable estimates of the
cumulative distribution function. The approach is based on smoothing an em-
pirical cumulative distribution function using numerical probabilistic analysis.
We propose the method to estimate the reliability indices of technical systems
in conditions of limited information.

Keywords: Reliable estimates, empirical cumulative distribution function,
numerical probabilistic analysis.

Introduction

In order to solve many practical problems need to know the reliable estimation of the
distribution function, constructed under conditions of small amount of statistic data.

Monte Carlo method [12] is a powerful approach, but it has some serious short-
comings. These are di�culties in handling uncertain quantities having unknown
dependency relationships or those with imprecise probabilities, that is, with not fully
speci�ed distributions.

Non-Monte Carlo methods have been developed since 1960s [2, 13]. A major
non-Monte Carlo approach is interval analysis [11, 3].

In our work, we develop a technique that uses Numerical Probabilistic Analysis
(NPA) to solve various problems with stochastic data uncertainty. The basis of NPA
is numerical operations on probability density functions of the random values. These
are operations �+�, �−�, �·�, �/�, �↑�, �max�, �min�, as well as binary relations �≤�, �≥�
and some others. The numerical operations of the histogram arithmetic constitute
the major component of NPA [8].

The aleatory uncertainty characterizes the inherent randomness in the behavior
of the system under study. On the contrary, the epistemic uncertainty characterizes a
lack of knowledge about a considered value. Generally, the epistemic uncertainty may
be inadequate to the frequency interpretation, which is typical for classical probability
and for uncertainty description in the traditional probability theory [7].

A probability box (or P-box) is a characterization of epistemic uncertainties that
is often used in risk analysis or quantitative uncertainty modeling where numerical
calculations must be performed [9, 10]. Second order histograms are alternative of
P-boxes in the case of epistemic uncertainty [6].
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1 Reliable Estimate Empirical Cumulative

Distribution Function

In this section we look at ways to build reliable estimates of the cumulative distri-
bution function (CDF). Let (x1, . . . , xn) be real random variables with the common
cumulative distribution function F (t). Then the empirical distribution function Fn
is de�ned as

Fn(t) =
mt

n
. (1)

where mt is the number of elements xi < t.
Let zi = F (xi), i = 1, . . . , n. Note that zi, i = 1, . . . , n are uniformly distributed

random variables. If z1 ≤ z2 ≤ . . . ≤ zn then expected value M[zi]= i/(n+ 1). Next,
we use the points (xi, i/(n+ 1) for the construction of the approximation cumulative
distribution function F (t). For these purposes, we use splines s.

Let a = x0 < x1 < x2 < . . . < xn < b = xn+1 be mesh.
Suppose that interpolation conditions are

s(xi) = i/(n+ 1), i = 1, . . . , n, s(a) = 0, s(b) = 1,

and let boundary conditions are

s′(a) = 0, s′(b) = 0.

Note that if instead of i/(n + 1) to use their exact values zi, then for example cubic
spline on a mesh {xi} with step h = max(xi+1−xi), i = 0, . . . , n satis�es the estimate

||F ν − sν || ≤ h4−ν ||F (4)||, ν = 0, 1, 2.

Thus, even with a small n, you can build a fairly accurate approximation for F . The
task of building the spline is reduced to solving a system of linear algebraic equations
with a tridiagonal matrix [1]

λjmj−1 + 2mj + µjmj+1 = dj, (2)

2m0 +m1 = 3(z1 − z0)/h1 − h1z
2
0/2,

2mN +mN−1 = 3(zN − zN−1)/hN + hNz
2
N/2,

dj = 3λj(zj − zj−1)/hj + 3µj(zj+1 − zj)/hj+1, j = 1, ..., N − 1.

where mi = s′(xi).
The matrices of these systems are deterministic and right-hand sides contain the

random variables. Thus, by virtue of a deterministic matrix, the solution mi i =
0, . . . , N can be represented as a linear combination of the elements of right side.

As a result, a cubic spline on the intervals [xj−1, xj], j = 1, ..., N has the represen-
tation [1]:

s(x) = mj−1(xj − x)2(x− xj−1)/h2
j −mj(x− xj−1)2(xj − x)/h2

j+
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+zj−1(xj − x)2(2(x− xj−1) + hj)/h
3
j + +zj(x− xj−1)2(2(xj − x) + hj)/h

3
j , (3)

Let pz be joint density distribution of the vector (z1, z2, . . . , zn). Then replacing
z of their joint probability density and using a numerical probability analysis we
obtain estimates of the probability density for the components of the mi and build
a probabilistic extension of CDF. Probabilistic extension of CDF can be represented
in the form of histogram P-box and then used for numerical analysis [9].

Figure 1: Smoothing the empirical CDF

Figure 1 shows an example of smoothing the empirical CDF of the sample dimen-
sion n = 7 distributed over a triangular law on the segment [0,2], with the vertex
(1,1). Where line (1) is empirical CDF, line (2) is the exact CDF, line (3) is smoothed
CDF.

Figure 2: Probabilistic extension of CDF

Figure 2 shows the histogram P-box where the values of probability densities are
shades in gray.

For some random functions we introduce the following concepts. Let the random
function has the form

f(x) =
n∑
i=1

aigi(x),

where ai are random constants, gi ∈ Cm[a, b]. Then the derivative of f(x) de�ned in
such a way:

∂kf(x) =
n∑
i=1

aig
(k)
i (x), k = 0, ...,m.

So, di�erentiating probabilistic extension of CDF we get probabilistic extension
of the probability density function.
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2 Numerical Probabilistic Analysis

NPA is based on numerical operations on probability density functions of the random
values and probabilistic extensions. Represent types of probability density function in
details. Density function can be a discrete function, a histogram (piecewise constant
function), and a piecewise polynomial function.

Using the arithmetic of probability density functions and probabilistic extensions,
we can construct numerical methods that enable us solving systems of linear and non-
linear algebraic equations with stochastic parameter [4]. To facilitate more detailed
description of the epistemic uncertainty, we introduce the concept of second order
histograms, which are de�ned as piecewise histogram functions [5]. The second order
histograms can be constructed using experience and intuition of experts.

Histograms. The histogram is called a random variable density which is repre-
sented piecewise constant function. Histogram P is de�ned grid {xi|i = 0, . . . , n}, on
each interval [xi−1, xi], i = 1, . . . , n histogram takes constant value of pi.

Second order histogram. Next, we consider construction of a second order
histogram in the case of epistemic uncertainty. Suppose that we have a series of
histograms {Yi, i = 1, 2, . . . , N}. Each Yi assign a probability pi:

∑N
i pi = 1. For

simplicity, we assume that all the histograms Yi are de�ned on the mesh {zi, i =
0, 1, . . . , n}. On the interval [zk−1, zk] histogram Yi takes the value Yik. Thus, on each
interval [zk−1, zk], we have a random variable Yk with values Yik and probability pi.
Using these values, we can on each interval [zk−1, zk] restore histogram Pzk.

Operation on histograms. Let p(x, y) be a joint probability density func-
tion of two random variables x and y. Let pz be a histogram approximating the
probability density of the arithmetic operations on two random variables x∗y, where
∗ ∈ {+,−, ·, /, ↑}. Then the probability to �nd the value z within the interval [zi, zi+1]
is determined by the formula

P (zk < z < zk+1) =

∫
Ωk

p(x, y)dxdy,

where Ωk = {(x, y)|zk ≤ x ∗ y ≤ zk+1}.
This approach is generalized to a larger number of variables. Let us required to

�nd a histogram pz of sum

z = a1x1 + a2x2 + ...+ anxn

and let p(x1, x2, ..., xn) be density distribution the probability of a random vector
(x1, x2, ..., xn). Then

P (zi < z < zi+1) =

∫
...

∫
Ωi

p(x1, x2, ..., xn)dx1dx2....dxn,

where Ωi = {(x1, x2, ..., xn)|zi < a1x1 + a2x2 + ...+ anxn < zi+1}.
Probabilistic extensions. One of the most important prblems that NPA deals

with is to construct probability density functions of random variables. Let us start

379



Information and statistical analysis of complex systems

with the general case when (x1, . . . , xn) is a system of continuous random variables
with joint probability density function p(x1, . . . , xn) and the random variable z is a
function f(x1, . . . , xn)

z = f(x1, . . . , xn).

By probabilistic extension of the function f , we mean a probability density func-
tion of the random variable z.

Let us construct the histogram F approximating probability density function of
the variable z. Suppose the histogram F is de�ned on a mesh { zi | i = 0, . . . , n }.
The region is denoted as Ωi = {(x1, . . . , xn)|zi < f(x1, . . . , xn) < zi+1}. Then the
value Fi of the histogram on the interval [zi, zi+1] is de�ned as

Fi =

∫
Ωi

p(x1, x2, . . . , xn)dx1dx2 . . . dxn/(zi+1 − zi). (4)

By histogram probabilistic extension of the function f , we mean a histogram F
constructed according to (4).

Let f(x1, . . . , xn) be a rational function. To construct a histogram of F , we
replaced the arithmetic operation by the histogram operation, while the variables
x1, x2, . . . , xn are replaced by histogram of their possible values. It makes sense to
call the resulting histogram of F as natural histogram extension (similar to �natural
interval extension�).

3 Estimates of Failure Rates

The probability of failure-free operation P (t) is likelihood that within the speci�ed
operating time there is no failure. Operating time is the duration or the amount of
work

The failure rate is measure of failure per unit of time. The failure rate depends
on a failure distribution, which is a cumulative distribution function that describes
the probability of failure prior to time t,

λ(t) = lim
∆t→0

P (t ≤ ξ < t+ ∆t|t ≤ ξ)

∆t
=
f(t)

P (t)
=

f(t)

1− F (t)
.

Note that f(t) = P ′(t) and

λ(t) = −P
′(t)

P (t)
. (5)

Consider a numerical simulation of failure rate. Let (ξ1, ξ2, . . . , ξn) be statistics
failures obtained empirically. Then

− ln(zi) =

∫ ξi

0

λ(ξ)dξ,
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where zi = P (ξi). For to �nd λ(t) we use the method of least squares. Let
ϕ1, ϕ2, . . . , ϕm be linearly independent functions and λ(t) introduce as

λ(t) =
m∑
i=1

aiϕi(t).

To �nd the unknown coe�cients a1, a2, . . . , am consider the functional

Φ(a1, . . . , am) =
n∑
i=1

(zi −
m∑
j=1

ajϕj(ξi))
2 → min .

The problem is reduced to solving a system of linear algebraic equations

A~a = b,

where A = (aij) is the Gram matrix, ~a = a1, a2, . . . , am, b = (bi),
aij = (ϕi, ϕj), bi = (z, ϕi) and

(x, y) =
n∑
i=1

x(ξi)y(ξi).

Using instead of z1, z2, . . . , zn their joint probability density function
p(z1, z2, . . . , zn), we can construct probabilistic extensions of λ(t).

Model example. Given a resampling developments failures {0.0155, 0.0389,
0.2855, 0.5318, 0.7412, 1.0118, 1.1267, 1.2327, 1.8594.}. Suppose λ(t) has the form

P (t) = exp(−
∫ t

0

a1 + a2x
2dx),

and a1 = 1, a2 = 0.3.

Figure 3: Histogram evaluation values a1 and a2

Using least squares method and assuming zi = i/(n+ 1), ϕ1 = 1, ϕ2 = x2, get the
following assessment a0 = 0.95, a2 = 3.23. Numerical probabilistic analysis allows
to construct a probabilistic extension of λ(t). Histogram estimation of probability
density functions for a1, a2 shown in Figures 3.

Using probabilistic extension of λ can calculate the histogram evaluation values
P (t) at any time. Figure 4 shows the histogram evaluation P (t) at the time t = 1.
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Figure 4: Histogram evaluation values P (1)

Conclusion

This method of estimating the failure rate of equipment critical applications, enables
us to construct reliable estimates of parameters of reliability of complex technical
systems in a small sample. The reliability of estimates are constructed using prob-
abilistic extensions CDF. The proposed approach can be used to assess the various
risks in complex technical systems in conditions of limited information.
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Abstract

The results of a study of two types of piecewise linear process on the Poisson
�ow are considered in the paper. The process of the �rst type is a non-stationary
process, whose values in Poisson reference points are the sum of independent
uniformly distributed random variables with a consistently increasing number
of terms. In the second type of process values in Poisson reference points
are independent random variables with the given distribution function. For
the process of the �rst type are obtained exact expressions for the mean and
variance as a function of time. For the process of the second type are shown that
it is asymptotically stationary process of a one-dimensional distribution. On
concrete examples numerically are shown that the second process fairly quickly
reaches a steady level. The correlation structure of the processes is investigated
numerically.

Keywords: piecewise linear process, Poisson �ow, correlation functions,
in�ection point.

Introduction

In [1] was considered several approaches to modeling of ruled non-Gaussian processes
with respect to the modeling of price series. In [2] was considered a ruled random
process on the positive semiaxes t > 0 taking the following values in the interval
(Sk, Sk+1)

Y (t) = (Yk+1 − Yk)
t− Sk

Sk+1 − Sk
+ Yk = (Yk+1 − Yk)Q(t) + Yk, Sk ≤ t < Sk+1, k = 0, 1, . . .

(1)

Here S0 = 0, Sk =
k∑

i= 1

Xi , Xi are independent positive random variables with

density f(x) = λ exp(−λx), Yk =
k∑

i= 0

αi, αi � are mutually independent random

variables not dependent on Xi and uniformly distributed in the interval [a , b], a < b

In [3] function (1) was considered in the form

Y (t) = (Yν(t) − Yν(t)−1)
t− Sν(t)−1

Sν(t) − Sν(t)−1

+ Yν(t)−1 = αν(t) Qν(t)−1(t) +

ν(t)−1∑
i=0

αi,

Sν(t)−1 ≤ t < Sν(t),

(2)
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Figure 1

where integer random variable

ν(t) = Min{n ≥ 1 : Sn ≥ t} ∈ [0,∞), t > 0

is the number of a random interval covering the point t. The probability for n = ν(t)
equals

Pr{ν(t) = n} =
(λt)n−1

(n− 1)!
e−λt, 0 < n <∞.

First and second moments ν(t) equals

E[ν(t)] = 1 + λt, E[ν2(t)] = 1 + 3λt+ λ2t2. (3)

Also in [3] formula for mathematical expectation E[Y (t)] was obtained for the process
Y (t)

E[Y (t)] =
b+ a

4

(
3 + λt ((2 + λt)Γ(0, λt) + 2)− (1 + λt)e−λt

)
. (4)

This paper is a continuation of research of non-stationary processes of the type (1) of
[2], [3]. Using the representation (2) is obtained an exact expression for the variance
of the process. We also consider a modi�cation of the process (1), according to which
the variables Yk are independent random variables with the one-dimensional distribu-
tion F (x). It is shown that this process is asymptotically stationary on the mean and
variance. The corresponding expressions for mean and variance are obtained. Exam-
ples are given for the mean values and variances as a function of time for cases where
Yk is a uniform distribution, or exponential distribution. The correlation structure
of the processes is investigated numerically.

1 Dispersion of piecewise-linear process with

additive random components at the reference

points

Dispersion V [Y (t)] of the process Y (t) is determined by the expression:

V [Y (t)] = E[Y 2(t)]− (E[Y (t)])2

385



Statistical simulation of natural processes

E[Y 2(t)] = E[α2
ν(t)]E[Q2

ν(t)−1(t)] + 2E[αν(t)]E[Qν(t)−1(t)

ν(t)−1∑
i=0

αi] + E[(

ν(t)−1∑
i=0

αi)
2]

for the case when Yk is (2). Taking into account (1), the expressions for
E[Qν(t)−1(t)] and V [Qν(t)−1(t)] [3]:

E[Q(t)] =
1

2
(1 + λt(2 + λt)Γ(0, λt)− (1 + λt)e−λt),

V [Q(t)] = 1
12

(1− λt (2(6 + λt(9 + 2λt)) + 3λt(2 + λt)2Γ(0, λt))Γ(0, λt)+
+(2(1 + 7λt+ 2λ2t2) + 6λt(2 + 3λt+ λ2t2)Γ(0, λt)− 3e−λt(1 + λt)2)e−λt)

and using the expressions

E[αn] =
b+ a

2
, E[α2

n] =
a2 + ab+ b2

3
,

E[Q2
ν(t)−1(t)] =

1

3
e−λt (−1 + eλt + 2λt+ λ2t2 − eλtλ2t2(3 + λt)Γ(0, λt)),

E[(

ν(t)−1∑
i=0

αi)
2] = (1 + λt)

a2 + ab+ b2

3
+ (2λt+ λ2t2)

(a+ b)2

4
,

E[Q2
ν(t)−1(t)] [

ν(t)−1∑
i=0

αi] =

= a+b
2

(
λ2t

∞∫
t

e−λy3
y3

dy3 + λ2
t∫

0

∞∫
t

t−y2
y3−y2 e

−λy3eλy2(2 + λy2)dy3dy2

)
=

= a+b
2
λtΓ(0, λt) + a+b

12
e−λt

(
−2− 5λt− (λt)2 + eλt (2 + 3λt− (λt)2(6 + λt)Ei[-λt])

)
After some transformations we get expression for V [Y (t)]

V [Y (t)] = a2+ab+b2

3
1
3e
−λt (−1 + eλt + 2λt+ λ2t2 − eλtλ2t2(3 + λt)Γ(0, λt)) + 2 b+a2 ·

·
(
a+b

2 λtΓ(0, λt) + a+b
12 e

−λt (−2− 5λt− (λt)2 + eλt
(
2 + 3λt− (λt)2(6 + λt)Ei[-λt]

)))
+

+(1 + λt) a
2+ab+b2

3 + (2λt+ λ2t2) (a+b)2

4 −
−
(
b+a

4

(
3 + λt ((2 + λt)Γ(0, λt) + 2)− (1 + λt)e−λt

))2
.

(5)
If −b = a E[Y (t)] = 0 and

V [Y (t)] = a2+ab+b2

3

(
1 + λt+ 1

3e
−λt (eλt (1− eλtλ2t2(3 + λt)Γ(0, λt)

)
+ 2λt+ λ2t2 − 1

))
For large t D[Y (t)] = a2+ab+b2

9
(4 + 3λt).

The graph of the function E[Y (t)] is presented in Fig. 2 for the various parameter
values a, b, λand in Fig. 3, Fig. 4. graphs of the function

√
D[Y (t)] at di�erent time

intervals. Fig. 4 also shows the value of
√
D[Y (t)] calculated by the model samples.

Choosing the parameters a, b and λ the model can be adjusted to the actual data.
In this paper, for the calculation of the characteristics of the model samples number
of trajectories are equal n = 1000000.
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Figure 2: Graph of the function E[Y (t)] calculated by the formula (4) for the cases:
−b = a = 0.5 � 1, a = 0.5, b = 2.0 � 2 on the time interval (0,19).

