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PREFACE

The Fifth International Workshop “Applied Methods of Statistical Analysis. Sta-
tistical Computation and Simulation” - AMSA’2019 is organized by Novosibirsk State
Technical University.

The first two Workshops AMSA’2011 and AMSA’2013, as well as AMSA’2019,
took place in Novosibirsk. AMSA’2015 was held in the resort Belokurikha located at
the foothills of Altai. AMSA’2017, organized together with Siberian State University
of Science and Technologies called after academician M.F. Reshetnev, took place in
Krasnoyarsk.

The First Workshop “Applied Methods of Statistical Analysis” AMSA’2011 was
focused on Simulations and Statistical Inference, AMSA’2013 — on Applications in
Survival Analysis, Reliability and Quality Control, AMSA’2015 — on Nonparametric
Approach and AMSA’2017 — on Nonparametric Methods in Cybernetics and System
Analysis.

The Workshop AMSA’2019 was mainly oriented to the discussion of problems
of Statistical Computation and Simulation, which are crucial for the development of
methods of applied mathematical statistics and their effective application in practice.

The Workshop proceedings would certainly be interesting and useful for special-
ists, who use statistical methods for data analysis in various applied problems arising
from engineering, biology, medicine, quality control, social sciences, economics and
business. The Proceedings of International Workshop “Applied Methods of Statistical
Analysis” are indexed in Scopus starting with 2017 materials.

The organization of the Fifth International Workshop “Applied Methods of Statis-
tical Analysis. Statistical Computation and Simulation” - AMSA’2019 was supported
by the Russian Ministry of Education and Science (project 1.1009.2017/4.6).

Prof. Boris Lemeshko
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Actuarial risk theory: becoming in Russia,
main problems, and development of concepts

YUu. D. GRIGORIEV
Saint Petersburg Flectrotechnical University (LETI), Saint Petersburg, Russia
e-mail: yuri_grigoriev@mail.ru

Abstract

The subject of actuarial mathematics and its formation in Russia are con-
sidered. The definition of risk is given and the nature of risk functionals is
discussed. A differentiation between decisive functionals and risk measures is
indicated. Examples of order relations between risks, problems of risk manage-
ment in reinsurance, are provided.

The areas adjacent with the modern risk theory including experimental de-
sign, navigating problems of vessel’s place definition and problems of the relia-
bility theory are listed. Examples of specific risk measures including measures
of expected utility, measures of disturbed probability and quantile risk mea-
sures are given.

Keywords: actuarial mathematics, risk measure, coherent and comono-
tonic risks, expected utility, disturbed and quantile measures.

Introduction

The actuarial risk theory takes up an intermediate position between economics which
dictates it the purposes and problems, and applied mathematics from which it draws
methods of their decision. The problems and methods applied in the insurance com-
panies for practical calculations are concerned with contemporary risk theory, which
also includes theoretical designs, which allow to sound the actuarial methods from
omnibus approach, for example, in utility theory, or ordering risk theory.

Nowadays many university courses of actuarial mathematics includes some results
on net premium principles calculation, reinsurance models, properties of underlying
functionals, etc. In the report the brief information on history of actuarial mathe-
matics in Russia is presented and some specific examples of actuarial problems are
provided.

1 Becoming of Actuarial Mathematics in Russia

The actuarial mathematics and actuarial education have a long history. Suffice it to
mention names of E. Halley (1656-1742) and A. de Moivre (1667-1754), which in the
modern terminology were the first actuaries, the foundation in 19th century the Insti-
tute of Actuaries (United Kingdom, Oxford, 1848) and Faculty of Actuaries (Glasgow,
1856), the subsequent including of actuarial calculations and methods in the higher
education system, the carrying out of the International Actuarial Congresses on the

11
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regular basis as from 1895, on which the basic directions of development actuarial
science and education all over the world are defined.

In particular one of eminent actuary was famous Swedish mathematician and
statistician H. Cramér, since 1918 he had been worked for insurance company. He was
the founder of the first-ever chair of actuarial mathematics at Stockholm University
(1929).

In our country the actuarial science also had its own traditions (Grigoriev [18]).
Suffice it to mention a name of Russian mathematician S. E. Savich (1864-1946),
who was a vice-president of four earliest Actuarial Congresses (1895, Brussels; 1898,
London; 1900, Paris; 1903, New York), an initiator of VIIT Actuarial Congress in
Saint Petersburg (1915), canceled due to World War I, Professor and Head of higher
mathematics chair of Saint Petersburg Electrotechnical Institute (nowadays Saint
Petersburg State Electrotechnical University («<LETI»)).

His contribution to development of actuarial sciences was so considerable, and
it is confirmed by republishing in 2003 his book «The Elementary Theory of Life
Insurance and Work Capacity» (1900) (Publishing house «Janus-K», Moscow), which
is still topical up to now.

Insurance as one of institution of finance management was missing in Soviet Union.
Actuarial profession, which subject is studying of economy of the finance, the theory
of life insurance and the risk theory, as providing it, did not exist too. It is significant
that inevitable mentions of the risk theory in foreign literature in translations (Prabhu
|40, p. 215, section 5.5], [41]), as a rule, stayed out of reader’s sight as it was hidden in
notions of problems inventory systems and the queues theory. For instance a subtitle
of the book by Prabhu [41] «Queues, risk insurance, dams» was not entered in a cover
and was not included in the book.

The beginning of the refoundation of the actuarial direction in education and
the appearance of a new type of insurance business in our country starts with the
Diploma-Courses (Grigoriev [16]), organized by the initiative of Institute of Actuaries
(United Kingdom) in 1994-1998 in different cities of Russia (Kemerovo, Novosibirsk,
Moscow, St. Petersburg, Ufa) and in some former USSR republics (Belarus, Latvia).
The author of this report was directly involved in organizing and conducting these
courses in Novosibirsk (1996,/97).

The questions of mathematical insurance theory in many domestic scientific edi-
tions are considered now. Russian actuarial science gradually gains in strength. An
accruing growth both journal and book publications tells about it, the appearance
of actuarial and the financial mathematics chairs at various universities, the organi-
sation and holding of conferences on actuarial mathematics and adjacent questions,
defences of master’s theses (Esin|[12]; Kovaleva [28], etc.), of PhD’s thesis (Le Din
Shon [29]; Martynova [36]) and DSci’s thesis (Malinovsky [34]; Shorgin [45]). There
were monographs and training manuals (Alexeev, Egorov, Ivanitsky [1]; Bojkov [6];
Bulinskaya [8]; Falin |13]|; Glukhova, Zmeev, Livshits [14]; Golubin [15]; Grigoriev
[18]; Kan [24]; Korolev [26]; Korolev, Bening, Shorgin [27]; Medvedev [37]; Novoselov
[39]; Semenov [44]; Urazaeva [46]; Vinogradov [47]), some books have been translated
(Kaas, etc. [23]; Lemaire [30], [31]; Mack [33]).
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In Moscow in 1997 the International conference «Actuarial science: theory, ed-
ucation and applications», and in Krasnoyarsk I and II All-Russian conferences on
financial and actuarial mathematics in 2002 and 2003 have been hold. In the period
from 2004 to 2019 sixteen FAMEMS conferences on financial and actuarial mathe-
matics were held, which have become International since 2009.

In St. Petersburg with support of the Russian Foundation of Fundamental Re-
searches Annual International Science School on theme «Simulation and Analysis
of Safety and Risk at Complex Systemss» (MABR) by Institute of Machine Science
Problem of the Russian Academy of Sciences are being held since 2001. Within the
framework of this schools two sections «Technologies and reliability models in the
technical Systems» and «Technologies and models of risk management in business
and the finance» are hold. Numerous network conferences are also hold.

At the moment the actuarial education in Russia has not yet received organiza-
tionally complete form. Such educational programs in various institutes of higher
education, including universities, are realized. It has the different levels and various
forms.

Therefore it is of interest to dwell on some fundamental directions of actuarial
science development from the point of view of relevant specialists’ training in the
system of higher education.

2 Risk and Associated Problems

Let us define a subtle distinction in risk measures and decisive functionals based on
an informal notion of risk. We will consider some specific examples of risk measures
and decisive functionals based on the introduced class of coherent risk measures.

2.1 Basic concepts

The basic concepts of the risk theory include the risk, the order relations between
risks, the risk measures and their classification. On the basis of these concepts vari-
ous problems of risk management are formulated.

Risk. Speaking of risk when choosing one or another decision-making strategy,
in some cases risk means the probability of damage (loss) occurrence, in others cases
it means the extent of damage. (Grigoriev [18, p. 141]|). Depending on a situation
(they are for examples, actuarial risk theory, decision-making theory, reliability theory
and etc.) the risk means a random variable X, describing the extent of damage or,
equivalently, its distribution function F(x) = P{X < z}. Sometimes instead of X
one could speak about a probability measure P, that generates corresponding random
variable X.

If we assume that a loss is positive, when random variable X is considered as
positive, and its distribution will be concentrated in positive semiaxis R,. Between
risks Y, Z the various partial order relations may be established.

13
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Risk measures and decisive functionals. Not all quality functionals studying
in various theories may be considered as risk measures. For example, coherent «risk
measure» in practice is «decisive functional», instead of a risk measure in its pure
form, as, for example, a variation. From the financial point of view one could say
that decisive functional takes into account not only the risk (a probability of its
occurrence), but also its extent (an income or a loss), and its optimization allows to
make risk-weighted decisions.

Ezxpected utility is a decisive functional, but not a coherent. Contrarily the mean
E[X] is nominally a coherent risk measure though it fail takes risk into account as
the probability of its occurrence. This measure reflects only the extent of damage,
but it doesn’t reflect a probability of its appearance.

Risk insurance. To make a long story short the main tasks of actuarial risk
theory lie in the field of risks arising in coinsurance, namely when they are distributed
between the insured and the insurer in issue of policy, in using a franchise, or in
executing of various reinsurance contracts.

As a result of these actions there are various variants of risk management, because
corresponding functions of a risk division are characterized by certain parameters,
and decision-makers connected with corresponding utility functions on the basis of
which many constructions of actuarial mathematics (inequalities of an insured and
an insurer, principles of premiums awarding, risk measures, etc.) are forming.

2.2 Stochastic orders

Stochastic orders are partial orders for probability distributions. Let us consider some
stochastic orders, most often used in the risk theory. Put down that 0 < E[Y] < oc.
One could say that

1. Two non-negative risks Y and Z are said to be in the risk aversion order, written
Y <4 Z, if and only if

Fyz(x)=I(x—7r), r>0, E[Y]=r (1)

Here I is a Heaviside step function, namely I(z) = 0 if x < 0, and I(z) = 1 if
z > 0.

2. Two non-negative risks Y and Z are said to be in the stochastic domination
order, written Y <gr Z, if and only if

Fz(z) < Fy(z); (2)
3. Two non-negative risks Y and Z are said to be in the danger order, that is the

risk Y is less dangerous than the risk Z, written Y <p Z, if E[Y] < E[Z], and
also there is a point ¢ € [0, 00) such that

Fy(x) < Fz(x) at x<c¢, Fy(x)>Fz(x) at z>c. (3)

14
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4. Two non-negative risks Y and Z are said to be in the stop-loss order, written
Y <1 Z, if

vz € [0, 50): / Th— R < / "1 = By ()

There are various relationships in entered order relations. In particular, relation-
ship between orders <gr, =p and =g establishes by following

Theorem 1. (Novoselov |39, p. 24|). If risks Y and Z have finite means then

Y <1 Z=Y <pZ=Y =g, Z. O (5)

2.3 Coherent measures of risk

Various functionals one or another useful properties with could be implemented for
the risk measurement. An interesting class of risk measures is formed with so-called
coherent measures. They have been entered axiomatically in (Artzner [4]) and since
then they are objects of intensive research from both the point of view of studying of
their properties, and from their possible generalizations (Esin [10]; Martynova [36]).

Let X be a set of all risks on measurable space (2,4), X,Y € X. A coherent
measure of risk is a functional f: X — R with the properties of monotony, superad-
ditivity (subadditivity), positive uniformity, and invariance on shift transformation:

6
7
8
9

X<Y = fl@)<fY) (f(z) = f(Y)),

fX+Y) =2 fX)+ /1Y), (f(X+Y)< f(X)+ f(Y)),
fAX) = Af(=),

f(X+4+a) > f(X)+a.

o~~~ o~
~— e e S

Let us notice that from (8) it follows f(0) = 0 that together with (6) gives
f(X) >0 for X > 0. The opposite inequalities in round brackets in (6) and (7) give
an opportunity to consider the risk with an opposite sign.

Example 1. Let f(X) = E[X]. In this case properties (6) — (9), obviously, are carried
out. Hence, E[X] is a coherent measure of risk. Let us consider a variance D[X]. It is easy
to see that properties of uniformity (8) and invariance on shift transformation (9) are not
hold. Hence a variance is not a coherent measure of risk.

Other examples of coherent measures are the functional of so-called disturbed probability
and a risk measure CVaR (Hiirliman [22|) as ils special case. O

2.4 Relationships with other areas

Problems similar to division of risks (though their names were different) appear in
many closely related theories which have arisen long before the risk theory that has
emerged clearly in the last 30-40 years.

15
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Let us note that the actuarial science itself, as an integral part of the insurance
institution, was founded much earlier, in the 18th century (E. Halley, A. de Moivre).

Closely related with the risk theory applied areas. Here we are going to list
the areas of applied mathematics where the actuarial risk theory ideas are discussed:

O

O

Financial Tools (options, futures and other derivatives). This is an immense
research area, the list of references is unbounded.

Probability Theory and Stochastic Processes (Vinogradov [47]): There are dif-
ferent problems: a problem about the ruining of the player (Huygens, 1657) as
a problem of the risk theory. A problem of the attainment of level in classical
model of collective risk. The relationship with the problems on random walk,
balloting and branching processes theory.

Reliability Theory and Queuing Theory (Arfvedson [2], [3]; Prabhu, 1969 [40];
1984 |41]; Vinogradov [47|): it is a problem on ruining in the collective risk
model in its connection with the queuing theory (system M/G/1, single-channel
queueing system with Poisson input flow and arbitrary service time). The
system G/M/1 is dual to system M/G/1 and consequently it is connected also
with collective risk model. Notice that in Russian translation of the book title
of Prabhu [41] its subtitle «Queues, Insurance Risk and Damsy was omitted.
Obviously it shows an applicability of the inventory theory to called areas.

The other case is the comparison of tail heaviness for various reliability functions
(Proshan [5, p. 324]) and it’s relationship to the problems of the risk ordering
in actuarial risk theories (Kaas, etc. |23, p. 278|).

Systems of Maintenance Service with Periodic Inspection (Livshits, Golichenko
[32]): the problem of determination of service optimum interval 7" at two types
of costs.

Inventory Systems (Hadley, Whitin [21, p. 360]): problems of the newspapers
seller (1888) and the problem about Christmas tree.

O Ezperimental Design (Grigoriev [20]): A-optimality criterion.

Navigation (Kondrashikhin [25]): a problem of determining the vessel’s location.

O Control Theory (Grigoriev, Le Din Shon [19]): Ruin probability in the collective

risk model of Cramér and Lundberg at excess reinsurance. The equation of
Jacobi-Hamilton-Bellman.

Let’s give an example from experimental design for characterizing the similarity
of statements of problems in this area with risk theory problems.

Regression experimental design. The fundamental property of every optimal-
ity criterion of experimental design & is the ordering, that is induced on the closed

16
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cone M of nonnegative definite information matrixes M € M C R™ ™, where m is
a number of estimated parameters.
Let us consider a partial order relation > on M, defined by next condition:

A>B&A-B>0&s A—-—Be M.

Such partial order relation is called Loewner ordering (Grigoriev |20, p. 95]).

The functional ¢: M — R! is called isotonic if it keeps a Loewner ordering,
namely If A > B = ¢(A) > ¢(B), and it is called antiisotonic otherwise. The
functional is called monotonic, if it is isotonic or antiisotonic.

One could consider such matriz functions as optimality criteria in experimental
design, they are equipped with a partial order in their definition domain. Let us
formulate some usual conditions imposed on such functions (Grigoriev [20, p. 95];
Pukelsheim [43]):

1°. We will say that information matrix C' is not worse than matrix D relative to
the criterion ¢, if p(C) > ¢(D). On that understanding of information matrixes it
is reasonable to consider that the chosen criterion should be isotonic relative to the
Loewner ordering:

VC,D e M:C >D = ¢(C)>¢(D).

2°. The second property usually imposed on reasonable criterion, is concavity
(convezity),

ol(1—a)C+aD] > (1 —a)p(C)+ap(D), «ae€(0,1), C,D>0.

In other words, information cannot be increased by interpolation, otherwise the sit-
uation
(L —a)C+aD) < (1 —a)p(C) + ap(D),

will occur. Rather than carrying out the experiment belonging to (1 — «)C + aD,
we achieve more information through interpolation of the two experiments associated
with C' and D. This is absurd. It is possible to show that concavity (convexity) and
superadditivity (subadditivity) are equivalent (Pukelsheim [43, p. 115]).

3°. The third desirable property of criterion is positive uniformity:
e(AC) = Xp(C), A>0, C=>0.

A function ¢: M — R! is called information, if it isotonic, concave (convex) and
positively homogeneous. Comparing (6) — (8) from 1° — 3°, one could conclude that
coherent measures of risk form a subset of information functions set. In particular, D-,
A- and E-optimality criteria are the most-used information functions in experimental
design.

Let us deal on A-criterion ¢: trD(£) — min. Such functional is monotonic (anti-
isotonic) (Grigoriev [20, p. 27, the theorem 1.14]) and convex on a set of information
matrixes (Grigoriev [20, p. 95]):

trlM~HE)] < (1 —a)tr[M &)+ atr[M™HE)], 0<a<l,

17
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where M(§) = (1 — a)M (&) + aM (&), namely this functional is subadditive. It is
easy show that m~'tr[AD(&)] = (A\/m)tr[D(£)]. Thus, the criterion of A-optimality
is positively homogeneous. Moreover such criterion also has another property:

4°. A-optimality criterion is invariant relative to the shift a:

m~Yr[D(€) + al] = mr[D(€)] + a.

So when comparing 1° — 4° and (6) — (9), we can conclude that A-optimality criterion
is a coherent measure of risk.

Property of 4° is specific to the problems connected with financial and insurance
risks. The last requirement is not compulsory in a lot of technical applications, for
instance, in experimental design, reliability theory, navigation and so on.

2.5 Comonotonic risks

Comonotonic risks play an important role in reinsurance problems in which a risk X
is split on insurer risk Y = ¢g(X) and reinsurer risk Z = X — g(X).

Let us consider as an example the stop-loss reinsurance with two retention lev-
els. To do this we will formulate next theorem as a corollary of crossing condition
belonging to Karlin, Novikoff, Stoyan, Taylor (KNST-condition):

Theorem 2. (Grigoriev [18, p. 145]; Hurliman [22]). (two-level stop-loss contract). Let the
following conditions are take place:

1) splitting X =Y + Z of risk X is carried out according to Fig. 1 and Fig. 2:

| g(x) 1 h(x)

JM _______ 1 1
: :
R .
M M+ M M+Q
Figure 1: Insurer risk Y = ¢g(X). Figure 2: Reinsurer risk Z = h(X).
2) stop-loss transformations
oy (z) = / 0 By (0]dt, ma(z) = / 1 Fy(t)dt (10)

satisfy the inequality

18
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Then Z <51, Y.

As it follows from the Theorem 2 (see Fig. 3 and Fig. 4) at Q < M for all
x € [0,00) an inequality Fy (z) < Fyz(z) is hold, namely the relation Z <gr Y takes
place.

Fx) [ F3(x)
1 fmm-mm=mmmmmeeeemeoooooane 1
m
FOTM) p======="=~ ; F(O+M)
F(M) f-=--=-=== :
Fx) : F(M)
: X X
M M
Figure 3: Two-level stop-loss contract: Figure 4: Two-level stop-loss contract:
distribution function £y of an insurer. distribution function F; of a reinsurer.

This statement and Theorem 1 follow us to Z <g;, Y. Thus the most interesting
case is when Q > M, because not for any positive difference () — M the relation
Z <g7 Y is realized.

3 Some specific measures of risk

Let’s consider three specific risk measures as an example. First of them is not coher-
ent measure of expected utility, and two others are coherent measures of disturbed
probability. In summary we present a little quantile risk measures, among which the
most important is the coherent measure C'VaR.

3.1 Expected utility measure

The definition of utility function w(z) which is a core of Neumann-Morgenstern eco-
nomic theory, is given in many guides. This utility theory investigates preferences
on a set of lotteries. Its basic properties are positive semidefinity of limiting utility
u’ > 0, and belonging of u(z) to one of two classes u” > 0 or u” < 0.

Model of expected utility. The model of such type could explain the ex-
istence of insurance institute. In this model the insurer is the person, who is not
inclined to risk and making reasonable decisions. By Jensen’s inequality he is ready
to pay for own financial safety more than expected value of its losses. The mecha-
nism of decision-making under conditions of uncertainty consists not in comparison
of expected payments realized as result of decisions, but in comparison to expected
utilities these payments.
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Theorem 3. (Jensen’s inequality). Ifv(x) is a convez function andY is a random variable,
then

Elv(Y)] = v([E(Y)]). (11)
The equality in (11) is holds if and only if v is linear on a set of concentration of a random
variable Y or when D[Y] =0. O

Let w be a capital of a decision-making person (DMP). From Jensen’s inequality
(3) it follows that for concave utility function we could obtain

Elu(w — X)] < u(E[w — X]) = u(w — E[X]). (12)

Therefore decision-makers with decreasing function v”(x) fairly are called as not
inclined to risk: they prefer determined (not random) E[X], but not random payment.

Let us briefly consider a definition, properties and an example of usage of ezpected
utility measures in a problem of comparison of two risks as two lotteries (Urazaeva
[46]). As it was mentioned before, the expected utility measure is a decisive func-
tional, instead of a risk measure in its pure form.

Risk aversion ratio. The dependence of utility function curvature from «risk
aversion force» allowed proposing a relative indicator risk aversion ratio. If the first
and second derivatives of utility function are known we could get answers to following
questions:

O What class does decision-maker belong to? Is he a riskophobe (he is not inclined
to risk), a riskophile (he is inclined to risk), or a neutral person (he is indifferent
to risk)?

[0 How much strong he does (or does not) accept the risk?

Based on this general knowledge about the utility function, one can get to the

following definition of the risk aversion ratio. It is called Arrow-Pratt ratio and is
defined by the formula (Malykhin [35, p. 15]; Pratt [42]):

U,/(.T)

W) (13)

rap(z) = —
where x is the size of decision-maker capital. If at a given level of capital x one has
rap(xz) > 0, then a case of risk aversion is taking place. Otherwise, if r4p(z) < 0, we
have a case of an inclination of decision-maker to risk.

Let X is a risk with distribution function F(z), u(z) is the utility function of
some person. The measure of expected utility is defined as

pX) = Bu(X)) = [ ulw)aplo) (14)

It is said that a risk X" is preferable to a risk X' (X" = X'), if ., (X") > p, (X7).
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Risk as a lottery. Let us consider two risks (Urazaeva [46]):

r1=x0+a, x2=x9—0b r1=x9—a, To=x9+b
X/: b a 5 X//: b 1 a
L P= 0+ P= Gy P= b

It is easy to verify that the following equalities are hold:
E[X'] = E[X"] = x5, D[X'] =D[X"] = ab.

Therefore it is not evident which lottery will be preferred by a person. To make it
clear some additional preferences are necessary.

Example 2. (Urazaeva [46]). Let be 29 = 100, a =1, b =99, p = 0.99. Thus,
P{X' =101} = 0.99, P{X' =1} =001, P{X”=099}=0.99, P{X” =199} = 0.0l.

Obuviously despite the equalities of means and variances a significant number of indi-
viduals from two lotteries will prefer the X Prime Prime |[nttery  considering it more useful,
namely X" = X'. But how to formalize this preference? O

One way to develop preferences in an alternative situation is using of a discrimi-
nating function. Let’s put

Do (X', X") = pu(XT) = pra(X7).

If for the given utility function u(z) appeared that ®,(X’, X”) < 0 then one could
put down X” > X’ and on the contrary.

Theorem 4. (Urazaeva [46]). Let the following conditions are satisfied:

1. X', X" are risks with the initial data presented by Example 2;

2. u(x) = x%, z,a > 0 is utility function of the individual.

Then the following statements take place:

1. if « € (0,1) then a person is not inclined to risk and prefers a lottery X" ;

2. if a € (1,2), a person inclined to risk and prefers a lottery X';

3. if a € (2,00), a person is not inclined to risk and prefers a lottery X".

These preferences are reflected in the discriminating function ®,(X’, X") behavior as it
is depicted in Fig. 5 and Fig. 6. The minimum and mazimum values of ®,(X’, X") are
reached at points a; = 0.7668 and as = 1.8350 accordingly. U

One can find an example in (Urazaeva cite Urazaeva2013) when for a person who
is not inclined to risk the choice of risk can also be ambiguous, namely: in a case of
utility function of a certain type he may prefer X'.

3.2 Disturbed probability measure

The disturbed probability measure is a generalization of the mean which is used in
the most simple cases as a risk measure. It is effectively calculated in a case of dis-
crete risk and it is investigated in details by Esin [10] — [12] and Martynova [36].

21



Novosibirsk, 18-20 September, 2019

021 ;
] 4]
0,15 ]
os
] L
0,1: :
] _4:
0,057 ]
O- T 1 1 rrr1rrrr1r 111 11 171 11T LI B B B | _85
]G 4 06 08 1 i
0,051 12]
Figure 5: Measure of expected utility. Figure 6: Measure of expected utility
(Urazaeva [46]): discriminating (Urazaeva [46]): discriminating
function @, (X', X"), a < 2 function ®,(X’, X"), a > 2

Definition and calculation in a discrete case. One of the main goals of
the risk theory is to construct a risk measure, which is monotonous in regard with
preferences on a set of probabilistic distributions (Novoselov [38]). In (Wang [48],
Young [50]) the class of risk measures named as measures of disturbed probability has
been introduced, and some properties of elements of this class are investigated. The
measure of disturbed probability was originally intended for calculating the insurance
premium, but it can also be used in a wider class of problems, including portfolio
analysis.

Let’s denote X as a set of all real random variables and X, as a set of non-negative
random variables:

Xy ={X € X:P{X >0} =1}

And also we introduce some special notations for sets of random variables with a finite

means: N N
X={XeX EX|<oo}, X ={XeX: EX|<ol}

Let further F'(z) = P{X <z}, z € R is a distribution function of random variable
X, and S(z) =1 — F(x) is its additional distribution function (reliability function in
reliability theory, survival function in life insurance).

Let g: [0,1] — [0, 1] is not decreasing function, and ¢(0) = 0, g(1) = 1. We will
denote a class of all such functions as G. It is easy to notice that for every g € G
corresponds to the dual function g € G, defined by equality (Novoselov [38]):

g=1—g(1—2), ze€l0,1]. (16)

It is also evident that § = g.
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In (Wong [48]) the risk measure

m(X) = [ alsa X e, (7

is introduced and in (Young [50]) its modification (17) for distribution of X on all
real axis R is suggested in the form:

0 00
mg(X) —/ g(S(t) — 1)dt+/ g(S(t))dt, X e X. (18)
—o0 0
Risk measures (17) and (18) depend only on distribution S(z) of risk X. Because it
is usually X > 0, then the expression (17) is more often used as disturbed probability
measure.