Figure 3: Graph of the function
√
D[Y (t)] calculated by the formula (5) for the

cases: −b = a = 0.5 � 1, a = 0.5, b = 2.0 � 2 on the time interval (0,19).

2 The piecewise-linear process with independent

and identically distributed Poisson variables in

reference points

Consider a ruled random process Y (t) form (1) (or (2)), which Yk are independent
random variables with an arbitrary one-dimensional distribution F (x). Let us obtain
an expression for the mean value of the process Y (t):

E[Y (t)] = E[ (Xν(t) −Xν(t)−1)Qν(t)−1(t) +Xν(t)−1] =
= E[Xν(t) ]E[Q(t)] − E[Xν(t)−1 ]E[Q(t)] + E[Xν(t)−1 ] = E[Xν(t)−1 ].
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Figure 4: Graph of the function
√
D[Y (t)] calculated by the formula (5) and by the

model samples for the cases: −b = a = 0.5 � 1,3, a = 0.5, b = 2.0 � 2,4 on the time
interval (0,0.4).

The expression for the dispersion D[Y (t)] of the process Y (t) has the form:

D[Y (t)] = E[Y 2(t)]− (E[Y (t)])2 =
= E[(X2

ν(t) − 2Xν(t)Xν(t)−1 +X2
ν(t)−1)Q2

ν(t)−1(t)+

+2(Xν(t) −Xν(t)−1)Qν(t)−1(t)Xν(t)−1 +X2
ν(t)−1] =

=
(
E[X2

ν(t)] − 2E[Xν(t)]E[Xν(t)−1] + E[X2
ν(t)−1]

)
E[Q2

ν(t)−1(t) ]+

+2
(
E[Xν(t)]E[Xν(t)−1]− E[X2

ν(t)−1]
)
E[Qν(t)−1(t)] + E[X2

ν(t)−1]− (E[Xν(t)−1(t)])2 =

= D[Xk+1]
(
2(E[Q2

k(t) ]− E[Qk(t)]) + 1
)
.

Consider two examples.

1. If Y0 = α0, Yn = αn , n ≥ 1, αn - mutually independent random variables
not dependent on Xi, and uniformly distributed in the interval [a , b] with a density
distribution

f(x) =

{
1
b−a , x ∈ [a, b],

0, x /∈ [a, b],

Then in this case the expression for the mean value of the process Y (t) takes the
form:

E[Y (t)] = E[αν(t)−1 ] = (b+ a)/2,

And the expression for the dispersion D[Y (t)] of the process Y (t) has the form:

D[Y (t)] = 1
36

((11a2 + 14ab+ 11b2) + (a− b)2(1 + λt(7 + 2λt))e−λt−
−(a− b)2λt(6 + λt(9 + 2λt))Γ(0, λt))− (a+b)2

4
.

Note that:
lim
t→0

D[Y (t)] = (a−b)2
12

and lim
t→∞

D[Y (t)] = (a−b)2
18

.

2. If Y0 = α0, Yn = αn , n ≥ 1, αn - mutually independent random variables
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not dependent on Xi, and exponential distributed with parameter λ1 then expression
for the mean value of the process Y (t) takes the form:

E[Y (t)] = E[αν(t)−1 ] = 1/λ

And the expression for the dispersion D[Y (t)] of the process Y (t) has the form:

D[Y (t)] = 1
3λ2
e−λt (1 + 5eλt + 7λt+ 2λ2t2 − eλtλt(6 + 9λt+ 2λ2t2)Γ(0, λt))− 1

λ2
=

= 1
3λ2
e−λt (1 + 2eλt + 7λt+ 2λ2t2 − eλtλt(6 + 9λt+ 2λ2t2)Γ(0, λt)).

At that lim
t→0

D[Y (t)] = 1
λ2
and lim

t→∞
D[Y (t)] = 2

3λ2
.

Figure 5: The dependence of the correlation function r(t, τ) of the process Y (t)
from time t, f(x) = λ1 exp(−λ1x), λ1 = 0.25.

Figure 6: Correlation function of the process Y (t) here f(x) = λ exp(−λx) and
λ1 = 0.25, 0.125, 0.0625.

These examples show that the process of (1) to consider the distributions of Yn is
asymptotically stationary on the mean and variance. The correlation structure of the
processes of the form (1) in this paper was investigated numerically on the basis of
model samples. The calculation results for the case F (x) = 1− exp(−λ1x), λ1 = 1
are shown in Fig. 5.6. Fig. 5 shows the dependence of the correlation function r(t, τ)
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Figure 7: Correlation function of the process Y (t) here f(x) = λ exp(−λx) and
λ1 = 0.25, 0.125, 0.0625.

of the process Y (t) from time. For a given process parameters and for t > 15 the
process becomes close to stationary on correlations. The process behaves similarly
for the mean and variance (Fig. 7). The dependence of the correlation coe�cient
r(t, t+ τ1), τ = 10 from t is presented in Fig. 7

The examples of correlation function r(t, τ) of process Y (t) for values t = 20 and
λ1 = 0.25, 0.125, 0.0625 is presented in Fig. 7. The in�ection point for each of the
functions which are shown in the �g. 7 is a characteristic feature of this process. This
distinguishes them from the correlation functions of piecewise constant processes on
Poisson point �ows and �ows of Palma [4], which is a characteristic feature is the
bulge down.

Conclusions

In conclusion, it should be noted that the algorithms are modi�cations of algorithms
for simulation of piecewise constant processes on point �ows, in particular, considered
in [4]. Speci�city of asymptotically stationary processes discussed in this paper is that
their correlation functions have a point of in�ection and dimensional distribution of
the process does not coincide with the distribution of the random variables in Poisson
reference points. If you use the Poisson �ow as a periodic function of the time the
process becomes asymptotically periodically correlated.

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (grants No.
15-01-01458-a, 15-01-08988-a) and Program �Leading Scienti�c Schools of Russian
Federation� (NSh-5111.2014.1).

390



Applied Methods of Statistical Analysis

References

[1] V.A.Ogorodnikov, A.V. Novikov (2002) Stochastic model of price series. Proceed-
ings of the International Conference on Computational Mathematics. Novosi-
birsk, P. 243-248.

[2] V.A.Ogorodnikov, L.Ya.Savel'ev, O.V.Sereseva (2007) Numerical stochastic
models of piecewise-linear random processes // Rus. J. Numer. Analys. Math.
Modeling. V. 22. No 5. P. 505-514.

[3] L.Ya.Savel'ev, V.A.Ogorodnikov, O.V.Sereseva (2007) Stochastic model of
piecewise-linear random process. Vestnik Syktyvkar university. V.1. No 7. P 67-
76. (in Russian)

[4] G.A. Mikhailov. Optimisation of weight Monte-Carlo Methods. springer,New
York (1992)

391



Statistical simulation of natural processes

An Algorithm for Numerical Simulation of Isotropic

Random Fields and its Meteorological Application

Nina A. Kargapolova and Vasily A. Ogorodnikov

Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk
State University, Novosibirsk, Russia

e-mail: nkargapolova@gmail.com, ova@osmf.sscc.ru

Abstract

In this paper several properties of special type of correlation functions are
considered. This paper presents also a model of monthly mean temperature
�elds in the Lake Baikal area. Suggested model is based on real data and on
studied in the paper simulation algorithm for isotropic random �els.

Keywords: isotropic �eld, stochastic simulation, monthly mean tempera-
ture, Lake Baikal.

Introduction

Solution of various applied problems related to the study of actual time series (for
example, meteorological, oceanologic or hydrological) rather often requires numerical
simulation of isotropic or homogeneous random �elds. Existing general algorithms
are computer memory- and time-consuming. That is why special algorithms for sim-
ulation of random �elds with di�erent types of correlation dependence are developed
[1, 2].

To simulate isotropic discrete Gaussian scalar m−dimensional random �elds with
correlation function

R (r) =

b∫
a

exp
(
−xr2

)
f (x) dx,

where r−Cartesian distance between 2 points in Rm, f (x)− distribution density on
[a; b] , a > 0, a method, suggested in [5], may be used. Formally, this method is not
�precise� one, in the sense of distribution � simulated �eld does not have Gaussian
distribution, but distribution of the �eld is rather close to Gaussian. Suggested
method is low cost in sense of memory- and time-consumption because it is based on
modi�cation of �on rows and columns� algorithm, which was developed for simulation
of �elds with correlation function exp (−xr2) [2].

In this paper properties of correlation function R (r) are considered. This paper
presents also a model of monthly mean temperature �elds in the Lake Baikal area.
Suggested model rely heavily on real data and special case of R (r).

1 Flex points of correlation function

Here are several examples of function R (r).

392



Applied Methods of Statistical Analysis

Example 1. Let f (x) be density of a right truncated exponential distribution with
parameter λ > 0, i.e.

f (x) =

{
λe−λx

1−e−λb , x ∈ (0, b) ,

0, x /∈ (0, b) .

In that case

R1 (r) =
b∫

0

e−xr
2 λe−λx

1−e−λbdx = λ
1−e−λb

1
r2+λ

(
1− e−(r2+λ)b

)
,

R1 (0) = 1.

Example 2. If f (x) is parabolic distribution density on the interval [a, b] , a > 0, i.e.

f (x) =

{
6(x−a)(b−x)

(b−a)3
, x ∈ [a, b] ,

0, x /∈ [a, b] ,

then

R2 (r) =
6

(b− a)3

(
e−br

2

[
2

r6
− a

r4
+

b

r4

]
− e−ar2

[
2

r6
+
a

r4
− b

r4

])
.

Example 3. Let f (x) be Simpson distribution density on the interval [a, b] , a > 0,
i.e.

f (x) =

{
4(x−a)

(b−a)2
, x ∈

[
a, a+b

2

]
,

4(b−x)

(b−a)2
, x ∈

[
a+b

2
, b
]
.

In that case function R (r) is given by

R3 (r) =
4

(b− a)2

1

r4

(
e−ar

2 − 2e−
a+b
2
r2 + e−br

2
)
.

Correlation functions Ri (r) , i = 1, 3 are shown in Figure 1.

Figure 1: Functions Ri (r) , i = 1, 3. Curve 1 � function R1 (r) with b = 10, λ = 5;
curve 2 � function R2 (r) with a = 0.01, b = 0.1; curve 3 � function R3 (r) with

a = 0.1, b = 0.15.

It is well seen from Figure 1 that considered correlation functions have common
characteristic: each of them has a �ex point. It turns out that by the following
Proposition every correlation function of considered type has a �ex point.
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Proposition. If a > 0, b < +∞, distribution density f (x) is continuous function
on [a, b] and f (x) > 0, x ∈ [a; b], then function

F (y) =

b∫
a

e−xy
2

f (x) dx, y ∈ R

has �ex points.
To prove this proposition the following lemma is required
Lemma. Under the conditions of Proposition function (2x2y2 − x) f (x) exp (−xy2)

tends uniformly on [a, b] to (2x2M2 − x) f (x) exp (−xM2) if y →M .
Proof of the Lemma. Let us denote G (x, y) = (2x2y2 − x) e−xy

2
f (x). According

to [3] it is necessary to prove that

∀ε1 > 0 ∃δ (ε1) : |G (x, y1)−G (x, y2)| < ε1

for all x ∈ [a, b] as soon as |y1 −M | < δ, |y2 −M | < δ. By Cantor Theorem G (x, y)
is uniformly continuous function on [a; b]× [−M ;M ], i.e.

∀ε > 0 ∃δ : |G (x, y)−G (x0, y0)| < ε

for all (x, y) , (x0, y0) simultaneously, if |x− x0| < δ, |y − y0| < δ. If we consider
such points (x, y) , (x0, y0), that x = x0, y0 = M, y = yi, i = 1, 2, then ∀δ >
0 |x− x0| = 0. From de�nition of uniform continuity it follows that

∀ε1

2
> 0 ∃δi (ε1) : |G (x, yi)−G (x,M)| < ε1

2

for all points (x, yi) , (x,M) simultaneously, if |yi −M | < δi. Thus,

∀ε1 > 0 ∃δ1, δ2 : |G (x, y1)−G (x, y2)| ≤
≤ |G (x, y1)−G (x,M)|+ |G (x, y2)−G (x,M)| ≤ ε1

2
+ ε1

2
= ε1

for all x simultaneously, if |y1 −M | < δ1, |y2 −M | < δ2. This implies that, if with
given ε1 > 0 we chose δ = min {δ1, δ2} , than inequality

|G (x, y1)−G (x, y2)| < ε1

holds for all x simultaneously, if |y1 −M | < δ, |y2 −M | < δ.
Proof of the Proposition. It is necessary to prove that point, where ∂2F (y)/∂y2

is equal to 0 and changes its sign, exists. For convenience, we'll study function

I (y) =
1

2

∂2F (y)

∂y2
=

b∫
a

(
2x2y2 − x

)
exp

(
−xy2

)
f (x) dx, y ∈ R.

We show that for all a, b : 0 < a < b < +∞ such M1 > 0,M2 > 0 exist, that
I (M1) > 0, I (M2) < 0. By Lemma and by theorem about passage to the limit under
the integral depending on a parameter:

lim
y→M

I (y) =

b∫
a

(
2x2M2 − x

)
exp

(
−xM2

)
f (x) dx.
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At the same time, equality

I (M) = lim
y→M

I (y)

follows from continuity theorem for parameter-dependent proper integral (integrand
is a continuous function).

Hence,

I (M) =

b∫
a

(
2x2M2 − x

)
exp

(
−xM2

)
f (x) dx.

If M2 > 1
2a
, then 2x2M2 − x > 0 for all x ∈ [a; b]. This is almost obvious. On the

one hand, x > 0, and so 2x2M2 − x > 0 ⇔ M2 > 1
2x
. On the other hand, just as

0 < a < b < +∞, so 1
2b
≤ 1

2x
≤ 1

2a
. IfM2 > 1

2a
, thenM2 > 1

2x
and thus 2x2M2−x > 0

for all x ∈ [a; b]. Integrand is a positive function, limits of integration are greater
than 0, so every real number greater than 1

/√
2a may be used as M1. Similarly,

inequality 2x2M2 − x < 0 holds for all x ∈ [a; b], if M2 < 1
2b
. Hence, every real

number less than 1
/√

2b may be used as M2. Thus, I (y) is continuous function and

∃ M1,M2 : I (M1) > 0, I (M2) < 0. These facts implies that ∃ M0 > 0 : I (M0) =

0. So, I (y) = 1
2
∂2F (y)
∂y2

is equal to 0 if y = M0 and changes sign. It means that M0 > 0

is a �ex point of function F (y).
Remark 1. Proposition holds if f (x) ≥ 0, x ∈ [a; b]. In this case it is necessary

to chose such points M1,M2 that f (M1) 6= 0, f (M2) 6= 0.
Remark 2. Proposition holds even if f (x) is a distribution density on [a; +∞) , a >

0. In this case proof is a little bit trickier.
It was shown in this section, that all correlation functions of isotropic random

�elds, that admit considered representation, have �ex points.

2 Stochastic model of monthly mean temperature

spatio �eld

Statistical structure description of monthly mean temperature �elds (MMTF) in the
Lake Baikal area is given in [4]. Study was based on long-term real data from 33
weather stations. These stations are situated in 14 ·105 km2 area. Map of considered
area is given in Figure 2.

It was shown that MMTF is isotropic, but parameters of one-dimensional distri-
bution are di�erent at various locations. Because of small sample size it is practically
impossible to estimate probabilistic characteristic of rare events on basis of real data.
For estimation of rare events probabilistic characteristic it is necessary to develop
and use a simulation model of MMTF. Such model was developed under the follow-
ing conditions:

1. Random �eld was simulated in nodes of a regular grid with rectangle cells. Size
of cells was 35 km× 25 km;
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Figure 2: Map of considered area. Dots show locations of weather stations.

2. In every node one-dimensional distribution of the �eld was assumed to be a
Gaussian one. Parameters of Gaussian distribution N (µi, σ

2
i ) were taken ac-

cording to following formulas:

µi = pi1Mi1 + pi2Mi2,
σ2
i = pi1Σ2

i1 + pi2Σ2
i2,

where Mi1, Mi2 � sample means on nearest and second to nearest to node No.
�i� weather stations, Σ2

i1, Σ2
i2 � sample variance on these stations, pi1, pi2 �

weights that are inversely proportional to distances between node No. �i� and
stations;

3. Random �eld was assumed to be isotropic.

Figure 3 shows values µi for all nodes, when September mean temperature was consid-
ered. Adequacy of such choice of parameters was checked using data from 2 weather
stations, which are situated exactly in grid nods and were not used during parameters
estimation.

For the construction of the model we need an approximation of the empirical
correlation function by a certain special function describing the �eld structure at
arbitrary points of the considered domain. Set of experiments with di�erent types of
correlation functions was carried to de�ne best approximating function. As a criteria
for goodness of approximation minimality condition for the mean square di�erence
between actual and approximating functions was used. Close approximation for all
months was obtained with function

corr (r) = λ
/(
r2 + λ

)
,

where r is Cartesian distance between points. This function is a special case of

function R (r) =
b∫
a

exp (−xr2) f (x) dx, considered in previous section, when f (x) =
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Figure 3: First parameter of Gaussian distribution N (µi, σ
2
i ). September.

λ exp (−λx) , x ≥ 0, λ > 0. To illustrate correlation structure of real and simulated
�elds Figure 4 is given. It shows both correlation coe�cients between weather station,
situated in village Chervjanka, and other stations and approximating function.

Figure 4: Correlation coe�cients estimated on real data (black dots) and
approximating function (black curve). August.

Depending on month parameter λ > 0 changes radically. Some values of this
parameter are presented in Table 1.

Table 1: Parameters of the approximating correlation function.

Month λ
February 2339810
April 4836330
July 1144200

Simulation of random �eld with correlation function corr (r) = λ/(r2 + λ) was
done using algorithm suggested in [5].

Using the numerical model of monthly mean temperature we examine certain
characteristics of the MMMF. Figure 5 shows dependence between share of territory,
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where monthly mean temperature is below given level, and this level. 10000 samples
of random �eld were used

Figure 5: The level-dependence of share of territory, where monthly mean
temperature is below level. Curve 1- March, curve 2 � December.

Using the model probability of very cold/warm month on given territory was es-
timated. Recall that month is considered as very cold/warm if its monthly mean
temperature is 4 degrees Celsius less/greater than so calld �normal mean tempera-
ture�. These probabilities, estimated for 875 km2-area around Irkutsk, are given in
Table 2.

Table 2: Probabilities of very cold/warm month.

Month Pr. of very cold month Pr. of very warm month
January 0.005 0.122
April 0.013 0.016

December 0.020 0.049

Many other meteorological characteristics may be estimated on basis of considered
model. Obtained results may also be used as a basis of both spatio-temporal model
of monthly mean temperature with due regard for annual cycle of real processes and
joint model �monthly mean temperature and monthly precipitation sums�.
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Abstract

In this paper, numerical errors for models of the sea surface undulation based
on spectral decomposition of the stochastic �eld of the water level are studied.
Such errors depend on the number of random harmonics in a spectral model
and on the size of the domain, for which the spectral model is constructed.
Numerical errors are studied for temporal and spatial spectral models.

Keywords: simulation of random �elds, spectral models, sea surface un-
dulation, numerical error.

Introduction

Spectral numerical models of random processes and �elds are constructed using the
spectral expansions theory. Spectral models are used to study various stochastic
objects and phenomena such as turbulence, atmospheric cloudiness, sea surface, etc.
An important research was carry out by G. A. Mikhailov, see [4, 5], namely, the
method of spectrum partitioning and randomization was proposed. This initiated a
series of further studies of theoretical and applied character.

The sea surface roughness can be quite adequately described by a Gaussian homo-
geneous random �eld whose statistical properties are estimated from observations, see
[1, 3]). Spectral models of the sea surface were used to solve series of applied problems
by Monte Carlo method [2, 9, 11]. However, the problem of evaluating the spectral
models remains insu�ciently studied. In this paper, we use the approach proposed in
[7] to study the errors of spectral models of the sea surface. This approach is based on
the calculation of the error of correlation functions reproduction for non-randomized
models and on the estimation of the mean deviation for correlation functions in ran-
domized models.

Let us assume that a real Gaussian homogeneous random �eld w(x), x ∈ Rk, has
zero mean, unit variance, the correlation function R(x) = Mw(x + y)w(y) and the
spectral density f(λ). In this case, the spectral model of the random �eld and its
correlation function can be written down in the form

w(x) =

∫
P

cos〈x, λ〉ξ(dλ) +

∫
P

sin〈x, λ〉η(dλ), (1)
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R(x) =

∫
P

cos〈x, λ〉f(λ)dλ, (2)

where P is a measurable set such that P∩(−P)={0}, P∪(−P) = Rk, ξ(dλ), η(dλ) are
real orthogonal Gaussian stochastic measures on the half-space P, f(λ) is the spectral
density of the random �eld w(x), and 〈., .〉 denotes the scalar product in Rk. See [8]
for a detailed information about the above discussed spectral models.

A simple non-randomized spectral model is an approximation of stochastic integral
(1) by a �nite sum of harmonics:

wn(x) =
n∑
j=1

a
1/2
j

[
ξj cos〈λj, x〉+ ηj sin〈λj, x〉

]
, a2

j =

∫
Qj

f(λ)(dλ) (3)

where ξj, ηj are independent Gaussian variables, Mξj = Mηj = Mξjηk = 0, Mξ2
j =

Mη2
j = 1, the vectors λj ∈ P belong to the corresponding sets Qj:

P =
n∑
j=1

Qj, Qj ∩Qi = ∅ i 6= j.

The random �eld wn(x) in (3) is homogeneous Gaussian with the correlation function

Rn(x) =
n∑
j=1

aj cos〈λj, x〉.

The following value can be naturally considered as the error of the spectral model:

∆(wn, w) = ‖q(x)[R(x)−Rn(x)]‖F , (4)

where q(x) is a certain non-negative weight function and ‖.‖F is the norm in the
functional space F .

Let us consider the randomized model of a homogeneous Gaussian random �eld
w(x) with zero mean, unit variance, and the spectral density f(λ). In this case, λj
are random vectors independent of (ξj, ηj)j=1...n and distributed in Qj according to
the probability densities f(λ)/a2

j , λ ∈ Qj.

Realizations of randomized spectral models are homogeneous random �elds with
a spectrum concentrated at the points λj taken randomly. The following values are
considered as errors of randomized spectral model (3):

M∆(wn, w), (5)

where ∆(wn, w)=
∥∥q(x)[R(x)−Rn(x)]

∥∥
F
is a random variable, Rn(x)=

∑
a2
j cos〈λj, x〉

and the mathematical expectation is taken in (5) accoding to the joint distribution
of the vectors λj.
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1 Spectral models of the sea surface roughness

Spatial spectral models are of strong interest because stationary processes can be sim-
ulated using conventional autoregression schemes and moving average which present
a series of advantages in comparison with spectral models of random processes. We
consider randomized and non-randomized spatial spectral models representable as
the sum of 2n2 harmonics:

wn(x1, x2) =
n∑
i=1

n∑
j=1

a(i, j)×(
ξ(i, j) cos[λ1(i, j)x1 + λ2(i, j)x2] + η(i, j) sin[λ1(i, j)x1 + λ2(i, j)x2]+

ξ(i,−j) cos[λ1(i,−j)x1 + λ2(i,−j)x2] + η(i,−j) sin[λ1(i,−j)x1 + λ2(i,−j)x2]
)
.

(6)
Here ξ(., .) and η(., .) are independent standard normal random variables.We can take
some real value A > 0 and consider the following sets in R2:

Λij = ((i− 1)A/n, iA/n)× ((j − 1)A/n, jA/n), i, j = 1 · · ·n.

We consider (6) as non-randomized model N:

a(i, j)2 =

∫∫
Λij

f(λ1, λ2)dλ1dλ2, a(i,−j) = a(i, j), i, j = 1 · · ·n. (7)

λ1(i, j) = (i− 0.5)A/n, λ2(i, j) = (j − 0.5)A/n,
λ1(i,−j) = λ1(i, j), λ2(i,−j) = −λ2(i, j), i, j = 1 · · ·n. (8)

In this case, the correlation function of random �eld (6) has the form

Rn(x1, x2) =
n∑
i=1

n∑
j=1

[a(i, j)]2

(
cos
(
λ1(i, j)x1 + λ2(i, j)x2

)
+ cos

(
λ1(i, j)x1− λ2(i, j)x2

))
.

(9)

We consider (6), (7) as randomized model R1 with such a distinction from the non-
randomized model N , that the vectors (λ1(i, j), λ2(i, j)) are independently simulated
in the corresponding sets Λij from the distributions induced by the spectral density
f . In addition, consider randomized model R2 without spectrum partitioning similar
to that used in [10]:

a(i, j)2 =
1

2n2
, i = 1, · · · , n, j = ±1, · · · ,±n, (10)

and the vectors (λ1(i, j), λ2(i, j)) for i = 1, · · · , n, j = ±1, · · · ,±n are distributed in
the domain (0, A)× (−A,A) according to the density proportional to f and mutually
independent.
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2 The study of errors of spectral models

All the three spectral models N, R1, R2 are determined by the two parameters A
and n. First, we consider a non-randomized model N of the sea roughness with the
spectrum that takes into account three intervals of gravitational �eld ([1], pp. 19-
20). For this spectrum we used the following parameters: the wind speed at 10 m
above the sea level v = 5 and the frequency of the spectral peak µmax = 0.4. Figure
1 presents the correlation functions for the spectral model N with the parameters
A = 0.1, n = 25.

Figure 1: Normalized correlations functions Rt (a), Rx (b), Ry (c) of the random
sea roughness �eld with the spectrum and the parameters v = 5 m/sec, µmax = 0.4.
The values on the horizontal axes are given in seconds for Rt and in meters for Rx

and Ry.

The correlation functions of the spectral model well approximate the correspond-
ing correlation functions of the sea roughness on the initial sections. However, at large
distances, where the values of correlation functions of the simulated random �eld are
close to zero the values of the correlation functions of spectral models essentially
deviate from zero values. For the correlation functions Rx, Ry such deviations are
close to one in absolute value. This can be explained by the fact that the correlation
functions Rx, Ry are represented by sums of harmonics (9). These sums are almost
periodic functions, which is clear from the periodic character of realizations of spatial
spectral models of the sea surface, see Figure 2. In order to increase the section
where the periodicity of implementations is seen, we have to increase the number of
harmonics.

Table 1 presents the distances such that the correlation of spectral models ad-
equately represents the correlations of a random �eld depending on the number of
harmonics. The Table also presents the values of the half-periods P x, P y of the spa-
tial spectral models, i.e., the distances to the closest negative peaks of the correlation
functions Rx

n = Rn(x, 0), Ry
n = Rn(0, y), approximating the value −1 (see (9) and

Figure 3).
Concerning the error of the temporal correlation function, an increase in the

number of harmonics also increases the distance to the region with essential deviations
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Figure 2: Realization of spatial spectral model (6), (7), (8) with the parameters
A = 0.1, n = 25 (1,250 harmonics) of the sea surface with the spectrum , v = 5

m/sec, µmax = 0.4. The left picture presents the surface area of 2× 2 km2, the right
picture presents the area of 4× 4 km2. One can easily see a periodic character of

the pattern on the right.

from zero values, and the deviations themselves decrease in absolute value, Figure 3.
Let us proceed to randomized spectral models R1, R2. We consider these models

for A = 0.1 for the same random �eld of the sea roughness with the spectrum with
parameters v = 5 and µmax = 0.4. Introduce the following notations:

δtm(T ) = M sup
t∈(0,T )

|Rt(t)−Rt
n(t)|, (11)

δxm(X) = M sup
x∈(0,X)

|Rx(x)−Rx
n(x)|, (12)

δym(Y ) = M sup
y∈(0,Y )

|Ry(y)−Ry
n(y)|. (13)

Here Rt(t), Rx(x) = Rxy(x, 0), Ry(y) = Rxy(0, y) are normalized correlation func-
tions of the simulated random �eld. The functions

Rt
n(t), Rx

n(x) = Rxy
n (x, 0), Ry

n(y) = Rxy
n (0, y)

are de�ned by expressions (9), mathematical expectation is taken over the joint dis-
tribution of the vectors λj and the index m equals 1 for the randomized model R1
with partitioning of its spectrum and equals 2 for the randomized model R2 with-
out partitioning of the spectrum. Values (11) - (13) are presented in Table 2. Each
value was calculated by Monte Carlo method from 100,000 independent realizations
of the spectral model (in this case, the mean square deviation of the corresponding
estimates is less than the values of the estimated parameters by three orders). In
particular, the Table shows that the randomized model R1 with partitioning of its

404



Applied Methods of Statistical Analysis

Figure 3: Normalized correlations functions Rt (a), Rx (b), Ry (c) of
non-randomized spectral model N with the parameters A = 0.1, n = 25 (1,250

harmonics) for the random sea roughness �eld with the spectrum considered (v = 5
m/sec, µmax = 0.4).The values on the horizontal axes are given in seconds for Rt

and in meters for Rx and Ry.

Table 1: The distances Dt, Dx, Dy, where spectral models (6), (7), (8) well
represent (with the absolute error not exceeding 0.02) the normalized correlation
functions Rt, Rx, Ry of the random sea roughness �eld with the spectrum with the
parameters v = 5 and µmax = 0.4 for A = 0.1 depending on the number of
harmonics. The values of the half-periods P x, P y of the spatial spectral models are
presented as well:

n number of harmonics Dt, s Dx, m Dy, m P x, m P y, m
25 1250 90 1000 1300 1570 1510
50 5000 180 2550 2750 3150 3150
100 20000 420 5750 6000 6300 6300

spectrum represents the correlation structure of the simulated �eld more precisely
than model R2 without partitioning, i.e., the values δ1 are approximately half of the
value δ2.

Along with values (11) � (13), Table 2 presents the errors of reproduction of the
correlation functions of the non-randomized spectral model N:

∆t(T ) = sup
t∈(0,T )

|Rt(t)− Řt
n(t)|, (14)

∆x(X) = sup
x∈(0,X)

|Rx(x)− Řx
n(x)|, (15)

∆y(Y ) = sup
y∈(0,Y )

|Ry(y)− Řy
n(y)|, (16)

where

Řt
n(t), Řx

n(x) = Řxy
n (x, 0), Řy

n(y) = Řxy
n (0, y)
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Table 2: The accuracy of representation of the correlation structure of the sea
surface roughness with the spectrum considered (v = 5, µmax = 0.4) with respect to
time and the spatial variables depending on the number of harmonics for spectral
models R1, R2, and N).

n number of harmonics T , s δt1(T ) δt2(T ) ∆t(T )
25 1250 60 0.082 0.174 0.016
50 5000 120 0.049 0.103 0.016
100 20000 240 0.028 0.058 0.015

n number of harmonics X, m δx1 (X) δx2 (X) ∆x(X)
25 1250 750 0.081 0.170 0.017
50 5000 1500 0.048 0.102 0.017
100 20000 3000 0.029 0.058 0.016

n number of harmonics Y , m δy1(Y ) δy2(Y ) ∆y(Y )
25 1250 750 0.081 0.156 0.011
50 5000 1500 0.046 0.094 0.011
100 20000 3000 0.026 0.054 0.011

are the correlation functions for model (6) � (8). Deviations (14) � (16) of the
correlation functions for non-randomized spectral models are essentially less than the
corresponding averaged values (11) � (13) for randomized models. At the same time,
randomized models allow one to represent the spectrum and correlation structure of
the simulated �eld exactly from an ensemble of implementations. This property is
often useful when solving of applied problems (see [6]).

Conclusion

In this paper, we demonstrate the methodology of the error estimation for spectral
models of Gaussian random �elds on an example of the sea surface roughness. In
particular, it was shown that a su�ciently good representation of the correlation
structure of the sea surface in a region of several square kilometers in a period of
several minutes may require dozens of thousands of harmonics.
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Abstract

In this paper we study e�ective coe�cients in the problem of propagation of
the acoustic waves in a multiscale heterogeneous medium. The correlation �elds
of the density and of the elastic sti�ness have been mathematically represented
by Kolmogorov's multiplicative cascades in three-dimensional space. The wave-
length is assumed to be large as compared with the scale of heterogeneities of
the medium. We obtain the e�ective acoustic equation using a subgrid mod-
eling approach. Theoretical results are compared to the results of direct 3D
numerical modeling.

Keywords: Subgrid modeling, multiplicative cascades, e�ective acoustic
equation, random media.

Introduction

Wave propagation in heterogeneous media is a fundamental phenomenon of great sci-
enti�c and practical interest. It is relevant to such important problems as detecting
underground nuclear explosions, understanding the scale structure of oil, gas, and
geothermal reservoirs. Seismic wave propagation and re�ection are used not only
to estimate the hydrocarbon content of a potential oil reservoir, but also the spa-
tial distributions of its fractures, faults, and porosity [6]. In order to compute the
displacement �elds in an arbitrary medium, one must numerically solve a system of
elasticity equations or an acoustic equation. The large-scale variations of coe�cients
as compared with wavelength are taken into account in these models with the help
of some boundary conditions. The numerical solution of the problem with variations
of parameters on all the scales requires high computer costs. The small-scale hetero-
geneities are taken into account by the e�ective parameters. In this case, equations
are found on the scales that can be numerically resolved. The spatial geometry of
small-scale heterogeneities is not exactly known. It has been shown that the irreg-
ularity of elastic parameters, density, permeability, porosity increases as the scale of
measurements decreases [6], [3]. It is customary to assume these parameters to be
random �elds characterized by the joint probability distribution functions. However,
it is di�cult to measure higher order statistical moments for the geophysical param-
eters. At best, only the mean values and correlation functions of the second order
are known. Geophysical parameters, for example, porosity, density, elastic modules
can be well approximated by fractals and multiplicative hierarchical cascade mod-
els with non-Gaussian distributions [3]. The e�ective permeability coe�cients were
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derived in [4]. The permeability was approximated by a hierarchical cascade model
with log-normal and log-stable distributions. As the �rst step toward the goal of
�nding e�ective coe�cients in the problem of propagation of elastic waves in strongly
heterogeneous solids, in this paper we study the propagation of acoustic waves in the
same type of media in which local elastic parameters have essentially all variations
of scales from a a certain interval at each spatial point. In the present paper, the
density of a medium and the elastic sti�ness are approximated by a multiplicative
continuous cascade. We obtain e�ective coe�cients for the estimating the �rst sta-
tistical moment of the displacement in the acoustic equation if wavelength essentially
exceeds maximum scale of heterogeneity, using the subgrid modeling method. If a
medium is assumed to satisfy the improved Kolmogorov similarity hypothesis [2], the
e�ective coe�cients take especially a simple form. The derived formulas are veri�ed
by a direct numerical modeling.

1 Statement of the problem

The propagation of acoustic waves in heterogeneous medium is described by the
equation

ρ (x)
∂2u (x, t)

∂t2
− ∂

∂xi

(
λ (x)

∂

∂xi
u (x, t)

)
= F (x, t), (1)

where t is the time, x is the vector of spatial coordinates, ρ(x) is the density of
medium, λ (x) is the elastic sti�ness, u (x, t) is the displacement, F (x, t) is the source
with the dominant frequency ω0 and the pulse width ω1. Here and later, the sum-
mation over repeated indices is assumed. The wavelength is assumed to be large as
compared with the maximum scale of heterogeneities L.

An increase in the randomness and intermittency in the behavior of the physical
�elds with a decrease in the scale of measurements has led to using hierarchic models
for the physical parameters [4]. For the approximation of the coe�cients ρ(x), λ (x)
we use the approach described in [4].

Let, for example, the �eld λ (x) be known. This means that the �eld is measured
on a small scale l0 at each point x, λl0 (x) = λ (x). Following Kolmogorov [2], we
consider a dimensionless �eld ψ, which is equal to the ratio of two �elds obtained by
smoothing the �eld λ (x)l0 on two di�erent scales l, l

′. Let λl (x) denote the parameter
λl0 (x) smoothed on the scale l. Then ψ(x, l, l′) = λ(x)l′/λ(x)l , l

′ < l. Expanding
the �eld ψ into a power series in (l − l′) and retaining the �rst order terms of the
series, at l′ → l, we obtain the equation:

∂ lnλl(x)

∂ ln l
= ϕ(x, l), (2)

where ϕ(x, l′) = (∂ψ(x, l′, l′y)/∂y) |y=1. The small scale �uctuations of the �eld ϕ
are observed only in the interval (l0, L). The solution of equation (2) is as follows

λl0(x) = λ0 exp

(
−
∫ L

l0

ϕ(x, l1)
dl1
l1

)
, (3)
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where λ0 is the constant. The �eld ϕ determines the statistical properties of the
elastic sti�ness. According to the central limit theorem for sums of independent
random variables if the variance of ϕ(x, l) is �nite, the integral in (3) tends to a �eld
with a normal distribution as the ratio L/l0 increases. If the variance of ϕ(x, l) is
in�nite and there exists a non-degenerate limit of the integral in (3), the integral tends
to a �eld with a stable distribution. In this paper, it is assumed that the �eld ϕ(x, l)
is statistically homogeneous with a normal distribution. The density coe�cient ρ(x)
is constructed by analogy with the elastic sti�ness coe�cient:

ρl0(x) = ρ0 exp

(
−
∫ L

l0

χ(x, l1)
dl1
l1

)
. (4)

The function χ(x, l) is assumed to have the normal distribution and statistically ho-
mogeneous. For such �eld as the density, the cascade model must be the conservative
model, i.e. the following equality should be satis�ed

〈ρl(x)〉 = ρ0, (5)

for any scale l, where 〈〉 means statistical averaging. Condition (5) follows from
physical essence of the �eld ρ. The measured on two di�erent scales �elds ϕ(x, l),
χ(x, l) are considered to be statistically independent

< ϕ(x, l) ϕ(y, l′) > − < ϕ(x, l) >< ϕ(y, l′) >= Φϕϕ(x− y, l, l′)δ (ln l − ln l′) ,(6)

< χ(x, l) χ(y, l′) > − < χ(x, l) >< χ(y, l′) >= Φχχ(x− y, l, l′)δ (ln l − ln l′) ,

< ϕ(x, l) χ(y, l′) > − < ϕ(x, l) >< χ(y, l′) >= Φϕχ(x− y, l, l′)δ (ln l − ln l′) .