For discrete risk X = {(z;, p;)" 1} the measure (17) is of the form (Novoselov [39,

p. 43]): ) )
WQ(F) = Zg<zpk) (xs - xs-&-l)a Ty = 0. (19)

s=1
Example 3. Disturbed probability measures. Let’s consider the same problem, as in an
Ezample 2. Then using the same risks X' and X", disturbing function g(z) = z%, x € [0, 1],
a > 0, discriminating function ®4(X’, X"), in according to (19) we obtain:

mg(X') = (zo +a) —g(1 = p)(a+b), 7y(X")=(x0—a)+ (a+Db)g(l~p)
From here it follows that

SB(X X" =a—(a+B)(1-p)* p=b/(a+D)

This result is shown in Fig. 7 and one could conclude that at o € [0,1] a person prefers
a risk X", and at o > 1 he prefers a risk X'. If now we turn attention to dual function
g=1—(1—2)% then we obtain

%(ngv(X’,X”) —a—(a+0)(1—p"), p=b/latb).

The result is shown in Fig. 8, and it follows that now the preferences of a person have been
reversed. [

Properties of a disturbed probability measure. The disturbed probability
measure plays an important role in the risk theory since with an appropriate choice
of function ¢ leads to some interesting functionals from the points of view of risk
theory and applications.

Let’s consider some properties of functional 7, (F).

Theorem 5. (Grigoriev [18, p. 156|, Novoselov |39, p. 34-41|). Next most important
statements concerning a risk measure w take place:

1. m is a coherent measure of risk;

2. m is an increasing functional concerning an order relation <4 iff g(z) <z, x € [0, 1];

3. w is an increasing functional concerning an order relation <gr;

4. s an increasing functional concerning an order relations <p and <gr, iff function
g 15 concave;

5. m is a convex functional on value iff the function g is concave. O
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3.3 Quantile risk measures

The most in demand of financial applications is a measure CVaR. In practice simpler,
but less reliable, measure VaR is used along with it.
Let’s note another two measures connected with them, CTER and ESF.

Measure VaR. As one of the quantile risk measures in financial and actuarial
mathematics, there is a functional VaR (Value-at-Risk), which, due to the simplicity
of definition, and also due to various regularity properties, is one of the most popular
measures for financiers, despite the existence many other quantile risk measures.

Let F'x(x) be distribution function of risk X. The value of

VaR,(X) = xienlgl{FX(x) >pt, pe(0,1). (20)

is called as a risk measure VaR of the level p of risk X. Risk measure VaR is often
denoted by Fi'(p). It is not decreasing and continuous at the left function of p.

Measure CVaR. Only one quantile risk measure with a predetermined level of
p does not provide all the information regarding the thickness of the upper tail of
the risk distribution function X. If policyholders want to assess risks in detail, they
should also be interested in how bad it is. Therefore , along with VaR, they often
use other risk measure named C'VaR (conditional VaR) of level p. Let’s give an exact
definition of this measure.
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The value CVaR is called a measure of risk X of level p if
1 1
CVaR,(X) = 1—p/ VaR,(X)dg, pe(0,1). (21)
T YJp

The following elementary result holds regarding the risk measure (21): if Fy is
distribution function of risk X with a finite mean, E[X] < oo, then

lim OVaR,(X) = E[X].
p—

Measure ESF. Expected Shortfall measure ESF of level p for risk X is called

functional
o

ESF,(X) = /V I Exla pe @) (22)

There is an equality connecting measures VaR, CVaR and ESF (Grigoriev [18,
p. 161]; Dhaene, et al. |9]):

1
CVaR,(X) =VaR,(X) + 1—ESFp(X), pe(0,1). (23)
- D
As a rule, its use leads to simpler calculations of C'VaR compared to (21).

Measure CTE. The Conditional Tail Expectation risk measure CTE of level p
on condition that losses exceed VaR is a functional
CTE,(X) = E[X/X >VaR,(X)]

— VaR,(X)+ %p 1= Fy(z+ VaR,(X))de.  (24)

The measure CTE is not quite independent because for continuous distributions
Fx it coincides with CVaR, and also it admits another definition:

CTEP(X) = CV@RFx(VaRp(X))<X)' (25)

However in a discrete case these measures are different.

Example 4. Let’s consider an exponential risk X. In this case Fx(z) =1 — e, 2 > 0.
Then according to equations (20)— (22) one could obtain:
1—
VaR,(X) = —A"tlog(1 —p), CVaR,(X)=A"'4VaR,(X), ESF,(X)= Tp.
Now it is easy to check the validity of equalities (23) and (25). O

In conclusion we formulate the theorem, in which relations of stop-loss order <gr
and stochastic domination <g; between risks X and Y in terms of quantile risk
measures VaR and CVaR are characterized.

Theorem 6. (Grigoriev [18]; Dhaene, etc. [9]). For any pair of risks the following state-
ments are fair:

1. X 257 Y & VaR,(X) < VaR,(Y) for all p € (0,1).

2. X 251 Y & CVaRy(X) < CVaR,(Y) for allp e (0,1). O
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Conclusions

The considered issues of the development of the actuarial risk theories in Russia
reflect the high interest to this area of researches from professional mathematicians,
including the high school, where future experts are trained for the insurance sector
of the Russian economy. It is essentially important that one of the national projects
accepted by the government of the Russian Federation to realization in the coming
years is the digital economy. One of its pivotal elements definitely is the development
of the actuarial sphere in the field of economics and bank risk management.
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Abstract

The paper deals with the estimation problem of the actuarial present values
of the continuous individual net premiums and connected with these character-
istics life annuities. We considered the following actuarial models: the whole life
insurance, n-year term life insurance, ¢g-year deferred life insurance, and n-year
endowment life insurance. We synthesize nonparametric estimators of net pre-
miums and life annuities for these statuses. The main parts of the asymptotic
mean square errors of the estimators and their limit distributions are found.
The simulations show that the empirical mean square errors of estimators de-
crease when the sample size increases. Also, when the model distribution is
changed, the nonparametric estimators are more adaptable in comparison with
parametric estimators, oriented on the best results only for the given distribu-
tions.

Keywords: nonparametric estimation; life insurance; net premium; life
annuity; asymptotic normality; bias; mean squared error.

Introduction

One of the main issues addressed in actuarial mathematics is to find the "right"
ratio between premiums and benefits, aided calculation of net premiums intended to
cover damages and giving zero average income of the insurance company. Section
devoted to this area in the monograph "Actuarial Mathematics" [8], in which the
calculation of net premiums was based on the use of mortality tables. Interesting
results based on this approach have been prepared in papers [5, 10, 13, 16, 34, 39, 42.
Modern development of theory of insurance is strongly required the use of complex
mathematical models phenomena and processes taking place in this area. Note the
results obtained in this direction in the papers [1, 4, 6, 18, 19, 22, 37|. Alternative
solution is to build estimators of net premium functionals on the base of information
containing in a sample of individuals’ lifetimes. Here we develop this idea embedded
in the articles [20], [25]-[33]. The second part of the paper deals with the study of
life annuities estimators.
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1 Individual Whole Life Insurance: Net Premiums
and Life Annuities

In long-term insurance the calculations of tariff rates take into account change of
money value because the sum of S dollars after ¢ years turns to the sum S e dollars,
where § is instantaneous interest rate. The whole life insurance is example of long-
term insurance; in this situation the person pays p dollars to the insurance company,
and the company pays b dollars to successors of the insured after his death. Though
the premium p is less, than b, the company will receive the necessary sum b, since the
premium is paid at the moment of the conclusion of the contract, and the payment
is done great later. We will use designations of actuarial mathematics later on. Let
random variable X denote the future lifetime, x be the age of the insured at the
moment of policy issue, T'(x) = X — x denote the residual time of life. In time T'(z)
premium, p, will turn in the sum, pe?”®_ and in this case the income of the company
will be equal to
pelT@ _p,

To have the required sum b dollars at the moment of client death, the insurance
company must receive be 97(®) dollars at the time of policy issue. In economic terms,
the sum be 7@ expresses discounted value of the future insurance payment. As
the above mentioned this sum is a random variable, so it is natural to take as net
premium its average the symbol of the expectation. In actuarial science the benefit b
is accepted as a unit payment, that is, b = 1, and the net premium of the whole life
insurance A, is equal to E{e™7(®)} .

A, =E{eT®) = / " dP{T(x) > t|T(z) > 0} =

— /OO e M dP{T(x) > tNT(z) > 0}
P{T(z) > 0} -

/0 e~ 0t [T(:E) (t > O)dFT(m) (t) (I)(:E, 5) (1)
S7(2)(0) S1()(0)’
where Fpr,)(t) = P(T(x) < t) is the distribution function of the random variable
T(x), Sr@)(t) = 1= F(t) = P(T(x) > t) is the survival function, Ipu)(t > 0) =
I(T(z) > 0), I(A) is the indicator of set A.

It is known that life annuities are closely related to the corresponding net premi-
ums (see [4]). The idea of life annuity in accordance with ([4], p. 170) is this: from the
moment t = 0 an individual once a year begins to get a certain money, which we take
as the unit of money, and payments are made only for the lifetime of an individual.
As the calculation of the characteristics of life annuity is based on the characteristics
of the respective type of insurance, the average total cost of the present continuous
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annuity is defined by the following formula (see [4], p. 184):

a2(0) = : (2)
where A, is a net premium (the average of the present value of a single sum of money
in the insurance lifetime at the age x. Let us introduce the random variable

1— 675T(x)

2(z) = — T(x)>0. (3)

Then, by averaging the random variable z(x) (3), we get the formula of the whole
life annuity (see |8, 21, 30|):

7,(8) = Bx(x) = % (1 - ;’T((j)’ 8)) | (@)

2 Collective Life Insurance

A useful abstraction in the collective life insurance is that of "status for which there
are definitions of survival and failure" |8]. Consider m members of ages (z1,...,z,,)
who desire to buy an insurance policy. Denote the future lifetime of the k-th individ-
ual by T'(zx) = Xy — . Let us put in a correspondence a status U with its future
lifetime T'(U) and with a set of numbers T'(z1),...,T(x,,) [20].

In the papers [25]-[33] were considered cases of a joint-life status and a last-
survivor status.

The joint-life status is denoted by U := z1 : ... : x,,, and is considered as failed
upon the first death, i.e.,

T(U) =min (T(xy),...,T(xp)) .
It is evident that the probability

P{T(U) >t} = P{min(T(x1),...,T(zp)) >t} = P{T(x1) > t,...,T(xy) > t},

so, when the deaths are independent, we have P{T(U) >t} = HP{T(xZ) > t}.

=1
The last-survivor status is denoted by U := 77 : ... x,, and fails upon the last
death, and exists as long as at least one member of a group is alive, i.e.,

T(U) =max(T(xy1),...,T(xm)).
Similarly,

P{T(U) < t} = P{max(T(z1),...,T(z,)) < t} = P{T(x1) < t,...,T(xm) < t},

and in the case of independent deaths, we have P{T'(U) <t} = H P{T(x;) <t}.
i=1
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We give other statuses used in practice. Consider the general k-survivor status,
which is denoted

k
Ui=—"""—7—#¥—
T1 ... Ty,
and exists as long as at least alive k among m individuals (x1), ..., (z,), i.e., it is

considered destroyed upon the occurrence of the (m — k+ 1) deaths. It is understood
that the joint-life status (k = m) and last-survivor status (k = 1) are the special cases
of the k-survivor status. Also, separately consider the [k]-deferred survivor status

k
U:= 4]
Tyt Ty
and there, if alive exactly k of m individuals (x1),...,(x,,), i.e., it starts at the

(m — k)-th death and lasts until the (m — &k + 1)-th death. This status is widely used
in the calculation sequences payments of limited duration [20]. Note that the new
statuses can be defined by compounding. A compound status is said to exist if the
status is a a combination of statuses, and at least one of them is itself a status with
more than one individual. Consider, for example, some compound statuses.

e The status ((Z1: 73 : T3 : T4)

This status persists if alive at least one of (x1) and (x2) and at least one of (x3)
and (z4). The time-until-failure of the status (77 22 : T3 © 74) is

T(U) = min{max{7T(z1), T(x2)}, max{T (x3), T(x4)}}.

e The status (:El T Xo (933 : 554))

Such condition persists, if alive at least two of four, namely, (z3) and (x4), or
when only one alive, and that either (x;), or (z5). The time-until-failure of the

status (m (23 : 334)) is
T(U) = max{max{T(x1), T(x2)}, min{T (z3), T (z4)}}.
e The status (z; : x5 : T3 : T4)

The condition persists, if alive (x1), (x2) and when one is alive, and it is either
(x3), or (x4). The time-until-failure of the status (zy : o : T3 T4) is

T(U) = min{T(x1), T(x2), max{T (x3), T(x4)}}.

Similarly, the fracture point may be found for the combination any statuses.
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3 Functionals of the Net Premiums in Collective Life
Insurance

Reasoning as in the derivation of formula (1)), in the case of the m insureds, the
functionals of the net premiums in collective life insurance can be written as

Aac LT ’ 5
e i Srl ..... xm(o) ( )
| € Dt > 0 (0
ZI x - u

e " Sml....::vm (0) ’

where
Fxl...‘:zm (t) - P(mlﬂ (T((Lj), 7T(Im)) < t)

and
are the distribution functions of the random variables min (7'(z4),...,T(z,,)) and

max (T'(z1),...,T(xy)),

and
e (t) = 1 — Ferm(t) = P(max (T'(x1), ..., T(z;) > t))

are the corresponding survival functions.
Consider the random variables Z; = X; —x;, i = 1, m. We order them in ascending
and obtain the order statistics Z(;), i = 1, m. Note that the survival function

2 (0) = P(min (T'(z1),...,T(xm) > 0)) = P(T'(x1) > 0,...,T(xy) > 0) =

=P(X1>xy,..., X0 >xn) =S, ..., 2).
Then -
- / e (Zy > 0)d[L — P{Zu) > 1))
A 0

Axlz...:xm - -
P{Zu >0}

- /000 e (min (T(x1), ..., T(xy,)) > 0)d[1 — P{min (T(21),...,T(xm)) > t}]
P{min (T'(z1),...,T(xy)) > 0}

m

— /OOO e 0! HI(T(:cj) > 0)d[1 —P{(T(z1) > t,...,T(xm) >1)}]

j=1

P{T(z)) > 0,...,T(axm) > 0}
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Py T, 0)
N S(IL‘h. (6)

ey Tm)

and -
/ e_(st](Z(m) > O)dP{Z(m) < t}
_ J0

By analogy with formula (1), we have

/0 ey (> 0)P{ Zonpeny < 1)

a - 7 !
o P{Zn—ks1) > 0} g

where Iz, . (t>0)=I(Zu 1) > 0).
In the case of the [k]-deferred survivor status

P{Zmr) <t < Zmrin} =P{t < Zmriny} —P{t < Zmn} =
= 1=P {Zpnpsn) St} —14+P{Zpnsy <t} =P {Zms) <t} =P {Zpnprr) <t}
and the net premium is given by the formula

/ G_MI(Z(m,k) > O)dP{Z(m,k) < t}
_ J0 _
BT pr— P{Z—r) >0}

/ e 1(Zim—kr1) > 0)dAP{Z(m p41) < 1}
0
P{Z(m,k+1) > O} Tt iTm T1i. i Tm ’

The functionals of net premiums for compound statuses can be written in the
same way.

4 Estimators of the Net Premiums in Collective Life

Insurance
Let (Zi1,---,Zm1), -y (Z1iny- -+, Zmn) be an m-dimensional random sample and
(Zyts -3 Zan1)s -+ (Zayns - - - Zmyn) be corresponding ordered set.

According to (6) as the estimator of the survival function P {Zy) > ¢}, we take

1 n m _

= Z HI (Zj; > t). Let 6(t) be the Dirac function. Then, the nonparametric esti-
g

mator of net premium (6) is given by

= [ e TLin (> 0di =P, (Zi> b 2> 1)
0

[y j:1
AJ?l' T - et

..... P,{Z >0,...,2, >0}
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/
e8] m 1 n.om
/ e [ 1zt > 0) <5ZH1(zji>t)> dt
0 j=1 i=1 j=1

i=1 j=1

S —Z/ —“Hfzt>o Hﬂ =
%ZHI(ijo =l i=1

i=1 j=1
— i=1471 I(Z;>0
n;e E (Z;: > 0)

ST

i=1 j=1

(8)

As estimators of the distribution function P {Z (m—kt1) < t} and the survival func-

tion P { Z(;_ry1y > 0}, we take —ZI Zim—ks1y < 1) and ~ Z[ Zim—ks1yi > 0),

respectively. So, the nonparametrlc estlmator of (4) has the form

/O eIz, oy (t>0) < ZI (m— kﬂ)lgt)) dt

P =

ZT1i...Tm n{Z(m—k+1) > 0}

L L~ [ =
- - I t> 0)8(t — Zim—irry;) dt =
P {Zwm-rs1) >0} n ;/0 € L— )o( k1))
1 n
n Z6_5(Z(m_k“)i)[(z(mwrl)i > 0)
n-

—ZI (m—k+1)i >0))

In the case of the [k]-deferred survivor status the nonparametric plug-in estimator
of the net premium can be defined in the following way:

9)

)b
I
o
T
|
o

5 Asymptotics of the Functions of Statistics

Introduce the notation according to [12, 6]: the function H(t) : R® — R!, where

Hi(t
t = t(x) = (t1(x),...,ts(x)) is s-dimensional bounded function; H;(t) = 8875( )7
J
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j = 1,8, VH(t) = (Hy(t),..., Hs(t)); the symbol T denotes the transpose; ¢, =
(t1n, - - - tsn) is s-dimensional statistic, t;, = tjn(2) = tjn(z, X1,..., Xy), j = 1,8

ltall = /3, + ...+ 2, is the Euclidean norm of t,; = N,{p, o} is the symbol

of weak convergence of sequence of random variables to the s-dimensional normal
random variable with mean p = (i1, ..., ts) and symmetric covariance matrix o =
l|oi;]], 0 < 05 = 0;;(z) < oo, j =1,s; R is the set of integers.

Definition. The function H(t) : R® — R' and the sequence {H(t,)} are
said to belong to the class N, 4(t;7), provided that

1) there exists an e-neighborhood {z : |z — t;] < &4 = 1,s}, in which the

function H(z) and all its partial derivatives

and bounded;

2) for any values of variables Xj, ..., X,, the sequence {H (t,)} is dominated by a
numerical sequence Cyd;, such that d,, T 0o, as n — oo, and 0 < v < oc.

Theorem 1 [6]. Let the conditions

1) H(z), {H(tn)} € Nay(t,7),

2) Bllt, || = 0 (d,"?)
hold for all i € R. Then, for every k € R

up to the order v are continuous
2
J

‘E[H(tn)—H( ¥ — B [VH(t)(t, — )7 ’— d+D/2) (10)

If in formula (10) k = 1, we obtain the principal term E [VH(¢)(t, —t)T] of
the bias E[H(t,) — H(t)] for H(t,), and at k = 2, we have the principal term
E [VH(t)(t, — t)7]” of the mean squared error (MSE) E [H(t,) — H(t)]".

Theorem 2 (The usual central limit theorem) [1]. If &1, ..., &,, ... is a sequence of
independent and identically distributed s-dimensional vectors,

BG =0, o(r) =B&), tu=" > 6
k=1

then, as n — oo,
Vnt, = N,{0,0(x)}.

Theorem 3 [6]. If ¢,(t, — t) = Ns{p, o} for some number sequence ¢, T oo,
the function H(z) is differentiable at the point u, VH (i) # 0, then

G (H(tn) — H(p)) = Ny{VH(u) u", VH(u) o VH" (11)}.

6 Bias and MSE of Estimator AI1

Here, we will obtain the principal term of the asymptotic MSE and the bias conver-
gence rate of estimator (3).

Theorem 4. If the survival function S(z1,...,2,) > 0 and S(t1,...,t,) is
continuous at a point (x1,...,%,,), then
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~

1) for the bias b (Axl. .wm> of estimator (3) we have

P, T, 20) S(w, ) — PP, T, O) L0 1
B nS3(xy,...,xm) n3/2

S = 2, tn = (tln;t2n> = ((I)n<$1, ce ,$m,5),5n($1, e ,xm)),

- - (I)n(xl,...,l'm,(5> _;
dn—m H(tn)— Sn(l'l,...,.l’m) —A:clz...:xma
t _
t=(t1,t2) = (D1, ..., 2m,0), S (21, ..., 2m)), H(t) = t—l = Auroian s
2
1 O(x1,...,Tm,0)
1(t) St o) 2(1) 2o an) VH(t) = (Hy(t), Hy(t)) # 0

The sequence {H(t,)} satisfies the condition 1) of Theorem 1 with Cy = 1 and
~ = 0. Indeed, according to (3)

I m g
- 26—5 T 25 HI(Zji > 0)
H(tn>:®g¢(f177$m’;§): i:11 n m = Sl (11)
n\L1y -+ Tm
— 1(Z; >0
NI

i=1 j=1

Further, in view of to = S(z1,..., %) > 0 the function H (t) satisfies the condition 1)
of Theorem 1 . Also, this function satisfies the condition 2) of Theorem 1 due to
Lemma 3.1 [5], as for all ¢ € R such inequalities hold:

E[[I'(Z >0)=8(@,...,2m) <1,

j=1

Ee I % 12> 0) < S(a, ... am) < 1.
j=1

Therefore,
E|®,(21,...,7m,0) — ®(z1,...,2m,0)] = O (n’%) ,
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).

s

E|Su(21, ... 2m) — Su(@1,- .. 2m)| = O (n—

Taking & = 1 in formula (10), we get

~ — 1 t 1
E{Axlz...:xm} = Az’l:...:xm + t_ E{tln - tl} - t_;E{tQN - t2} + O (E) .
2

2
Since functions t; = t1(x1,...,%m), ta = to(ry,...,T,) are continuous, we have
-~ _ 1 -~
E{tln} = t17 E{th} - t27 and E{Ax1:...:xm} - Aazlz...:a:m + O <_) ) 1.6.7 Axlz...:a:m is the
n

asymptotically unbiased estimator.

Now, putting £ = 2 in (10) and taking into account unbiasedness of t1,, ta,, we
find the formulas for the variances and covariance:

- 1 12 t 1
2 _ 1 1
u (A:rl:...:xm) = g D{tln} + % D{tzn} -2 g COV{tln, th} + O (W) . (12)
Denote
Gilwr, . wm,0) = e T 20 T 1(25 > 0),
j=1
Si(T1y .oy Ty) = H I(Z;; > 0). In view of the randomness of the sample
j=1

(ZH,. . .,Zm1>, ce (Zlna .,Zmn), we have

D{t;,} = D {% Zgzﬁi(xl,...,xm,é)} _ %D{gbl(xl,...,xm,é)} _

S|

(E{¢1(z1, ..., 2, 20)} —E*{¢1(21,...,2,0)}) =

(q)(xl, e T, 20) — D (2, ,xm,é)) ,

S|

D{ts,} = D{% Zsi(xl,...,xm)} = %S(xl,...,xm) (1—=S(z1,...,2m)),

=1

1
cov{tin, ton} = ECOV {d1(x1,. . X, 0),81(21, ..., m)) } =

1
= EqD(Il’ ey Ty 0) (L= S(zy, e, .oy )

Now, we substitute the found expressions in (11) and the second assertion of the
Theorem 4 has been proved.
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—n, o O(xy,. . T, 20) S(21,- ., Tm) — P21, ., T, O) '
53(1’1, e ,I’m)
Proof. In the notation of Theorem 2 and Theorem 3, we have: ¢, = \/n. Since
S(z1,...,xm) > 0, function H(t) € Nia(t). Taking into account unbiasedness of
Sp(x1, ..., 2m) and @, (z1,...,Tm,d), we have u’ = 0.

According to Section 6, the elements of the covariance matrix o are defined by
the formulas:
o1 = ®(x1,. .., 0,,20) — ®*(21,..., 7, 0),

0192 = 0921 = (I)(Z'l, e 7$m,§)(1 — S(I’l, e ,l’m)),

099 = S(x1,...,2m)(1 = S(21,...,2m)). That is why VH(t) u” =0,

O(w1,. .. 0, 20) S(1, .. 2m) — P21, .., 2, 0)

VH(t)o VH()" = S3(x1, .. )

Theorem 5 is proved.

8 Synthesis of Nonparametric Estimators of the Net
Premiums in Collective Life Insurance for Other
Forms of Insurance

The above considered estimators of the net premiums were constructed for whole
insurance; now we will consider other forms of insurances.

e The p-years term life insurance

In this case the benefit to pay if the insured will die during of the contract
validity. The company does not pay the benefit if the insured has lived p years.
Then

1 n

1 Z o0 Z(m—k+1)z‘[(0 < Z(nL_k+1)i < p)
N n “
A gy, =—"

1 n
” Zl I(Z(m—k+l)i > 0)

e The p-years endowment life insurance

Such form of insurance provides for a payment either following the death of the
insured or upon his survival to the end of the p-years term. The given form of

40



Applied Methods of Statistical Analysis

insurance accumulates the client’s capital. Then, the nonparametric estimator
of the net premium is

s Sn($1a~~->$m)_Sn($1+p7'--axm+p)
Tyi.iTm 'p] Sn(x17 “e . ,l’m)
~ Sp(x1+p, ..., 2, + _
x A [k].~|+ (_1 i p>€ P,
w1 mm P Sn(x17 e ,l’m)

e The r-years deferred life insurance

This form of insurance provides for a benefit following the death of the insured
when he dies at least r years following policy issue. Here the net premium is
expressed in the form

1 n
1 Z 6—6 Z(m—k+1)if(7" < Z(m—k-l-l)i)
n

=1

1 n
- Z I(Z(m—k’-l-l)i > 0)
i=1

9 Estimation of Joint-Life Annuity

As in the case of individual insurance [4, 30|, we determine the joint-life annuity by
making use of the corresponding net premium (see formulas (2)—(4), (6)):

“_%f“92l0_®§2fﬂ2fv' 19)

So, in accordance with (3), we obtain the following estimator of the joint-life annuity:

i (6) = 3 (1= P LIl

.... 0 Sn(l'l,...,.iﬁm)
> ez [T 1(25 > 0)
Z H I(Z;; > 0)
i=1 j=1

Find the principal term of the asymptotic MSE and the bias convergence rate of
estimator (13).

Theorem 6. If the survival function S(xy,...,2,) > 0 and S(t1,...,tn) is
continuous at a point (x1,...,%,,), then
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no2S3(xy, ..., Tm)

B (I)($1,---,$m;25) S(xl,...,l’m) — @2(x1,...,$m;6> + 0 (L>

s=2, d,=mn, t,=(tin,ton) = (Pn(z1,...,Tm,0), Sp(T1,...,2m)),

() = 3 (1- ety G L)
E= (tte) = (B(c1, ... 20 8), S(ans. . 2)). H(t) = %(1 - %) = o (0),
Hi0) = sgr e M) =~ VH() = (Hilt), Halt) #0

1
The sequence {H (t,)} satisfies the condition 1) of Theorem 1 with Cy = 5 and

D, (x1,...,2m,0)

v = 0. Taking into account (13) and the inequalities 0 < ( ) < 1 (see
n\ L1y, Tm
(11)), we have
1 D, (z1,...,%m,0) 1
H(t,) =—-1- < -
(tn) (5( Sn(xl,...,xm))_é

Further, the proof is carried out similarly to the proof of Theorem 4 and therefore
is not given.
Theorem 7. Under the conditions of Theorem 4

. NI{O, @(ml,...,xm,25)5(:131,...,xm)—@2(x1,...,xm,5)}‘

0253(x1, ...y Tim)

Conclusions

The paper deals with the estimation problem of the current values of net premiums
and life annuities. The asymptotic properties of the estimators are proved: unbiased-
ness, consistency and normality. The principal terms of the asymptotic MSEs of the
proposed estimators are found. Statistical modeling within the framework of the de
Moivre model shows that the quality of estimation according to empirical criterion
improves with the growth of the sample size. Note that the improved estimators of
net premiums and life annuities can be obtained by substituting of empirical survival
functions by the smooth empirical survival functions (cf. [2, 3, 9, 11, 15, 17, 24|,
[27]-]29], [8, 36, 38, 40, 41, 43, 44]).
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Abstract

The paper presents an improved version of the method of evaluation the
multiparameter measurement uncertainties stated in the Supplement 2 to GUM
guide. This was done on the example of two-parameter jointed measurements.
It consists the correlation of individual components of the type A and/or type B
uncertainty of measurands. The general formulas for the covariance matrix, fi-
nal uncertainties and correlation coefficient were determined as well as formulas
for several specific cases, presented in Table 1. The graphs show the correlation
coefficients of the output quantities as a function of the type B contribution
in the uncertainty of the input quantities. Also, there are provided examples
of estimation of the uncertainty and correlation coefficients for the sum and
difference on the example of two temperatures. It has been demonstrated that
the inclusion of correlations of uncertainty components makes the uncertainty
evaluations more reliable and accurate.

Keywords: multivariate measurements, correlations of the type A and type
B uncertainty components, vector propagation of variance, resultant correlation
coefficient.

Introduction

In the GUM guide, a concept called “measurement uncertainty” (MU) was intro-
duced to estimate the accuracy of measurements. It is the width of the interval, and
for multi-parameter measurements - a description of the boundaries of the so-called
coverage area [3], [11], in which the estimator of the value of measurand, obtained
after processing of the measurement results, can occur with a certain probability.
The measurement uncertainty assessment is based on the determination of its type
A and type B components, designated as ua and ug, respectively [1]. They are de-
fined as standard deviations of the resultant distribution with a probability density
function p(x) constituting a convolution of two statistically independent density dis-
tributions p(x4) and p(zp). The first one describes a random spread of the values of
experimental observations obtained experimentally. The second one is a hypothetical
distribution randomizing the assumed changes in the value of many systematic errors
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of different origin, unknown in value during the measurement experiment. These er-
rors may occur randomly in the long-term use of the measuring object, of instrument
or measuring system and in various permissible ambient conditions other than during
provided control measurements. The standard deviation of the p(x) distribution, i.e.
its uncertainty u, is the geometric sum of component uncertainties us and ug, i.e.:

u = \/u +ui,. (1)

The uncertainty of any single quantity described by (1) has the same form as for the
uncertainty of the sum of two uncorrelated variables, when values of one of them have
only type A, and the other - type B uncertainty.

If a function describing the density distribution of p(z) is known, e.g. the Gaussian
function for a normal distribution, the expanded uncertainty U with the required
coverage probability, e.g. 95 % or 99 %, is determined analytically basing on standard
deviation v and the expansion coefficient. For other randomized distributions in
experiments, the expanded uncertainty U is also determined by the numerical Monte
Carlo method according to Supplement 1 [2]| to the GUM guide.

Standard uncertainty u4 of component type A depends on the distribution of
the measurement observations and it is determined statistically. On the other hand,
due to up uncertainty, the possible impacts of many values affecting measurement
results of unknown values, irremovable from the sample observation, are randomized,
as there are no data to calculate the corrections for them. Therefore, ug values
can only be estimated heuristically based on knowledge about predicted ranges and
distributions of values of influencing quantities and their interaction functions. In
the known operating conditions with a limited range of changes, the uncertainty
component ug may be significantly smaller than that assumed during the calibration
of the device for the full permissible conditions of its application [8], [9].

Measurement uncertainty (MU) is applicated as a basic element of conformity
assessment of products with requirements [4-6]. It allows to compare the results
of various tests, check the exceeding of limits or meet the tolerance requirements
of products. Thanks to the possibility of comparing the calibration results with
the requirements, it is also the basis for metrological acceptance of the measuring
equipment. Laboratories accredited according to ISO / IEC 17025 [6] must calculate
the MU for each test method used in the granted accreditation scope. There is,
however, a certain discrepancy between the description of measurement accuracy
through uncertainty with a certain probability and description of the accuracy of
measuring devices and devices by the permissible maximum errors, i.e. border errors.

The metrological properties of the measuring equipment and the parameters of
many devices and processes that fulfill the responsible functions, besides careful cal-
ibration, also require periodic inspection during the period of their operation [5, 16].
For this purpose, measurement experiments are carried out, including the study of
these parameters as single and multiparameter combined monolayers. They are rarely
performed by one, and usually by many instruments, under the same or different en-
vironmental conditions and at the spread of the values of repeated measurement
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observations caused by common or different causes. This practical multi-variant situ-
ation creates different relationships between individual type A and type B component
uncertainties of measured quantities. Many such situations do not include recom-
mendations for estimating uncertainty of measurements, given in GUM [1] and all its
Supplements [2-4] and in other international regulations, e.g. [5], [6]. Zakharow in [7]
considered the non-heuristic estimates of the correlation of the quantities influencing
the uncertainty of single parameter measurements, called “logical ". In the literature
on multiparameter measurements, we have not found an analysis of impact of the
correlation of uncertainty components type A and/or type B of the input quantities.

The purpose of this publication is to develop a method for determining the rela-
tionship between the uncertainty of the measurement results of several output values,
when the individual type A and B type uncertainties of few input quantities are cor-
related. This is a proposal to extend the scope of the GUM guide and its Supplement
2 applications.In this work the impact of various cases of correlations of uncertainty
components of directly measured quantities on the resultant uncertainty of the quan-
tities indirectly determined from measurement data will be analyzed. This will be
illustrated by the examples of two-parameter measurements described by a linear
function and several simple non-linear functions. Appropriate formulas that take
into account the correlation of uncertainty components will be determined. This is
particularly important when the results of multi-parameter measurements are used
later together in various applications.

1  Uncertainty of 2D function of measurand with
correlated uncertainty components

The mathematical model of the propagation of uncertainties given in Supplement
2 [3] to the GUM guide [1] is used to determine the uncertainty of components for
multidimensional indirect measurements. In such measurements, the m-dimensional
output measurand Y depends on data of measured directly n-dimensional measurand
X by general equation

Y = F(X). (2)
where: Y and X - vectors with elements that are values of output and input variables.
Propagation of the uncertainty of these measurements is described as a matrix
relation between the covariance matrices of input X and output Y variables. It occurs

in the linearization of the functional F' in the formula (2) through derivatives and
has the form [3]:

Uy =8 -Ux-ST (3)

where: S - the sensitivity matrix);; U x, Uy - covariance matrix of input X and
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output Y vectors escribed as follows

oy Oy 2

R (] coo PrinUz1Uzn
9 0, 2
87;”; . ai’: PrniUpnlUsl - - - U,
2
uyl coo PylmUy1Uym
2
PytmUymUy; - - - U,

If the Y vector will be further processed by any other function:

Z=G(Y). (4)
then for the indirectly determined values of the multivariable Z = [z1,. .., 2,,|T with
the uncertainties u.1, . . ., U, we get then extmatrix equation similar as (3) describ-
ing the propagation of uncertainties

Uz =Sc-Uy - Sc" (5)

There are many possibilities to correlate each of the two component uncertainties
with their equivalents of other input quantities measured in a joint experiment. The
results of both directly measured values of X, as well as indirectly measured values
of Y and Z, are determined from the collections of repeated observations obtained
in randomly variable ambient conditions. If some of these conditions are constant
or variable deterministically during measurements in a known manner, only then the
corrections can be made to eliminate the resulting known systematic errors. Different
values of the examined quantities are measured with different meters, or even the
same quantity on different ranges of one meter. There are various permissible errors
of these instruments, and therefore different values of the uncertainty component
type B [8-12]. In addition, the dispersion of observation values depends not only
on parameters describing changes of the measurement system and the test object
from ambient conditions, but also on the random and aging changes of their internal
parameters. Measurement samples from the same physical object under test (e.g. in
chemical analysis) in different experiments carried out under the same conditions, i.e.
with the same up uncertainty, may have different values of uncertainty w4.

2  Uncertainty of the different correlation cases of
two quantities

In multi-parameter measurements, for measured values of elements of the input vari-
able X different types of correlation of components of each uncertainty type A and
type B may occur. This influences on the accuracy of the results of the output quan-
tities Y. Measurements of only the components of the vector X should be treated
as a special case of multiparameter measurements related to each other only in a
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measurement, object, i.e. when Y = X. Below, some examples of determining the
uncertainty of vector Y components with two values y;, y» obtained from measure-
ments of two values y;, yo (or one quantity in two different experiments and under
different influencing conditions) will be considered. Both input and output measur-
ands are two-parameter (2D).For 2D measurement of input variable X = [z, x9], i.e.,
when Y = X ie.: y; = x1,ys = X9, two equations (7a, b) and the output covariance
matrix Uy = U, » will be obtained

2 2
U, = ujs + uip pAU1AU§A + pgulBuzB (6)
xl, -
PAULAU24 + PBUIBUZB Up g + Upp

In the covariance matrix U, there are uncertainties according to the rule of to-
talizing variance, i.e. as sum of squares of uncertainty type A and type B in both
measurements:

2 _ 2 2 2 9 2
Uy = Uy + Ui, Uyy = Upy + Usp (7‘17 b)

The correlation coefficient between variablesz; and xy is:

PAUIAU2A + PBUIBU2B

2 2 2 2
uiy + uig\/us, + udg

Relations between the uncertainty components of type A and of type B are illustrated
in Figure 1.

(8)

Pz12 =

u?(xy) = uj (x1) + uf (x1)

X1 U (x4) up(xq)
Pa PB
X2
Uy (x3) ug(xy)

u?(x) =uj (x2) + up (xz)

Figure 1: The relations between uncertainties of Type A and/or Type B for the 2D
correlated measurand

For the uncertainty ratios of components and standard uncertainties we put given
below designations: kig = Zl—fg 1, 0<kyp =8 < 1. From that

T Ug2 —

WA = /1~ kip, 3 = /1 — kip, and a simpler form of the pattern (8) is obtained

Pz12 = PA \/1 — kip \/1 — kig+ppkip kon 9)
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For both quantities measured in this experiment, the coefficient p,1 5 in (9) depends

only on the uncertainty ratio k;z, because for each of them there is (Zj > i + <Z—2> i =
kip + (1 — ki) = 1.

The linear condition ZLB + Z;A = kig++/1 — k?; = 1 is satisfied only for k;z = 0 or
kg=1,1=1,2.

Some specific cases of the correlation coefficient p,; » for the results of two measure-
ment experiments with different uncertainty of components uy4, us4 and uip, usp
and their correlation coefficients p4 and pp are given in Table 1. It also contains
extreme cases for a combination of values py = (0, 1);pp = (0, 1).In a special case,
when py = 0, pp = 1 and ky ~ k25 ~ 0.5, we get: U, = Uy = V2up and
Py1,2 = 0.5.

Table 1. Correlation coefficient p,1 2 of the measurement results of two variable
measurand for different relations of its uncertainty components u4 and ug

Uncertainties of the type A Uncertainties of the type B Correlation
coefficient py »
Correlation Correlation
Values Values between two
factor factor measurands
No PalligUza + PplliplUsp
\/H%A + u%s\/u%ft +ujp
UraUz4 Pa Uip, Uz P
Pa ’1_k%5’ fl_ k%B
+ppkig kop
1. Upg, Uz Pa Uy, Uzp ps =0 Pa /1 —kip /1 — k2
2. Uga, Uza pa=0 Uip Uzp Pe Pekig K2
30| Upg = Upa=Uy Pa Ujp = Upp=Up Pp pa(l—k2)+ ppki
2 2
4. U4, Uz4 Pa Ujp = Uzp= Up ps=1 Payl= le\J 1=lzp
+ kip Ka2g
12 12
5. Upqg= Uzg = Uy Pa= Uip, Uzp Pe Jl leJl kZB
+ ppkig Kap
6. Ugg Uz pa=0 Uip, Uzp pp =0 0
Urg = Uza= Uy Pa Uy g = Upg= Uy Pr 0.5 (pa+ pg)
Pa =0 pp =1 1
?. ulB =u23=u3 u13=u23= uB = —
Pa= pp =0 Py1z=73
Ug=Up o4 =1 Ug=Up pg =1 Py12 = 1
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3 Graphs of the resultant correlation coefficient p,; -

The form of the function (9) is invariant to the changes of values w4 to uyp, tuga t0 usp
and p4 to pp. Then it suffices to analyze dependencies for one type of uncertainty A or
B, because for the set of variables of the second type, there will be similar relationships
due to the symmetry of this pattern. The general function of the formula (9) will be
used to present diagrams of the correlation coefficient. Figure 2 shows 3D graphs of
the resultant values of correlation coefficient py; o = f (k;f 5 k3p) of the two-element
(2D) output measurand Y =X for three pairs of correlation coefficients pa, pp
of type A or/and type B uncertainties of elements x, 25 of the 2D input measurand
X .Graphs have the form of curvilinear planes. The cross-sections are marked on them
for k35 = (0.25, 0.5, 0.81) equal to ke = ( 0.5, 0.71, 0.9) are given on Fig.3a-c as

2
2D diagrams of coefficient p,12 in the function of ki, = (Zl—f) described by the
formula (10)

P12 = f(k?B) (10)

or as p;12 =f (kip), if lower non-linear scale at the bottom of each of these drawings
is used.

pa=l,pp =1

Figure 2: Relations of correlation coefficient p,1 2 =f (ki1p, kip) of measurand
X as 3D charts for three pairs of correlation coefficients of its uncertainty type A or
B components: ps =0,pp =1;pa =1, pp=1;pa=1, pp=0.
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Figure 3: Correlation coefficient pyi o between output variables as function of
kigor le:% for defined values of correlation coefficients of input uncertainty com-
ponents type A or/and B: pa=0or 1 and pg= 0 or 1, and values of parameters:
kop=12 and k35 given above on a, b, ¢, d [17].

The detailed conclusions resulting from the analysis of the diagrams in Figure 3
a-d are as follows:

1. the largest correlation coefficient in the entire range kg has the curve for
pa=l,pp =1, when kip = kop;

2. for the value ki, < 1 — k35 the curve for pa=1, pp = 0 dominates over the
curve pp= 0, pp = 1 and approaches the curve py= 1, pgp = 1 for the smallest
values of k3g5;

3. for larger values of k%5 > 1 — k3 the curve ps=1, pp = 0 is below the curve
pa=0, pp = 1;

4. at point ki = 1 — k25 curves for pa=1, pg = 0 and pa=0, pp = 1 intersect.
The correlation coefficient is py12 = kipy/1 — k%5 and reaches the maximum
value py12 = 0.5 for k25 = 0.5 ;

5. for the value of the correlation coefficient p4 < 0 (Figure 3d [17]) there a neg-
ative correlation coefficient py; o,for the fragment of variation range of kip is

obtained.For example, for py= —1, pp = 1 and ki < 1 — k25 a negative
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correlation coefficient is obtained, and for k5 > 1 — k3 the correlation coeffi-
cient is positive. The largest range of variation kg with a negative correlation
coefficient occurs for small values of kop.

On this basis, some conclusions about the uncertainty of measurements can be for-
mulated.The correlation between the values of results of two different measurement
experiments associated with each other, e.g. measurements of the same value of
measurand with two different meters or on two different ranges of the same meter
of different uB values, depends on theratio of the uncertainties type B and if the
higher the measurement uncertainty is in relation to type A in one or both measured
experiments.

The maximum correlation coefficient p,; » = 1is achieved for the quantities of fully
correlated components of type A and type B, pa=1, pgp = 1, i.e. when kg = kop.
This leads to the condition Zi—j = ZQTJj

The correlation coefficient increases to 1 for kip < kop, but decreases for kip >
kop. For the values of k5 < 1 — k25 we observe a strong negative correlation for the
curves pa= (-1, -0.5), pp =1

4 Relative uncertainties

The formulas for relative uncertainties are obtained by substituting u; = x;u.;, us; =
Tl Ai, UB; = TiUrg;, for i= 1,2. From the formula (8) for the correlation coefficient,
we obtain:

PAUr A1 Ur A2 + PBUrB1UrB2 (11>
2 2 2 2
\/U“TAI + U, 1 \/UTAZ + U B2

Formulas of relative variances of quantities x1, x5 have been determined in a similar
way:

Pr12 =

U 41 +u
U2r(l’1) =ul = % = U?m + Uzm (12a)
1
w? A2 + u?
u?(9) = 0P = TBQ = Uf gy + Uppy (12b)
2

Relative uncertainties u,,1, uy42 as functions of relative uncertainties u, a1, t, 2,
UrB1, Urpo are expressed as

— 2 2 _ 2 2
Urz1 = \/ U A1 + Uy 1 Urgp2 = \/ Uy a1 + U1 (13@, b)

Then their correlation coefficient p,q o is

p o PAUrA1Ur A1 + PBUrB1UrB1 (13)
1,2 =
’ Upgl Urg2
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In general case for types A and B of relative uncertainties u,4 and u,p, in a similar
way as before for uy and upg, a matrix U,x for components of relative uncertainties
can be created. If the relative uncertainties of the input quantities are known, e.g.
the same for the entire range, you can directly use their matrix propagation equation
with a similar structure as for absolute uncertainties, i.e.:

Uy =8, -Ux -SF (14)
where: U, x, U,y ,S, = z—g% - covariance matrices for relative uncertainties and the
7 7
sensitivity matrix with elements marked with indices ¢+ = 1, 2 for lines and
j =1, 2. for columns.

5 The components of the uncertainty of the output
quantities

When instruments and measuring systems in various environmental conditions are
used and measurement observations are different randomly distributed, it may also
be necessary to find the type A and B uncertainties of elements of the output Y
measurand and correlations between the pair of their values. We analyze this on the
example of 2D measurand based on (7a) and (7b) equations. The covariance matrix
of measurand X = |11, z5]7 is

2 2 2 2
Ux = “2a:1 Ux212 _ ujs +uip PAUIAUgA + ,0]23U1BUQB (15)
Uiy Uy pAULAU24 + PpUIBU2B Uzq + Usp

It can be presented as the sum of two matrices for uncertainty of type A and Type
B components, ie.

Ux =Uxa+Uxsp (16)
uf PAUIAU2A uf PBUIBU2B
in which: Uxa = 14 5 ,Uxp = 1B 2
PAULAU2A Uy PBUIBU2B Usp

The transformation of the covariance matrices Ux4 and Uxp of the uncertainties
of measurand X is performed after the linearization of the functional Y = F(X)
according to formula (2) as follows

UYA:S'UXA'ST and UYB:S'UXB°ST (17)
The output covariance matrix Uy can be determined in two ways:

1. estimate the matrix Uy = Uy + Up and determine from it directly Uy as
follows

Uy =8-Ux-ST=8-(Uxs+Uxp)-ST (18)

96



Applied Methods of Statistical Analysis

2. or from the matrix Ux4 and Uxp find the matrices Uy 4 and Uy g of both
components of the uncertainties u, of output quantities and then Uy. It is
received

UyZUyA+UYB:S-UXA'ST+S-UXB-ST (19)

If Uy is only designated, then both methods are equivalent. This was checked
for both two-dimensional (2D) measurands X and Y. On the other hand, matrices
Uy s and Uyp for the uncertainties of type A and B components of the output Y
measurand and the correlation coefficients of their each type can be determined from
the formula (19) not found in the literature.

6 Uncertainty of sum and difference of output quan-
tities

HZ=G(Y)=1[y+vy2y— yQ]T,then absolute uncertainties are equal:

ul = ui, +uig +usy +usp + 2(pauiatisa + pruipusR), (20a)
uly = uiy +uip +us+ uip — 2(patiauza + ppuipup) (200)

Let use designation u2 = u?, + uip + u3, + uip for the output variance of the sum
and the difference of values in the absence of correlation. Then

Uylty2 = \/Ug + 2(pauratza + pRUIBUZB) (21a)

Uy—y2 = \/ ud — 2(pauiauza + ppuiBUB) (210)

It is obtained that the uncertainty increases for the sum and decreases for the dif-
ference in relation to the model with zero input correlation. The values y; 4+ y» and
y1 — Yo are correlated with a coefficient equal to:

2 2
uyl - qu

Pylty2ql—y2 = — 22
yl+y2,yl—y Ugt+y2Ulg1—y2 (22)
If there is no correlation between type B components, i.e. for pgp = 0, uncertainty
values are determined by

Uyl4y2 = \/U% +2pauraU24  and  Uyi_yo = \/U(Q) — 2pauiauzs (23a,Db)

In this case, we obtain a reduction in the uncertainty for the sum of the input quan-
tities and an increase in the uncertainty for the difference of this quantities. The
numeric values is demonstrated in the example of the uncertainty of measurements
of the mean value and the difference of two temperatures given in [13] and [16].
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Summary

This paper analyzes the uncertainty model of two-parameter measurements, which is
a development of the internationally used model according to the guide for evaluation
of uncertainty in measurements under acronym GUM [1]. It was assumed that in
the general case the uncertainty components of each type A and B for quantities
jointly measured in the input of measurement system can be correlated with each
other. The general dependences of the correlation coefficient and the different mutual
relations between input uncertainties were determined, with full correlation and no
correlation between type B uncertainties. The uncertainties of the output quantities
and the correlation coefficient for the linear function processing the input quantities
and for the quadratic-linear and quadratic functions were determined. quotient. The
dependence of the correlation coefficient of output values on the values of input
parameters was investigated. The content of the work contains the courses of the
dependencies studied and several detailed conclusions.

In cases when both input values are measured in equal or similar influencing condi-
tions, their B-type uncertainties may be correlated. This should be considered in the
estimation of the uncertainty of the output quantities. For example, for the sum of
the output quantities and the positive correlation coefficient, the result of uncertainty
will be greater than the result from the geometric summation of both uncertainties
type A and type B according to GUM, and for the difference - smaller. Considera-
tions and conclusions can be generalized to measurements of many multiparameter
measurands.
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Abstract

This paper discusses two methods for estimating the uncertainty of values of
the function which describes a characteristic of the property of tested devices,
substances or engineering process. This estimation is based on measurements
at two control points. The method I estimates uncertainty of these function
points using a linear approximation created on the basis of maximum permis-
sible values of measurement error at control points. The method II relies on
the statistical estimation of values, their uncertainties and correlation for the
points of a tested function as a linear combination of measurement results in
two control points. Matrix approach to the propagation of uncertainties in in-
direct multivariate measurements was used. Method I is the boundary case of
method II when the correlation coefficient is equal to 1. Using the method I,
the absolute and relative uncertainties of interpolated values of characteristic
curve and their linear or nonlinear functions can be properly estimated. Both
methods can be useful in all areas of metrology applications. It is an extension
of the method described in the GUM Guide Supplement 2.

Keywords: maximum permissible error, uncertainty type A and type B,
correlation coefficient, two-parameter measurand, control points, statistical es-
timation, multivariate measurements, vector propagation of uncertainty.

Introduction

To assess the accuracy of measurements, the concept of uncertainty was introduced
in the 1990s and the principles of its application were published in the form of the
Guide to the Expression of the Uncertainty in Measurement (GUM) [1] and its Sup-
plements. The scope of application of these international recommendations has been
still expanding in numerous publications, including a monograph [2]. In addition to
the widespread use of the concept “uncertainty” to evaluate the accuracy of mea-
surements, new applications for the assessment of product quality, statistical quality
control of production processes and laboratory accreditation have emerged and spread
in experimental research [2-11].
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In experimental studies, there are usually several limitations concerning density
of measurement points, time taken and duration of the experiment, availability of
a tested object, samples and automated equipment, and cost of performance. In
laboratory tests and in only a few routine tests, these are usually not critical require-
ments. In most utility studies there are such limitations and they are important. It
is necessary to minimize the number of controlled points and to select the appropri-
ate distribution, time and volume of the information obtained. It also depends on
the type of tests and the range of values of the examined quantities, on the possi-
bility of obtaining the uncertainty of measurements required in these tests and on
the accuracy of the measuring equipment used. There may be a requirement that
control points should be unevenly distributed even for a linear function for reasons
other than measurement accuracy, e.g. consumption of test substances and reagents,
volume, dimensional and flow restrictions, power and energy limitations, etc.

The paper considers the cases when estimating values and uncertainties for se-
lected points of the curve modeled with the known function y = f(z), which are not
measured directly. It is also necessary to determine the gradients of uncertainty in
the analyzed range of this function and the interval z of a given uncertainty. The pos-
sibilities of estimation based on control measurements in two points were analyzed.
The estimated uncertainties depend on the number and location of these points along
the scope of the function being tested. Discussions on this issue could not be found
in the literature.

This issue is discussed on the example analysis which aim is to determine uncer-
tainty of the known measurement function. This was the method proposed by the first
author, which is based on measuring two values z1, o only with uncertainties u,,, u,
and their correlation estimated from measurement data and experiment conditions.
To evaluate the accuracy of measurement results, recommendations included in the
GUM Guide [1| were applied. The basis of this assessment is the estimation of stan-
dard uncertainty as a geometric sum of component uncertainties i.e. u = \/u% + u%.
The component uy, which is called as the type A uncertainty, is determined by
the scattering of the specified number n of repeated measurements of the measured
quantity in circumstances considered as random ones. The ug component, i.e. the
type B uncertainty, represents the randomized cumulative impact of the predicted
various impacts on test object, measurement system and instrument readings when
using them under the specified permissible conditions and in the nominal lifetime
[1,10,11]. Interferences that occur during measurements can cause systematic errors
of unknown values. Basing on the knowledge about predicted ranges and probability
distributions of different interferences, heuristically their contributions in ug uncer-
tainty are estimated and statistically for the long time this uncertainty component
type B is determined [5,6].

Based on the measured control values x1, x5 and their standard uncertainties uy, us
the value of z.; and its uncertainties u.; = o.; were estimated. The dependencies for
indirect estimation of the absolute standard deviation o, and the relative deviation
0; = 04 - x; were determined. These estimates make possible to determine the ranges
of x with given end-of-range values as well as uncertainties of quantities depending
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on x with the known function.

Two methods of estimating values and uncertainties for any number of function
points describing the tested characteristic curve will be applied. Method I is based
on the determination of standard uncertainty from the permissible maximum error
of the instrument, known from reliable calibration results or from data given by the
manufacturer. Method II, statistical, is based directly on the results of measurements
at control points and on the knowledge about measuring devices and experiment
conditions.

1 Method I

In method I, for the measured values of the function of tested object, the type B
uncertainty is estimated mainly from accuracy data of measuring instruments [2-
6]. The permissible maximal error of instrument |A,|,.. is usually specified by
manufacturers as the line dependence of the absolute error module on the value z
of measured quantity in the form of sum of components, additive and multiplicative
or after their relation to the measuring range as a maximum relative error. This is
described in the formulas (1) and (1a)

A A —
A < | Aol maa T N (1a)
Tmaz — Lo Tmaz — Lo Tmaz — Lo
where: in (1): |Az], |Azlmaz, [Daol,q.- the absolute errors: real of the measured value

x and maximum permissible for  and for the beginning of range ¢, e.g. o = 0 and
l€5],0e = Da—ao/(T—20) - maximum permissible relative error of the difference z— .
Equation (1la) gives their values related to the range and is simplified for zo = 0. With
the method I, from two maximum values of this error |A, |, ... |84 » Which
are known from technical data or from measurements under given conditions, for
the z value in the tested range one can determine the linear characteristic curve of
absolute uncertainty o, or its normalized value (the relative uncertainty). Within the
ranges £|Az, |00 £, | mae: the dispersion of the a-value with a uniform probability
distribution is usually assumed. Standard deviations o,;, 0,0 of estimators of the
values x1, T2, e.g. mean values of measurement observations, are treated as absolute
type A uncertainties. In the field of uncertainty, the formula (1) corresponds to
relationship given below

Og S Uw|mam - Ux0|maz + (I - IO) : 5w‘maz (2>

where: d;|mqe 18 maximum relative uncertainty of the difference (z — zy).