This supposition is usually assumed in the scaling models and re�ects the decay of
statistical dependence when the scales of �uctuations become di�erent in the order of
magnitude. The latter was proposed in [2]. To derive subgrid formulas to calculate
e�ective coe�cients, this assumption may be ignored. However, this assumption is
important for the numerical simulation of the �eld ρ, λ. If the minimum scale l0
in formulas (3), (4) tends to zero, the parameters tend to continuous multifractals.
Hence the parameters are described by extremely irregular �elds that are close to
continuous multifractals. If the �elds are statistically invariant to the scale transform,
then the following equality is valid for any positive K:

Φϕϕ(x− y, l) = Φϕϕ(K (x− y) , Kl), Φχχ(x− y, l) = Φχχ(K (x− y) , Kl).

For simplicity, we use the same notation Φ in the right-hand side. Choosing K = 1/l,
we obtain

Φϕϕ(x− y, l) = Φϕϕ

(
x− y

l

)
, Φχχ(x− y, l) = Φχχ(

x− y

l
),

when x = y the functions Φϕϕ, Φχχ are equal to the constants Φϕϕ
0 , Φχχ

0 . If condition
(5) is satis�ed in scale-invariant medium, then Φχχ

0 = 2 〈χ〉 .
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2 Subgrid modeling

The density and elastic sti�ness ρ(x) = ρl0(x), λ (x) = λl0 (x) are divided into two
components with respect to the scale l. The large-scale (ongrid) components λ (x, l),
ρ (x, l) are obtained, respectively, by statistical averaging over all ϕ(x, l1) and χ(x, l1)
with l0 < l1 < l, l− l0 = dl, where dl is small. The small-scale (subgrid) components
are equal to ρ′(x) = ρ(x) − ρ(x, l), λ′(x) = λ(x) − λ(x, l). Applying (3), (4), (5)
yields the formulas:

ρ(x, l) = ρ0 exp

[
−
∫ L

l

χ(x, l1)
dl1
l1

]

ρ′(x) = ρ(x, l)

exp

− l∫
l0

χ(x, l1)
dl1
l1

− 1

 , 〈ρ′(x)〉 = 0,

λ(x, l) = λ0 exp

[
−
∫ L

l

ϕ(x, l1)
dl1
l1

]〈
exp

[
−
∫ l

l0

ϕ(x, l1)
dl1
l1

]〉

λ′(x) = λ(x, l)


exp

[
−

l∫
l0

ϕ(x, l1)dl1
l1

]
〈

exp

[
−

l∫
l0

ϕ(x, l1)dl1
l1

]〉 − 1

 , 〈λ′(x)〉 = 0. (7)

From formulas (7) with the second order of accuracy in dl/l it follows that

ρ(x, l) = ρl(x), λ(x, l) '
[
1− 〈ϕ〉 dl

l
+

1

2
Φϕϕ (0, l)

dl

l

]
λl(x). (8)

〈
λ′ (x)λ′

(
x′
)〉
' Φϕϕ

(
x− x′, l

)
λ (x, l)

dl

l
,
〈
ρ′ (x) ρ′

(
x′
)〉
' Φχχ

(
x− x′, l

)
ρ (x, l)

dl

l
,〈

ρ′ (x)λ′
(
x′
)〉
' Φχϕ

(
x− x′, l

)
ρ (x, l)λ (x, l)

dl

l
.

Consider the temporal Fourier transform of equation (1)

ω2ρ (x)u (ω,x) +
∂

∂xi

(
λ (x)

∂

∂xi
u (ω,x)

)
= −F. (9)

The large-scale (ongrid) component of the displacement u (ω,x,l) is obtained by av-
eraging the solutions to equation (9)

ω2ρ (x, l)u (ω,x, l) + ω2 〈ρ′u′〉+
∂

∂xi

[(
λ (x, l)

∂

∂xi
u (ω,x, l)

)
+

〈
λ′

∂

∂xi
u′
〉]

= −F.

(10)

The subgrid terms
〈
λ′ (x) ∂

∂xi
u′ (x)

〉
in equation (10) are unknown. These terms

cannot be neglected without preliminary estimation. The form of these terms in ( 10)
determines a subgrid model. The subgrid terms are estimated using the perturbation
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theory. Subtracting system (10) from system (9) and taking into account only the
�rst order terms of smallness obtain the subgrid equation:

ω2ρ (x, l)u′ (ω,x) + λ (x, l)
∂2u′ (ω,x)

∂x2
j

= −ω2ρ′ (x)u (ω,x, l)− ∂

∂xj
λ′ (x)

∂u (ω,x, l)

∂xj
. (11)

The variable u (ω,x, l)) in the right-hand side of (11) is assumed to be known. Using
the solution of equation (11) for isotropic media provided that L2ω2ρ (x, l) /λ (x, l)�
1, we obtain

ω2
〈
ρ′ (x)u′ (x)

〉
' 0,

〈
λ′ (x)

∂

∂xi
u′ (x)

〉
' −1

3
Φϕϕ (0, l)

dl

l
λ (x, l)

∂

∂x′i
u (ω,x, l) .(12)

Substituting (12) into the ongrid equation( 10) and given the formulas from (8) we
arrive at the equation

ω2ρ (x, l)u (ω,x, l) +
∂

∂xi

(
λl0

∫ L

l

ϕ(x, l1)
dl1
l1

∂

∂xi
u (ω,x, l)

)
= −F (ω,x) ,

λl0 =

(
1− 1

3
Φϕϕ (0, l)

dl

l

)(
1− 〈ϕ〉 dl

l
+

1

2
Φϕϕ (0, l)

dl

l

)
. (13)

With the second order of accuracy in (dl/l) the coe�cient λl0 satis�es the equation

λ0l =

(
1− 〈ϕ〉 dl

l
+

1

6
Φϕϕ (0, l)

dl

l

)
λ0

As dl→ 0, we obtain the e�ective equation for λ0l, ρ0l:

ρ0l = ρ0,
d lnλ0l

d ln l
=

1

6
Φϕϕ (0, l)− 〈ϕ〉 , λ0l0 = λ0 (14)

In the scale-invariant media the solution of equation (14) has a simple form: λ0l =

λ0

(
l
l0

) 1
6

Φϕϕ0 −〈ϕ〉
.

By virtue of formulas (14) in the isotropic case, the form of the correlation func-
tions does not a�ect on the e�ective coe�cients. The anisotropic case study demands
on knowledge of the form of the correlation functions. Wave propagation analysis in
randomly layered media has shown that the form of the correlation function has a
little e�ect on the e�ective coe�cient [1]. A similar result have obtained for the �l-
tration problem in the porous medium [7]. In the numerical calculations we use the
correlation function

Φϕϕ
1 = Φϕϕ

0 (l) exp

[
−(x′1 − x1)2 + ( x′3 − x3)2

α2
1l

2
− ( x′2 − x2)2

α2
2l

2

]
. (15)

We assume, that l1 = α1l is the scale by coordinates x1, x3, l2 = α2l is the scale
by coordinate x2, and the mass density is constant. Taking into account equation
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(1) in the limit l→ l0, we come to the expression for the e�ective coe�cients, which
correctly describes the expectation of the displacement:

d lnλi0l
d ln l

=
Φϕϕ

0 (l)

2
+ η11Φϕϕ

0 (l)− 〈ϕ〉 , i = 1, 3,
d lnλ2

0l

d ln l
=

Φϕϕ
0 (l)

2
+ η12Φϕϕ

0 (l)− 〈ϕ〉 , (16)

where λief (x) = λi0l exp
(
−
∫ L
l
ϕ(x, l1)dl1

l1

)
is the coe�cient before ∂u

∂xi
in equation (1).

For α1 > α2 the coe�cients are equal to:

η11 =
1

2

α2
1(

α2
3 − α2

1

)Φϕϕ
0 (l)

(
α2

2
√
α2

2 − α2
1

ln
α2 +

√
α2

2 − α2
1

α2 −
√
α2

2 − α2
1

− a2
2

α2
1

)
, i = j, i = 1, 3,(17)

η12 =
α2

1(
α2

2 − α2
1

)Φϕϕ
0 (l)

[
1− α2

2
√
α2

2 − α2
1

ln
α2 +

√
α2

2 − α2
1

α2 −
√
α2

2 − α2
1

]
, i = 2.

If α2 → α1, we obtain the isotropic case and η11 = −1
3
Φ0 (l) , η12 = −1

3
Φ0 (l) .

3 Numerical simulations

The following numerical problem was solved in order to verify the formulas obtained
above. We have carried out the numerical simulation of the 3D problem by solving
equation (1), using the �nite-di�erence method (FD) with second-order discretization
for time and the spatial variables. We used 512×1024×512 grids (where x2 is the main
direction of wave propagation). The domain of integration is separated into three
subdomains. In the subdomains 0 < x1 ≤ 512h, 0 < x2 ≤ 450h, 0 < x3 ≤ 512h and
0 < x1 ≤ 512h, 962h < x2 ≤ 1024h, 0 < x3 ≤ 512h the coe�cients ρ, λ are equal to
ρ = ρ0 = 2000kg/m3, λ = λ0 = 1.8∗1010Pa. On the plane boundaries x1×x2 at x3 =
0, x1×x2 at x3 = 512h and x2×x3 at x1 = 0, x2×x3, x1 = 512h, the partial derivatives
∂u (t,x) /∂x2 are equal to zero; on the plane boundary x1 × x3 at x2 = 1024h the
displacement u is equal to zero. In the subdomain 0 < x1 ≤ 512h, 450h < x2 ≤ 962h,
, 0 < x3 ≤ 512h the spatial distributions of ρ, λ are simulated by formulas (3),(4),
in which the integrals are approximated by the sums. The normal �elds ϕ(x, l),
χ(x, l) are generated separately for each l using the method, described in [5]. We use
the following pulse wave source: f(t) =

(
1− 2π2 (t0 − t)2) exp

(
−π2 (t0 − t)2), where

t0 = 0.8, the dominant frequency is 1Hz. The pulse wave source is located at every
node of the plane x1 × x3 at x2 = 0. Such a boundary condition has ensured the
generation of a smooth initial wave front. Using a point source will not change the
results that we present below, but it would require a large number of realizations for
obtaining reliable statistics. We combine the spatial averaging over the planes x1×x3

for each value of x2 with the ensemble averaging.
In Figures 1, 2 the averaged results obtained by the numerical modeling are com-

pared with the solution of the e�ective equation and the solution obtained with the
mean value of the coe�cients ρ, λ in the subdomain 0 < x1 ≤ 512h, 450h < x2 <
962h, , 0 < x3 ≤ 512h. In Figures 1, one can see that the parameters of density do
not a�ect the e�ective coe�cient ( curves 3, 4) that is consistent with the theoretical
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Figure 1: The isotropic case. The average of the displacement along the axis x2,
Φϕϕ

0 = 0.3, ϕ0 = 0.15, t = 3.1sec. 1 �the result obtained for ρ = ρ0, λ = λ0; 2 � the
result obtained by the e�ective equation; 3 � the result of numerical modeling with
λ calculated by formula (3) for three scales, ρ = ρ0. 4� the result of numerical
modeling with ρ and λ calculated by formulas (3), (4) with the coe�cient of

correlation ν = 0.9 for three scales: lj = 8h, 16h, 32h. A minimum scale is l0 = 1/64
of the wavelength, while a maximum scale is L = 1/16 .

prediction. The results were averaged over 45 realizations. Curves 2, 3 in Figures 1,
2 slightly di�er in magnitude from curve 1 for one wavelength. Such deviations will
have a signi�cant in�uence over a distance containing many wavelengths. Figure 2
presents the results obtained for ρ = ρ0 and the anisotropic λ.

Conclusion

We have presented the e�ective coe�cients for the wave equation if its parameters are
described by extremely irregular small-scale �elds that are close to multifractals. The
multifractals can be obtained if a minimum scale l0 in formulas (3), (4) tends to zero.
To approximate the medium, we have started from the modi�ed Kolmogorov theory in
terms of the ratios of smoothed �elds. As a minimum scale is �nite, any singularities
are absent, therefore we use only the theory of di�erential equations and the theory
of stochastic processes. We have shown that small-scale heterogeneities a�ect the
acoustic wave propagation, and indicate that parameters distribution of density does
not a�ect the average displacement in the �rst order of scale heterogeneities. The
numerical testing illustrates the e�ciency of the approach proposed when the scales
of heterogeneities are much less than the size of the wavelength.

The paper was supported by the RFBR N15-01-01458.
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Figure 2: The anisotropic case. The average of the displacement along the axis x2,
Φϕϕ

0 = 0.45, ϕ0 = 0.225, t = 3.1sec; α1/α2 = 4, ρ = ρ0; λ calculated by formula (3)
for two scales: 1/64, 1/32 of the wavelength along the axes x1, x3 , 1/16, 1/8 along
the axes x2. 1 � the result obtained for ρ = ρ0, λ = λ0; 2 �the result obtained by the

e�ective equation; 3 � the result of numerical modeling.
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Abstract

The paper is devoted to construction a method for evaluation of the thermal
state of the honeycomb structures which are part of the aircraft fuselage. The
considered problem is described by a boundary value problem for a parabolic
equation with discontinuous coe�cients. The generalized solution of this prob-
lem can be approximated by a solution of a parabolic equation with smoothed
coe�cients. The smoothing coe�cients in the paper is made by the integral av-
eraging. The statistical estimation of the solution of the problem with smoothed
coe�cients is obtained by using the numerical solution of stochastic di�erential
equations.

Keywords: heterogeneous structures, parabolic boundary value problem,
discontinuos coe�cients, integral averaging, stochastic di�erential equations.

Introduction

Using inhomogeneous structures such as cell is a promising direction in aeronautical
engineering. This is due to the fact that these structures combine the properties most
suitable for creating modern aircraft: lightweight, strength and low thermal conduc-
tivity. Some applications honeycomb structures can be found in [1], [2]. This paper
is devoted to construction a method for evaluation heat transfer in structures such as
honeycomb. We consider sealed panels, whose sheets and cell frame is made of carbon
�ber and the maximum size of a cell channel does not exceed 1 cm. The heat transfer
in the panel can be described by a parabolic boundary value problem with discon-
tinuous coe�cients. It is known that this kind of problem has a unique generalized
solution in the sense of satisfying to the integral identity [3]. At the same time this
generalized solution can be approximated by a solution of problem whose coe�cients
are approximated by smooth functions. The approximation (smoothing) of the coef-
�cients is done by the integral averaging with a smooth compactly supported kernel.
The statistical estimating this approximate solution is done by numerical solution of
stochastic di�erential equations (SDE).

1 Mathematical modeling of heat transfer in

heterogeneous bodies

Heterogeneous body is a body consisting of a mixture of chemically di�erent sub-
stances. A typical example of a heterogeneous body is concrete. A homogeneous
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substance containing air voids is also heterogeneous body. The description and phys-
ical properties of heterogeneous media can be found in [4]. We consider as mathemat-
ical model of heat exchange in heterogeneous bodies as a parabolic boundary value
problem with discontinuous coe�cients.

We introduce the following denominations: G ⊂ R3 is a bounded domain with the

boundary ∂G, and G is partitioned intoM subdomains G =
M
∪
k=1

G(k); QT = G×(0, T )

is a cylinder in R4; ST = ∂G×[0, T ] is the lateral surface of the cylinder. It is assumed
that the domains G(k) are separated by piecewise smooth surfaces Γ.

The heat transfer in the heterogeneous body is described by the following parabolic
equation

∂u

∂t
−

3∑
i,j=1

aij(x, t)
∂2u

∂xi∂xj
=0, (x, t) ∈ QT , (1)

where the coe�cients aij are Lipshits continuous with respect to x in subdomains
G(k), k=1, . . .,M . At the same time, aij can be discontinuous on Γ. It is assumed
also that there exist µ, η>0 that the following condition holds uniformly with respect
to (x, t) ∈ QT

µ
∑
i

ξ2
i
≤
∑
i,j

aij(x, t)ξiξj≤η
∑
i

ξ2
i
.

We require that the unknown function u must satisfy to the following conditions:

u|t=0=φ(x) (2)

and one of the following two boundary conditions on ∂G:
the �rst boundary condition

u(x, t)|x∈∂G=ψ(x, t) (3)

or the third one

∑
i,j

aijni
∂u

∂xj
+ η(x, t)u+ γ(x, t)

∣∣∣∣∣
x∈∂G

= 0 , (4)

where ni is the i-th coordinate of an inward normal vector on ∂G.
It is proved in [3] the existence of a generalized solution of the problems (1) � (3) or

(1), (2), (4). This solution can be approximated by a solution of the boundary value
problem for a parabolic equation with coe�cients that are approximations of the
initial discontinuous coe�cients. Thus, we can obtain an approximate solution of the
problem by suitably smoothing discontinuous coe�cients. In the paper we estimate
of the approximate solution of the problem with smoothed coe�cients by using a
statistical method based on numerical solution of SDE. To smooth the coe�cients we
use the integral averaging [5]
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f (ρ)(x)=ρ−3

∫
|x−y|<ρ

ω(|x−y|)f(y)dy (5)

with an in�nitely di�erentiable averaging kernel such that ω(|ξ|)=0 when |ξ| ≥ 1 and∫
|ξ|≤1

ω(|ξ|)dξ=1.

2 Estimating solutions of parabolic problems

It is well known (see, for example [6]) that the solution of a parabolic equation can be
represented as expectation of functional of SDE solution. This fact is often used to
obtaining statistical estimates of solutions of parabolic equations by using numerical
solution of SDE. One advantage of this method is that you do not need to build a grid
in the spatial variables and solving large systems of linear algebraic equations. We
apply this method to estimating solution of the parabolic equation with smoothed
coe�cients by the integral averaging (5).

We �nd approximate solution of (1) as solution of the following equation

∂u

∂t
−

3∑
i,j=1

a
(ρ)
ij (x, t)

∂2u

∂xi∂xj
= 0 , (6)

where a
(ρ)
ij are smoothed coe�cients of (1) at the neighborhood of Γ.

For a point (x, t) ∈ QT we de�ne a random process X• which is a solution of the
following vector SDE

Xv = x+

v∫
T−t

σ (Xr, r) dWr , (7)

where W• is a Wiener process, σ is a 3× 3 matrix such that 2σσT = A, A = (a
(ρ)
ij ).