The maximum permissible absolute error |A,|n. from equation (1) and the corre-
sponding absolute uncertainty o,|maq, from equation (2) are proportional to each other
(1/4/3). With appropriately selected scales on the y-axis, they run in the function of
the measured quantity x identically linear, as shown in Figure 1.
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Method 1 is very simple. It can be used to the approximate estimation of uncer-
tainty in the full range or only in those parts of it, i.e. outside the interval (z1,zs),
where it can be assumed the linear dependence of the maximum permissible error on
x. For example, for many digital devices, the maximum permissible absolute error
increases from z xo > w1, ie. [Ayl, .0 = |Dui |0, If the relative error ||, is con-
stant, then this increase in type B uncertainty is proportional to the increment of x.

|A | i . |Ax| < |Ax0|max + (x - xO)'lgslmax
x

x Ox < 0x0lmax + (X — X0)0x|max
|Amax |

|Axz| [Ox2

| Ayl

k=0 k k=1
|Axo0l | Txo B | i X
X0 X1 Xc X2 Xmax

Figure 1: Linear characteristic curve of maximum permissible absolute error
|A;|,  given in formula (1) and corresponding absolute uncertainty o,|mnqe. in the
V/3 larger scales on the y-axis

max

However, when using the method I to estimate uncertainty, for individual z. values
one cannot take into account the statistical nature of the uncertainty of controlled
values x1, xo, including the correlation of type B uncertainty components of the
measuring instruments. These components are estimated considering the maximum
permissible errors of instruments, and the correlation coefficient between the obtained
uncertainties for any values within the measuring range is equal to 1. The correlation
coefficients between estimated uncertainties for z.q,z.o cannot be determined and the
correlation coefficient of 1 is assumed for them. When determining the uncertainty
of sum and difference of two values x with the correlation coefficient equal to + 1,
the component uncertainties should be added algebraically. For the sum, they are
larger, and for the difference - smaller than for the geometric summation.

Therefore, the application of method I is limited for determining uncertainty of
indirect multivariate measurements. It is only suitable for these cases, when the
individual z. values of the characteristic curve with estimated uncertainties will be
used later only individually.
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2 Method II - statistical

Method II relies on a statistical description of accuracy using uncertainty. It is based
on the vector method for determining uncertainty of multivariate indirect measure-
ments, which is presented in Supplement 2 to the GUM Guide [1|. The output Y
multi-measurand parameters are determined indirectly from the X multi-measurand
input measurements. The general function is

Y = F(X). (3)

Their uncertainties and correlation coefficients are related to the Law of Propagation
of Variances as a relation of the covariance matrices Uy and Ux,i.e.:

Uy =S8 -Ux-St (4)

If the relative uncertainties do not exceed several percent, then from the equation
(4) it is determined the uncertainty for processing functionY =F(X), both linear and
nonlinear, for which the sensitivity matrix S = g—}; is Jacobian matrix. For nonlinear
functions, the dimension m of the vector Y may be larger than the dimension n of
the vector X, equal to the number of independent equations connecting elements of
both vectors.

The issues discussed should be general and useful for any type of F() function.
Therefore, the uncertainty evaluation of the elements Y is divided into two stages.
In the first of them, based on measurement results of two values x1, 25, a linear
scale of values X. = F.(X) is created for the full range of ., — xo considered
and estimates their uncertainties. In the second stage, from the selected elements
x. of the vector X, the values and uncertainties of the elements of the vector Y are
determined according to the individual linear or non-linear function ¥ = F,(X,).
The first stage will be discussed wider. The uncertainty of any x. value results from
the control measurements x, s, their uncertainty and the correlation coefficient. It

is their linear combination described by formula (5)
re=mx1+k(xy—x1) = (1 — k)21 + kg (5)
where k means relative location of the point z. in the interval x1, zs.

k= (r.—x1)/(22 — 11) (5a)

Inside the interval 1 < x. < x9 and kis 0 < k < 1.

The values obtained in control measurements xq, xs, estimated values of x. and
uncertainties 0,1, 040, 0. are modeled with random variables. The uncertainties o,
are evaluated indirectly from uncertainties 0,1, 0,2 and their correlation coefficient
Px12-

As an example, the measurand X, of two values x.1, x.o will be computed . Their
uncertainties 0., 0.2 and correlation coefficient p.i.o will be evaluated. When esti-
mating these parameters of the X, its covariance matrix U, for absolute uncertainties
is as follows

U =85.-Ux-S.t (6)
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where: sensitivity matrix S, and covariance matrices Ux and U, of vectors
X = [z1, )" and X, = [z.1, T]T are described by equations (6a, b, ¢) given below

Oxc1  Oxel 2
S = gml 88952 UX _ 01 px1,20'2x10':1:2 (6& b)
c L2 Lc2 ? - 9
oz,  Oxa Px1,20210 2 00
o] Pc1,20¢10 2
U. = o P2t (6¢)
Pc1,20¢10 2 (o)

where: 0,1, 042, 001,00 are absolute uncertainties and pg1 2, pe1,2 correlation coef-
ficients.

If two calculated values x.1, x. are linear with the measured values x1, x5 , then
they are represented by linear combinations and defined by equations

Tel = (1 — /{31> I +k1I2 (7@)

T = (1 — k‘g) T —f—kngEQ (7b>

In the general case, the results of control measurements xi,x, are correlated, i.e.
pz12 7 0. The initial covariance matrix U, is derived from (6) and (7a,b) and it is

[ 1k R 1—ky 1—k
Uc_L—kQ kg} Ux { ki ko } ®)

The main diagonal of the matrix U, consists of the elements which are the variances
of values z.; and x., i.e. the squares of uncertainties o,.1, 0.2 given by equations

0% = (1-— k1)20211 + k1%0% 0 + 20212(1 — k1) k1041042 (8a)

0l = (1— k’z)QUQxl + ko’ 0% 00 + 20212(1 — ko) kooy1040 (8b)

Their normalization to uncertainty .o of control point xs is given by the formula (9)
where:z=1, 2, and € = Z—I; is the ratio of uncertainties for x; and xs.

Onci — Oci = \/62(1 — kZ)Q + k‘iQ + 2px1,25(1 — kz)kl (9)

02

Correlation coefficient p.; 2 of the estimated quantities x.1, x.2 is given by the formula

21— k) (1 =k kok — 2k k
pets = e*( 1)( 9) + kaoky + (k1 + k2 1k2)Epa1 2 (10)

Onc1Onc2

From (10), for special cases: of uncorrelated =1 and 3, (py12 = 0) and x; and
perfectly correlated (p,12 = 1) derived are formulas (11) and (12):

201 — _
Pers = g (]_ k1>(1 k?g) + ]{31]{32 (11>
Onc10nc2

Pcl2 = 1 (12>
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The dependence of uncertainty o. on k of point z. is described by the formula (13)
and its special cases - formulas (14) and (15)

Oc = \/(1 — k)?0%1 + k20%0 + 2k(1 = k) po1,2021042 (13)

If is no correlation p,12 = 0, or perfect correlation p,;o = 1 (13) is simplified as
follows

0l pan = V(L — K207 1 K202, (14)
UC|le,2:1 = (1 - k) Oz1 + ko_mQ (15)
The formula (15) becomes linear.The correlation coefficient p.; 2 is the function of
relative locations ki, ko of the estimated values x.;, x., for the ratio of uncertainties
e = 1/2 of control points z1, x5 and their correlation coefficient p,1 2 = (0;0.5;1) is
presented in Fig. 2.

Pc1,2 Px12 = 0.5 Px12 =1

Figure 2: Correlations coefficient p.1.2 as a function of the relative locations ky, kg of
values 2.1, .o for their correlation coefficients p,1 2 = (0;0.5;1) and the ratio of
uncertainties € = 1/2

Figure 2 shows that 2D surfaces of the correlation coefficient p. o = f(k1, k2) for
pz12 < 1 on the input reach a maximum of 1 for k; = ky. The coefficient po =1
creates a plane in the entire area of variability ki, k,. With decreasing p,i 2, the
symmetric surfaces p,1 2 against the line ky = ky decrease and reach the minimum in
symmetrically located points ky = 1,k =0 and k; =0,k =1

After normalizing o. and 0,1 to oy2i.e. for € = 221 equation(16)-(18) are derived

Oc

V(= k) 4+ 12+ 20051 — k) (16)

)
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for py12 =10 %o — \/e2(1 — k)% + k2 (17)

Oz2

for py12=1 7o =/(e—ke+k)=c+k(l-¢) (18)
From (10) and (16) the correlation coefficient of x.; = z; and x. = 2z, (i.e.ky =0
and ko = k) is
e2(1—k
o= — 200
NERES

Resulting from (19) figure 3 gives the dependence of the correlation coefficient
pzr.c—f (k) for uncertainty ratios e—(0.5; 2/3; 1) of control points for the input corre-

lation coefficient p,12 = 0. With the increase of & to 1, all curves reach 0, for lower
¢ strongly.

(19)

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Figure 3: Correlation coefficient p,,. as a function of the relative location % of point
x. inside of the interval z1, 25 for few ratios e=(1/2; 2/3; 1) of uncertainties for its
ends

The values z.; and z. can also be used to model the multivariate measurand Y
determined by the vector function Y = F,(X.).This function can be both linear and
non-linear. For example, for both two-element vectors Y = [y1, yo]?, Xc= [2e1, Tea]”
their covariance matrices Uy i U, are related according to the Law of Propagation of
variances (4), (20)

UYZSY'UX'SYT (20)
Oy Oy
where Sy = % % Uncertainties and the correlation coefficient of output

0xc1  Oxe2
quantities y;, yo are determined here from Uy matrix. At first, the input values
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Z.1 and x.o and their covariance matrix U, are obtained. Next, formulas for elements
of the covariance matrix Uy are used. The value of z., the uncertainty of which is
estimated in the linear case, is related to t values x;, xo by the same formula (3) as
for the interpolation using method I. The linear dependence (3) also applies outside
the endpoints of extrapolation interval z., i.e. if & < 0 and &k >1. Generally, for
correlated x, 5 it results from (9a, b) a square of normalized uncertainty which is
extrapolated in the full range of k. It is described by the formula (21)

g
o2 = 0_;2 =21k + k2 +2(1 — k) kpers (21)

The dependence of the normalized uncertainty o,. = f(k, pz12) of the point z. from
its relative location £ and the correlation coefficient p,; o for three uncertainty ratios
¢ of points x1, x5 are plotted on the 3D graph in Fig. 4.

Ox, e=0.5 s:2/37

Figure 4: The normalized uncertainty of value x. as a function of its relative
location k and correlation coefficient p,; o for three ratios of uncertainty of input
quantities € = 21 = 0.5;2/3;4/5

The examples of normalized uncertainty graphing o,. according to method I and
formula (2) — the straight line (p,1 2 = 1) and according to method II - surface cross-
sections in Fig. 4 for p;1 2 = 0 and two uncertainty ratios € are presented in Fig. 5.
and o, =0, for py10 = 1.

The uncertainty o, rises with £ and p,1 2. From differentiation of the function (21)
with respect to k£ it results that inside the interval < xq, x5 > for the value k,,;, given
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1,4 . Oyc Metoda II Metoda I
\ —
. Onc = —— — ves | o
1,3 . ne =5 e=2/3
. =1 - -
1,2 .\ 0'.1f 0’22’ ~
1,1 .'. 0,22 .\ NEd |, ~ =
'.. . "’ -
1 _.\._J_J‘_ ________ f’—ﬂﬁ———
. N\ PR
019 . ’ \ L - t'l
) ko ’ \ 4 - '.'(
0,8 ‘... ’v -~ 0,29, ..f'
0.7 022 | | -7~ 4o
0 6 -~ '.'- 0,23 .'... \/—
Pig A 1 2
’ P | \/E """ gttt 2 & k, = E + 7
0,5 -7 ky= 2772 (anx = anc)lmax 2
-0,6-0,5-0,4-0,3-0,2-0,2 0 0,102030405060,70809 1 1112131415

Figure 5: Normalized to 0,5 absolute uncertainties of value z. as a function of its
related location k for ratios of uncertainties € = (2/3;1) py12 = (1;0); (methods I
and IT)

in the formula (22) the uncertainty o, reaches the minimum

. 8(5 - le,z)
Emin (Unc = mln) = 1422 — 2€le ) (22>

From (22) it results that relative location k,,;, of point with minimum of the un-
certainty o,. in the control interval xq, x5 it does not depend on its width zo — 1,
but on the relationship of ratio of uncertainties € and p,; 2. The absolute location of
minimum is defined as

.| = 21 + kpin(22 — 71) (23)

Once=min

The condition z; < xc|am:mm < xo is also fulfilled. If there is no uncertainty of one
of the endpoints of interval < xy, x5 >, e.g .0,0 — 0, then minimum decreases to
zero (kmin — 0). The location of the control interval in the range of measurements
rmaxr — xo does not matter. Fig. 6 shows the dependences of the relative location of
Emin(€) for three values of the correlation coefficient p,1 2 = —0.9;0; +0.9. They were
obtained from (22).

The minimum value of uncertainty is

1 — 2
On min = € p$1,2 (24>
g2 +1-— 2p$1728

69



Novosibirsk, 18-20 September, 2019

0,6
05
0,4
03
0,2
0,1
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8

Figure 6: The location k,;, of minimum uncertainty (method II) as functions of €

The function o, ;i = f(€) are presented in Fig. 7.

And it shows that uncertainty estimated using method II o, ,,.;, in the interval x, zo
is lower about 30% from the uncertainty at the starting point z; fore = 1. Fore = 0.6
this reduction does not exceed 30%, and for ¢ ~ 0.8 the uncertainty is lower from
0,1 about 10% When there is no correlation between the control values xy, xo, i.e.
for py10 = 0, equation (24) is simplified to the form (24a) and minimum uncertainty
depends only on the ratio of uncertainties € of the control points.

€

On min = 57—
V1+e?

The equation (21) was also used for extrapolating uncertainty of points outside the
interval x1, 29 i.e. for £k < 0 and k£ > 1. The difference of squares of uncertainty
interpolated by both methods at the point £ = % is

(24a)

£
(U’?lm - 0310)|max = 5 (1 - p$172) (25>

Dependence of uncertainty on the relative position k for method II is parabolic. When
extrapolating by using formula (21) the square of uncertainty for p,; 2 = 0 increases
by $ at the points ki » equally distant from the vertex of a parabola with a coordinate
k=1/2 as

1 V2
kio=—-+£— 2
=5t (26)
The uncertainty estimated by the second method (method II) is greater at these
points than by the first method (method I).
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Figure 7: The normalized minimum absolute uncertainty in the interpolation
interval as a function of ratio of control point xq, x5 for different correlation
coeflicient p,1 2 = (—0.99;0.00;0.99)

Summary and Conclusions

Presented method is proposed by the first author. It is based only on the results of
measurements in two points with the required accuracy and it is a complementary
to the regression methods. The uncertainties of these points were estimated on the
example of a linear function. Correlation coefficients estimated with uncertainties
were also determined. This is a quite frequent case, as it concerns measuring devices
and systems with direct reading of the measured quantity and multiplier range change.
Their resultant function - the output is a straight line with an inclination of 1. The
uncertainty for nonlinear functions can be obtained after another transformation by
the corresponding linear relationship between the covariance matrices.

The content of this work was connected with several previous publications given
in bibliography of [11], in which the authors discussed various examples of estimat-
ing the uncertainty of functions in the indirect multivariate measurement electrical
circuits. They concerned measurements of associated temperatures, magnetic field in-
duction, systems with several resistances (star circuit, bridge circuit) of direct current
(DC) and measurements of impedance components at alternating current (AC). This
paper considers two methods for estimating the uncertainty of the function values,
deterministic and statistical, designated as method I and method II. In method I, a
linear relationship was established between the absolute uncertainty and the value
of the measured quantity obtained from the limiting error given for the measuring
device. It is a method of accuracy evaluation used by device manufacturers. In this
method, a correlation coefficient equal to 1 should be assumed for values in the full
measuring range. In method II, a statistical model was adopted for estimated and
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controlled values. The values at the points of the examined function were interpo-
lated as a linear superposition of the values measured at the control points. From
the uncertainty and the correlation coefficient for these points, absolute and rela-
tive uncertainties were estimated at any points of the analyzed function. Parabolic
trajectories of uncertainty with the occurrence of its minimum within the interval
between control points and a significant increase of uncertainty beyond its extremes
were obtained. The relative minimum location in the control interval depends on the
ratio of uncertainty and the correlation coefficient of its bounds. It does not depend
on the location of this interval in the range.

The parameters of control points were normalized, and the results obtained with
both methods and their applicability were compared. If the uncertainties of neighbor-
ing measurement points differ at least in the same way as the values of the examined
quantity, e.g. for the ratio of these uncertainties € = 0.8, the difference in uncertainty
normalized to the interval bound is 0.1, and for € = 0.9 it is around 0.01. Estimation
of the uncertainty of non-linear processing of the tested function can be determined
by the same vector method.

Method I is the special case of method II, when the values at the control points
have a correlation coefficient equal to 1. The authors were able to use method II to
estimate uncertainty for nonlinear functions in paper [10|. The minimum number of
measurement points n> 2 for the scope of the function being tested depends not only
on itself, but also on its uncertainty, usually drawn as a uniform or linear bar in the
distance from this function. It also depends on the obtained statistical parameters
of the control measurement results. Based on gained knowledge or after obtaining
it in other studies of similar objects the predicted or required simplified function
describing uncertainty should be assumed.

For the wide range of non-linear characteristic curve, in practice, it may be useful
to divide the entire range of the tested functions into adjacent subranges. If their
uncertainty does not increase more than three times (¢ = 0.7, 0.8) then the relative
interpolation differences of both methods will not exceed 0.2 and 0.12 [12].

As an example of applying the general formulas, the uncertainty of sum and
difference of two arbitrary values of the studied function, which are estimated from
measurements at the control points, can be determined using the statistical method II.
As the example are uncertainties of average and difference of temperatures obtained
from measurements by two Pt temperature sensors [9]. If such measurements are
made by the same sensor and measuring system and in the same environments and if
uncertainty type B is dominated (correlation coefficient is nearly 1), then uncertainties
from both measurements must be calculated algebraically but not geometrically as it
is without correlation.
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Abstract

We consider nonparametric estimation algorithms for current status right-
censored data model. In the model right-censored event times are not observed
exactly, but at some inspection times. The model covers right-censored data,
current status data and life table survival data with a single inspection time.
We consider the nonparametric estimation algorithms to obtain three nonpara-
metric estimators for the survival function of failure time: maximum likelihood,
pseudo maximum likelihood and the naive estimator. We discuss large sample
properties of the estimators. Using the standard R packages we perform simu-
lations, which compare the estimators under small and moderate sample sizes.

Keywords: survival data, right censoring, interval censoring, current status
data, nonparametric estimation.

Introduction

Right-censored survival data model is widely applicable in practice in spite of in
many cases the event times (failure or censoring) are not observed exactly, and the
investigator observes time interval containing a failure time for each of not missed
at follow up individuals having symptoms of disease at the endpoint. In the current
status right-censored data model the event is observed in a random inspection time
if it occurs before the inspection time or not observed otherwise.

Let T and U be the independent failure and censoring times respectively. Right-
censored observation consists of the event time X = T'A U and the indicator § =
I¢r<yy. The current status right-censored observation is given as (W, k, k), where
k = Tyx<wy and W is a random inspection time, which is independent of (T, U).
The observed data is a sample from the distribution (W, k, k) and the main target
of statistical analysis is the distribution function F' of failure time 7.

The right-censored survival data model is well developed. The Kaplan—Meier
[19] estimator is widely applicable to estimate the survival function of failure time
from right-censored data. Consistency and asymptotic normality of the Kaplan—
Meier estimator are obtained first in [5]. The point process technique allows to get
functional convergence results for the Kaplan—Meier estimator ([1, 9, 10]; see also
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[7, 2]). Note that, the Kaplan-Meier estimator requires the exact event time to
be observed, which may fail in practice. In the interval censored data model [27]
the event times are not observed exactly. The nonparametric maximum likelihood
estimator (NPMLE) for the current status data model can be obtained as a solution
of the isotonic regression model [3] using Convex Minorant Algorithm or by using
the EM-algorithm [26, 27|. Asymptotic behavior of the NPMLE at any fixed point
studied in [11, 16]. Groeneboom & Wellner [16] discussed wide range of asymptotic
results on the NPMLE.

The current status right-censored data model discussed in this paper is highly
related to the particular case of the current status data with competing risks. The
NPMLE and the nonparametric pseudo maximum likelihood estimator (NPPMLE) of
parameters from the current status data with competing risks, and the EM-algorithms
to get the estimators are given in [17]. Another naive (ad-hoc) estimator is considered
in [18|, along with the NPMLE. Consistency and rate of convergence results for
the NPMLE are obtained in [14], and weak convergence results are given in [15].
Consistency of the estimators in the current status right-censored data model and
the rate of convergence results are obtained in |22].

The current status data and the life table data with a single observation time are
particular cases of the model we discuss in this paper. The life table survival data
model was widely used at the beginning of survival analysis [4, 6, 8]. The standard
life table (actuarial) estimator is generally used to estimate the parameter F'(wy).
Breslow & Crowley [5] show that there is no consistent nonparametric estimator of
completely unknown distribution function F' at the observation time wq in the life
table survival data model. Nevertheless, in many real cases the asymptotic bias of the
standard life table estimator is relatively small [20]. The extended life table estimator
that is inconsistent too was investigated in [24].

This work focuses on estimation in current status right-censored data model and
investigates properties of nonparametric estimators under small and moderate sample
sizes. We consider the NPMLE, the NPPMLE and the naive estimator, which are
obtaining from the corresponding estimators of the baseline current status data model
with two competing risks. The maximum likelihood approach and some asymptotic
properties of the estimators are discussed in Section 1. The estimation algorithms
are displayed in Section 2. Some properties of the estimators obtained by simulations
are reported in Section 3, and supplementary tables are postponed to Section 4.

1 The maximum likelihood approach

In this section we display the likelihood function for the interval right-censored data
and discuss the nonparametric estimators.

Assume that the failure time 7', the censoring time U and the observation time
W are independent with the distribution functions F, G and J respectively;
yr=sup{z: F(z) <1} and vg =sup{z:G(z) < 1}. Let (T}, U;,W;) be a sample from
the distribution (7,U, W), and (W;, k;, k;0;) be the observed current status right-
censored data, where )(z = ﬂ N (]Z‘7 5, = ]I{Tz‘SUi} and R; = ]I{Xigwi}, 1= ]_, ey N
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We slightly abuse the notations denoting F, G, J and H for both the distribution
functions and the corresponding measures.

The mazimum likelihood estimate. Let Q be the set of nondecreasing nonnegative
cadlag functions @ : R— [0, 1], such that lim, , . Q(z) = 0;

Q={(Q.Q"):Q,Q € Qand Q(z)+Q"(z) <1,z €R}

be the set of parameters of the model. The log-likelihood function for the interval
right-censored data is defined for (@, Q*) € Q as follows:

LL(Q, Q) = Y ridilog Q(W})
+ ri(1-0:) log Q" (Wi) + (1 —£s) log(1-Q(W:) —Q*(W3)),

where Q(x fo (1-G_)dF = fo (1-H_)d\,Q*=H—-Qand H=1-(1-F)(1-QG)
is the dlstrlbutlon functlon of the event time X, A is the cumulative hazard function
corresponding to F restricted to Dy = {x : H(x) < 1}. A parameter (Q,, Q%), which
maximizes (1) over (Q,Q*) € Q is the NPMLE.

The pseudo mazimum likelihood estimate. Let

Qy ={(QQ)eQ:Q+Q =H}.

The likelihood function (1) can be rewritten as the sum of two terms
LL(W,k,ké; F,G) = LL™(W,k; H) + LL"(W, k, k0; R) with

(1)

LL™(W,rk; H) = ijl (kilog(H(W;)) + (1 — k;)log(1 — H(W;)))

and n
LL"(W,k, k6 R) =) (riilog R(W:) + ki1 = 6;) log(1 — R(1W;))),

where R(w) = Q(w)/H(w) = P(6 = 1|1X < w) = [ (1 — H_)dA/H(w). The
functions ) and QQ* can be written as follows:

Qx) = / pdH and Q'(x) / (1= pat. @)

where p = d‘f\/}, is the Radon—Nikodym derivative of the measure A with respect to

AT, Moreover, any measurable function p : R — [0, 1] defines the distributions of T
and U (possibly improper) under any fixed distribution function H [22]. Let H, be
the sub distribution function, Wthh maximizes LL™ and Rn = Qn / H max1m1zes
LL" under H = H,, and Q(x =J pdH,. Then (Q,Q*) such that Q* = H — Q is
the NPPMLE for the parameter (Q, Q).

The naive (ad hoc) approach is based on the separate estimation of the parameters
@ and Q* Afrom the observations with 7' < U and T" > U respectively. The naive

estimator (), for the parameter () is obtaining by maximizing

U(W,k6,Q) = D (k8 log QW) + (1 = ki6,) log(1 = Q(W7))
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on () having atoms at the observation points W; with ;0; = 1, and the naive esti-
mator @n for the parameter QQ* is obtaining by maximizing W(W, k(1 —¢), Q*) on Q*
having atoms at the observation points W; with x;(1—9;), 7 = 1,...,n. The naive esti-
mator can be obtained by the regular convex minorant algorithm from right-censored
data analy51s The true disadvantage of the naive estimator is that the constraint

S

Q, + Q < 1 may fail in the general case.

Recovering the distributions of failure and censom’ng times. In order to recover
the distribution of T' from @ and Q* we use that A(z) = [(1 — Q- — Q%) 'dQ.

Hence,
S(t) = 7‘;@(1 1 Q(j_Q)(f)Q*(x_)>v (3)

where S = 1 — F. The distribution of censoring time U is determined by

the cumulative hazard function A%(z) = fo i } F - dQ* and, therefore,
G(t)=1- ﬂ-zgt(l — dA\%(z)). Alternatlvely, fo (1—-F)~'dQ*, t € Dy.

Large sample properties of the estimators. The large Sample properties of the

nonparametric estimator S, (.S, = §n, §n,§n) for the distribution of failure time are
determined by the large sample properties of the corresponding estimator (Q,, Q%)
for the parameter (), Q*) that is the particular case of the estimator for the current
status data with two competing risks model. The uniform consistency and the rate of
convergence results for all the estimators S,, were obtained in [22]. In the absolutely
continuous case it was proved that under the condition H < J, for any 7 < vp A g

SUPgz<r |Fn(l’) - F(ZE)‘ - 07

as n — oo almost sure. The uniform consistency result under the assumption H << J
remains correct in general case. The condition H << J is important, otherwise there is
no consistent estimator for the parameter S (see [23, 24]). The rate of convergence in
the absolutely continuous case is obtained, under H << J and the bounded property
M~ < 48 < M for some M > 1, in the Ll(J) norm restricted to the interval [0, 7],

= Op(n~"log"*n). (4)

Remark 1. (i). The rate of convergence in (4) is obtained from the refined rate of
uniform convergence results for the corresponding estimators H, of the event time
distribution function H.

(ii). We may expect the rate of convergence Op(n=/3) in (4) taking into account the
rate of convergence Op(n~1/3) of the estimators Q,, and Q¥ to the parameters Q and
Q* in Li(J) (and even in Lo(J) norm), but the L, rate of convergence of the esti-
mators @, and Q) is not implies the same rate of convergence for the corresponding

estimator S,.
(111). Local weak convergence theorems for the estimators (Qn, Q%) and (Q,,Q,) are
given in [15], but there is no way to use these results in order to obtain weak conver-

gence theorem for the corresponding estimators S,,.
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2 Estimation algorithms

In this section we discuss algorithms for the NPMLE and the NPPMLE introduced
in Section 1. Let W(y),..., W, be the set of observation times in ascending order
without replications. The likelihood function (1) can be rewritten in terms of param-
eters (6,0%) with @ = (61,...,0,): 0;=Q(W(;)) and 0" = (67,...,0%): 0; =Q*(W(;),
1=1,...,r, as follows:

zp(e,e*)zzl K05 1og 0; + K05 log 07 + Ry log(1 — 0; — 67),

where K (;) (kd(), K0(;)) is the total number of observations W; = W(;) such that r; = 0
(kj =1and 0; =1, k; =1 and 5_3 = 0, respectively). The optimization problem is to
maximize (6,0) on (0,0%) € S, where

S={(6,0"):0<60,<...<0,,0<0<...<050,+0r <1},

Let
S=1{(0,6")€S: 0; = 01 if KOu) + Ky =0 and

0F =071 if KOy +FRe=0,i=1,...,1}

with the notations 6y = 6 = 0. The NPMLE (8,0 ), which maximizes ¢ over
(0,0%) € S, is maximizes 1 over (0,0*) € S. Moreover, (5, 5*) is uniquely defined,
and 6, + 6 = 1 iff 7,y = 0 [14].

The maximum likelihood estimation requires first to get the NPMLE (@, @*) of
the parameter (Q,Q*) and then recovering the survival function §n of failure time
by formula (3). The first step reduced to the maximum likelihood estimation in the
current status data with two competing risks model. The EM-algorithm due to [17]
to get the NPMLE for the parameter (Q), Q*) is working too slow, and one can use the
iterated convex minorant (ICM) algorithm (see [12]) based on the characterization of
the NPMLE from current status data with competing risk in |[14]|. Alternatively, the
NPMLE for the parameter (@, Q*) can be obtained by using the support reduction
algorithm [13], which is realized in the R-package ML FEcens [21].

The pseudo likelihood estimation consists of three steps. At the first step we
get the NPMLE H,, of the parameter H from the interval censored data (X;, W;),
i =1,...,n. The convex minorant algorithm is a common way to get the maximum
hkehhood estimator H, [16]. At the second step we get the estimator (Qn,Q%),
which maximizes LL" under Q; Qn We study an algorithm to obtain

ﬁn = @n/ﬁn under known H = H from the observed data. Let W(*l*), cen W(*;L) be

the set of admissible step points of the estimator R, in ascending order, including the

observation times W; with r; =1; hy=H(W{{j)>0and h; = H(W;3)) - H(W;",)) > 0

foralle=2,...,m; 5?5 = stwjzw(’;’; d; be the number of observed failures at Wé;,

i=1,...,m. It follows from (2) that ROW}) = Y5, hi¢i/ 35, hi. Then the psendo-
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likelihood function L" can be rewritten in the following way:

£(¢) = esp(LL7(F,G) = [[(S cz/Zh) : (Zh 1-¢) /Zh)

s=1 =1

(S ne) (S -a)

s=1 =1

1

where ¢ = (G, ..., Gn): G = p(W)) € [0, 1], v; is the total number of observed events
at W(*Z.Sk, t=1,...,m. The estlmatlon problem reduces to maximizing the expression

o) =" (0108(D07 1G) + (o= o) 10g (X m(1-G))) ()

over the set of ¢ € [0,1]™. Finally, at the third step one use the reconstruction
formula (3) to obtain the NPPMLE S, for S.

3 Simulations

In this section we consider specific designs (DS) to evaluate finite-sample perfor-
mance of the NPMLE, NPPMLE and the naive estimator from simulated data. We
perform simulations of the current status right-censored data with different rates of
observations with known status (failure or censoring) p, = P(X < W), which are
applicable for estimation of the parameter (), and different rates of observed failures
ps = P(6 = 1|k = 1), under the three sample sizes of 200, 500 and 1000. We denote
['(a,b) is the gamma distribution and W(a,b) is the Weibull distribution with the
shape parameter a > 0 and scale parameter b > 0; E(1/b) = I'(1, b) is the exponential
distribution; LN(m, b) and FN(m,b) is the lognormal and the folded-normal distri-
bution with parameters m € R and b > 0 respectively. The following table 1 collects
main features of the experimental designs used for the simulations.

Table 1. Main features of the experimental designs
os| T [0 | W [nlwlps T [ U [ W [nn

A [I(1/2,1)|1'(2,1)|LN(0,1)|0.830.91|| D r(2,1) E(1) |FN(0,1)[0.54(0.19
B [['(1/2,1)| E(1) |FN(0,1){0.80(0.73|| E |iI'(2, 1)+2I(10, 1)[E(1/2)| E(1) |0.50/0.49
C|I(3,1) [ E1) | EQQ) |0.52[0.07|| F [3W(5,1)}+3 l W(5,1)| E(1) | E(3/2) [0.48|0.47

The same experimental designs were used in [22| to perform large sample properties
of the NPMLE, NPPMLE and its bootstrapped version by simulations.

In order to perform simulations we use R statistical software [25]. The function
computeMLE() of MLEcens package is used to create the MLE (@n,@;) for the
parameter (@), Q). We use the the convex minorant algorithm realization gemlem()
of package pdrtool to get the estimator H for the distribution of the event time
H, and the function Ibfgsb3() of the same name package to solve the optimization
problem in (5) under H = H and obtain the estimator Q,,. Finally, we obtain the
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estimators §n, S, and S, for the survival function S of failure time from (@n, @;),
(Qn, Q) by the reconstruction formula (3).

For the NPMLE, NPPMLE and naive estimators we display the estimation bias
(Section 4, Table I) and the mean absolute estimation error (Section 4, Table II) at
the quartiles (Q25,MED,Q75) and 95%-quantile Q95 of the failure time distribution,
as well as the supremum sup,cjy o) [Sn(z) — S(z)| (Section 4, Table IIT) and the L,
norm adjusted to the interval length [|S,, — S||1,0,0]/J((0,Q]) (Section 4, Table IV)
restricted to the interval [0, Q] for Q =Q25,MED,Q75,Q95. The results are obtained
separately by using 10* replications.

First, we note that the finite sample performance of the estimators is highly
related to the experimental design features. The designs A and B display very good
approximation quality for MED—Q95 quantiles, but there is an obvious problems
in the estimation of the survival distribution of failure time at first quartile ()25,
especially under the experimental design A because of %(w) — o0 as w — 0.
On the other hand, the number of observations is insufficient to get good enough
nonparametric estimates under the designs C and D having a very small rate of
observed failures. All the estimators display good enough finite sample performance
under the designs E and F with the bimodal distributions of failure time. The L;(J)
divergence display quite small estimation error for all the designs except the design
A, and the uniform norm divergence is too high under these sample sizes. Moreover,
both the L;(J) and the uniform estimation errors are not highly dependent of the
population sizes from 200 to 1000.

Roughly, the nonparametric estimators show very similar finite sample perfor-
mance for each of the designs. More careful look at the results allows us to give some
preference to the NPMLE, which displays a little bit smaller divergence in almost all
the cases. In most of cases the NPPMLE performs a little bit better results then the
naive estimator, but it displays a huge bias (overestimation of the survival function)
at Q75 and Q95 quantile points that should be explained by accumulation of the
bias and the estimation error appears under estimation of the event time distribution
H and the competing risks components (@), Q*) under fixed H = H in the adverse
experimental conditions.
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4 Supplementary tables

Table I. The estimation bias

NPMLE NPPMLE Naive
DS| N [Q25 |MED | Q75 | Q9% | Q25 |MED [ Q75 | Q95 | Q25 [MED| Q75 | Q9%

A [200[0.2314[0.0309 [6.9E-4 | -0.009 | 0.2314 | 0.0282 [0.0013|-0.0138[0.2337]0.0885] 0.0947 | 0.137
500 | 0.2088 | 0.0141 | 9.4E-5 |-0.0128/0.2086 | 0.012 0.0012| -0.007 |0.2141/0.0768|0.1002|0.1505
1000{ 0.1804 | 0.0085 | 1.5E-4 |-0.0101| 0.1803 | 0.0066 |7.9E-4/-1.1E-4/0.1899/0.0735/ 0.10290.1565
B [ 200 [0.0716 | 0.0177 |-0.0045/-0.0029] 0.0602 | 0.0171 [0.0150] 0.0132 [0.1048[0.1112[ 0.1711 |0.1664
500 | 0.0314 | 0.0087 |-0.0012[-0.0139/ 0.0242| 0.0099 |0.0112/0.0022 | 0.073 | 0.105 | 0.1721|0.2128
1000{ 0.0192 | 0.0052 [-0.0010/-0.0184| 0.0151 | 0.0074 |0.0085|-0.0025/0.0624/0.1019| 0.171 |0.2353
C | 200 [-0.0439]-0.0914] 0.0561 | 0.2349 [ 0.0112 [ 0.1732 |0.4094] 0.6086 |0.0475|0.0558| 0.0447 [0.1064
500 |-0.0277]-0.1052| 0.0146 | 0.1959 | 0.0018 | 0.09320.3181|0.5163 |0.0735/0.1515/ 0.1711 |0.0989
1000|-0.0173]-0.0926|-0.0097| 0.173 |0.0052 | 0.0429 |0.2500| 0.4471 |0.0781|0.1853| 0.2528 [0.1257
D | 200 |-0.0081]-0.0932]-0.0318]0.1589 | 0.0106 | 0.0238 [0.1893] 0.3865 |0.0554] 0.073 |-0.0657|0.0987
500 |-0.0051|-0.0605]-0.0669] 0.1193 | 0.0084 | 0.0027 |0.1278| 0.3222 |0.0616/0.1278| 0.0042 |0.0882
1000|-0.0045|-0.0337]-0.0858| 0.0945 | 0.0062 | 0.0015 |0.0852| 0.2776 |0.0627/0.1492 0.0865 |0.0802
E [ 200 [0.0146 [-0.0392[-0.0700]-0.0097] 0.0176 |-0.0045]0.0594] 0.1742 [0.0608|0.1036] 0.2079 |0.2467
500 | 0.0084 |-0.0183]-0.0510 -0.022 |0.0106|-0.0010|0.0383|0.1169 | 0.059 |0.1200/0.2311 |0.3046
1000{ 0.0057 |-0.0102[-0.0290|-0.0248| 0.0086 |-3.1E-4/0.0237 0.0796 |0.0584/0.1265 0.23590.3278
F | 200 [-0.0075/-0.0382/-0.0378| 0.053 |-0.0067|0.0057 [0.0851] 0.1612 [0.0449]0.1289]0.2572 [0.0964
500 |-0.0047| -0.021 |-0.0269| 0.043 |-0.0039| 7.5E-4 |0.0491|0.0852 |0.0486| 0.135 | 0.2653 |0.0951
1000|-0.0032|-0.0121[-0.0166| 0.0347 |-0.0020| 0.0018 |0.0306/ 0.0526 |0.0508/0.1377| 0.265 |0.0946

Table II. The absolute error

NPMLE NPPMLE Naive

DS| N [ Q25 [MED| Q75 | Q95 | Q25 |[MED| Q75 | Q9 | Q25 [MED | Q75 | Q9%
A | 200 |0.2413]0.0946[0.0560|0.0355 | 0.2412[0.0945[0.0583[0.0537|0.2404[0.1161|0.1096 | 0.1446
500 0.2257(0.0637]0.0402|0.0288|0.2256|0.0643 |0.0425 [0.0424|0.2244|0.0934|0.1059|0.1519
1000{0.2024|0.0485 | 0.032 0.0236]0.2019]0.0492| 0.034 |0.03280.2016 | 0.083 [0.1055|0.1569
B | 200 |0.1251[0.0774]0.0649]0.0487[0.1215|0.0796| 0.074 |0.0804]0.12780.1214[0.1749|0.1887
500 0.0770[0.0561]0.0451]0.0372|0.0761|0.0591 |0.0521 |0.0645 |0.0882|0.1099| 0.173 |0.2198
1000{0.0571|0.0442|0.0350|0.0327[0.0573[0.0475|0.0416|0.0540|0.0726 |0.1041 |0.1713|0.2375
C | 200 [0.1534]0.2540{0.26960.2803 [0.1341[0.2809|0.4635|0.6194|0.1424]0.28260.3063 |0.1780
500 |0.1009|0.2052|0.2188(0.2390|0.1023|0.2165 |0.3763 |0.5278 0.1065|0.2352|0.3216 | 0.1689
1000{0.0741|0.1687|0.1889|0.2143|0.0804|0.1747(0.3103 | 0.4584 | 0.0969 |0.2214|0.3367|0.1899
D | 200 |0.0784]0.1706|0.1811[0.2009]0.0801| 0.179 |0.3076|0.4101 |0.0894[0.1893[0.2463[0.1647
500 |0.0561|0.1205]0.1520(0.1619(0.0601|0.1317|0.2474|0.3459|0.0770|0.1694|0.2437|0.1544
1000|0.0442|0.0855 |0.1406 | 0.1384]0.0485|0.1045|0.2086 |0.3014|0.07190.1671|0.2432(0.1467
E | 200 |0.0574]0.1186]0.1606]0.0643[0.0590[0.1116]0.1979[0.2216{0.0730|0.1327|0.2306 |0.2634
500 0.0404|0.0830(0.1172]0.0522|0.0425|0.0830|0.1334|0.1636|0.0639|0.1297| 0.236 |0.3083
1000|0.0321|0.0653 |0.0867|0.0464| 0.034 |0.0678|0.0979 |0.1229|0.0609 [0.1302|0.2376|0.3287
F | 200 [0.0558[0.1321[0.1258]0.09190.0559|0.1256|0.1851|0.2089|0.06380.15090.2662 [0.1498
500 |0.0395|0.0935(0.0898(0.0719(0.0412|0.0940 |0.1186 [0.1336|0.0567|0.1434(0.2672|0.1481
1000|0.0312|0.0715 |0.0693 |0.0608 0.03280.0763|0.0871|0.0997|0.0547 |0.1417|0.2654|0.1472
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Table III. The supremum norm divergence

NPMLE NPPMLE Naive

DS| N [ Q25 [MED| Q75 | Q95 | Q25 |[MED| Q75 | Q9% | Q25 [MED | Q75 | Q9%
A [ 200 0.2490(0.3506[0.3512[0.3512[0.2490|0.3505| 0.351 |0.35110.2487|0.3515|0.3537|0.3564
500 |0.2466|0.3059|0.3060|0.3060|0.2466|0.3058 |0.3059 |0.3059|0.2462|0.3069(0.3084 |0.3131
1000(0.2423|0.2767|0.2767|0.2767|0.2424|0.2767|0.2767 |0.2767 | 0.2420 [0.2779|0.2795 | 0.2869
B | 200 |0.2036(0.2327]0.2381(0.2393[0.2025|0.2305|0.2373]0.2438]0.1998 [0.2429[0.2752[0.3167
500 |0.1661|0.1805|0.1836(0.1841(0.1645|0.1801 |0.1846 |0.1888|0.1650|0.1988|0.2380|0.2940
1000(0.1379(0.1480|0.1499|0.1502| 0.137 |0.1486{0.15200.1549|0.1401 [0.1734|0.2182|0.2849
C | 200 [0.2126]0.3879(0.4621[0.5364[0.1836|0.3432[0.5240|0.6872| 0.183 [0.3607|0.4755|0.5256
500 |0.1524| 0.323 [0.3913| 0.457 |0.1475(0.2897|0.4451 |0.5963[0.1394|0.2901 | 0.42870.4942
1000|0.1205|0.2683 |0.3449|0.4044|0.1230|0.2504|0.3845 | 0.5249 | 0.1252 | 0.2655 | 0.4136|0.4951
D | 200 |0.1323]0.2673[0.3465|0.3960|0.1297|0.2530[0.3916 |0.5178|0.1306 |0.2573[0.3777|0.4199
500 0.1014|0.1957|0.2978(0.3351(0.1038|0.1995 |0.3258 |0.4421 |[0.1101|0.2207|0.3453 | 0.3898
1000|0.0837|0.1513|0.2663|0.2972|0.0877|0.1662|0.2832|0.3909 |0.0998 |0.2084|0.3335|0.3794
E | 200 [0.1189[0.1953]0.2862[0.3005|0.1171|0.1856|0.2860(0.3637]0.12270.1908|0.3013[0.3913
500 [0.0909|0.1447]0.2193|0.2340|0.0919/0.1447|0.2189[0.2800|0.1021|0.1732(0.2893 |0.3871
1000{0.0748|0.1184/0.1751|0.1905|0.0768|0.1217|0.1803 | 0.2255 |0.0913 [0.1663|0.2819| 0.383
F | 200 |0.1146]0.2122[0.2812[0.2905|0.1132]0.2002]0.2895 | 0.3578]0.1161|0.2022 | 0.3288 ] 0.4004
500 0.0878]0.1623]0.2149|0.2208(0.0880(0.1616 |0.2223 [0.2632[0.0964|0.1859|0.3120|0.3855
1000| 0.072 |0.1324/0.1730|0.1776|0.0726|0.1365(0.1852|0.2120 | 0.0859 [0.1787[0.3019|0.3768

Table IV. The L; norm divergence

NPMLE NPPMLE Naive
DS| N [Q25 [MED]| Q75 | Q9 | Q25 |MED | Q75 | Q9 | Q25 |[MED | Q75 | Q9%
A | 200 [0.2159]0.1525[0.0854[0.0653|0.2159|0.15410.0876 |0.0709] 0.2154]0.1643[0.1188 |0.1224
500 |0.2096|0.1001 [0.0590|0.0459|0.2095|0.1015 |0.0610|0.0493|0.2085 |0.1195(0.1018 | 0.1152
1000{0.1980|0.0735|0.0452|0.0353(0.1979|0.0747(0.0469|0.0379|0.1971|0.0972|0.0944[0.1130
B | 200 [0.1207]0.0979[0.0803[0.0717|0.1194]0.0979|0.0831 [0.0849[0.1184[0.1174|0.1366|0.1675
500 |0.0876]0.0688 [0.0568|0.0510{0.0864|0.0699 |0.0604|0.0607|0.0894|0.0951|0.1246|0.1653
1000|0.0663 |0.0528|0.0441[0.0395 |0.0656| 0.0544|0.0478 0.0476 |0.0718|0.0845| 0.119 |0.1642
C [ 200 [0.0337[0.0541|0.0645|0.0683]0.0307|0.0496 [0.0651|0.0734] 0.031 |0.05120.0642[0.0677
500 |0.0231]0.0381[0.0469|0.0501|0.0226|0.0375 |0.0498|0.0568|0.0231 [0.0392|0.0515|0.0556
1000{0.0177/0.0290|0.0367|0.0396|0.0181|0.0302(0.0401 |0.0461 |0.0199|0.03480.04700.0518
D | 200 [0.0391]0.0596]0.0704[0.0712[0.0377|0.0592]0.0741 |0.0759]0.0400|0.0643[0.0787 [0.0797
500 |0.0281]0.0414[0.0508|0.0515(0.0283[0.0438 |0.0552|0.0567|0.0318 |0.0541|0.0673|0.0684
1000{0.0220|0.0318|0.0396|0.0403|0.0227| 0.0349(0.0442|0.0455 |0.02770.0500|0.0633 |0.0644
E | 200 [0.0437]0.0572[0.0667|0.0703]0.0426]0.0566 | 0.0665 |0.0771|0.0468 [0.0659|0.0778|0.0905
500 |0.0313]0.0405 |0.0470|0.0504|0.0314[0.0413 |0.0480|0.05560.0375 | 0.058 |0.0707|0.0854
1000|0.0246 |0.0317|0.0365|0.0394|0.0250| 0.0329(0.0381|0.0434 |0.03260.0547|0.0678 [0.0833
F | 200 |0.0499[0.0610[0.0697]0.0741[0.0491[0.0597|0.0699]0.09460.0562[0.0677|0.08260.1133
500 |0.0348]0.0432[0.0493| 0.0524(0.0350[0.0439|0.0506|0.0652| 0.046 |0.0585|0.0739(0.1096
1000|0.0270|0.0338|0.0383|0.0408 0.0275| 0.0349(0.0401 | 0.0500 |0.04140.0549|0.0704[0.1089
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Abstract

The aim of paper is considering the problem of estimation of conditional
survival function in the case of right random censoring with presence of covari-
ate. For proposed estimator we prove an almost sure representation result with
rate and weak convergence results to the Gaussian processes.

Keywords: Survival function, random censoring, covariate, Gaussian pro-
cesses.

Introduction

The aim of paper is considering the problem of estimation of conditional survival
function in the case of right random censoring with presence of covariate. Let’s con-
sider the case when the support of covariate C' is the interval [0, 1] and we describe
our results on fixed design points 0 < z; < 2 < ... < x, < 1 at which we con-
sider responses (survival or failure times) X7, ..., X,, and censoring times Y7, ..., Y,
of identical objects, which are under study. These responses are independent and
nonnegative random variables (r.v.-s) with conditional distribution function (d.f.) at
z;, Fy, (t) = P(X; <t/C; = z;). They are subjected to random right censoring, that is
for X; there is a censoring variable Y; with conditional d.f. G, (t) = P(Y; < t/C; = ;)
and at n—th stage of experiment the observed data is

where Z; = min(X;,Y;),0; = I(X; <Y;) with I(A) denoting the indicator of event
A. Note that in sample S™ r.v. X; is observed only when §; = 1. Commonly, in
survival analysis to assume independence between the r.v.-s X; and Y; conditional
on the covariate C;. But, in some practical situations, this assumption does not

hold. Therefore, in this article we consider a dependence model in which dependence
structure is described through copula function.

1 Estimation of survival function

Let

S:E<t17t2) - P(Xz > tlayz > t2>7 z(;172(:2 Z 07
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the joint survival function of the response X, and the censoring variable Y, at x.
Then the marginal survival functions are S,* (t) = 1 — F,(t) = S,(t,0) and S,* (t) =
1 — G.(t) = S.(0,t),t < 0. We suppose that the marginal d.f.-s F, and G, are
continuous. Then according to the Theorem of Sclar (see, [1]), the joint survival
function S, (t1,t2) can be expressed as

Sa(ti,ta) = Co(SX(t1), SY (1)), t1,ta >0, (1)

where C,(u,v) is a known copula function depending on x, SX and SY in a general
way. We consider estimator of d.f. F, which is equivalent to the relative-risk power
estimator [2,3] under independent censoring case.

Assume that at the fixed design value z € (0,1),C, in (1) is Archimedean copula,
ie.

Sa(tr,ta) = @ (0a (S5 (1)) + @a(S) (t2))), t1,t2 >0, (2)

where, for each z,¢, : [0,1] — [0,400] is a known continuous, convex, strictly
decreasing function with ¢, = 0. We assume that copula generator function ¢, is
strict, i.e. p,(0) = oo and ¢, ' is a inverse of ¢,. From (2), it follows that

P(Zx > t) =1- Hx(t) = Hx<t> = sz(t) = Sa:(tvt) =

= @5 (0a(S3 (1) + 9a(S; (1)), t 2 0, (3)

Let H;,(cl)(t) = P(Z, < t,0, = 1) be a subdistribution function and A,(¢) is crude
hazard function of r.v. X, subjecting to censoring by Y,

CP(X,€dt, X, <Y,)  H(d)
Mldl) = =Sy, 59~ 200 @)

From (4) one can obtain following expression of survival function Sy :

t
Se(t) = 90;1[—/w;(sf(U))dHél)(U)], t=0. (5)
0
In order to constructing the estimator of SX according to representation (5), we

introduce smoothed estimators of SZ ,HS) and regularity conditions for them. We
We use the Gasser-Miiller weights

1 il x—z
Wp;(x, hy) = —/ —T dz, 1=1,...,n, 6
(@, hn) @i ) ( ) (6)

with
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where xy = 0, 7 is a known probability density function (kernel) and {h,,n > 1} is a
sequence of positive constants, tending to zero as n — oo, called bandwidth sequence.
Let’s introduce the weighted estimators of H,, SZ and HY respectively as

Hoalt) = 3w ha) (2,5 0), S50) =1 Ha0), HE0) =

- Xn:wm(x, ho)I(Z; < t,6; =1). (7)

Then pluggin in (5) estimators (6) and (7) we obtained the following intermediate
estimator of S :

t

San(t) =1 — Fup(t) = %1[—/@é(sf(U))dH;ﬁ”(u)]y t=0.

In this work we propose the next extended analogue of estimator introduced in
[2,3]:

Son(t) = 2 (S 1) - pan ()] = 1 = Fun(0), (8)

where 11,4 (t) = 0(S,(1))/(S%,(1)), ©(SH(1) = — I 0L (SZ,(w)dH ) (u),

~ to
©(SZ,(t) = — [ ¢, (SZ (u))dH,p(u). In order to investigate the estimate (8) we in-
0
troduce some conditions. For the design points zy, ..., x,, denote A, = 1r£1j<r1 (x; —

%71), A_n = 1H<1?<>§L (l‘z - 331'71)-
For the kernel 7, let ||7[5 = [°° 7%(u)du, m, () = [~ w'r(u)du, v=1,2.
Moreover, we use next assumptions on the design and on the kernel function:

(A1) Asn — o0,z = 1A, = O(1),A, — A, =0(2).
(A2) 7 is a probability density function with compact support [—M, M| for some
M > 0, with mi(7) = 0 and |7(u) — n(u')| < C(n)|u — |, where C(7) is some
constant.

Let Ty, = inf{t > 0: H,(t) = 1}. Then Ty, = min(Tk,,Ts,). For our results
we need some smoothnees conditions on functions H,(t) and H;(Cl)(t). We formulate
them for a general (sub)distribution function N,(¢),0 <z < 1,¢ € R and for a fixed

T > 0.

o0

(A3) da_; »(t) = N(t) exists and is continuous in (x,t) € [0,1] x [0,T].

(A4) g—;Nx(t) = N (t) exists and is continuous in (z,t) € [0,1] x [0, T7.

(A5) a‘zthx(t) = N',(t) exists and is continuous in (z,t) € [0, 1] x [0, T].

(A6) a“”gé“) = ¢, (u) and % = ¢, (u) are Lipschitz in the z—direction with a
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bounded Lipschitz constant and ££=0) — @, (u) exists and is continuous in (z,u) €

[0,1] x (0,1]. "

2 Asymptotic properties of estimators

We derive an almost sure representation result with rate.
Theorem 1. Assume (A1), (A2), H,(t) and H"(t) satisfy (A3)-(A5) in [0,7]

with T' < Ty, ¢, satisfies (A6) and h,, — 0, l;g:b — 0, Z)Z; = O(1). Then, as n — oo,

Fon(t) = Fo(t) = Y wil@, ho) Weo(Zi, 6:) + 7 (L),

where
Vel ,0) = ot [ GSH@) U < )~ H()aHD ()~
A0 0) = riexy L, Pl ¢ < u) = Ho(u))dH,
L (SAO)(I(Z: < 1.6, = 1) — HO(t))—
- / SSZ W) (1(Z < u, 6 = 1) — HO(w)dH, (u),
and
ogn /4
sup [ra(B)] 2 O((B™)")

0<t<T nh,,

The weak convergence of the empirical process (nh,)/2{Fu(-) — Fy(-)} in the
space [*°[0,T] of uniformly bounded functions on [0,7], endowed with the uniform
topology is the contents of the next theorem.