Let us denote by Et,x the mathematical expectation with respect to the probability
measure Pt,x corresponding to a random process that begins from the point x at the
time point t. Then the solution of (6) at the point (x, t) satisfying the conditions (2),
(3) can be obtained by the formula

u (x, t) = ET−t,x[φ (XT ) 1τ>T + ψ (Xτ , τ) 1τ<T ], (8)

where τ = inf(v|Xv /∈ G) is the �rst exit time of the process X• from G, 1S is the
indicator function of the set S.

So, we can obtain estimates of the solution of the problem (6), (2, (3) by modeling
trajectories of the process X• numerically. For this purpose we use the Euler method,
according to which approximate trajectories of X• are calculated as ([7])

xi+1 = xi +
√
hσ(xi, ti)ζi, ti+1 = ti + h , (9)
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where h is the integration step, ζi are 3D vector with independent N(0,1) random
variables.

In the case of the problem (6), (2), (4) we construct a re�ected di�usion process
X• in the form ([8])

Xv = x+

v∫
T−t

σ (Xr, r) dWr +

v∫
T−t

nA (Xr, r) d|kr|, (10)

where nA is the normalized inner co-normal vector, i.e. nA = An/|An|, |kv| =
v∫
t

1∂G(Xr)d|kr| is a nonnegative stochastic process that increase when the process

X• is on the boundary. Then the solution of (6) at the point (x, t) satisfying the
conditions (2), (4) can be expressed in the form of the following expectation

u (x, t) = ET−t,x

φ (XT ) exp

 T∫
T−t

η (Xr, r) d|kr|

+

T∫
T−t

γ (Xr, r) d|kr|

 . (11)

We obtain estimates of the solution of the problem (6), (2), (4) by numerical
modeling trajectories of the process X•. For this purpose we use the Euler method
in the form

xi+1 = xi +
√
hσ(xi, ti)ζi + (∆i+1K)nAi , ti+1 = ti + h , (12)

∆i+1K =
[
d
(
xi +

√
hσ(xi, ti)ζi

)]−
, (13)

where nAi is the unit inner co-normal vector at the point xi, if xi is on ∂G; [a]− =
max {0,−a}; d(x) is a nonpositive real function satisfying for any point x /∈ G to the
following equation

x=ρ(x)+d(x)nA(ρ(x)). (14)

We use in (14) the following designations: ρ(x) is a projection of a point x /∈ G on
G in the conormal direction, nAρ(x) is the unit inner conormal vector at ρ(x). Note
that d(x) = 0, if x ∈ G.

To obtain an estimate of the solution of the problem (6), (2), (4) we also need to
compute the following functions de�ned in the time grid nodes

yi =


1, i = 0,

exp

(
i−1∑
k=0

η(xk, tk)1∂G(xk)∆k+1K

)
, i ≥ 1,

zi =


0, i = 0,
i−1∑
k=0

(γ(xk, tk)1∂G(xk)∆k+1K) yk, i ≥ 1.
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Estimation of the solution of the problem (6), (2), (4) is calculated by the formula

û(x, t) = ET−t,x [φ (xN) yN + zN ] , (15)

where N = t/h.

3 Calculation of heat transfer in honeycomb

structures

A honeycomb panel consists of two sheets and a honeycomb core between them �lled
with a �ller of low thermal conductivity. We considered a honeycomb panel which
frame made from carbon that �lled with air Fig.1. Air is the thermal-protective �ller
of the panel.

Figure 1: Honeycomb structure

This panel has the following characteristics: the total thickness of the panel is
0.035 m; the thicness of each sheet is 0.001 m; the thickness of the cell frame is
6 · 10−5m; the edge length of the cell is 0.0042 m; the thermal di�usivities of carbon
and air are equaled 8 · 10−4 m2/s and 2.36 · 10−5 m2/s correspondingly. The e�ective
thermal conductivity of this honeycomb panel was by thermophysical experiments,
and it is equal to 0.08 W/(m ·K). The thermal di�usivity of the honeycomb panel
was also determined and it is equaled to 1 · 10−3 m2/s.

The calculation and experiment were carried out for the boundary conditions of
the third kind for the cold type of climate Fig. 2.

The heat transfer equations of the skin multi-layer honeycomb for boundary condi-
tions of the third kind are represented as one-dimensional heat-conduction equations
describing the heat transfer process in the multi-layer honeycomb:

C(x)ui = (λ(x, u)ux)x, 0 < x < l; (16)

λ(0, u)Fkux = αk,out(t)Fk(u(t, 0)− ue(t)) +Qk,out +Qk,in−
−σ0εk,outFk,outu

4(x), x = 0;
(17)

λ(l, u)Fkux = αk,in(t)Fk(ue(t)− uair(t, 0)) +
k∑
i=1

Gi,ku
4
i /u

4
ref−

−σ0εk,inu
4(t) +Qk,out +Qk,in, x = l;

(18)
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u(0, x) = u0(x), 0 < x < l, (19)

where C(x) = Ci, λ(x, t) = λi,0 + λi,1u, li−1 ≤ x < li, (i = 1, . . . , k − 1), C(x) =
Ck, λ(x, t) = λk,0+λk,1u with lk−1 ≤ x ≤ lk, i. e. the coe�cients C, λ depend on which
layer is examined concerning the heat transfer. Here 0 = l0 < l1 < . . . < lk = l. In
equations (1) - (4) the following notations are used: C(x) is the multi-layer honeycomb
of the skin or windows volumetric heat capacity (the product of speci�c heat capacity
by density); λ(l, u) is the heat-conduction coe�cient of the multi-layer structure;
αk,out is the heat transfer coe�cient of the outer structural surface; αk,in is the heat
transfer coe�cient of the inner structural surface; Fk is the area of the construction
at the outer and inner heat transfer; Qk,out are the heat energy of external sources;
Qk,in are the heat energy of internal sources; σ0 is the Stefan-Boltzmann constant;
εk,in is the emissivity of the multi-layer structure inner surface; k is the number of
blocks in the section; Gi,k is the radiation transfer coe�cient of the system; ue is the
recovery temperature; uair is the air temperature in the section or in the part of a
section; u(x, t) is the temperature of the multi-layer structure; uref is the reference
temperature; ui is the temperature of the i-th unit of the section; ux is �rst order
derivative of u; ux,x is the second order derivative of u; l is the thickness of the
multi-layer structure.

Figure 2: Parameters of the �ight mode and the ambient air overboard for the cold
type climate: ue is the recovery temperature; ρV is the density of the ambient air

overboard; Vair,out is the airspeed

The heat transfer coe�cient of the multi-layer structure outer surface and the
heat transfer coe�cient of the multi-layer structure inner surface will be calculated
according to the procedures described respectively in the works [9] and [10]. The
values of the heat transfer coe�cient on the skin outer side for the �rst 150 s of the
�ight are shown in Fig. 3. The temperature of the ambient air at the inner surface
of the skin was constant at 283 K. At initial conditions the linear temperature distri-
bution over the honeycomb thickness was accepted. The beginning of the Cartesian
coordinate system is a point that is located on the panel bottom edge (the inside
of the aircraft skin) in the center of the plate, which coincided with the center of
the hexagon, was taken. Axes and are located in the plane of the lower edge of the
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plate, bounding the honeycomb frame, the axis is directed from the panel bottom
edge toward the panel upper edge (the outside of the skin).

Figure 3: The heat transfer coe�cient on the skin outer side

As the averaging kernel at the smoothing of discontinuous coe�cients the function
ωρ(x) = γρ(ρ

2 − |x|2) was used in the calculation, where - γρ was a normalizing
factor. For the panel thermal state calculation the parallel program in Fortran 90
was developed. The parallelization in the program is carried out under the scheme
Master-Slave. In this scheme, one compute core is considered the main one, and it
distributes the full amount of work on the simulation of random paths on all cores
involved in the work. Upon completion of all paths simulating, all cores pass the
calculation results to the leading core to compute the functional expectation, giving
an assessment of temperature. When writing the parallel program the software Intel
MPI, Version 4.1 was used.

Figure 4: The temperatures on the inner side of the insulating casing

Simulating of the random process paths was carried out using the Gaussian ran-
dom variables parallel generator from the library Intel MKL [11]. The calculations
were performed in the Siberian Supercomputer Center on the hybrid cluster HKC-30T
+ GPU with the use of 36 quad-core processors E5540 on 2,53 GHz. Temperature
calculations were performed near the panel bottom edge at the coordinates where 0,
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0.0001 m. The step size in the Euler's method was taken and the sample number
- 4000 of random paths. Yet the con�dence interval of the honeycomb temperature
did not exceed 1.2 K at a con�dence level of 95% in non-stationary and 0.7 K in sta-
tionary conditions. Firstly we estimated temperature values of the honeycomb panel
using our method. After that, analogous calculations were performed for the panel
considered as homogeneous with experimentally obtained value of e�ective thermal
conductivity. The obtained results are demonstrated in Fig. 4.
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Abstract

The task of nonlinear dynamical systems of Wiener type identi�cation is
considered in this thesis. The linear dynamical element of the system is in
nonparametric uncertainty conditions. The type of nonlinearity is assumed to
be known with the set of vector of parameters. The systems with a quard and
link saturation nonlinearity are considered. The proposed method of dynamic
objects modeling is based on the nonparametric estimation of linear and non-
linear parts of the system. Presented algorithm allows to design the models,
that describes the system with su�cient accuracy.

Keywords: nonlinear system, nonparametric, Wiener model, estimation,
dynamical systems.

Introduction

The problem of nonlinear dynamical system identi�cation is one of the most im-
portant one in the theory of control. In spite of the existing a lot of methods for
dynamical systems identi�cation, there is no universal theory that allows to design
the models of such systems.

Most of the methods of nonlinear system identi�cation are di�cult to apply in
practice or they do not take into account all the properties of the investigated object.
Besides, the task of identi�cation in the most methods is considered �in the narrow
sense�, it is corresponds to the case when the object structure is known with a vector of
parameters[1]. In this paper the dynamic systems identi�cation "in the broad sense"
is considered. In this case the parametrization of the investigated object model is not
available or one can partially parameterized the model on the base of available a priori
information. We consider the nonlinear systems in the form of a sequence connected
linear dynamic and nonlinear static blocks. A structure and parameters of linear
dynamic block of such system is unknown, but the type of the nonlinear element is
known with the set of parameters. Thus, we consider the problem of modeling of the
nonlinear dynamical processes under conditions of partial parameterization of model
structure.
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1 Identi�cation problem

We consider the nonlinear system in the form of a sequence connected linear dynamic
and nonlinear blocks. Such systems are called a models of Wiener type [2]. It is
required to design the mathematical model of the stochastic object according to
the measures of process. That would describes objects behavior at arbitrary input
e�ects and additive noise the presence on the output. The total scheme of nonlinear
dynamical system identi�cation is shown in Fig. 1.

Figure 1: The general scheme of the identi�cation problem

where u(t) and x(t)- input and output variables of the object, uξt , x
ξ
t appropriate

observation of process variables, ξ(t) � unobserved random e�ects, εu(t), εx(t) � ran-
dom noise in measure channels, x̂(t) � output of the object model. Available priory
information is uneven sample of input and output variables of the object's measures
of s size � {ui, xi, i = 1, s}.

The structure of the linear dynamical part of the system is unknown. The common
type of the nonlinear function is assumed to be known with the set of parameters. In
the paper the following nonlinear elements are considered: quard and link saturation.

Problem of nonlinear system identi�cation can be divided into two tasks. At
�rst part we construct a nonparametric model of linear dynamical block of system.
Then, on the base of some estimation, a model of nonlinear dymanical system can be
designed.

2 Nonparametric identi�cation of Wiener type

system

Lets consider the system that can be represented as a model of Wiener type (Fig. 2)[3]
Let the order and parameters of a linear dynamic block of the system are unknown,

and the nonlinear element structure is de�ned up to a set of parameters α. The
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Figure 2: Wiener model, LE -� linear dynamical and NE � nonlinear parts of the
system, u(t), x(t) � input and output action, w(t) � intermediate part output(is not

measured)

main idea of the proposed algorithm for constructing a such system models is to use
a nonparametric estimates to describe a system relations, details of which, for some
reason are unknown (in this case a linear dynamic block output w(t) is not measured),
and to apply a nonparametric approach for functions estimation.

As we can see from the �gure, the object output is calculated as a function of the
w(t) value:

x(t) = f(w(t), α), (1)

where x(t) � the nonlinear object output, w(t) � the linear part output (is not mea-
sured); f(w) � nonlinear function this unknown parameter α.

The reaction of linear dynamical block of system w(t) to the input signal u(t) is
described with the Duhamel integral[3]:

w(t) = k(0)u(0) +

∫ t

0

h(t− τ)u(τ)dτ = k(0)u(0) +

∫ t

0

k′(t− τ)u(τ)dτ, (2)

where h(t)-impulse response (weight function) of the system, and k(t)-step response
of this system (transient function).

That, the model is:

x(t) = f

(∫ t

0

h(t− τ)u(τ)dτ, α

)
. (3)

The mathematical model of the nonlinear object can be represented as the equa-
tion (3), in that, instead of the weight function h(t) and the nonlinearity parameters
α are used their statistical estimations. To obtain this estimation it is necessary to
generate the sample {ui, wi, i = 1, s} .

A response function value k(t) represents a reaction of linear dynamical system
to the step input action u(t) = 1, that is k(t) = w(t/u(t) = 1). But the value of
w(t) is not available for measurement. After feeding to the system input the Heviside
function u(t) = 1, it is possible to measure only the output of nonlinear process x(t),
which will have a value of x(t) = f(h(t)).

In the case when for some classes of nonlinear elements, the equation (1) can be
solved for w(t),we have[2]:

k(t) = w(t) = f−1(x1(t), α), (4)
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where ki � calculated values of linear dynamic element step response, f−1(x(t)) � the
inverse function to the description of the nonlinear element, x1

i � sample values of the
investigated object output, if the input action is equal to u(t) = 1(t), α � parameter
of the nonlinearity function.

Further, on the base of the sample of discrete values can be estimated step re-
sponse function of the system in the form of stochastic approximation nonparametric
regression type as follows:

ks(t) =
1

sCs

s∑
i=1

kiH

(
t− ti
Cs

)
, (5)

where ki � sample values of step response of linear dynamical system (LDS), H() �
Kernel function and cs � bandwidth parameter are satis�ed the conditions of conver-
gence[4].

cs > 0, s = 1, 2..., lims→∞ cs = 0, lims→∞ ccs =∞,

∫
Ω(u)

H′(u)du = 0, cs

∫
Ω(u)

H′(u)udu = −1, u =
τ − t
cs

, (6)

lims→∞ c
−1
s H

(
τ−t
cs

)
= δ(τ − t),

The weight function of the system h(t) is a time derivative of the step response
function k(t), i.e. h(t) = k′(t). Therefore the nonparametric estimation of the impulse
function can be described as follows:

hs(t) = k′(t) =
1

sCs

s∑
i=1

kiH′
(
t− ti
Cs

)
. (7)

Linear dynamic block of the system can be described with the following mathe-
matical formula:

ws(t) =
1

sCs

s∑
i=1

t/∆τ∑
j=1

kiH′
(
t− ti − τj

Cs

)
u(τj)∆τ. (8)

In this case, the nonparametric model of nonlinear object is the following:

x̂(t) = f(ŵ(t), α), (9)

ŵ(t) =

∫ t

0

k̂′(t− τ)u(τ)dτ, (10)

Or, if we omit the w(t), we obtain the formula[5]:

x̂(t) = f

(∫ t

0

ĥ(t− τ)u(τ)dτ, α

)
, (11)
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where x̂(t) -� nonlinear function estimation, k̂(t) -� estimation of the step response
function of the system linear element, x(t) � system output signal; u(t) � input
signal of the system; α -� estimation of the nonlinear function parameters.

Thus, we get the algorithm for modeling of Wiener type nonlinear dynamical
systems.

3 Identi�cation of nonlinear system with a quad

Let's consider a system that is represented as the Wiener model. The nonlinear
part of the system is a quad. The object output is calculated as follows: x(t) =
aw(t)2, a− const. If the value of input action u(t) = 1, then the output of nonlinear
system x1(t) = ak(t)2.

That is, the step response estimation of a linear element can be represented by
the output of the process as follows:

k̂(t) =
√
x1(t)/a) (12)

For an arbitrary input action the output of linear part of the system is described by
the Duhamel integral. Considering (12) the output of the linear element is:

w(t) =
1

sCs

s∑
i=1

t/∆τ∑
j=1

√
x(t)/aH′

(
t− ti − τj

Cs

)
u(τj)∆τ. (13)

Then the model of the nonlinear dynamic object of Wiener type is:

x̂(t) =

 1

sCs

s∑
i=1

t/∆τ∑
j=1

√
x

1
(t)H′

(
t− ti − τj

Cs

)
u(τj)∆τ)

2

, (14)

where x1
i � the reaction of a nonlinear system (if u(t) = 1), u(t) � a test input action.

Example. Consider a nonlinear dynamical system consisting of a quad (parameter
a = 0.7) and the di�erential equation (simulating object):

2x′′(t) + 0.3x′(t) + 1.5x(t) = u(t).

The noise in measure channels is generated as follows:

xshi = xi + cξ,

where xi � object output (without interference), ξ � normally distributed additive
noise with zero mean and unit variance. Constant value c determines the noise
intensity, it calculated according to a given value p, determining the signal-noise
ratio (if p = 10 noise 10, if p = 1, noise 100):

p =

√
1
s

∑s
i=1 x

2
i

c
,

The quality of the model is estimated using the average relative error of simulation.
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W = 1
s

∑s
i=1

|xi−x̂i|
|xmax−xmin| ,

where xi � object output, x̂i � output of model.
The object modelling result is presented in the �gure:

Figure 3: The model of system: x̂(t) � a model of a nonlinear system, x(t) � the
system output, sample size s = 250, sampling interval h = 0.2, noise 5%, input

action u(t) = 2 cos(0.4t)

4 Identi�cation of a system with link saturation

nonlinearity

We consider the system with a nonlinear element is described by the function of link
saturation type.

f(w) =


w(t), if w(t) < b;

a, if w(t) > b;

−a, if w(t) < −b.
(15)

where a, b � unknown parameters. The function graph is shown in the �gure: In this

Figure 4: The graph of a link saturation, z � an arbitrary argument

case if w(t) < b, then the object output is equal to the output of its linear dynamic
part. Otherwise, the output of the object is a constant, which can be determined
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experimentally by several static experiments. We get the following algorithm to
construct the model:

1. to carry out some experiments (m) under the following conditions: input
actions uj = cj, cj = const. The result is a sample {uj, xj}, j = 1,m., where uj = cj
� constant input action, xj = xyj � stand value of the output

2. to �nd the distance between two consecutive measurements: δx = |xj −
xj−1|/δu, where δu � sampling interval.

3. estimation of parameters:

b̂ = xj , if δj < ε,ε > 0 .