Theorem 2. Assume (A1), (A2), H,(t) and H"(t) satisfy (A3)-(A5) in [0, 7]
with 7' < Ty,, and that o, satisfies (A6).

() If nh> — 0 and % — 0, then, as n — oo,

(nho) 2 {Fu(-) = Fu()} = W,(+) in 1[0, T).

(IDIf h,, = Cn~'/> for some C > 0, then, as n — oo,

where W, () and W_.(-) are Gaussian processes with means

EWE“) =0, EW:(t) = az(t)7
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and same covariance

Cou(W, (1), W's)) = Cou(W (1), W(s)) = Tu(t, s),

T

with

O my(r) [ w, ) 1 . E
ar(t) = QSSTX(E») / (S () H o () dHD () — (57 () AHD () ),

and

2
Il

Fm<t7 S) = 90;(55(1;))@;(55(5))

min(t,s) 9
{ / ((S7(2))) dH D ()1

min(t,s) . , wo
T / (5% (w))SZ (w) + 0, (S7 (w))] / (2 () dHD () dHD (w)+

min(t,s) . max(t,s) . ,
+ /O 0, (57 (w)) / (2o (S (1)SZ(y) + @, (S7 (v))dH (y)dH P (w)

w

- / GL(SZW)SP ) + ou(SZ () dHD(y)
- / S ()57 (w) + g (SZ (w))AHD (w)).
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Abstract

We consider research two statistics for testing the composite hypotheses in
a model of random censorship from both sides, which have in limit a chi-square
distribution with appropriate degrees of freedom. First one is the generalized
chi-square statistics, for the construction of which we use the power estimate
distributions of function. The second statistics is twice the logarithm of the
likelihood ratio statistics of model of random censorship from both sides. Both
of these statistics can be used to construct an asymptotic tests of chi-square
type for the composite hypotheses.

Keywords: Chi-square statistics, likelihood ratio statistics ;maximum like-
lihood estimate, random censoring.

Introduction

Chi-square statistics occupies an important place in hypothesis testing theory. Having
more than a century of history, Chi-square statistics to date has various modifica-
tions and generalizations. Among the vast amount of literature should be allocated
monograph authors |5|, which describes the theories, methods and applications of
various statistics such as chi-square to build the criteria of consent. It is known that
these statistics use jumps of the empirical distribution function in their structure,
i.e. relative frequencies as an estimate for the probability of observations falling into
the grouping intervals. In the case of incomplete observations, the empirical distri-
bution function is an untenable estimate for the unknown distribution function (d.f)
and therefore, instead of the empirical distribution function, different estimates have
to be used for the d.f. whose structures depend on the models under consideration
(see [1] for details). Thus, in the work [3] with random censorship on the right,
the Chi-square statistics of the consent criterion is constructed and studied using a
nonparametric Kaplan-Meier estimate [4] for the d.f.. In [2] established properties
of locally asymptotically normality for likelihood ratio statistics (LRS) in competing
risks model under random censoring. In this paper, in a general model of incomplete
data constructed and investigated chi-square type statistics. Proved a result that
can be used to construct the chi-square test based on the asymptotics of the doubled
logarithm of the LRS.

Let {(X, Y1, Y2:),7 > 1} sequence of independent and identically distributed
(i.i.d) random vectors with mutually independent components and marginal d.f.-
s F' and Gy for random variables (r.v.) X; and Yy, k& = 1,2; ¢ > 1, respec-
tively. Consider the case, when r.v. X, subject to random censoring from both
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sides by variables Y, . On n- th stage of the experiment we observe the sam-
ple of size n: S(n) = {(Zi760i;51i>52i)71 S 1 S n}, where Zl = }/12 V (Xz A }/21)
boi = I(Xi NYsy < Yyy), 6y = 1Yy < Xi < Yyy), 00 = I(Yy; < Yo < Xp).
Here for numbers a and b: a A b = min(a,b), a Vb = max(a,b). In a sample
S rv. X, observed only whend;; = 1. In this model of random censorship from
the both sides of the problem consists in estimating of conditional survival function
1—F(z) = P(X; > x/X; >7),x > 7, from sample S™ under nuisance pair(G;, Gs)
for specific number 7. In this article, we consider the problem of testing the composite
hypothesis Hy : F € F, where F = {F(-;0),0 € ©}- family of distribution depends
on unknown parameter § = (01, ...,0,) € © and ©- an open set in R*. Consider two
statistical tests for verify Hy with a limit of chi-square distribution.

1 Generalized chi-square statistics

For build statistics of chi-square test we consider the nonparametric estimates of
1 — F(x) from [1]:

| F () = |:qn(x>

Ry (z;7)
4n (7—)]

where

Ln(xET) = _/[. ](Qn(u))ld%b(u)>q”(x) = Gln(x) - HTL(x) + )

1 n
Hy(v) = — Y 1(Zi <x)=H(2) + HV(2) + HP (x),
=1

1 n
H™(z) = - > mil(Zi<x), m=0,12,
=1

Gin(z) = exp {— /[x;oo) (Hn(u) + %)1 ng))(u)} T > T

In order to construct test statistics we introduce the conditions
(C1) Let d.f.-s F' and G continuous and the numbers 7,7 such that, 7 < T and
T<ax<T
(C2) Support Np = {z: 0 < F(x;0) < 1} independent on 6;
(C3) There is a density f(z;0) with d.f.F(z;60), it has continuous derivatives:

a;gfge;f), i,7=1,s and fj;o ‘a;gi(géf) dr < 00; 1,7 =1, s;
(C4) Information matrix of Fisher 1(0) = [|I;||, ;15 is positive definite and

continuous by 6, where
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> 9210 T > 9210 T
I,;(6) = — / W(Gl(m—cg(m))dmﬁ;e)— /_ ) WF(x;Q)dGl(w)—

< 921og(1 — F(x;0))
- /oo 00,00, (1= F(x;0))dGa(x);

—00

(C5) There is a maximum likelihood estimate (MLE) 6, = (fy,, ..., 0,,), for
parameterfl = (601, ..., 0;), obtained by solving the system of equations

dlogpn(0)
00;

where p,(0) = [T, (F(Zi;0))% (f(Z:;0))%i(1— F(Z;; )% - the truncated likelihood

-~

=0,1=1,..,s,

function of the model. Moreover, the MLE 6, can be represented by n — oo
n'2(60, — 0) = T7(0) An(0) + 0,(1),

where A, (0) = nil/Qm%’;”@ is normalized contribution function.

We present the asymptotic properties of estimates F., from [1]. We define a
sequence of processes {V,(z) = n'/?(F,,(z) — F;(2)),z > 7,n > 1}. For these pro-
cesses the sequence of approximating processes is { M, () = (1 — F;(x))N,,(z)}, where

B ()

oo [ (Balu) — B (u))dHD (u) B
Np(z) = /T (Gi(u) — H(u—))? * Gi(z) — H(z—)

B / BY (w)d(G (u) — H(u—))
T (G1(u) — H(u—))?

. +° B (W) dHO (1) BP(z 0 B (u)dH (u
i) = Gt ([ PO B B )
. H?(u) H(z) /), H?(u)

Here, for each n: H(x) = Py, (Z1 < x) = EH,(v), H™ (2) = Py, (Z1 < 2,01 = 1) =
EH™ (2); Bo(w)2B(H(u)), BY (W) 2BH™ (1)), m = 0,1,2and {B(y),0 <y < 1}
is process of a Brownian bridge. Note, that the processes M, (z) are linear functional
of the Brownian bridge, and thus are Gaussian processes with zero mean. We present
the following theorem from | 1 , Theorem 2.1.2].

Theorem A. [1]. Under condition (C1) we have an approximation

P ( sup |V,(z) — My (x)| > Rn~?log n) <Q@n
T<a<T

where ¢, R = R(e) and @ (absolute) positive constants.

Remark 1. In conditions of Theorem A for € > 1 by lemma of Borel-Cantelli we
have the strong approximation

sup |V (z) — M, (z)| =0 (n’1/2 logn) .

T<z<T
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From here we have the weak convergence

Vn(x)gM(x) in D[r; T1, (1)

where Mn()gM() for each n and Gaussian process M (z) obtained from M, (z) by
replacement of B, (u) and B™ (u), m = 0,1,2 by the appropriate Brownian bridges
with arguments H (u) and H (u),m = 0, 1, 2 respectively.

We introduce the random processes ¢, (z;6) = n'/?(Fp,(z) — Fy(2;0)), Pu(x) =
gpn(x;é\n). Let T=2, <21 <..<z_1 < <T < oo possible random partition
for a given probability p;, satisfying the equality F(t;; gn) = p;. Consider a random
vector @, = (Pn(1), ..., On(z,))". The next result generalizes (1).

Theorem 1. Let for all € © the conditions (C1)-(C5) hold. Then the random
process {@,(z), 7 < x < T} converges weakly to the Gaussian process $,(x) with zero
mean and covariance witht <z <y <T"

OF (z;0)\" 1, OF (y;0)
T) I (Q)Ta

Cous (), Bly)) = Covy (M (x), M(y) — (

OF (x;0) __ [ OF(x;0) OF (x;0) s
where=— _( B0 B0 .

Let M and io estimates of the matrices M and >, obtained by replacing 6 on
MLE 6,,. The functions Gy, H™ and H replaced by their nonparametric estimatesG1,,,
g andH,,m = 0,1,2. Following the general principles of construction of chi-
square statistics (see [5]), we consider the statistics

~

where ®, = (B (1), ..., Pn(z,))". Then we have
Theorem 2. Let the conditions (C1)-(C5) hold and rang (i()) = r. Then

o (5) ) - K

where K, is chi-square distribution with degrees of freedom r.

2 Chi-square test based on the likelihood ratio statis-
tics
First, 6 is scalar parameter. Consider a simple hypothesis Hy : 6 = 6, against the

composite alternativeH; : 6 € ©1, where® = {6y} U ©;. Let 6,, is MLE, satisfying
the condition (C5) and consider LRS

(3
b= P (00)

We also consider the condition
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(C6) There is a third derivative on @ of density f(x;0), exists the independent of
6 function h,, such that
d®log p,(0)
ae?

‘ < hy; Mgh,, < oo.

From the general theory of MLE (see |7]) follows that under conditions (C2) - (C4),
(C6), there exists a unique consistent MLE 6,, and at n — oo

L (02 (8, = 60) /Ho) — N (0,17 (6))
Then by Taylor’s formula

0logp,(6y) 7/~
IOg Ln = lngn(en) - 10gpn(90) = %(0) (971 - 90) +

10%logpa(60) (5, \?

2 002 <"‘Q0>

1 0%logpn(0) (5 8
TR o (6.~ ) (2)

and

Ologpn(fn)  Dlogpu(fo)  8*logpn(bss) (5 10°logpa(flo) (7 2
90 o0 o (9”_90)+2 005 (”_90) - (3)

. Since, 2genl®) — ( then substituting the

where [0, — 6| V [0ux — 00| < é\n — 0o 90

expression for 22°622) from (3) into (2) we have

00
_lfkﬁgﬁﬁ(g_ﬁ@2+q

log Ln = =5 =g

where ¢, = 0,(1) at n — oco. Now, using the low of large numbers and central limit
theorem, we find that under hypothesis Hy at n — oo statistics

1 -1 9 logpn<90) 0 2
17! (8) == (nL(00) (B — o)
have a chi-square distribution K; with one degree of freedom, i.e.

L (2log L,/ Hy) — K. (4)

Thus we have proved
Theorem 3. Under conditions (C2) - (C6) and the hypothesis Hy

2log Lngﬁ. (5)

Theorems 2 and 3 can be used to construct an asymptotic chi-square tests for the
hypotheses Hj.
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Abstract

We consider the convergence of empirical processesof independence of ran-
dom elements and events indexed by functions that depend on an estimated
parameter and show that it can be replased by its natural limit.

Keywords: empirical process, independence, metric entropy, Glivenko-
Cantelly and Donsker theorems.

Introduction

Folowing [1-2] consider a sequence of experiments in which observed data consist of
pairs {(Xg, Ax), k > 1}, where X}, be independent and identically distributed random
elements in a measurable space (X, B) with probability law P and Ay, are events with
common probability p = P(A) € (0,1). Let d; = I (Ax) be an indicator of the event
Ay. At the n— th stage of experiments observed data is S™ = {(Xy, d),1 < k < n}.
Each pair (X, dy) induced a statistical model with sample space X ® {0,1} with
o-algebra G of sets B x D and distribution Q*(-) on (X ® {0,1},G):

Q" (BxD)=P(X,€B,0, € D),Be®B,D C{0,1}.

Our interests are focused on submeasures Q,, (B) = Q* (B x {m}), m = 0,1 and
Q(B)=Qy(B)+Q(B)=Q*(B x{0,1}), B € 8. From practical point of view, it
is important to know the occurrence of hypothesis H about independence of random
elements X, and event Aj for each £ > 1. In order to verify this we use the signed
measure A (B) = Q; (B) —pQ(B), B € B, where p = Q; (X). Then validity of H
is equivalent to the equality A (B) = 0 for any B € B. For constructing the test
statistics for testing the hypothesis H we introduce the empirical analogue of measure
A (B) for any B € B as A, (B) = Q1,(B) — p,Qn(B), where

1 < 1 <
Qo (B) =~ ; (1= (X € B), Qun (B) = ~ ;M(xk € B) (1)
- empirical counterparts of p, Q(B) and Q,,(B), m = 0, 1, respectively. According to
the strong law of large numbers (SLLN) for each B € B at n — oo, A, (B) 23" A (B)

and consequently under validity of H, A,, (B) 220, Then naturally becomes investi-
gation of limit behaviors of normalized signed empirical process {x, = a,(A, (B) —
A(B)),B € J}, indexed by certain class J of sets from B, where {a,,n > 1} is
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a (possible random) sequence of positive numbers. In the previous works [1,2] we
investigated the specially normalized empirical process of independence indexed by
the class F of measurable functions f on X, which coincides with x,, when f = I(+)
is an indicator function.

1 Empirical Process of Independence Indexed by
Class of Measurable Functions

For a signed measure GG and class F of Borel measurable functions f : X — R
introduce the integral

Gf= [ fdG, f e F.
/

Let’s introduce the following F-indexed extensions of empiricals (1) for f € F:

n

1 IR
Qonf =~ (1=0) [ (Xx), Qunf =~ ;M (X5),

k=1

Quf = Qonf +Qunf = = 37 F (X, ¢
k=1
and Anf = Qinf — puQuf, where p, = Quul = Qi (X) = L 3 6. Observe that
k_

-1
formulas (1) are special cases of (2) when F = {I (B), B € J}. We define F-indexed
empirical process G, : F — R as

n

foGuf =vn(@Qu—Q) f=n""Y (f(Xx) —Qf),f € F. (3)

k=1

Here G, f = Gy, f + G1,f with subempirical processes

Gjnf:\/ﬁ((@jn_(@j)fa j:O,l,fEJT". (4)

For a given f by SLLN and central limit theorem (CLT)
(@) Quf ——Qf as QIf] < o0; (5)
(b) Guf = GFEN (0,03 (f)), n— o0 as Qf? < o0, (6)

where o3 (f) = Q(f — Qf)*.

Note that the uniformly variants for special classes F of measurable functions
of statements (5) and (6) have a very solid theory (see, for example, [3,10]). There
are different extensions of classical theorems of Glivenko-Cantelli and Donsker for
F-indexed empirical processes (3) under certain conditions on the set F of mea-
surable functions. These conditions ensure the convergence of n V2||G,f|| =
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sup {n‘1/2 |G f], f € .7-"} either in probability or almost surely to zero. These classes
F are called the weak or strong Glivenko-Cantelli classes respectively. Donsker-type
theorems provide a general conditions on F in order to get a weak convergence

Gnf = Gf in [*(F), (7)

where [*° (F) is a space of all bounded functions f : X — R equipped with the
supremum-norm |||~ (see, [8], p.81). Class F for which holds the convergence (7) is
called a Donsker class. The limiting field {Gf, f € F} in (7) is called a Q-Brownian
bridge. Tt is a tight Borel measurable element of (> (F) and is a Gaussian field with
zero mean and covariance function

cov(Gf,Gg) = Qfg—QfQqg, f,g€F. (8)

Remind that Q-Brownian bridge {Gf, f € F} can be represented in distribution
though Q-Brownian sheet {W (f), f € F} with zero mean and covariance

cov (W (f),W(g)) =Qfg, fgeF, (9)
by distributional equality
GfEW (f) =W (1) Qf, feF. (10)

By SLLN under conditions Q; | f| < 0o, j = 0,1 for given f:
Anf &5 AfTET. (11)
n—o0

Moreover, for a given f variable \/n (A, — A) f being a linear functional of subem-
pirical processes (4) under conditions Q;f? < oo, j = 0,1, have a limiting normal
distribution N (0,03 (f)). In [1] the authors have proved uniform SLLN and CLT
for a specially normalized empirical F-indexed process

n 1/2
{Anf:(m) (A, —A) f, fE}"}, (12)

and showed that the limiting distribution is Q-Brownian bridge {Gf, f € F} with
covariance (8).
2 Asymptotical results

Let £,(Q) - the space of functions f : X — R with the norm

Y/q
1o = (@AY = / 140
X
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To prove the F - uniform variants of theorems of Glivenko-Cantelli and Donsker we
define the complexity or entropy of class F. To determine the entropy it is necessary
to define a concept of e— brackets. e— bracket in £,(Q) is a pairs of functions ¢,y €
£,(Q) such that Q (p(X) < (X)) = 1 and [[¢ — gllg, < &, ie. Qb — )7 <
Function f € F isin the (or covered by) bracket [p, 1], 1f@( (X ) < f(X) <y(X)) =
1. Note that the functions ¢ and @ may not belong to the class F, but they must
have finite norms. Bracketing (or covering) number Nyj (e, F, £, (Q)) is the minimum
number of e— brackets in £,(Q) needed to cover F (see [8,9]):

[ k: forsome fi,..., fr € L,(Q),
N[] (8,.7, Eq (@)) = min {JT" C U [flaf]} 1 HfJ _kfiHQ#] S

Number H, (¢) = log Nyj (¢, F, L4 (Q)) is called the metric entropy with bracketing
of the class F in £,(Q). Number Hj, (¢) = log Njj (e, F, L, (Q;)),j = 0,1 denotes
the metric entropy of a class F in £ (Q]) =0,1, respectlvely To prove the weak
convergence of F— indexed empirical processes (12) we introduce the integral of the
metric entropy with bracketing as

1)
T8 (8) = Ty (6 F; £, (Qy)) / eNV2de,j=0,1, for 0 <8< 1.
0

Recall that numbers Njj(-) converge to +o0o at € | 0. However, it necessary for
Donsker’s theorem that they converge not very fast to +o00. This speed is measured
by the integrals J;ﬁ) () (see [8,9]).

The following theorem shows validity of Glivenko-Cantelli type theorem for the
process {A,f, f € F}. Here x - means a.s. convergence by outer probability.

Theorem 1. [1] Let the class F such that

Np (e, F, L1 (Qj)) < 00,5 =0,1. (13)
Then under validity of the hypothesis H and at n — oo
[n=2 A f|) 5 (14)

To prove the weak convergence of the process (12) to a Gaussian process, we first
investigate the limiting properties of two-dimensional empirical field

{(Anf,A1g), f,g€ F}, where A,f = =n'/2(Q, — Q) f and
Alng — n1/2 (@ln - @1) g.

Theorem 2. [1] Let the class F such that
F C L5(Qy) and JP (1) < o0, j=0,1. (15)

Then for n — oo sequence {(A,f,A1,,9), f,g € F} of F — R? maps weak converge
in 1°° (F) x1°(F) to the two-dimensional Gaussian field {(Af,Arg), f,g € F} with
zero mean and covariance structure for f,g € F:

E(Af-Ag) =Qfg—QfQyg,
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E(Aif Ag) =Qifg—QifQuy, (16)
E(Af-Ag) =Qifg—QfQuy.

Remark. In the last formula of covariance in (16), in particular at ¢ = 1 we have
Q11 =p and
EAf-AML)=Qif —pQf, feF. (17)

Hence, when hypothesis H is valid, then the covariance (17) is equal to zero for all
f € F. Thus, under the hypothesis H, the Brownian bridge {A f, f € F} and r.v.
po = A1 with a normal distribution A (0,p (1 — p)) are independent.

In study of process (12) basic property of weak convergence to a Q— Brownian
bridge is contained in the following statement.

Theorem 3. [1] Under the conditions of Theorem 3.2 for n — oo
A f = Afinl>®(F), (18)

where {Af, f € F} is a Gaussian field with zero mean and under validity of the
hypothesis H, it coincides in distribution with Q— Brownian bridge.

Now we consider the convergence of empirical process of independence (12) when
the class F of measurable functions fy, : X — R indexed by sets © and K: F =
{fo, : 0 € ©,n € K}, where 1 is an estimated parameter. Let 7, be an estimator
of n is a random element with values in I defined on the same probability space as
Xq,..., X, and ng € K is a fixed element, which is limit in probability of the sequence
Nn- In several applications it is interesting to prove that, as n — oo,

sup [ A (fon, — fomo)l = 0. (19)
9c0

We say that 7, is consistent for 7, if
sup |An(f9,nn - f9,770)2| —2 0. (20)
0cO n—oo

Theorem 4. If conditions (15) and (20) holds, then (19) is valid.

The result (19) can be applicated to the estimaton of the functional 8 — Afy,.
When the parameter n is unknown, we can replace it by an estimator 7, an use the
estimator A, fy,,,. This result helps to derive the limiting behaviour of this estimator
by using the decomposition

n

(Anfom,—Afom) = Anfom, — fon) + Bnfont o =)

An(f&nn - fﬁmo)- (21)

In right side of decomposition (21) the first term converges to zero by (19), the
second term will converge to a Gaussian process by theorem 3 and the third term
converges to zero by (20).
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Abstract

In right random censoring model using limit behaviors of empirical likelihood
function we propose Will-type asymptotic confidence intervals for truncated
integrals.

Keywords: random censoring, relative-risk power estimator, truncated in-
tegral, confidence interval.

Let X1, Xs, ... (survival times) and Y7, Ya, ... (censoring times) be two independent
sequences of random variables (r.v.-s) on the real line with marginal distribution func-
tion (d.f-s) F' and G respectively. Under the right random censoring model, instead
of observing X;, we observe the pairs (Z;,6;),i = 1,2,...,n where Z; = min(X;,Y;)
and 9; = [(X; <Y;) with I(-) the indicator function. Let H denote d.f. of Z;. Then
H(t)=1—(1—-F(t))(1 — G(t)). Let F and G are continuous. We are interested in
constructing a nonparametric confidence interval for a integral functional of the form

6=6(F) = / (H)AF (1)

where ¢ is some given Borel measurable function. Let F}, denote the Relative Risk
Power estimator of F' proposed [1] as

F,(t)=1-[1-H,t)]*" teR, (1)

where H,(t) = = " I(Z; < t) be empirical estimator of H(t) and

i=1

26 ) {1—}1 ] {ZIZ <t [1—H7L(ZZ)+%]_1}—1

is the relative-risk function estimator. Note that estimator (1) is a correct estimator
of d.f. F(t) than the Product-Limit estimator of Kaplan-Meier and Exponential-
Hazard estimator of Altschuler-Breslow (see|2]). Since estimator (1) have same good
properties such that representation as sum of independent and identically distributed
(i i. d) I.V.-S up to point T < Ty =inf{t: H(t) = 1}, then instead of 0( F") we consider

= [*(t ) where ¢*(t) = p(t)I (t <T). We prove for plug-in estimator
of QT(F) the asymptotlc representation

or(F) = [ ¢ (0,0 = %ZU +0, (n}) 2)
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where U; = U;(F,G) are i.i.d. r.v.-s. with EU; = 6rp(F). Following Owen’s |3] idea
we propose empirical likelihood confidence interval for truncated integral functional
Or(F).

Let V; = ¢ * (Z;) A Fo.(Z;), where AF,(Z;) = F,.(Z;) — F,,(Z;—) is the jump of
estimator (1) at point Z;. We introduce estimated likelihood ratio function of 67 by

R,(07) = max{ﬁ np;}
i=1
subject to restrictions
nzn:pi(‘/i —0r) =0, Zn:pi =1
i=1 i=1
Following by the method of Lagrange-multipliers, write
L, = i log(hp;) — nA ipi(Vi —0r) + u(ipi —1)
i=1 i=1 i=1

where A and p are Lagrange multipliers. Now setting to zero the partial derivative
with respect to p;, we have

oL, 1
=——n\V,—=0p)+pu, i=1,...n.
Op; pi ( )
From here, we obtain u = —n and

pi =+ MV 00)] 7Y, i=1,..,m,

where A, is the solution of the equation

n

Vi—0r
2 Thmi—6) =" )

i=1

Let .
o = lim Var(n='/? Z U;) < oo
i=1

n—o0
and we define the log-likelihood function
L,(0) = —2logR,,(0) = Zi log(1 + M\ (V; — 67)).
i=1
Then under validity of representation (2), as n — 0o
0 *Var(Vi) Lu(6r) 5 X7, (4)

where 7 is the chi-square r.v. with the degree of freedom one. Now using convergence
(4) we can constructing the Wild-type asymptotical confidence intervals for truncated
integral 07 (for detals, see [3]).
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Abstract

There are considered the questions of the application of mathematical mod-
els of metal cutting processes in the problem of optimizing machining modes.
The class of models of resistance is determined and the algorithm for finding
the optimal modes is formulated. For specific models, a practical solution is
given.

Keywords: fuzzy regression model, cutting tool life, durability model of
drilling.

Introduction

Determining the optimal modes is one of the main problem in the theory of metal
cutting. To find the modes, it is necessary to use models that describe tool life. The
method of finding the optimal modes depends on the type of model. The article
describes an algorithm for constructing a basic model of cutting tool durability using
a non-clear regression analysis apparatus using the example of a drilling operation.

1 Problem Statement

The strength of the drill is characterized by the total length of the holes [1, 2, 3, 4],
drilled by the tool before blunting - L, mm; or the operating time of the tool before
regrinding - 7', min. Tool durability depends on two factors - feed rate per revolution
S, mm/rev (or minute feed speed S,,, mm/min) and rotational speed n, rpm (or
rotational speed V', m/min).

These values are related by the following ratios:

L=S5,T, (1)

S, = Sn, (2)
wdn

~ 1000’ (3)

where d is the diameter of the hole, mm.
Thus, a general view of the resistance model:

L= f(S,n)orT=f(S,n). (4)
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The parameters of the model (4) are estimated from the data of the persistence
experiment. Next, the resulting model is used to find the optimal cutting conditions.
For example, the criterion of optimality can be selected criterion of minimum costs

2, 3,4, 5,6, 7

C D

+—+F, 5

L(n,S) Sn (5)
where C, D, E — some economic parameters. These criteria include the criterion

of minimum costs, minimum cost (single unit of production, production line, factory,

industry, etc., which is determined by the composition of the parameters C, D, E).