â = M(xj), j = j0,m if xj0 = b̂, where M(x) � estimation of mathematical
expectation.

4. to get a step response (apply to the object input a step function, the amplitude
of that is less than b) and then construct a linear part model in the form of the
Duhamel integral.

5. to build a model of the object, the output of which is calculated as the value of
the function describing the nonlinear element, whose argument is the output of the
linear model of the object.

Example. Consider a nonlinear dynamical system consisting of a link saturation
(with parameters b = 1.34, a = 1.5) and the di�erential equation (simulating object):

7.4x′′(t) + 2.5x′(t) + 2.43x(t) = u(t)

The object modelling results with di�erent input actions are presented in the �gure:

Figure 5: The model of system: x̂(t) � a model of a nonlinear system, x(t) � the
system output, sample size s = 250, sampling interval h = 0.15, noise 5%, input

action u(t) = 5 sin(t), the relative average error of simulation 5.2%

Making the analysis the model of nonlinear dynamic objects with a link saturation
and quad nonlinearity, we can conclude, that the nonparametric model su�ciently
describes the nonlinear dynamical systems Wiener type.
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Figure 6: The model of system: x̂(t) � a model of a nonlinear system, x(t) � the
system output,input action u(t) = 0.35 sin(2t), the relative average error of

simulation 3.4%

Conclusions

In this paper we consider the problem of nonlinear dynamical systems identi�cation.
The investigated objects are presented as a consequent combination of linear dynamic
and nonlinear static blocks (Wiener model). In this case a structure and parameters
of linear dynamic block of such system is unknown, but the type of the nonlinear
element is assumed to be known with the set of parameters.

The problem of nonlinear system identi�cation can be divided into two tasks. At
�rst the nonparametric model of linear dynamical element is considered. Presented
methods of the nonlinear system identi�cation are based on the combining the models
of linear dynamic and nonlinear static processes in the overall model of the system.
These techniques do not require the presence of full a priori information about the
structure of the object.

The practical part presents the results of numerical experiments, in that were
designed the models nonlinear dynamical processes of Wiener type in the cases of
quad and link saturation nonlinearity.
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Abstract

A modeling of discrete-continuous processes with �tubular� structure in the
space of �input-output� variables. Modeling of this process di�ers signi�cantly
from the class of conventional parametric models representing the same surface
area. In the construction of students parametric models �tubular� processes
require the use of appropriate non-parametric indicators. Some special examples
of modeling �tubular� processes, from which it follows that the processes take
place in the spaces of fractional dimension. Cited the case of functions of
several variables and analyzed the situation when in the course of time, these
variables can �disappear� and �occur� again. It is shown that the calculation of
the fractional dimension space can be done in di�erent ways.

Keywords: aprioristic information, identi�cation, nonparametric model,
nonparametric algorithms, H-models, space of fractional dimension.

Introduction

Many stochastic objects's identi�cation is often reduced to static systems with delay
identi�cation. It is caused some output variables of object are controlled through
much big intervals of time, than entrance and signi�cantly exceed an object time
constant. For example, a number of variables is measured in the electric way (in
this case discretization of control ∆t can be rather small), and other variables are
controlled as a result of the chemical analysis or physicomechanical tests (in this case
discretization of control ∆T � is great, i.e. ∆T >> ∆t ). The most general scheme of
the research discrete continuous process can be submitted in the following �gure [1]:

Figure 1: The general scheme of the studied process

In Figure 1, the notation: A - the object with unknown structure, x(t), z(t),
q(t) � the output process variables, u(t) - manipulated, µ(t) � uncontrolled, but
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the measured entrance process variable, λ(t) - uncontrolled and measured entrance
process variable, ξ(t) - a random e�ect, ωi(t) � the process variables controlled the
length of the object, (t) - continuous time Hµ, Hx, Hu, Hq, Hω � communication
channels corresponding to di�erent variables, including the controls, instruments for
measuring the observed variables µt, ut, xt, z∆T , qT , ωt � means measuring µ(t), u(t),
x(t), z(t), q(t), ω(t) in a discrete time, hµ(t), hu(t), hx(t), hz(t), hq(t), hω(t) � marked
with top � random noise measurement relevant process variables.

We note a signi�cant di�erence between the output variables z(t), q(t) and x(t)
presented in the Figure 1. The output variable x(t), as well as input, monitored
at intervals controlled by substantially larger intervals ∆t, q(t) - through T , T >>
∆T >> ∆t. From a practical point of view, for the process is often the most impor-
tant, is the control variables z(t). In this case, the output variables depend on the
input and (more information), as follows:

xt = A(u(t), µ(t), ω(t), λ(t), ξ(t), t) (1)

Modeling similar processes, considering various sampling of control of measure-
ments x(t), q(t) and z(t) forecasting q(t) and z(t) it is natural to use all set of the
variables in�uencing the forecast x(t), q(t), z(t)

x̂t = Â(u(t), µ(t), ω(t), t) (2)

q̂t = Â(u(t), µ(t), ω(t), x̂(t), t) (3)

ẑt = Â(u(t), µ(t), ω(t), x̂(t), q̂(t), t) (4)

Considering great values between ∆T and T , considerably exceeding object time
constants, when modeling it is necessary to consider that processes belong to the
class static with delay that considerably raises their role and value in problems of
identi�cation and management of stochastic systems.

For a further statement, without violation of a community, we �will curtail� all
entrance and output variables in corresponding a vector. Then the studied object
can be presented static with delay. Expediently on the respective canal to present
such process in the form:

x(t) = f(u(t− τ), ξ(t)) (5)

here is x(t) is the output variable of object, u(t − τ) is the cumulative entrance
variable, τ is the delay, ξ(t) is the casual indignation operating on object, t is the
continuous time.

1 H-models

Let u = (u1, ..., uk) , x ∈ Ω(x) ⊂ R1. Everyone vector component ui ⊂ [ai; bi], i = i, k,
and x ⊂ [c; d]. At research of real processes of value of coe�cients {ai, bi, c, d},
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i = i, k, are always known. In technological processes of value of these coe�cients are
regulated by production schedules (card). Further, without violation of a community,
we will accept these intervals single [1], then Ω(u) � a single hyper cube, i.e. u ⊂ [0; 1],
Ωk+1 = [0; 1], (u, x) ⊂ Ωk+1(u, x). The adaptive model in this case will look as follows:

x̂s(u) = f̂(u, αs) (6)

The �weakest� place is the choice of parametrical structure of model here. If at
the �rst stage rather gross blunder is made, as a result, the received model will hardly
be satisfactory. This problem was rather in detail discussed in [2, 3]. We will pay
attention that models of a class (6) represent hypersurfaces in space of �entrance-
output� variables of object, i.e. (u, x) ⊂ Ω(u, x) ∈ Rk+1.

If the studied process has a �tubular� structure [2], the model (6) needs to be
corrected as follows:

x̂s(u) = Is(u)f̂(u, αs) (7)

or:

x̂s(u) = Is(u)
N∑
j=1

αsjφj(u) (8)

here is φj(u) � system linearly-independent functions, the indicator Is(u) is described
by:

Is(u) =

{
1, ifu ⊂ ΩH

s (u),

0, ifu /∈ ΩH
s (u).

(9)

We will notice only that, generally speaking, the area ΩH(u) to us isn't known,
and only selection

{
xi, ui, i = i, s

}
is known. If the indicator is equal to zero, the

assessment x̂s(u) can't be calculated, i.e. at such values a vector component u ∈ Ω(u)
process can't proceed. If the indicator Is(u) at any value u ∈ Ω(u) is equal to unit,
the model (7) coincides with (6). As an assessment of the indicator Is(u) it is possible
to accept the following approach:

Is(u) = sgn

s∑
i=1

Φ(c−1
s (xs(u)− xi))

k∏
j=1

Φ(c−1
s (uj − uji )), (10)

here is:

xs(u) =
s∑
i=1

xi

k∏
j=1

Φ(c−1
s (uj − uji )/

s∑
i=1

xi

k∏
j=1

Φ(c−1
s (uj − uji ), (11)

and the parameter of blurring cs and bell-shaped function Φ(.) meet some conditions
[2]. Thus, at known value u = u‘ ∈ Ω(u) at �rst the assessment xs(u = u‘) on a
formula (11) is under construction, then the indicator Is(u) is calculated, and only
at the following stage models (7) or (8) if the indicator was equal to unit are used.
If the indicator is equal to zero, it means that though, u‘ ∈ Ω(u) but, u‘ /∈ ΩH(u)
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i.e. components of a vector u = u‘ = (u‘1, ..., u‘k) are de�ned not truly, otherwise,
really proceeding �tubular� process there doesn't correspond to set of preset values the
vector component u = u‘. The reasons of it can consist that components of a vector
u = u‘ = (u‘1, ..., u‘k) are chosen incorrectly, or are measured with a considerable
error like �emission�. Of course, it is fair only provided that we have representative
selection

{
xi, ui, i = i, s

}
. It is necessary to notice that use of traditional models (6)

type will allow to receive an assessment x̂(u = u‘) which, naturally, will be far from
reality.

2 Dimension of the process

We will give the following example concerning identi�cation of inertialess system. We
will consider the following simple special case. Let the object be described by the
equation:

x(u) = f(u1, u2, u3), (12)

here is u = (u1, u2, u3) ∈ R3 the three-dimensional vector is an entrance variable,
and x ∈ R1 � an output variable. The traditional way of creation of model of the
process described (12) consists in de�nition of a class of parametrical dependences
x̂(u) = f̂(u1, u2, u3, α) and the subsequent assessment of parameters α one way or
another on selection of supervision (ui, xi), i = 1, s, where s � selection volume. We
will analyse this example from the di�erent points of view. Let components of a
vector of entrance variables u = u1, u2, u3 stochastic be not connected in any way, i.e.
are independent. In this case it is natural to use the standard traditional practice
described above. Now we will assume that objectively components of a vector of
entrance variables are functionally connected, for example:

u2 = φ1(u1), u3 = φ(u2) = φ2(φ2(u1)). (13)

Naturally, the researcher doesn't know about existence of dependences (13). Oth-
erwise it would be possible to make substitution (13) in (12) and to receive the
following dependence x already from one variable u1 of a look

x(u) = f(u1, φ1(u1), φ2(φ2(u1))). (14)

Thus, dependence (12) in the conditions given above can be reduced to one-
dimensional dependence x from u1. In case dependence u3 from u2 objectively is
absent, (12) is easily given to a look

x(u) = f(u1, φ1(u1), u3). (15)

i.e. to two-dimensional dependence x from u1, u3. From here it is possible to conclude
that with functional dependence between vector u components we receive dependence
x from u, in this case, one - two-three-dimensional. We will emphasize once again that
between components of a vector of entrance variables the researcher doesn't know of
existence of functional dependences. Simply we analysed a case: �If ...�. And now we
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will analyse the most interesting case directly related to H-processes [1]. Let u3, u2

and, though an unknown image, but stochastic are connected [2]. We will emphasize
� stochastic, but it isn't functional. We will return once again to the analysis of that
occurred. First, if components of a vector u are independent, the studied process is
described by function of three variables. If two components of a vector of entrance
variables u are connected by functional dependence, process is described by function
of two variables. At last, if two variables are connected stochastic, process is described
by function more than two variables, but less than three?! It is possible to consider
that we come to dependence on fractional number of variables and, therefore, to
space of fractional dimension. For example, B. Mondelbrot in [4] notices: �The blood
system of the person � pulsing live � has dimension 2.7�. Fractional dimension of
spaces, apparently, was for the �rst time noted in Hausdor� and Bezikovich's works.

We will consider the following situation. From simplicity of reasons, let the process
interesting us is described (19). In case of stochastic dependence between the u2

variables u1 , u3(u1 on the available training selections it is possible to calculate a
square error of the forecast u2s(u1), u3s(u1). Here u2s(u1), u3s(u1) are nonparametric
estimates [1].

δ21 =
s∑
i=1

(u2 − u2s(u1))2/δ2
u2

(16)

δ31 =
s∑
i=1

(u3 − u3s(u1))2/δ2
u3

(17)

�Force� of stochastic communication λ between two any variables can be calcu-
lated, for example, on a formula:

λ = 1− δ (18)

From here it is visible that the strongest stochastic communication (functional)
is equal 1, lack of communication takes place at ? = 0, and at stochastic dependence
between entrance variables 0 < λ < 1.

If to keep mathematical �shape� of interpretation of function of many variables
as a point of multidimensional space, we come to existence of space of fractional
dimension F λ. Calculation of dimension F λ. can be carried out, for example, so:

dimF λ = (n+ 1)−
n−1∑
i=1

λi,i+1 (19)

here is n � dimension of a vector of u, and λi,i+1 means �force� of stochastic com-
munication between ui and ui+1. Also other schemes of calculation of dimension of
space can be o�ered. For example,

dimF λ
1 = (n+ 1)−

n−1∑
i=1

λ1,i+1 (20)
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here is λ1,i+1 � dependence of all u vector component from one components u1. In
rather attentive analysis of decomposition of functions in ranks pertinently to remem-
ber V. I. Arnold's phrase from the book �Theory of Accidents� [5]: �Calculation in
these applied researches were usually carried out without the general theory due to
the correct rejection of one members of a number of Taylor, and leaving of others,
the most important. From the physicists who were especially systematically applying
the theory of accidents before its emergence once especially L. D. Landau allocates.
In his hands to reject art �insigni�cant� members of a number of Taylor, keeping
members, smaller in size �the physically important�, gave a lot of the accidents of
results included in the theory�.

3 Computing experiments

Let process be described by function x = f(u1, u2) and is under the in�uence of a
hindrance ξ(t). We will accept the training selection equal 500, entrance variables �
are independent (Figure 2), also we will show dependence of dimension of space of
F λ on s (Figure 3).

Figure 2: Dependence of dimension of space of F λ depending on the level of
hindrances

Figure 3: Dependence of dimension of space of F λ depending on selection volume
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In �gure 2 it is clearly that at independent entrance variables, dimension of process
is close to 3. Figure 3 illustrates that at small selection, dimension of F λ decreases,
but at increase in selection dimension of space of F λ is close to 3. We will consider
the process having �tubular� structure, that is H-process.

Figure 4: Dependence of dimension of space of F λ depending on the level of
hindrances

Figure 5: Dependence of dimension of space of F λ depending on selection volume.

It is clearly that at H-process, in this case, dimension of space is close to two
(Figure 4). We will explain, the reason of this phenomenon.

Conclusion

The analysis of the situations arising when modeling processes of �tubular� structure
which takes place always if components of a vector of entrance variables of process
stochastic are dependent was carried out. In this case traditionally used models
of static systems with delay are inapplicable or can lead to considerable mistakes.
The most interesting is that fact that we come to need of consideration of space of
fractional dimension. Certainly, the disappearance fact, and emergence of in�uence of
some entrance variables during various periods of time for values of output variables
of process that is closely connected not so much with space of fractional dimension,
how many with space of the changing dimension is interesting.
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Abstract

The problem of identi�cation of noninertial stochastic processes with delay
is discussed. Quality of solving the problem of identi�cation depends on the
quality of input data. This work is dedicated to the elimination of such draw-
backs in the original sample observations as sparse and the area to the lack of
observations. The proposed algorithms improve the quality of the model several
times.
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Introduction

The problem of input sample quality is considered. Usually there is su�cient a priori
information about the object being studied so it is necessary to apply the methods of
identi�cation in the �narrow� sense. These methods include nonparametric estimation
of regression function from observations.

The quality of solving the problem of identi�cation depends on the quality of input
data. It is advisable to conduct a preliminary analysis of data to identify and address
all the de�ciencies in the sample. Under the preliminary analysis of the data is taken
to mean �lling gaps in observations and eliminating emissions. However, the sample
may have other �aws, that will be discussed below, which adversely a�ect the accuracy
of estimation, and, in some cases, lead to the fact that the resulting model will be
inadequate to the investigated process. If the point of the original sample in the �eld
of process located patchy, there are low-pressure range and lack of observations, in
the areas of reconstruction accuracy is low. Due to the properties of nonparametric
estimation, which belongs to the class of local approximations, projections can not
be given at the lack of observations subdomain. To resolve all these shortcomings
we propose an algorithm to obtain a working sample by generating new points in
regions where the density is low in comparison with other areas. After generating
new working sample, the quality of estimation is signi�cantly improved.

1 Posing of the problem

The general scheme of the researched process is shown in Fig.1.
The table of symbols are accepted in �g. 1: A is an unknown object operator,

x(t) ∈ Ω(x) ⊂ R1 is an output variable of the process, u(t) = (u1(t), u2(t), ..., um(t)) ∈
Ω(u) ⊂ Rm is a control action, ξ(t) is a vector random action, (t) is continuous time,
Gu, Gx are channels of connection corresponding to di�erent variables and including
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control tools, gu(t), gx(t) are random noises of measurements corresponding to vari-
ables of the process with zero means and limited variance, ui, xit, i = 1, 2, ...,m are
obtained by measurements of process variables at discrete time.

Figure 1: The general scheme of multidimensional object

So, we have a sample of observations of input and output variables process
{xi, ui, i = 1, s}, where s means sample size.

Usually model is based on measurements of the input and output process variables
where some algorithms are used to estimate the object output. In most cases, the
researcher has a small amount of a priori information, the mathematical description
of the object is unknown so it is advisable to use methods of nonparametric statistics.

2 Nonparametric identi�cation

The nonparametric estimation of regression functions on observations Nadaraya-
Watson refers to methods of nonparametric identi�cation [1].

Let us assume that observations {xi, ui, i = 1, s} of random values x, u distributed
with the unknown density of probability p(x, u), p(u) > 0∀u ∈ Ω(u) Nonparametric
estimates [1] are used for the backing up x̃ = M{x|u}

xs(u) =
s∑
i=1

xi

m∏
j=1

Φ(c−1
s (uj − uji ))/

s∑
i=1

m∏
j=1

Φ(c−1
s (uj − uji )), (1)

where the kernel function Φ(c−1
s (uj − uji )), i = 1, s , j = 1,m and the smoothing

factor c−1
s have convergence properties [1]. In this case the triangular kernel was used

as the bell-shaped function Φ(c−1
s (uj − uji )), i = 1, s , j = 1,m :

Φ(c−1
s (uj − uji )) =

{
1− |c−1

s (uj − uji )|, ifc−1
s (uj − uji ) ≤ 1,

0, ifc−1
s (uj − uji ) > 1.

(2)

The smoothing parameter is de�ned as a solution of minimization of a square
criterion which shows the equivalence between object and model outputs compliance
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and it is based on the method of �sliding examination�, i.e. the i-observation is not
considered in the model [2]:

R(cs) =
s∑

k=1

(xk − xs(uk, cs))2 = min
cs
, k 6= j. (3)

If every component of a vector cs corresponds to every component of a vector u
then in many real problems it is possible to accept that cs is a scalar if components
of a vector u are transformed into the same interval, for example, with centering and
rationing operations.

The quality of the estimation mainly depends on the quality of the source data:
a sample could have a number of drawbacks, which ultimately lead to poor estimate.
Consider the case where the sample has such shortcomings as the �sparsity and �gaps�.
As an example, for reasons of simplicity of illustration, consider a three-dimensional
object, a �eld correlation input variables is shown in Fig. 2. In the present sample
sparsity - areas with a small number of points and gaps - areas where observations
are missing. In these areas, the estimate will be of low quality or not be able to get.

Figure 2: Field correlation of input variables for source sample

The algorithm supplements the source sample by generating new observations is
suggested below.

3 The method of observations supplements the

source data

An algorithm for generating the working sample on the basis of the original obtained
by measuring the input and output variables of the process is considered. The pro-
posed algorithm is based on the generation of new observations in the tolerance range
of variables. These observations are used only for reconstruction assessment model
output in real sampling points of the original or new points that need to receive the
value of the forecast.
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The �rst stage is determined by observing the relative density of the number of
neighboring elements. Then, in the sub-regions, where the density is low are generated
by new observations. The value of the output variable x is calculated using a non-
parametric estimation of (1). This increases the size of the original sample due to
the generated elements.

4 Computational experiment

Let's consider the results of the simulation of non-linear object. Let the object de-
scribed by the following equation:

x = u2
1 − 2 sin(u2) + ξ, (4)

where inputs u1, u2 ∈ [0; 3], ξ - normally distributed disturbance:

ξ = kσ, (5)

where k - noise level, σ - a random variable distributed normally with zero expectation
in the range [−1; 1].

Mathematical description (4) is given only for the generation the source sample
since no opportunity to operate with real data. After generating the source sample,
we assume that the dependence of (4) we do not know.

Let generate a sample size of 100 elements (s = 100). In the sample �sparsity� is
located, where is a small number of sample elements, and �gaps� in the data where
is no elements. Thus, the density of sample points is non-uniform. Field correlation
of input variables is shown in Figure 2.

The object output is recovered with the method of identi�cation in the �narrow�
sense, using a non-parametric estimation (1). If there is a situation of uncertainty,
i.e. no point does not fall under the bell (2), the value assigned to the forecast of
6 - as the maximum possible value of the output variable x. The relative error of
approximation shows the quality of recovery:

W =

√√√√√√√
1
s

s∑
i=1

(xsi− xi)2

1
s−1

s∑
i=1

(xi − m̂x)
2
, (6)

As a result of the above algorithm a working sample is generated , which includes
the elements of the source sample and generated arti�cially. The size of new sample is
453 points. The relative (6) error for the source sample is 0, 838. Then the estimation
(1) is recovered for the source sample wy the working sample, the error is 0, 237. The
quality of recovery increases 4 times.

Field correlation of input variables for the working sample is shown in Figure 3.
As can be seen, the density of the points are now uniform now.
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Figure 3: Field correlation of input variables for working sample

Conclusions

In this work some of the shortcomings in the source sample of observations are con-
sidered (areas of gaps, sparsity), which have a negative impact on the quality of
nonparametric estimation recovery. The algorithm that allows to identify such areas
and generate them additional elements of the sample is studied. These arti�cially
produced observations do not carry new information about the object, but allows to
improve the quality of the simulation several times.
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Abstract

Mixture models are typically used to extend �exibility of the shape of stan-
dard parametric densities and to allow for increased variability. Bayesian non-
parametric (BNP) mixtures employ stochastic processes to randomly generate
mixing distributions, resulting in �exibility that goes beyond what is achievable
by parametric models. In particular, Dirichlet process mixtures have been suc-
cessfully used in a variety of settings to model multi-modality and non-standard
behavior of density tails. We highlight some details and stages of developing
DP mixture models for error distributions in a quantile regression formulation,
including a model based on dependent DPM-s that enables error distribution
to vary non-parametrically with covariates. Model performance is illustrated
on simulated and real datasets.

Keywords: quantile regression, Dirichlet process mixtures, Bayesian non-
parametrics.

Introduction

Common regression models focus on the conditional mean of response distribution
to summarize relationship between variables. However, an analysis based on these
models may be inadeqate in case of data sets with complex interactions of factors
manifested in heterogeneous variability of response for di�erent ranges of covariates.
Such data appear in a variety of applications, for example, in econometrics and
ecology, where distributions of response may be highly skewed and many data points
appear as outliers. Quantile regression (QR) is a method suitable for the analysis of
such data sets as it estimates relations between covariates and any portion (quantile)
of the response distribution, see for example Koenker (2005).

In the standard additive regression formulation, the p-th quantile of the response
distribution for observations yi, and covariate vectors xi, i = 1, ..., n, can be written
as

yi = h(xi) + εi, (1)

where εi-s are assumed independent from an error distribution with p-th quantile
equal to zero, i.e.,

∫ 0

−∞ fp(ε)dε = p, with fp(·) denoting the error density. The

h(x) is typically expressed as xTβ, with error density fp(·) unspeci�ed except for

the requirement that
∫ 0

−∞ fp(ε)dε = p. To obtain point estimation of β classical
approach uses optimization of some loss function. For example, the point estimates
for β minimize

∑n
i=1 ρp(yi−xTi β), where ρp(u) = up− u1(−∞,0)(u). For p = 0.5, this
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estimation reduces to the median regression case, which is solved using least absolute
deviations (LAD) methods of optimization. A general limitation of optimization
based methods is that inference is based on asymptotic assumptions or resampling
methods and thus requires large data samples. Interestingly, a version of the LAD
regression method was �rst solved by Ruggiero Boscovich in 1757, a half of a century
before Legendre and Gauss developed the least squares method, see Stigler (1984).

We focus on building Bayesian semi-parametric models that belong to Bayesian
non-parametrics � a rapidly growing area of Bayesian statistics, that provides a fully
probabilistic framework for inference, and develops models that can grow in com-
plexity with sample size. Applications of BNP methods abound in many diverse
disciplines such as natural language processing, computer vision, computational biol-
ogy, medicine, and signal processing. For information on BNP theory, methods and
applications, see the book by Hjort et al. (2010) or a recent review paper by Müller
and Mitra (2013). Here we give a condensed outline of some aspects of motivation
and reasoning in developing a series of Bayesian semi-parametric mixture models for
error distribution in quantile regression. We also present a few results (not pub-
lished previously) of an analysis of a real data set using a model based on dependent
Dirichlet process. A full account of models outlined here, their performance and
accompanying MCMC algorithms, can be found in Kottas and Krnjaji¢ (2005) and
Kottas and Krnjaji¢ (2008).

Nonparametric scale mixture of asymmetric Laplace densities

A parametric model of choice in quantile regression analysis is the family of asym-
metric Laplace distributions (ALD) with densities

kALp (ε;σ) =
p(1− p)

σ
exp

{
−|ε|+ (2p− 1)ε

2σ

}
, (2)

where 0 < p < 1, σ > 0 is a scale parameter and
∫ 0

−∞ k
AL
p (ε;σ)dε = p.

It is important to note that the parameter, p, determines both skewness and p-th
quantile for the density in (2) what limits its �exibility in modeling skewness and
tail behavior. In particular, kALp (·;σ) is right skewed for p < 0.5, left skewed for
p > 0.5 and symmetric for p = 0.5, i.e., for the median regression case. This is a very
restrictive feature as median regression is typically employed to capture skewness in
the response distribution. Moreover, it is impossible for a right skewed ALD (p < 0.5)
to accurately model left skewed errors for quantiles lower than 0.5, and likewise, a
left skewed ALD (p > 0.5) can't capture right skewed densities at quantiles higher
than 0.5. We refer to (1) with error density fp(·) = kALp (·;σ) as the modelM0.

To develop a model with a more �exible tail behavior, we �rst consider a non-
parametric mixture of ALD-s with a Dirichlet process (DP) prior for the mixing dis-
tribution (Ferguson, 1974). Speci�cally, denoting by DP(αG0) the DP with precision
parameter α and base distribution G0, we de�ne

fALDp (ε;G) =

∫
kALp (ε;σ)dG(σ), G ∼ DP(αG0). (3)
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Note that mixing in this fashion preserves the quantiles, i.e.,
∫ 0

−∞ f
ALD
p (ε;G)dε =

p. In order to specify the model in hierarchical form we associate a latent mixing
parameter σi with each yi:

Yi | σi
ind.∼ kALp (yi − xTi β;σi), i = 1, ..., n

σi | G
iid∼ G, i = 1, ..., n

G | α, d ∼ DP(αG0)

(4)

with independent normal priors for the components of β. We refer to (3), or (4), as
modelMALD. ModelMALD extends modelM0 allowing for increased tail variability
in the error distribution. However, the skewness of the ALD kernel implies the same
skewness of the mixture and thus forcesMALD to be as in�exible asM0 regarding
skewness.

Nonparametric scale mixtures of uniform densities

In order to obtain more �exible mixture models we need a more suitable kernel
(mixand) distribution than MALD, given that our mixing distribution, G, being
random is already general and �exible. Representation for non-increasing densities
on the positive real line is a key result for developing a �exible mixture: for any
non-increasing density f(·) on R+ there exists a distribution function G, de�ned on
R+, such that f(t) ≡ f(t;G) =

∫
θ−11[0,θ)(t)dG(θ), i.e., f(·) can be expressed as a

scale mixture of uniform densities. A requirement for G is to be general, or random
in Bayesian modelling framework, which implies a stochastic (DP) prior for G.

Similarly, any unimodal density on the real line with p-th quantile (and mode)
equal to zero, can be represented as

∫∫
kp(ε;σ1, σ2)dG1(σ1)dG2(σ2), where G1 and

G2 are general mixing distributions, supported on R+, and

kp(ε;σ1, σ2) =
p

σ1

1(−σ1,0)(ε) +
(1− p)
σ2

1[0,σ2)(ε), (5)

with 0 < p < 1, and σr > 0, r = 1, 2. Specifying independent DP priors for G1 and
G2, we obtain

fDP1
p (ε;G1, G2) =

∫∫
kp(ε;σ1, σ2)dG1(σ1)dG2(σ2), Gr ∼ DP(αrGr0), r = 1, 2,

(6)
the model for the error density in (1). In the context of quantile regression,
fDP1
p (·;G1, G2) successfully captures general forms of skewness and tail behavior. The
hierarchical model is

Yi | β, σ1i, σ2i
ind∼ kp(yi − xTi β;σ1i, σ2i), i = 1, ..., n

σri | Gr
iid∼ Gr, r = 1, 2, i = 1, ..., n

Gr | αr, dr ∼ DP(αrGr0), r = 1, 2,

(7)

with independent normal priors for the regression coe�cients. Model (6), or (7), will
be referred to as modelMDP1. The formulation in (6) indicates an alternative non-
parametric family of error densities based on a single mixing distribution G assigned
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a DP prior DP(αG∗0). The new model,MDP2, for the random error density is given
by

fDP2
p (ε;G) =

∫∫
kp(ε;σ1, σ2)dG(σ1, σ2), G ∼ DP(αG∗0). (8)

The hierarchical formulation forMDP2 is analogous to (7), except that now the pairs
of latent mixing parameters (σ1i, σ2i), are IID from a single G, and G∗0 is a a bivariate
lognormal distribution.

Posterior inference under the models outlined above is done according to well-
established simulation methods for DP mixture models that are based on a marginal-
ization of random mixing distributions over their DP priors. ModelsMALD,MDP1

and MDP2 were compared on the basis of their predictive performance. Details of
MCMC algorithms implemented for models outlined here can be found in the Ap-
pendix of Kottas and Krnjaji¢ (2008).

We note the following properties of our modelling approach: (1) it is necessary
to �t a model separately for each quantile, p, and (2) quantile lines for extreme
percentiles in regions of sparse data may cross. However, quantile regression is usually
applied for only a handful of (non-extreme) percentiles so neither of these properties
is in the way of successfully applying the proposed models.

Model comparison; censored data

In order to check the modelling methodology we generated data sets from a variety
of mixture distributions and compared models' performance in posterior predictive
space using formal posterior predictive criteria, such as conditional predictive ordinate
(CPO) plots and a posterior predictive loss approach. Here we only illustrate how
models �t on a data set generated from a mixture of normals having 0.6-th quantile
at zero and a right skewed density with non-standard tail behavior. As expected,
the posterior predictive density of model MALD fails to capture the data set as
depicted in Figure 1 whereas both MDP1 and MDP2 capture well the shape of the
data histogram.

All quantile regresion models outlined here need a minor extension to enable them
to work with censored data. The only change required when specifying MDP1 and
MDP2 is in the likelihood stage to incorporate censored observations. For instance,
with yio and yic denoting, on a logarithmic scale, the observed survival times tio
and the right censorship times zic , respectively, and with xio and xic denoting the
corresponding covariate vectors, the �rst stage in (7) for modelMDP1 becomes

no∏
io=1

kp(yio − xTioβ;σ1,io , σ2,io)
nc∏
ic=1

(1−Kp(yic − xTicβ;σ1,ic , σ2,ic))

where Kp(·;σ1, σ2) denotes the distribution function of kp(·;σ1, σ2). For results of
analyses of real data sets with censoring see Kottas and Krnjaji¢ (2008).
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Dependent DP mixture models for error distributions

We now propose an extension of the standard modeling framework in (1) to a class
of quantile regression models where the error density fp(·) depends on the covariates.
Only a high level outline is provided here, while the details are in Kottas and Krnjaji¢
(2005) and (2008).

For a simpler exposition, we consider only a single continuous covariate x with
realized values xm, m = 1, ...,M . For any speci�ed quantile p, the error distribution
under (1) is the same for all values of x and hence the response distribution changes
with x only through the p-th quantile β0+β1x. Extension to nonparametric covariate-
dependent error distributions requires a nonparametric prior model for the stochastic
process of error densities indexed by values x in the covariate space X , i.e., for fp,X =

{fp,x(·) : x ∈ X}, where for each �xed x,
∫ 0

−∞ fp,x(ε)dε = p. Hence, in this setting,
fp,x(·) and fp,x′(·) are dependent for all x 6= x′. In fact, we would typically seek
a speci�cation that yields similar fp,x(·) and fp,x′(·) for x close to x′. We employ
dependent Dirichlet processes (DDPs) to formulate a prior probability model for
fp,X , so that for each index value x, fp,x is a (random) DP. The DDP was developed
by MacEachern (2000) as a nonparametric prior for a stochastic process of random
distributions.

We provide only a sketch of reasoning that leads to a hierarchical formulation of
a DDP model based on model MDP1. To allow fDP1

p (ε;G1, G2) to change with x,
we need mixing distributions G1 and G2 that change with x and are still assigned
nonparametric priors; that is, we need prior probability models for the stochastic
processes {Gr(x) : x ∈ X}, where Gr(x), r = 1, 2, are the mixing distributions for
covariate value x. An extension of the DP (a prior model for the distribution function
Gr) to a DDP (a prior model for the stochastic process {Gr(x) : x ∈ X}) arises
by replacing the univariate base distribution function Gr0, with a base stochastic
process Gr0,X over X taking values in R. Introducing mixing through independent
DDP priors G1,X and G2,X yields a prior for the collection fp,X of quantile regression
error densities. In particular, for any x, we obtain modelMDP1 as the induced DP
mixture model,

fDP1
p,x (ε;G1,x, G2,x) =

∫∫
kp(ε; θ1(x), θ2(x))dG1,x(θ1(x))dG2,x(θ2(x)),

with Gr,x ∼ DP(αrGr0(x)), r = 1, 2, and Gr0(x) = N(µr, τ
2
r ). However, now the

random error densities are dependent with the extent of dependence driven by G1,X
and G2,X . More generally, for the vector x, we can write

fDP1
p,x (ε;G1,x, G2,x) =

∫∫ M∏
m=1

kp(εm; θ1(xm), θ2(xm))dG1,x(θ1)dG2,x(θ2),

where ε = (ε1, ..., εM), θr = (θr(x1), ..., θr(xM)), and Gr,x ∼ DP(αrGr0(x)), r = 1, 2,
with Gr0(x) the M -variate normal distribution. We note that, in practice, learning
with DDP priors is facilitated by some form of replication in the response values, i.e,
more than one response value for each xm, m = 1, ...,M . Let yi = (yi1, ..., yiM), i =
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1, ..., N , be the i-th response replicate. Using data augmentation methods, the model
can also be �tted when some of the yim are missing. Let θri = (θri(x1), ..., θri(xM)),
r = 1, 2, be the latent mixing vectors associated with yi and

fp(yi;x, (β0, β1),θ1i,θ2i) =
∏M

m=1
kp(yim − (β0 + β1xm); θ1i(xm), θ2i(xm)).

Then the quantile regression model is given by

Y i | (β0, β1),θ1i,θ2i
ind.∼ fp(yi;x, (β0, β1),θ1i,θ2i), i = 1, ..., N

θri | Gr,x
IID∼ Gr,x, r = 1, 2, i = 1, ..., N

Gr,x | αr, µr, τ 2
r , φr ∼ DP(αrGr0(x) = NM(µr1M , Vr)), r = 1, 2,

(9)

with independent priors for all hyperparameters.
Model (9) is a DP mixture model with the M -variate DP priors for Gr,x induced

by the DDP priors for Gr,X . Hence, as for modelsMDP1 andMDP2, posterior sam-
pling proceeds by marginalizing Gr,x over their DP priors, and utilizing an MCMC
method for DP mixtures. Regarding predictive inference, interest lies in the pos-
terior predictive density of response at observed covariate values in x as well as at
new (unobserved) values, say x̃ = (x̃1, ..., x̃U). The predictive densities are computed
based on the samples from the joint posterior distribution of all model parameters:
p(ỹ | x,y) =

∫
Θ
p(ỹ | x, θ)p(θ | x,y)dθ .

Analysis of data from a genotoxicity experiment

To illustrate the DDP quantile regression model we present some results of analysis
of a comet assay dataset from a genotoxicity experiment, see Dunson and Taylor
(2005). The data were drawn from a genotoxicity experiment assessing the e�ect of
oxidative damage on the frequency of DNA strand breaks. Samples of cells exposed to
di�erent levels of hydrogen peroxide (dm = 0, 5, 20, 50, 100 uM H2O2) were prepared
for use in the comet assay. After electrophoresis, the DNA from the nucleus of cells
with a high frequency of DNA strand breaks exhibit a comet-style shape, with the
nucleus forming the ball-like head and the cut DNA strands the tail. Cells with a
low frequency tend to maintain an approximately spherical shape with less tail. The
objective of the experiment was to evaluate the sensitivity of the comet assay in
detecting genotoxic e�ects of hydrogen peroxide. Measurements on the % DNA in
the comet tail are available for 100 cells in each of the �ve dose groups. We take the
response, yim, for cell i (i = 1, ..., N = 100) in dose group m (m = 1, ...,M = 5), to
be the % DNA in the comet tail divided by 100 (whence 0 ≤ yim ≤ 1). The p-th
quantile regression function is assumed to be β0 + β1xm, where xm = log(dm + 1)
and β0, β1 are the p-th quantile regression coe�cients.