Q(n,S) =

2 Fuzzy regression models

y=f"@)0+e=>_ filx)o +e, (6)

where y is the resulting attribute (response variable, random dependent variable);
ff(z) = (fi(2), f2(x), ..., fn(z)) & given vector function of an independent variable
r = (x1,...,2%)7, which may vary in the region X; 0= (61, ...,0,,)T - unknown pa-
rameters that need to be determined from the results of experiments (measurements);
e is an observation error. Due to the complexity of the modeled object and the in-
fluence of unaccounted factors, it is not always possible to unambiguously determine
the structure of the vector f(x). It can often be observed that in different parts
of the regressors definition domain different models can be more adequate. One of
the most effective modeling methods in this case is the concept of fuzzy systems
[8, 9, 10, 11, 12, 13|.

Fuzzy regression models will be specified by means of a regression tree. Let
X1, T, ..., T be linguistic variables. Their values are determined by fuzzy sets
A, B, ...,T', and the degree of intensity of the manifestation of the value will be set as
the value of the functions of belonging. The branches of the decision tree have the
form [14].

M0 If (w1 is Ag) A (zg is By) Ao A(xy is Ty) then yi; , = n+oi + 3+ ...+ . (7)

The truth of statements (x; is A4;), (z2 is Bj), ..., (x) is I'}) is determined by the
values of the corresponding membership functions i, € [0,1], pup, € [0,1], ..., ur, €
[0,1]. The degree of truth of a statement [[;; , will be denoted as p(y;; ;) and calcu-
lated as pu(y;j..1) = pa,pp,--pir, Regarding the assignment of values pia,, p;, ..., fir,,
we introduce the requirement that for each observation the following conditions are
met:

L
ZﬂAi = 1aZMBj = 1,---,Zun =1;
‘ =1
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KA, S [071]7Z :]w_jnqu S [07 1]7] :]-J_Jv‘”alul—‘l € [07 1]7l :L_L (8)

The procedure of dephasing is carried out according to the scheme:

> 1Y )Y
Yij.l = W (9)

Taking into account (8), the decision tree (7) can be represented as an observation
model

yuz—nJrZquwrZuBﬁpL +ZMrﬂl+€mz (10)

7j=1

After finding the estimate 67 = (7), &1, ..., &1, B1, .., By, 415 -, 41, ) for the param-
eter vector of parameters ¢, the decision tree can be fixed as

[y If (21 is A)) A (29 is Bj)A... A (2 is T)) then Uijg =N+ &+ B+ e (11)

It can also be represented as a convolution.

I
?j f}_‘_ZMA Oéz—i_Z,uB 6] +ZMI‘/YZ (12)
=1

The considered techniques for representlng decision trees in the form of statements
(11) and (12) can be extended to the case of using explanatory variables, measured on
a quantitative scale. To simplify the presentation, we consider a particular case when
the number of input factors is two. We break up the scope of the quantitive variables
21, Ty into fuzzy partitions, which, as before, for the first factor we will denote as
Ay, Ay, ..., A7 with the corresponding membership functions p; € [0,1],i = 1, 1.
Similarly, for the factor x,, these will be partitions By, Bs, ..., By with accessory
functions pp; € [0,1], 5 = 1,J. We will proceed from the fact that at individual
sufficiently wide intervals of the action of quantitative factors, the behavior of the
system response can be described by a linear dependence. In this case, the complexity
of the tree can be reduced by trying to replace the representation of the response in
the leaves of the tree, for example, by its linear dependence on input factors. The
decision tree from two factors in this case will consist of branches of the form

Hij cIf (ﬂfl is Az) N (ZL‘Q is B]) then
y;j =0 + Oo1i + o2 + (01 + O11; + b125) 1 + (02 + 0215 + O20j) 5. (13)
Here, a part of the terms, namely 6y + 6,21 + 024, is included in each branch
of the tree and determines the overall linear dependence of the response on input
factors throughout the entire domain of their definition without taking it into account

for splitting it into partitions. Taking into account (8), decision tree (13) can be
represented as an observation model
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I J I J
Yiji = 0o + Z t1:601; + Z ;b2 + (61 + Z it + Z po;bh25) 1+
i=1 j=1 i=1 j=1
I J
+(02 + Z pifa1; + Z f2;t225) T2 + €ji- (14)
i=1 j=1
After estimating the parameters 6, the decision tree in the form of convolution
takes the form

I J I J
4 =0+ Zﬂueou + Z o602 + (61 + Zﬂuem + Z po;bh2; )1+
i=1 Jj=1 i=1 j=1

I J
+(02 + Z 16215 + Zﬂ2j922j)$€2- (15)
i=1 j=1

To ensure the identifiability of model (14), we will carry out its reduction by
removing a series of regressors from it. For example, you can remove regressors
p1r, oy from the model, as well as py7x1, 1722, oyx1, payrs. The rationale for this
method of identifying the model can be found in 15, 16, 17, 18].

When using fuzzy regression models, it is necessary to make assumptions about
the number, form and location of fuzzy partitions for each factor. In this paper, we
restrict ourselves to the consideration of linear and quadratic local models. At the
same time, the possibility of using local models of increased complexity is limited
primarily by the implemented experiment plan. In the problem considered in the
work, the implemented plan is a complete factorial experiment at 5 levels for two
factors — a total of 25 different points, not counting repeated observations. This
allows to use a quadratic polynomial of two factors as a local model when dividing the
domain of definition of the factors into two partitions. As for the form of the function
of belonging, for the considered problems we will use trapezoidal ones. To the category
“form of partitions” also should be referred the coordinates of the intersection points of
the neighboring fuzzy partitions and the width of their intersection. By virtue of the
symmetry of the domain of definition of factors with respect to zero, fuzzy partitions
can also be placed symmetrically with respect to a zero value. The coordinate of the
point of intersection of the partitions will be denoted as 7,,. We denote the half width
of the intersection as Apu. The width of the partition cross section directly affects
the smoothness of the transition of the regression dependence from one local model
to another. When solving a specific task of restoring dependency, the parameters
and Ap can be customized.

3 Solution of the practical task

The proposed method of calculation was used to determine the optimal modes (n*, S*)
of drilling IXI8HIT stainless steel with a drill of @4.2 mm using coolant.
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For the experiment, was developed and upgraded the bench drilling machine for
smooth regulation in a wide range of n and S.

In tab. 1 presents the data of the durability experiment |3, 4]. The experiments
were carried out according to the plan of a full factorial experiment of type 5.

Table 1: Data of the stability experiment L, mm (drill @4.2, drilling depth 2d, drill
reach 10d)

S, mm/rev n, rpm
750 | 1098 | 1447 | 1795 | 2145
0.0280 570 | 1430 | 3600 | 1400 | 430
390 | 1370 | 1800 | 1200 | 250
0.0450 5560 | 8300 | 4700 | 4000 | 700
8500 | 6300 | 5700 | 3000 | 1100
0.0621 4040 | 5800 | 6130 | 3330 | 590
5640 | 7800 | 4230 | 4070 | 810
0.0790 3150 | 3420 | 2760 | 1350 | 470
3850 | 4180 | 3800 | 1650 | 690
0.0962 1910 | 130 | 100 30 9
3170 | 150 | 140 o0 11

Previously in [4, 5, 7], the logarithmic quadratic model was used as the base model
describing the data of the stochastic experiments (see tab. 1), where the response
values L were subjected to logarithms. In this case, logarithm was used to reduce
the spread of response. When using nonlinear transformation of the response, the
requirement for accuracy of approximation of such a response by one or another
regression model significantly increases. The scatter of the response scale (see tab.
1) also indicates that the experiment was conducted on fairly wide ranges of factors.
On the wide ranges of input factors, it is often possible to observe the model drift,
when in different parts of the factor definition area the nature of the dependence of
the response changes.

An important point in building a workable model of the process being studied
is to decide on the choice of the optimal complexity model, which would not have
the effect of retraining. It is called the effect of retraining if a model is tuned to the
description of the training data and has poor predictive properties. When choosing
a model, one should be guided by the external quality criteria [16]. Going over
models of varying complexity, we choose in this case a model for which the external
criterion is minimal. We will rely in this paper on two such criteria. Suppose that
the sample of observations is divided into two parts A and B. In the methods of
structural optimization, the following external criteria for model selection are widely
used [21-23]:

regularity criterion:
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A*(B) = A*(B/A) = |lys — X50all%, (16)

where X p is the matrix of observations on the part B; 64 — estimates of the model
parameters obtained by the sample A.

External criteria also includes the criterion of "sliding control" (CV - cross vali-
dation):

Agk = Z(yz - fT(xi)‘g(i))27 (17)
7
where 0;) is the parameter estimate for the full sample with excluded 7 observation.
Consider several classes of models and criteria values that are achieved on them.
The results are shown in tab. 2, where the residual sum of squares for the given
models is denoted by 2. Structures of optimal models in their class of models were
selected by a minimum A?(B) of the regularity criterion, two other criteria A% and
e? were additionally fixed.
An analysis of table 2 shows that the use of ordinary polynomials of the second
and third degree does not significantly improve the quality of the approximation of
experimental data.

Table 2: Indicators of quality models of optimal complexity

Model Number of parameters, s | A?(B) | A% | &2

Linear 3 47 2.07 | 894
Linear with interactions 3 47 2.07 | 894
Quadratic 4 16.3 0.78 | 31.3
Cubic 10 6.43 | 0.304 | 9.07
Fuzzy linear, 9 15.3 0.79 | 25.8
T,=0,Apn=0.5

Fuzzy linear with interactions, 10 10.9 0.53 | 174
T,=0,Apn=0.5

Fuzzy quadratic, 12 5.45 ]0.229 | 7.15
T,=0,Apn=0.5

Fuzzy quadratic with 2 batches 10 5.34 | 0.242 | 7.05
onS, 7, =0, Apn=05

For the models presented in tab. 2, it is possible to test the hypothesis of their
adequacy by calculating the statistics F' = 67 /62, where 67, = €*/(N — s) is the
estimate of the variance of observations obtained from the model; 62 — estimation of
variance by repeated observations. In our case 62 = 0.0612. Characteristically that
none of the models presented in tab. 2 according to the criterion F' is recognized
as adequate. In order for this to happen, it is necessary to ensure the accuracy of

the approximation with the estimated variance of the model 6%, ~ 0.1. This can be
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done if the tuning functions of the membership in the parameters 7, and Ap. The
results presented in tab. 2 suggest that the optimal complexity of the model may
be in the range of 10-12 parameters. The result was a fuzzy quadratic model with
z, = —0.22, Ap = 0.73. Its optimal structure has 12 parameters and provides the
following quality indicators: A?(B) = 3.66, A% = 0.1427, €2 = 3.94. The differences
in the behavior of the restored dependencies by quadratic and fuzzy quadratic models
can be traced in Figures 1 and 2, where the label "y" denotes the observed response
values.

The feed rate S varies in the range [-1, +1] in normalized units, which corresponds
to the range [0.0280; 0.0962].

= fuzzy quadratic model
= quadratic model
“-Y

1
15

== fuzzy quadratic model
= quadratic model
-‘-v

15

Figure 2: Sections for a fuzzy quadratic and quadratic model, n—=1098.
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Conclusion

A comparative analysis of several types of resistance drilling models has been carried

out.
use.

Fuzzy quadratic model is proposed as an adequate model proposed for practical
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Abstract

In this paper, we consider the application of the Wiener degradation model
in the analysis of the laser module ILPN-134 degradation data. The Wiener
degradation model is based on the assumption that degradation increments are
independent normally distributed random variables. It has been shown that
an appropriate model for the considered data is the Wiener degradation model
with random effects, which takes into account the unit-to-unit variability. The
constructed model can be used for estimation of the reliability indicators, such
as the probability of the non-failure operation during some period of time.

Keywords: degradation process, Wiener degradation model, random effect,
maximum likelihood estimation, reliability.

Introduction

The reliability analysis is an important stage for the quality assessment of techni-
cal systems and devices. The mathematical apparatus of reliability analysis includes
methods for the construction of a statistical model describing the lifetime distribu-
tion. There are two approaches to construction of statistical reliability models: the
first one uses only the information about observed failures, but the second approach
considers all values of some indicator (index) characterizing the degradation process.
In that way, statistical degradation models use more information about tested items
to estimate the reliability than the models based on the samples of failure time data.
So, if there is the possibility to observe the degradation paths until failure instead of
only the time to failure, it will allow to obtain more accurate estimates of probability
of the non-failure operation during some period of time.

The most popular statistical degradation models for the analysis of real data is
the gamma and Wiener degradation models. For example, in [6], the gamma model
is considered to analyze the wear of car tires depending on various stress factors, and
in [3] and [8], the authors use the gamma degradation model to describe the aging of
automobile brake pads. However, the gamma model cannot be applied in the cases,
when values of degradation increments are not positive. In such cases, it is necessary
to construct the Wiener degradation model.

If unit-to-unit variability is observed in investigated data, a “random-effect” degra-
dation model should be considered. For such models, the distribution of random

!This work is supported by the Russian Ministry of Education and Science (project
1.1009.2017/4.6)
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parameter is taken into account. For example, in [7], the “random-effect” Wiener
degradation model with random scale parameter from the gamma distribution is of-
fered. In this case, the number of unknown parameters of the “random-effect” model
is larger than for the “fixed-effect” model, and as a result, the accuracy of parameter
estimation for the “random-effect” model may decrease. On the other hand, if the
unit-to-unit variability is rather large, then the “fixed-effect” model is not appropriate
[1].

In this paper, we construct the “random-effect” Wiener degradation model for the
reliability analysis of the semiconducting laser module ILNP-134 [9].

1 The problem formulation for the reliability analy-
sis of the laser module ILPN-134

The reliability analysis of the semiconducting laser module ILPN-134 was described
in [9]. 15 lasers were divided into three groups of 5 items and tested under the
temperature of 70°C, 80°C and 90°C in each group, respectively. It was necessary to
maintain a consumption current corresponding to a radiation power of 3 mW during
the 8500 hours of accelerated tests. During the experiment, two items were excluded
from the consideration because of the insufficient adjustment on maximum of the
output optical power.

The value of the current (degradation index) was measured every 100 & 20 h. An
item fails when the current value is 20% higher than the initial value.

The degradation paths for different groups of the experiment are shown on Figures
1-3.

Z(t) (1)
10 A 25 1

204
154

10 4

=5

Figure 1: Observed degradation paths Figure 2: Observed degradation paths
under 70°C under 80°C

As can be seen from the figures, the typical degradation process is observed for
the first two tested groups which relates to the aging of the laser diodes. However,
the other nature of the degradation with the premature failures is detected for two
lasers tested under the stress of 90°C. The detailed research of these devices showed
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Figure 3: Observed degradation paths
under 90°C

that the reason for this behavior is connected to the optical fiber offset relative to
the laser diode.

In 9], the authors carried out the reliability analysis basing only on the failure
time values which were obtained by the approximation of degradation paths with the
exponential function for each tested laser. In this paper, we construct a statistical
model using all the values of the degradation index. Obtained increments of the
degradation index are positive and negative, so it is reasonable to use the Wiener
degradation model for the further analysis.

2 The Wiener degradation models

Let us assume that the observed stochastic process Z(t) is a stochastic process with
independent increments, and Z(0) = 0. For the Wiener degradation model, incre-
ments AZ(t) = Z(t + At) — Z(t) have the normal distribution with the probability

density function
1 _ (u—61)2

. _ 262
fNorm(ua 917 92) — \/%026 2, (1)
where 0, = p(v(t+ At) — v (t)) is the shift parameter and 6, = o is the scale
parameter, v(t) is a positive increasing function.

Let the degradation process Z(t) is observed under a constant in time stress (co-
variate) x , the range of values of which is defined by the conditions of the experiment.
There are various ways to parameterize the dependence of the degradation path on
covariates. Here, we assume that the covariate z influences the degradation paths as
in the accelerated failure time model |[5]:

Z:\t) =2 (r(xt; 6)) ’ )
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where r(z; 3) is the positive covariate function, § is the vector or scalar regression
parameter.
Denote the mathematical expectation of degradation process Z,(t) by

t
M (Z,(t :mxt:uvxt:uy(—;w), 3
(2e(0)) = malt) = jon(t) = o (s g
where m,(t) is the trend function of the degradation process, 7 is the vector or scalar
trend parameter.
The time to failure, which depends on covariate x , is defined as:

T, =sup{t : Z,(t) < 2}, (4)

where z is the critical value of the degradation index. Then, the reliability function
for the Wiener degradation model can be written as:

—my (t
S, (t) = P{T, >t} = P{Z, () <z0}:<I><ZO—m()), (5)
o
where ®(-) is the standard normal distribution function.

To take into account unit-to-unit variability, the random effect can be included
into the model by considering the parameter p as a random variable from truncated
normal distribution with the density function [1]

fNorm(t; 57 Oé)

t;0,a) =
ftrunc( ) ,Oé) 1 _ FNorm(O; 57 OZ)7 (6)

where 0 is the shift parameter and « is the scale parameter.
Then, the marginal density function for Z,(t) in the case of Wiener degradation
model with random effects is equal to [2]:

e (522(0),0,6,0) = [ o (w002(6),0) firune (w350 Ao ()
0
In this case, the reliability function can be written as
29
S,(t) = P{T, > t} = P{Z.(t) < 2} — / Frw (va(t), 00,0 du (8)
0

Let the realization of stochastic process Z(t) for the i-th item under the value of
covariate z = z° is denoted as

Z'={(0,Z,=0), (t,2}), ... (t},. Zy,) } i =1,n, (9)

where k; is the number of time moments, in which the degradation index was mea-
sured. Then, the sample of independent degradation index increments with covariates
can be written as:

X, ={(X]=2Z—-Z_,,a"), i=1n, j =1k} (10)

J—b
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Maximum likelihood estimates of parameters o, 7 and  of the “fixed-effect”
Wiener degradation model are calculated by maximization of the likelihood func-
tion:

n kl
L(Xn) :HHfNorm (X;,ﬂyxz(t,7,6>,0') (11)
i=1 j=1
If Zi(t),i = 1,n are the Wiener degradation processes with random effects, then

the likelihood function can be written as the multiplication of the joint density func-
tions of increments X; on the common random effect:

n

L(Xa) =]]r(Xi X5, ... X1,) =
i=1

k;
/[HfNorm (XJZ,WVxl(t7%5)aU) ftrunc(w;(S?a)dw (12)
1o

j=1

n

1

3 The analysis of the ILPN-134 lasers degradation
data

We have considered the construction of the Wiener degradation model for estimating
the reliability of the semiconducting laser module ILNP-134. The experiment data
were presented by Zhuravleva, Ivanov and others in [9] and were described in Section 1
of the current paper. The detailed data analysis showed that two types of failure were
observed during the accelerated test: the first type is related to the aging of the laser
diode (LD) and the second one is related to the misalignment of the optical system
(OS). Concerning to this, we decided to use the covariate function with the regression
parameter J dependent on the covariate values.

At first, we have selected the most appropriate trend and covariate functions for
the lasers data using the "fixed-effect" Wiener degradation model. Two types of
the loglinear covariate functions depending on the [ definition were chosen for the
investigation:

(13)

SaE g
1 (-Tv ﬂ) eﬂf+52 wigggz x> 85
’ .

1_ 1000
6,31+ﬁ2 e+2732 . < 89,

14
eIt g > 85, ()

ro (z;8) = {
Additionally, the exponential and power trend functions were considered:

vi (;7) = 70 + e, (15)

Vs (t,y) =+ ,yiyzt/r(@/g). (16)

The parameters estimates, AIC and BIC values obtained for the "fixed-effect"
Wiener degradation model with the different combinations of the considered trend
and covariate functions are presented in the Table 1.
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Table 1: The parameter estimates of the "fixed-effect" Wiener degradation models,
AIC and BIC values

Trend | Covariate
function | function g mn 72 B P AIC BIC
T.
(15) (13) 1.70 | 1.97 - g§ :3;11 -0.42 -597.85 | -573.35
T2
T.
(15) (14) 1.69 | 2.16 - 3.15 622 822 -597.83 | -573.33
50 0.
T.
(16) (13) 1.70 | 0.07 | 1.75 gzl %%i; -0.22 -595.91 | -566.52
1-_ .
T.
(16) (14) 1.69 | 0.15 | 1.81 0.81 622 822 -595.91 | -566.52
50 0.

As can be seen from Table 1, the AIC and BIC values are smaller for the cases
with the exponential trend function (15). As to the covariate functions, the values of
information criteria are very close to each other, however the model with covariate
function (13) describes the data more accurately. So, we choose these functions for
the model construction.

As the unit-to-unit variability can be observed in the investigated data, we have
considered the Wiener degradation model with random effects, where the random
parameter p has the left truncated normal distribution with the shift parameter o
equal to 0. The estimation results are presented in Table 2, the parameter estimates
of the corresponding "fixed-effect" model are given for the comparison.

Table 2: The parameter estimates of the "fixed-effect” and "random-effect" Wiener
degradation models, AIC and BIC values

Wiener degradation model | o Q@ Ioht Ba AIC BIC
"Fixed-effect" model 1.70 - 3.71 2.54 | -0.42 | -597.85 | -573.35
"Random-effect" model | 2.09 | 3.89e-03 | 2.03 1.57 | -0.16 | -707.54 | -687.95

Basing on the AIC and BIC values presented in Table 2, it can be concluded that
the "random-effect" Wiener degradation model is more appropriate model for the
reliabiity analysis of the laser module ILPN-134 data.

The trend functions corresponding to the constructed "random-effect" Wiener
degradation model are demonstrated on Figures 4-6.

Conclusions

In this paper, we have considered the problems of constructing the Wiener degrada-
tion model for the analysis of the ILPN-134 lasers data. An interesting feature of
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Figure 4: The trend function and Figure 5: The trend function and
observed degradation paths under 70°C observed degradation paths under 80°C
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Figure 6: The trend function and
observed degradation paths under 90°C

these data is that there are two types of failure, one of which arises only under high
values of temperature. By this reason, we have taken the covariate function with the
regression parameter dependent on the value of covarite (temperature). The expo-
nential trend function was selected as the most appropriate one. Moreover, there is
a significant unit-to-unit variability in data, and the Wiener degradation model with
random effects turned out to be more appropriate than the corresponding "fixed-
effect" model. The constructed model can be used for estimation of the reliability
indicators, such as the probability of the non-failure operation during some period of
time.
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Abstract

The methods of construction of estimates are considered in the analysis of
Big Data. The influence on the results of conclusions according to the Pearson
Chi-squared test of choosing the number of intervals and grouping method is
demonstrated. It is shows how the limited accuracy of data in large samples
effects on the distribution of statistics of non-parametric tests. Recommenda-
tions on the application of tests under large samples analysis are given. It is
shown that the distribution of statistics of tests for testing laws homogeneity,
as well as the tests of homogeneity of the means and tests of homogeneity of the
variances, is affected by the non-equilibrium character of the data presented in
the compared samples.

Keywords: Big Data; parameter estimation; testing hypotheses; goodness-
of-fit tests; homogeneity tests; statistical simulation

Introduction

The questions of application of statistical methods to the analysis of large data ar-
rays (Big Data) are of great interest in recent years. In connection with the rapid
accumulation of gigantic volumes of information, there is a need for research the ac-
cumulated data, for finding, extracting and using the laws hidden in data, including
probabilistic ones. Naturally, one can try to apply methods and tests from the vast
arsenal of classical mathematical statistics for the analysis of big data, using popular
software systems for statistical analysis. However, application of the classical appara-
tus of applied mathematical statistics for the analysis of big data, as a rule, leads to
specific problems that limit the possibilities of correct application of this apparatus.

In this paper, we will discuss only the methods and tests associated with the
analysis of one-dimensional random variables, the real problems of which are most
familiar to us. At least three situations can be considered where increasing sample
size causes problems in application of methods or tests.

Firstly, due to the “curse of dimension”, well-proven methods and algorithms be-
come ineffective. In particular, problems arise under the calculation of estimates of
parameters. When using estimation methods that operate on non-grouped data, the
computational costs increase cardinally with increasing size of samples analyzed. The
convergence of iterative algorithms used in estimation worsens. A significant factor is
no robustness of certain types of estimation. The natural way to resolve this situation
is the use of estimation methods that involve grouping data [1]. But in this case, the
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question arises: how the estimates obtained for grouped data will affect the proper-
ties of hypotheses tests in which estimates will be used. For example, how will this
affect the statistics distributions of non-parametric goodness-of-fit tests when testing
composite hypotheses? In this case, the statistic distributions significantly depend
on the method of parameter estimation |2, 3, 4, 5].

Secondly, a lot of popular statistical tests are not adapted even for samples of
about thousand observations, since the information on the distributions of statistics
of these tests is presented only by brief tables of critical values for some sample sizes
n. By rough estimate, the count of such tests is more than 80% of all tests count. It
should be noted that the possibility of application such tests with “reasonable” values
of sample size is easily resolved by statistical simulation of distributions of statistics
for given sample size and validity of the tested hypothesis Hy. This simulation can be
carried out interactively during statistical analysis |6, 7]. The empirical distribution
Gn(S, |Hp) of statistic S of test constructed as a result of simulation with size N
can then be used to estimate the achieved significance level p,q.e by the value of the
statistics S* calculated from the analyzed sample.

Thirdly, the application of tests, for which the limiting (asymptotic) distributions
of statistics are known, always leads to rejection of even true tested hypothesis with
increasing sample sizes. This is typical, for example, for goodness-of-fit tests, for a lot
of special tests for testing hypotheses of normal distribution, uniform distribution or
exponential distribution, etc. In [8], it has been shown that this problem is associated
not only and not so much with the increasing computational costs, as with the lim-
ited accuracy of the analyzed data (with limited measurement accuracy). A similar
problem hinders the correctness of application of homogeneity tests (homogeneity of
laws, homogeneity of variance, to a lesser degree of homogeneity of means) under
large samples. As will be shown, in the case of homogeneity tests, the reason lies in
the unevenness of measurements in the analyzed samples.

1 Estimation of the parameters of distribution

Estimates of the parameters of distributions can be obtained by various methods. The
maximum likelihood estimates (MLE) characterized by the best asymptotic properties
and calculated by maximizing the likelihood function

0= arg max Hf(xj,e), (1)

j=

or by maximizing the logarithm of this function, where 6 is unknown parameter
(generally vector), f(x,#) is the density function of the distribution law, x1, zs, ..., x,
are sample observation. For some laws, the distribution of MLE of parameters is
obtained as statistics simply computed from the observations of the samples, but in
most cases MLE are the result of using some iterative method.

When calculating MD-estimates (estimates of the minimum distance), some mea-
sure of proximity (distance) p(F(z, ), F,(x)) between the theoretical F(z, 6) and
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empirical F),(x) distributions is minimized. MD-estimates can be obtain as a result
of solving following task

0 = arg mein p(F(x,0), F,(x)). (2)

For example, the statistics of nonparametric goodness-of-fit tests (Kolmogorov, Cramer-
von Mises-Smirnov, Anderson-Darling, Kuiper, Watson, and others [9]) can be used
as measures of proximity.

With relatively small sample sizes, L-estimates of parameters can be used. These
estimates are some linear combinations of order statistics (elements of variational
series X(1) < X9y < ... < X(n) constructed from original sample x1, xs, ..., ).

MLE of parameters of distribution, as a rule, are not robust. The presence of
anomalies of sample observations or the inaccuracy of the assumption about the
form of distribution leads to the construction of models with distribution functions
that are unacceptably deviating from empirical distributions. MD-estimations have
greater stability.