The histograms of the response values at the �ve dose groups (included in Figure 3)
suggest that the di�erent shapes for the response distribution will not be captured
by a single quantile regression term. Thus, applying the DDP model (9) seems
well suited for these data. We obtain results for p = 0.1, 0.25, 0.5, 0.75, and 0.9.
Regarding inference for the regression coe�cients, of primary interest are the �ve
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slope parameters β1, which indicate how the 0.1, 0.25, 0.5, 0.75, and 0.9 quantiles of
the distribution of % DNA in the comet tail change with dose. Posterior medians
and 95% central posterior interval estimates for β1 are 0.0152 and (0.0097, 0.018) for
p = 0.1; 0.0248 and (0.0208, 0.0292) for p = 0.25; 0.0487 and (0.0442, 0.0564) for
p = 0.5; 0.0671 and (0.0613, 0.0713) for p = 0.75; 0.0747 and (0.0716, 0.0765) for
p = 0.9. These values of the slope show that the frequency of DNA strand breaks
increases with increasing dose of hydrogen peroxide, and that this increasing trend is
stronger at the higher quantiles.

In the panels of Figure 2, we show the comet assay data and empirical quantiles
along with the quantile lines from the DDP model (9). The lower panel summa-
rizes the evidence that the frequency of DNA breaks increases with dose, with this
trend stronger at the higher quantiles. Since empirical percentiles suggest a slightly
quadratic shape for the quantile lines, we �tted the same DDP model using the p-
th quantile function h(x) = β0 + β1x + β2x

2, and obtained quadratic quantile lines
as shown in the upper panel of the same �gure, indicating a similar conclusion re-
garding the dose-response relationship. Moreover, the ability of the DDP mixture to
accurately model the error structure with di�erent distributional shapes for di�erent
ranges of dose values, is clearly illustrated in Figure 3, which includes posterior pre-
dictive densities at the �ve observed and at three new dose values. It is clear from
the shapes of the predictive densities at non-observed values of x (10, 40, 95) that
learning occurs from responses at the nearby covariates.

Conclusions

We have developed increasingly more �exible models for the error distribution in
quantile regression using a representation for unimodal densities on the real line with
a speci�ed quantile equal to zero, and specifying DP priors for mixing distributions.
We have illustrated the ability of these classes of nonparametric mixture models to
adapt to any shape of unimodal error densities with p-th quantile at zero and therefore
exhibit better �tting and predictive properties than parametric models. We have also
proposed a model for quantile regression error densities that change with values in
the covariate space, using DDP mixing for scale mixtures of uniform densities.

References

[1] Dunson, D, and Taylor, J. (2005). �Approximate Bayesian Inference for Quan-
tiles,� Journal of Nonparametric Statistics Vol 17, 3, 2005

[2] Ferguson, T.S. (1974), �Prior Distributions on Spaces of Probability Measures,�
The Annals of Statistics, 2, 615-629.

[3] Hjort N, et al. (2010). �Bayesian Nonparametrics�, Cambridge University Press,
2010.

[4] Koenker, R. (2005). Quantile Regression, Cambridge University Press.

451



Real-life applications of Bayesian models

[5] Kottas, A, and Krnjaji¢, M (2005). �Bayesian Nonparametric Modeling in Quan-
tile Regression�, Technical Report AMS2005-6, University of California at Santa
Cruz (2005).

[6] Kottas, A., and Krnjaji¢, M. (2009). �Bayesian Semiparametric Modelling in
Quantile Regression� Scandinavian Journal of Statistics, 36, 297-319.

[7] MacEachern, S.N. (2000). �Dependent Dirichlet Processes,� Technical Report,
Department of Statistics, The Ohio State University (2000).

[8] Müller P, Mitra R (2013). �Bayesian Nonparametric Inference: Why and How�,
Bayesian Analysis, Volume 8, Number 2 (2013), 269-302.

[9] Reich B, Smith L (2013). �Bayesian quantile regression for censored data� Bio-
metrics, 2013 69 (3)

[10] Stigler, S. (1984). �Boscovich, Simpson and a 1760 manuscript note on �tting a
linear relation�, Biometrika 71 (3)

452



Applied Methods of Statistical Analysis

−5 0 5 10 15

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

Figure 1: Simulation study. Posterior predictive densities under modelMALD

(dotted line), modelMDP1 (dashed line), and modelMDP2 (solid line) for the case
of the right skewed normal mixture with 0.6-th quantile at zero. The histogram of

the simulated data is also included.
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Figure 2: Comet assay data (top panel) and empirical quantiles of the % tail DNA
and quantile lines produced by the DDP model.
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Figure 3: Comet assay data. Posterior predictive densites under the DDP model
(dashed lines) at the �ve observed dose values, overlaid on histograms of the

corresponding response observations, and at three new dose values (10, 40, and 95).

455



Real-life applications of Bayesian models

Bayesian Approach to Object Recognition

under the Conditions of Fuzzy Information

Ganicheva A.V.1 and Ganichev A.V.2

1 Tver State Agricultural Academy, Tver, Russia
2 Tver State Technical University, Tver, Russia

e-mail: alexej.ganichev@yandex.ru

Abstract

Goal of the research: Development of the Bayesian method of recognition
of many classes of objects in the absence of a priori probabilities of their oc-
currence. Research methodology: Derivation of conditions for acceptance of
optimal recognition with no data on initial a priori probabilities based on con-
ditional probabilities and a posteriori probabilities from a previous stage. Find-
ings: With a de�nite number of observations, a posteriori probabilities do not
depend on the initial a priori ones and can be used for �nding optimal solu-
tions. Applicable scope of the �ndings: Obtained results can be used in the
recognition of many classes under the conditions of clear and fuzzy information
about probabilistic characteristics of the objects.

Keywords: object recognition, Bayesian approach, a priori, a posteriori
probabilities, clear and fuzzy information, fuzzy number, triangular represen-
tation, the principle of the absence of aftere�ect.

The Bayesian approach to the recognition of object classes consists in the calcu-
lation of conditional a posteriori probabilities and making decisions by comparison
of their values [1]. The method is optimal according to the minimum of medium risk
and minimum of erroneous decisions criteria [2]. When recognizing the objects, such
situations are possible, where a priori probabilities of occurrence of the objects of a
relevant class are unknown. It is assumed that it does not seem possible to minimize
the value of the medium risk of decision making based on the Bayesian strategy in
this case [3]. In [4, 5] a method of recognition of two classes of objects (hypothe-
ses) based on multiple repeated �nding of a posteriori probabilities, when a posteriori
probabilities that have been calculated at the previous stage are used as a priori prob-
abilities at this stage, is developed. The relations for the number of tests, whereby
a posteriori probabilities become independent on the initial conditional probabilities
with a set degree of accuracy, are found in the research. The accuracy is set through
the initial conditional probability ratio. In this research, similar relations are found
for the general case of many classes of objects (many hypotheses).

Let us assume that there are m hypotheses H1, H2, . . . , Hm , related to some event
A. Assume that bi = P (Hi), (i = 1, . . . ,m) - are true, but unknown to us probabilities
of the hypotheses; ai = P (A/Hi), (i = 1, . . . ,m) - are known conditional probabilities
of the event A within the framework of each of the hypotheses. The case of clearly
de�ned probabilities is considered in [4, 5].

Let us consider the general case, when , bi, ai - are fuzzy numbers. In this case,
their triangular representation can be applied: bi = bc′i, bi, d′ic, ai = be′i, ai, u′ic left
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Figure 1

boundaries here correspond to the minimum possible value of the given number, right
boundaries - to the maximum possible value, middle numbers - to the most expected
value, which is found as the arithmetic average of the boundaries [6]. When the level
of membership α is �xed, the speci�ed segments are transformed correspondingly
into narrower segments with the same centre. The boundaries of fuzzy numbers will
correspond to the abscissae of piercing points of a line corresponding to the level α
with the membership function of the given fuzzy number (Figure 1). The said is
shown in Figure 1 in relation to the fuzzy number bi.

The fuzzy number x will be set in the form [x1, x2] , where x1 and x2 - are,
correspondingly, the left and the right membership interval boundary for the stated
level of membership α. If a clear number is under consideration, then given the set
level of membership it will be set via [x, x].

Since the probabilities of the hypotheses are unknown, let us assume them to be
equal, 0.5 each, i.e. P1(Hi) = 0.5. These are our subjective (approximate) probabili-
ties, which will be marked with the index 1 below. At that, the clear number 0.5 will
be presented in the form [0.5; 0.5]. Arithmetic operations with fuzzy numbers come
down to the relevant operations with their boundaries.

Let us assume that the event A has happened. Let us �nd a posteriori probabilities
of the hypotheses. According to the formula of total probability, we have:

P (Hi/A) =
[ci, di] · [ei, ui]
m∑
i=1

[ci, di] · [ei, ui]
=

[ciei, diui]
m∑
i=1

[ciei, diui]
=

[ciei, diui][
m∑
i=1

ciei,
m∑
i=1

diui

] =

 ciei
m∑
i=1

ciei

,
diui
m∑
i=1

diui

 , (2)

similarly,

P1(Hi/A) =

 ei
m∑
i=1

ei

,
ui
m∑
i=1

ui

 .
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Let us assume that the test was repeated under the same conditions; let us calcu-
late again a posteriori probabilities of the hypotheses, but the a posteriori probabili-
ties that have been calculated in the �rst step will now be taken as a priori ones. For
that, let us �rst �nd P (A) and P1(A); at that, it will be kept in view that summing
up goes from 1 to m.

P (A) =

m∑
i=1

 ciei
m∑
i=1

ciei

,
diui
m∑
i=1

diui

 · [ei, ui] =

m∑
i=1

 cie
2
i

m∑
i=1

ciei

,
diu

2
i

m∑
i=1

diui

 =

 m∑
i=1

cie
2
i

m∑
i=1

ciei

,

m∑
i=1

diu
2
i

m∑
i=1

diui

 ,
thus

P (A) =


m∑
i=1

cie
2
i

m∑
i=1

ciei

,

m∑
i=1

diu
2
i

m∑
i=1

diui

 ;

similarly,

P1(A) =


m∑
i=1

e2
i

m∑
i=1

ei

,

m∑
i=1

u2
i

m∑
i=1

ui

 .
Hence,

P (Hi/A) =

 cie
2
i

m∑
i=1

ciei

,
diu

2
i

m∑
i=1

diui

 :


m∑
i=1

cie
2
i

m∑
i=1

ciei

,

m∑
i=1

diu
2
i

m∑
i=1

diui

 =

 cie
2
i

m∑
i=1

cie2
i

,
diu

2
i

m∑
i=1

diu2
i

 ,

P1(Hi/A) =

 e2
i

m∑
i=1

ei

,
u2
i

m∑
i=1

ui




m∑
i=1

e2
i

m∑
i=1

ei

,

m∑
i=1

u2
i

m∑
i=1

ui

 =

 e2
i

m∑
i=1

e2
i

,
u2
i

m∑
i=1

u2
i

 .
Let us now assume that the test is being repeated n times under the same con-

ditions. Then, by analogy with the previous formulae (at n = 1 and n = 2), it is
possible to get a posteriori probabilities at the nth step:

P (Hi/A) =

 cie
n
i

m∑
i=1

cieni

,
diu

n
i

m∑
i=1

diuni

 , P1(Hi/A) =

 eni
m∑
i=1

eni

,
uni
m∑
i=1

uni

 . (3)

Let us assume that max
i
ci is achieved at i = i0 . Let us simplify expressions

found, divide the numerator and denominator of the �rst fraction at P (Hi/A) by
ci0e

n
i0 , of the �rst fraction at P1(Hi/A) - by eni0 . It should be mentioned that where

n is su�ciently large, the expressions (ei/ei0)n → 0 where i 6= i0 and (ei0/ei0)n → 1.
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Apart from that, the second coordinate of a fuzzy number cannot be smaller than
the �rst one, and since that is a probability, then it cannot be larger than 1. Thus,

P (Hi0/A) ≈ P1(Hi0/A)→ [1, 1]. (4)

And as far as the sum of a posteriori probabilities is equal to 1, then P (Hi/A)→ [0, 0],
P1(Hi/A)→ [0, 0] at all the i 6= i0, i.e. for these values of �i�

P (Hi/A) ≈ P1(Hi/A)→ [0, 0]. (5)

Thus, when the number n of times the test was repeated is su�ciently large, a pos-
teriori probability of the hypothesis with a larger initial conditional probability will
tend to 1 and the one of the hypotheses with smaller initial conditional probabilities
will tend to 0.

Hence, a fundamental conclusion follows: when the test is repeated multiple times
(under the same conditions), the initial ratio of classes (hypotheses) it almost ceases
to have an impact on the �nal result.

For example, let us assume that the test consists in the analysis of manufactur-
ing activities of two companies, each of which is characterized by both positive and
negative indices. Let us consider the event A - some kind of activity, which is char-
acteristic of positive indices, is registered in the randomly selected company. Then,
if the observation will be repeated multiple times the type of the index will no longer
depend on the company.

Let us proceed to the formalization of the notion �multiple repeat of the test�.
Let us set the accuracy 0 < ε < 1. For the purposes of consistency, indices will not
be speci�ed, i.e. the number of iterations of the test will be de�ned in the general
case - both for the left and for the right boundary of the fuzzy number. The �nal
number will be de�ned as a maximum from the relevant numbers for the left and for
the right boundary. Let us require the following condition to be met for any i 6= i0:

ci
ci0

(
ei
ei0

)n
< ε, i.e

(
ei
ei0

)n
<
ci0
ci
ε.

Let us take the logarithm of the latter inequality: ln
(
ei
ei0

)n
< ln

(
ci0
ci
ε
)
. Let us

transform this inequality: n · ln
(
ei
ei0

)
< ln

(
ci0
ci
ε
)
hence,

n >
ln
(
ci0
ci
ε
)

ln
(
ei
ei0

) =
ln
(
ci0
ci

)
+ ln ε

ln
(
ei
ei0

) ,

or
n > log ei

ei0

ci0
ci

+ log ei
ei0

ε. (6)

for any i = 1, . . . , n and i 6= i0. Let us consider the example. Let us assume that
n = 3, i0 = 1, ei0 = 0.6, e2 = 0.3, e3 = 0.1, ci0 = 0.3, c2 = 0.5, c3 = 0.2, ε = 1%. Let
us �nd

k1 = log 0.3
0.6

0.3

0.5
= log0.5 0.6 =

ln 0.6

ln 0.5
= 0.74, k2 = log 0.1

0.6

0.3

0.2
= log0.17 1.5 =

ln 1.5

ln 0.17
= −0.23.
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At the same time e2
ei0

= 0.3
0.6

= 0.5, ε = 1% and log e1
ei0

ε = log0.5 0.01 ≈ 6.64; e3
ei0

= 0.1
0.6

=

0.17; log e2
ei0

0.01 = log0.17 0.01 ≈ 2.6. Hence, n ≥ max{0.74+6.54;−0.23+2.6} = 7.28,

i.e. n ≥ 8. Thus, at the 8th step of repeating the test with the measure of inaccuracy
ε = 1% it is fair to state that

P (Hi0/A) = P1(Hi0/A) = 1.

In some instances, the formula (6) is transformed to a simpler form.
1) If ci0 > ci for any i 6= i0, then log ei

ei0

ci0
ci
;

2) if ε > ei
ei0

for any i 6= i0, then log ei
ei0

ε < 1.

When both the conditions, 1) and 2), are met concurrently, n - is any natural
number, inter alia, n can possess small values, e.g. 1 or 2, at which the relations (6),
(5) and (4) are ful�lled, i.e. n ≥ 1;

3) ε > max
i

ei
ei0
, then n > log ei

ei0

ci0
ci

+ 1 for any i 6= i0, besides, two sub-cases are

possible here:
3a) let us assume that log ei

ei0

ci0
ci

+ 1 ≤ 0, and since log ei
ei0

ei0
ei

= 1, then log ei
ei0

ci0
ci

+

log ei
ei0

ei0
ei
≤ 0; then log ei

ei0

ci0
ci
≤ log ei

ei0

ei0
ei

and ci0
ci
≥ ei

ei0
. The converse is valid as well,

i.e. if ci0
ci
≥ ei

ei0
, then log ei

ei0

ci0
ci

+ 1 ≤ 0. Thus, in the case ci0
ci
≥ ei

ei0
n has any value,

i.e. n ≥ 1;
3b) ci0

ci
< ei

ei0
- then n > k + 1, where k = log ei

ei0

ci0
ci
.

It is not too di�cult to see that the conclusions will be the same in the case of clear
numbers ai, bi. Thus, the case of multiple (when n→∞) repeat of the test under the
same conditions characterized by the probabilities ci, di, ei and ui, (i = 1, . . . ,m) is
considered. Let us assume that, test by test, the probabilities ei and ui will change,
i.e. we have the sequences: {e(j)

i }, {u
(j)
i }, (i = 1, . . . ,m), (j = 1, . . . , n). Then, in the

formulae (3) eni will be replaced by the product e
(1)
i · e

(2)
i · . . . · e

(n)
i , and ui - by the

product u
(1)
i · u

(2)
i · . . . · u

(n)
i .

It should be mentioned that the left boundary of the fuzzy number P (Hi/A)

will not be smaller than ci(min
j
e

(j)
i )n/

∑
i

ci(max
j
e

(j)
i )n, and the left boundary of the

fuzzy number P1(Hi/A) will not be smaller than (min
j
e

(j)
i )n/

∑
i

(max
j
e

(j)
i )n. Similar

relations are valid for the relevant right boundaries as well, but there is �d� instead of
�c�, and �u� instead of �e�. Fuzzy numbers with such boundaries will be set by means
of P ′(Hi/A) and P ′1(Hi/A) correspondingly. Let us assume that i = i0 - is index, at

which max
i

(min
j
e

(j)
i )n is achieved. Having divided the numerator and denominator at

the left boundary of each number P ′(Hi/A) by ci0 max
i

(min
j
e

(j)
i )n, correspondingly,

at each number P ′1(Hi/A) - by max
i

(min
j
e

(j)
i )n, we will get the same situation, as for

the case of repeating the test under the same conditions, described by the formulae
(4) and (5) for the numbers P ′(Hi/A) and P ′1(Hi/A), considered above, and hence -
for the numbers P (Hi/A) and P1(Hi/A).

From a philosophical point of view, the considered method is descriptive of the
principle of the absence of aftere�ect, when the future of a system depends only on
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the present and does not depend on the background, i.e. the way through which
the system found itself in the given state. However, it should be mentioned that
the formulae (3) allows extrapolating the process to the future and to the past, i.e.
solving not only the problem of prognostication, but the one of the retrospective
journey into previous states as well.

Suggested method of accounting a posteriori probability as a priori one can become
widely used in the systems of decision-making, arti�cial intelligence, e.g. in expert
systems.
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