Obviously, the calculation of estimates (1) and (2) is associated with serious com-
putational difficulties for very large samples. In the case of grouped sample, the
sample observations are associated with a set of non-intersecting intervals, which di-
vide the domain of definition of a random variable into k& non-intersecting intervals
by boundary points

Ty < T < ... < Tg-1) < T(k);

where z (g is the lower bound of the domain of definition of random variable X; x4,
is the upper bound of the domain of definition of random variable X.
MLE by grouped sample [1]| are calculated by maximizing the likelihood function

k
0 = arg max 1_11 P"i(0), (3)
0
(3) where P;(0) = [ f(x, 6)dz is the probability of the observation entering in the
(i-1)

i-th interval of values, n; is the number of observations that fell into the ¢-th interval,
k
> n; = n. Estimates by grouped samples can be obtained by minimizing statistics

A . b n;/n — P;(0 2
Hzargmem n;( /H(Q)(>>’ (4)

as well as other statistics. In [10], it was shown that all of estimation method for
grouped data considered give consistent and asymptotically effective estimates under
appropriate regularity conditions. However, the most preferred estimates are MLE.
An important advantage of estimates based on grouped data is robustness [11].

In the case of presence of non-grouped data, estimates for grouped data are rarely
applied. This is due to the greater computational costs and necessity to numerical
integration in the computation P;(#), that requires appropriate software support.
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In the case of large sample sizes, the situation changes. Computational costs do
not change as computations grow with a fixed number of grouping intervals, but
increase only with an increase in the number of intervals k. This means that it is
advisable to use MLE by grouped samples in the conditions of Big Data. These are
robust and asymptotically efficient estimates. The quality of estimates for small &
can be improved using asymptotically optimal grouping (AOG) [1, 12, 13], in which
the losses in Fisher information associated with grouping are minimized.

2 Application of y*-test under large samples

The statistic of Pearson x? goodness-of-fit test has the following form

9 i n;/n — P;(0 2
Xﬂﬂ;( /me)())' 5

In the case of testing simple hypothesis, this statistic obeys x2-distribution with
r = k — 1 degrees of freedom if n — oo and the null hypothesis is true.

In the case of testing composite hypothesis and estimating m parameters of dis-
tribution by sample statistic (4) obeys x2-distribution with r = k —m — 1 degrees
of freedom, if the estimates are obtained by minimizing (4) these statistics, or using
MLE (3) (or other asymptotically effective estimates for grouped data).

The distribution of statistic (5) does not agree with x3 ~distribution when
parameter estimations are obtained by non-grouped data. It is recommended to apply
the Nikulin-Rao-Robson test when MLE were obtained according to ungrouped data
[14, 15].

There are not principal problems that prevent application of Pearson y2-test under
Big Data. Only computational difficulties are possible.

Let us illustrate the results of application Pearson y?-test on the example of
testing hypothesis of normal distribution with density

f(z,0) = 91\1/§6Xp{_%}'

by sufficiently large sample. The sample of n = 107 observations was modeled ac-
cording to the standard normal law N(0,1) (6p =0, 6, = 1).

In Table 1, there are the results of testing simple hypotheses about standard
normal law N (0, 1) with various numbers of intervals in the case of equal-frequency
grouping (EFG) and k = 15 in the case of asymptotically optimal grouping (AOG).

In the case of AOG, the power of Pearson y?-test maximizes for close competing
laws [16, 17, 18]. The table shows the values X>* of statistics (5), which calculated by
the sample, and the corresponding values pyaue = P{X2 > X2*|Hy} of the achieved
significance level. As you can see, the results depend on both the splitting method
and the number of intervals. The power of test also depends on these factors [19].
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Table 1: Results of testing simple hypothesis about N (0, 1)

AOG EFG
k 15 15 50 75 100 200 1000 2000
X2*  7.75162 | 9.18380 56.8942 79.4904 96.5701 493.995 1044.57 2099.91
Dvalue 0.90186 | 0.81910 0.20475 0.31026 0.55038 0.55482 0.15403 0.05702

Table 2 shows the results of testing composite hypotheses. MLE 0o and 6; obtained
for grouped data with the corresponding number of intervals k, statistics values X2*
and pPyaue are presented.

MLE of parameters by complete ungrouped sample are 6o = 0.000274 and 6; =
1.000177. In |20, 21], models of distributions of statistic (5) were constructed for the
case of testing composite hypothesis of normal law using MLE by ungrouped data
and AOG. The value of statistic calculated by the sample is X2* = 6.600521 for
k = 15, the estimate of p-value obtained in accordance with the limit distribution
model given in |20, 21| is pyawe = 0.886707. These values indicate a good agreement
between the complete sample and the normal law N (0.000274, 1.000177).

Table 2: Results of testing composite hypothesis

AOG EFG
k 15 15 50 75 100 500 1000 2000
0o 0.00028 | 0.00030 0.000244 0.00027 0.00027 0.00028 0.00027 0.00027
01 1.00715 | 1.00263  1.00173 1.00134 1.00112 1.00039 1.00031 1.00024
X2 927.920 | 99.9963 101.767 104.511 112.151 493.716 1043.47 2098.61
Pvalue 0.0 5.58e-16  6.50e-06 0.00739 0.13938 0.53317 0.14922 0.05572

It should be noted that the MLE by grouped sample for £ = 2000 and the MLE
by ungrouped sample are very close. At the same time, p-value for k£ = 2000 is much
lower than 0.886707.

Thus, the result of testing composite hypotheses using Pearson y2-test signifi-
cantly depends on the number of intervals k.

3 Nonparametric goodness-of-fit tests under big sam-
ples

If one can omit the growth of computational difficulties, the main reason for possible
non-correctness of conclusions by big data using non-parametric goodness-of-fit tests
is the limited accuracy of the data in large sample.

As a rule, volumes of samples in Big Data (belonging to some continuous distri-
bution law) are practically unlimited, but the observations itself are presented with
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limited accuracy (rounded with some A). In essence, there is “violation of assump-
tion” that a continuous random variable is observed.

Suppose, the goodness-of-fit test with statistic .S is used to test a simple hypothesis
Hy: F,(x) = F(z), where F,(x) is empirical distribution constructed from sample

L1, X2y .0y Ty

of n observations. Suppose, there is limit distribution of statistic G(S|Hy) for this
goodness-of-fit test. In the case of trueness of Hy, the empirical distribution F, (x)
corresponding to sample of continuous random variables (without rounding) converges
to the distribution function of this random variable F(z) for n — oco. The empirical
distribution of statistics Gy (.S, |Hy) based on samples of continuous random variable
for n — oo (and the number of simulation experiments N — co) converges to the
limit distribution G/(S'|Hy) of this statistics.

However, the measurement results are rounded off (fixed) with some A. Therefore,
max | F,(z) — F(z)| will cease to decrease starting with certain n, depending on F(z),
domain of definition of the random variable and A. The distribution G (S,, |Hp) will
deviate from the limiting distribution G(S|H,) with increasing n (the more A, that
the less n).

The results of studies for demonstrating the effect of accuracy of data on the
distribution of statistics will be shown on 3 classical goodness-of-fit tests.

The Kolmogorov test statistics is used with the Bolshev correction|9]

1 6nD,+1
6v/n  6yn
where D, = max (D}, D;), D;} = max {i{— F(z;, 0)},

1<i<n

D, = 1r£1?<>; {F z;, 0) — %}, n is the number of observations; xy, x»,..., x, are

sample values ordered ascending; F'(z, 6) is distribution function of law tested. The
distribution of Sk under simple hypothesis in the limit obeys the Kolmogorov law
with the distribution function K(5) [9].

The Cramer-von Mises-Smirnov test statistic is

+Z (o, 0y 211 (7)
S ~ 12n = v on

and under testing simple hypothesis this statistic allows to law with distribution
function al(s) [9]. The Anderson-Darling test statistic has the following form [22]

o= —n-— zz {2@'2; 0 Fas, 0) + (1 - I 1) In(1— F(z;, 6>)}. (8)

n

(6)

In the case of testing simple hypothesis this statistic allows to law with distribution
function a2(s) [9].

In [8], the distributions of statistics (6)-(8) of nonparametric goodness-of-fit tests
were studied depending on the accuracy of recording the observed values of random
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variables. The number of significant decimal places, to which the observed values
were rounded, was set. This determined the number of unique values that could be
in the generated samples. As a rule, the number of simulation experiments carried
out to simulate the empirical distributions of statistics was N = 10°.

The deviation of real (empirical) distribution of statistics from the limit distri-
bution was studied by evaluating median S,, of empirical distribution of statistics
obtained as a result of modeling. If real distribution of statistics with sample sizes n

does not deviate from the limit distribution, then the probability P {S > S'n} calcu-

lated from the corresponding limit distribution is 0.5. If real distribution of statistics
shifts to large area of values (to the right of the limit distribution), the estimates

Dy = P {S > S’n} are decrease. One can judge the correctness of achieved signifi-

cance level pyaue calculated from the limit distribution of statistics (in the case of
testing simple hypotheses, respectively, by K(S), al(S) and a2(S)) by the value of
deviation of estimates p, from 0.5.

When rounding to within 1 in samples belonging to N(0,1), 9 unique values may

appear, when rounding to within A = 0.1 about 86 unique values, with accuracy
A = 0.01 — about 956, to within A = 0.001 — about 9830.

As the simulation results showed [8], when rounding up observations to integer
values, the use of limit distributions of test statistics is absolutely excluded.

The distributions of statistic of Kolmogorov test G(S,, |Hp) is essentially discrete
under A = 0.1. The deviation G(S, |Ho) from the limit distribution K (.5) for A = 0.1
should be taken into account already for n > 20, A = 0.01 — for n > 250, and
if A = 0.001 the value ngy.y shifts to value about 10*. In the case of Cramer-von
Mises-Smirnov and Anderson-Darling tests, the deviation G(S,, |Hp) from the limit
al(S) and a2(S) for A = 0.1 should be taken into account for n > 30, A = 0.01 - for
n > 1000, and if A = 0.001 — the value 7, shifts to 5 x 10°.

Figure 1 shows the dependence of distributions of statistics (7) of Cramer-von
Mises-Smirnov test on the degree of rounding A at sample size n = 1000 for the case
of testing simple hypothesis about standard normal law. The limit distribution a1(.S),
that occurs in the case without rounding, as well as real distributions of statistics
G(S1000 |[Ho) at degree of rounding A = 0.01, 0.05, 0.1, 0.2, 0.3. As you can see if
A = 0.01 distribution G(S1000 |Hp) does not practically differ from a1(.S), but with
increasing A deviation G(Sip0 |Ho) from al(S) rapidly increases.

Consequently, in order to analyze large samples using the appropriate nonpara-
metric goodness-of-fit tests with corresponding limit distributions, statistics should
be calculated not over the sample, but according to samples extracted by uniform
law from general population (original sample analyzed). The size of extracted sam-
ple should take into account the accuracy of the data (the number of possible unique
values in the sample) and not exceed certain value ny,, at which (for given accuracy)
the distribution of test statistics G(Sp,., |Ho) does not really differ from the limit
distribution G(S |Hp).

In the case of testing composite hypotheses, the tested hypothesis has the form
Hy : F(z) € {F(z, 0),0 € ©}, where O is domain of parameter ¢ definition. If
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Figure 1: Statistic distributions G(S,, |Hy) of Cramer-von Mises-Smirnov test
depending on A for n = 1000

the estimate 6 of scalar or vector parameter of law is based on the same sample
that the hypothesis is tested on, then the distribution of statistics G(S|Hy) for any
nonparametric goodness-of-fit test differs significantly from the limit distribution for
testing simple hypothesis [23]. If estimates of parameters obtain by the same sample
that hypothesis tested, the following factors influence the distribution of statistics
G(S |Hyp) [24]: distribution law F'(z, #) corresponding to the true hypothesis Hy; type
of estimated parameter and the number of estimated parameters; in some situations,
specific values of parameter (for example, in the case of gamma distribution, etc.);
used parameter estimation method.

Obviously, in the case of testing composite hypotheses, we encounter the same
problems and must extract sample of size n < np,., from “general population” in order
to use when analyzing Big Data with limited accuracy of fixed data. For example,
it should be do for application of models of limit distributions of test statistics when
testing composite hypotheses |2, 3, 4, 5, 24].

It should be noted, if the estimation 0 of parameter is found by one of the above
methods by the entire big data array, and then the test is applied to the sample
of size n < M. extracted from the same array, then when testing hypothesis H :
F(z) = F(x, é), where 6 is previously obtained estimate, the distribution of statistics
G(S |Hp) will as in the case of testing simple hypothesis.

All of the above fully applies to application of nonparametric Kuiper [25] and
Watson [26, 27| goodness-of-fit tests by big samples. The distributions of statistics of
third Zhang goodness-of-fit tests [28], which are based on Kolmogorov, Cramer-von
Mises-Smirnov and Anderson-Darling tests, depend on sample sizes n. Therefore,
there can be no talk about application of limit distributions of statistics. However,
distribution of statistics G(S,, |Hp) in the same way depends on degree of rounding A.
Consequently, the critical values of statistics obtained for continuous random variables
and n cannot be used with the same n, but with significant degree of rounding A. The
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problem can be resolved by statistical modeling (including, in the interactive mode
[6, 7]) of statistical distributions for given n and A with the trueness of the tested
hypothesis Hy. The empirical distribution of G (S, |Hy) statistics S of corresponding
test constructed as a result of N simulation experiments under these conditions can
be used to estimate the achieved significance level p,qe. That is how this problem
is solved in the ISW software system being developed [29].

4 Other goodness-of-fit tests under big samples

It should be noted that the degree of rounding of recorded data affects properties of
other tests in similar way. In particular, special tests aimed for testing the hypothesis
about normal law, uniform law, or exponential law, etc.

It should be noted that in the conditions of large samples (in the presence of
repeated observations), a lot of good tests turn out to be inoperable. This is due to
the fact that the type of statistics of these tests excludes the presence of repeated
observations (or the number of repeated values greater than the size of the “m win-
dow” used in statistics). This note concerns tests using entropy estimates (Vacicek
|30] and Alizadeh Noughabi |31] normality tests, Dudewics-van der Meulen [32]| and
Zamanzade [33] uniformity tests), as well as new goodness-of-fit tests using estimates
of Kullback-Leibler information [34].

5 Homogeneity tests under big samples

In the case of multi-sample tests, which include homogeneity tests, 2 or more samples
are compared. The distributions of statistics of multi-sample tests are influenced by
non-uniformity of data presented in the analyzed samples. The two-sample Lehmann-
Rosenblatt homogeneity test was proposed in [35] and studied in [36]. Statistic based
on two samples x11, T12, ..., L1, and To1, Tag, ..., T2,

ni n2

1 2 9 dning — 1
Spp= i)+ R L Bt
LR nan(nl n n2) nq ; (7” Z) No ; (83 ]) 6(n1 T nQ) ( )

where 7; is serial number (rank) of z1;; s; is serial number (rank) of z,; in the united
variation range.

The limit distribution of statistic (9) under true tested hypothesis Hy : Fj(x) =
Fy(x) is the same distribution al(s) [36], which is limit for statistic of Cramer-von
Mises-Smirnov goodness-of-fit test.

Let us consider how degree of rounding affects distribution of statistic of homo-
geneity tests in the case of true Hy and belonging of analyzed sample observations to
the standard normal law.

Figure 2 demonstrates the dependence of distribution of statistic G(Spr |Ho) of
Lehmann-Rosenblatt homogeneity test on degree of rounding A, of observations in
the second sample when rounding in the first sample A; = 0.01. The sample sizes
are n; = 1000.
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The deviation G(SLgr |Hp) from al(S) turns out to be significant already for Ay =

0.05. The deviation G(SLr|Ho) from al(S) rapidly increases with increasing sample
sizes for fixed A,. The deviation increases with A, growth for fixed sample size.
The distributions of statistic G(Spr|Ho) of Lehmann-Rosenblatt homogeneity test
depend on the difference between A; and As.

t G(Sm |Ha)
1.0 1

0.9
0.8
0.7 . . . .
0.5 :
0.4 1
0.3 ) i i i i
R B
0.1 :

0.0
0.0

Figure 2: Statistic distributions of Lehmann-Rosenblatt homogeneity test
depending on A, for A; = 0.01 and n; = 1000

Similarly, the distributions of other two-sample homogeneity tests (Smirnov, Anderson-

Darling-Pettitt) depend on the difference between A; and A,. It is natural that the
distributions of statistics of all multi-sample tests of homogeneity (set of which is con-
sidered in [37]) depend on the non-equivalence of data presentation in the analyzed
samples.

The distributions of statistic of parametric tests of homogeneity of means do

not suffer from such dependence on degree of rounding of measurements as tests of
homogeneity of laws considered above. At the same time, it should be noted that the
power of tests decreases with decrease of accuracy of data recorded.

The distributions of statistic of parametric tests of homogeneity of variances,

unlike tests of homogeneity of means, are more dependent on degree of rounding.
In some ways, this is due to the greater sensitivity of the variance estimates to the
accuracy of measurement results.

Parametric tests of Cochran, Bartlett, Fisher, Hartley, Neumann-Pearson and

Overall-Woodward Z-test are the most preferable in terms of power among the set
of parametric and non-parametric tests of homogeneity of variances. These tests
are equivalent in power in the case of two sample and fulfilling the assumption that
analyzed samples are normal. But in the case of k£ sample, the power advantage turns
out to be Cochran test has power advantage |38, 39, 40, 41|. Statistic of Cochran
test [42] can be written as

SQ
C=Eregs. 1o
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where S?_ = max (SZ, S2, ..., S?); k is the number of samples; S?, i = 1,k, are
the estimates of variances obtained by samples. Tested hypothesis Hy : 02 = 03 =
... = o; deviates for large values of statistic. The distributions of statistic G(Q,, |Ho)
of Cochran test depend on the number of compared samples k£ and the sizes of these
samples n;.

Figure 3 illustrates the dependence of the distribution of statistics G(Q,, |Hy) of
Cochran test on degree of rounding of observations in the second sample A, without
rounding in the first sample (A; = 0). Sample sizes are n; = 1000 and k=2. As can
be seen, the dependence of the distribution G(Q,, |Hp) on large (different) degrees of
rounding A; and A is very significant.
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Figure 3: Statistic distributions G(Q,, |Hp) of Cochran homogeneity test depending
on Ay for Ay =0 and n; = 1000

The limited accuracy of measurements always leads to decrease of the power of
homogeneity tests. The drop in the power of Cochran test with increasing degree of
rounding (with equal A; , equal sample sizes ny = ny = 100, and k=2) is shown in
Table 3. The competing hypothesis has the form H; : o9 = 1.20;. Also this table
shows power of Klotz nonparametric test [43]. It is interesting that with increasing
A; the power of nonparametric test decreases faster than power of parametric one.

Let us emphasize that, similarly, the value of rounding A; affects the distributions
of statistics and the power of other tests of homogeneity of variances.

So, the distributions of statistics G(S |Hy) of parametric tests of homogeneity of
variances with the same degree of rounding A; of measurement in the analyzed sam-
ples do not differ from corresponding distributions without rounding (A; =0, i =
1,k). However, the same distributions with different A; differ significantly from dis-
tributions without rounding.

In the case of trueness of competing hypotheses, degree of rounding A; (measure-
ment registration accuracy) has significant impact on the distributions of statistics
and on the power relative to these competing hypotheses (including under equal A;
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Table 3: Estimates of power of Cochran and Klotz tests under H;

Cochran test

(0% Without I'OllIldiIlg Al = AQ =0.1 Al = Ag =0.2 Al = AQ =0.5
0.1 0.564 0.562 0.560 0.550
0.05 0.438 0.435 0.434 0.424

Klotz test

(0% Without I‘OllIldiIlg Al = AQ =0.1 Al = AQ =0.2 Al = AQ =0.5
0.1 0.540 0.539 0.535 0.504
0.05 0.413 0.412 0.407 0.378

in samples). Similar conclusions hold for the entire set of parametric tests of homo-
geneity of variances considered in [37].

Conclusions

It is advisable to use parameter estimation methods involving the grouping of data
for constructing probabilistic models by big samples. Such estimates are robust,
and computational costs do not depend on sample sizes in contrast to estimates by
ungrouped data.

There are no serious objections to application of Pearson y2-test for analysis of
big samples. This test retains both its positive qualities and its inherent flaws.

The main problem preventing the correct application of nonparametric goodness-
of-fit tests for analysis of big samples is limited accuracy of data representation. Due
to limited accuracy with increasing sample volumes, the real distributions of statis-
tics deviate from the limit ones that occur under the assumption of continuity of
observed random variables. Therefore, the application of classical results for corre-
sponding tests may lead to incorrect conclusions. On the one hand, it is possible to
recommend application of these tests to samples extracted from Big data, the size
of these samples is limited by accuracy of presenting data analyzed (the number of
possible unique values in the sample). On the other hand, it is possible to propose
the use of statistical modeling methods to estimate real distributions of test statistics
Gn(S, |Hp) (corresponding to degree of rounding A of data in sample analyzed) and
then use Gy (S, |Hp) to estimate achieved significance level pyqye.

The reason for possible incorrectness of conclusions when using classical results
concerning the distributions of statistics of corresponding homogeneity tests may be
the non-equilibrium measurement in the compared samples. Statistical modeling can
be proposed to simulate actual distribution of statistics G (S, |Hy) of test applied
(with appropriate degrees of rounding A; and sizes n; of compared samples). The
distribution G (S,, |Hp) obtained can then be used to estimate achieved significance
level pyarue-
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Similar methodology of analysis of big samples is implemented in ISW software

system [29].
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Abstract

New k-samples homogeneity tests based on the Smirnov, Lehmann-Rosenblatt
and Anderson-Darling two-sample tests have been proposed. The maximum
value of the statistics of the 2-sample test obtained during the analysis of com-
binations of pairs of samples is considered as a statistic of k-sample test. The
constructed models for limit distributions of statistics of the proposed tests for
k = 3,---,11 are given. Comparative analysis of the power of the set of k-
samples tests, including the Zhang test, has been carried out. Power estimates
of the studied tests are presented in relation to some competing hypotheses,
which allows to order k-sample tests by preference with respect to different
alternatives.

Keywords: k-samples tests, homogeneity tests, test statistic, distribution
of statistics, power of test.

Introduction

The necessity of solving the task of checking the hypotheses of two (or more) samples
of random values belonging to the same universe estimates (the homogeneity test)
may arise in different areas. For example, this task may arise naturally when checking
the measurement means and trying to be certain that the random measurement errors
distribution law has not undergone any serious changes within some time period.

The task of testing the homogeneity of k-samples can be stated as follows. We have
z;;, where j is the observation in the set of order statistics of i-sample j = 1,n;,i =
1,k. Let us assume that the i-sample correlates with the continuous distribution
function of Fj(x). It is required to test the hypothesis of Hy : Fi(z) = Fy(x) = -+ =
Fi(z) type without defining the common distribution law.

The general approach to the construction of k-sample homogeneity tests which
are the counterparts of the two-sample Kolmogorov-Smirnov and Cramer-von Mises
(Lehmann-Rosenblatt) tests, was considered in [1]. Under this approach, the statis-
tics of the criterion is a measure of deviation of empirical distributions corresponding
to specific samples from the empirical distribution based on the totality of the ana-
lyzed samples. The k-selective variant of the Kolmogorov—Smirnov test based on this
principle is mentioned in [2, 3|. The k-selective version of the Anderson-Darling test
is proposed in [4]. The homogeneity tests constructed by Zhang in [5, 6, 7| are the
development of the homogeneity tests by Smirnov [8|, Lehmann-Rosenblatt [9, 10]
and Anderson-Darling [11| and allow us to analyze samples.

The application of k-samples tests in practice is constrained by the fact that, at
best, only critical values of statistics for the relevant ones are known, as in the case of
the Anderson-Darling test [4] or Kolmogorov-Smirnov tests |2, 12|, and the possibility
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of using Zhang’s criteria rests on the need to look for the distribution of test statistics
(or estimation of the achieved significance level p,qe) using statistical modeling in
order to form a conclusion about the results of the hypothesis test.

The only exception is the homogeneity test y? for which the asymptotic distribu-
tions of statistics are known with the truth of H,.

In the present work we illustrate the dependence of the distributions of statistics
of the k-sample tests on the sample sizes and the number of k£ compared samples.
For the k-sample Anderson—Darling test [4] we give models of limit distributions of
statistics constructed by us [13, 14, 15]. Suggested variants of k-sample tests based on
the use of 2-sample Smirnov test [§], Lehmann-Rosenblatt test |9, 10] and Anderson-
Darling test [11], and present the constructed model for the limit distributions of the
statistics of the proposed test for various k. The constructed models make it possible
to carry out correct and informative conclusions with the calculation of p,u.. with the
usage of the corresponding criteria. In addition, we present estimates of the power of
the test considered with respect to some competing hypotheses, which allows us to
organize the k-sample tests by preference with respect to various alternatives.

The studies were based on the intensive use of the Monte Carlo method in the
simulation of distributions of tests statistics.

1 k-samples homogeneity tests

1.1 Anderson-Darling test

The Anderson-Darling k-sample test is proposed in [4]. Let us denote the empirical
distribution function corresponding to the i*" sample Fj,. (), and the empirical dis-
k

tribution function corresponding to the combined sample volume n = Y n; as H,(z).
i=1
Statistics of the Anderson-Darling sample test (AD) is defined by the expression

FL7L (-73) H, ('7:)
A2 = Z i Jry, T 1 (),

(1—Hp(z))Hn(

where B, =z € R: H,(z) < 1. Under the assumption of continuity of F;(z) on the
ordered combined sample X; < X,--- = X,, in [4] this simple expression for the
calculation of statistics is obtained:

where M;; is number of elements in i"* sample which are not larger than X;. The
hypothesis Hj being tested is rejected for large values of statistics.
The statistics acquires the following final form in [4]:

2 _ _
DIA;,]

where the dispersion is determined by the following expression [4]
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2 _ _an®+bn?+cen+d
D[AL) = 500t

with

a= (49 —6)(k—1)+ (10 — 69)H,
b= (29 — 4)k> + 8hk + (29 — 14h — 4)H — 8h + 49 — 6,
c = (6h+2g — 2)k* + (4h — 4g + 6)k + (2h — 6)H + 4h,
d = (2h + 6)k* — 4hk,

where

Asymptotic (limiting) distributions of statistics (1) depend on the k-number of
samples compared and do not depend on n;. With the growth of k the distribution
of statistics (1) slowly converges to the standard normal law.

In [4] for statistics (1) the table of critical values has been constructed for a number
of k. Based on the results of statistical modeling, we built models of limiting distri-
butions of statistics (1) for [13, 14, 15]. The laws of the family of beta-distributions
of the III type with density turned out to be good models when having the density
of

gl z—0,1%"" z—0,1%" z—0,]%""
= 1-— 1 0y — 1 2
R i e L Il )

as shown in Table 1 as Byyr(6y, 01, 0, 05, 04) having exact values for this law’s param-
eters. These models are based on simulated samples of statistics with the number of
simulation experiments N = 10° and n,; = 10°.

1.2 Zhang test

The Zhang tests [5, 6, 7| allow comparing k > 2 samples.
Let 1, i, - -+, Tip, be Orde@ samples of continuous random variables with dis-
tribution functions Fj(z), (i = 1,k) and, as previously, X; < Xy < --- < X,,, where
k
n = Y n;, is the unified ordered sample. Let us define the R;; rank of the 4t ordered
i=1
observation z;; of the i sample in the unified sample. Let Xy = —00, X,,41 = +00,
and the ranks R, =1, R; ,4+1 = n + 1.
In the tests a modification of the empirical distribution function F'(¢) is used,
having the values of F(X,,) = (m — 0.5)/n at break points X,,,m =1,n |5].
The Zj statistic of the Zhang homogeneity test is of the following form [5]:

k

ZK = max {an |:E,m In 177 + (1 - E,m) In —7:| }a (3)

1<msn | &= - 1—F,
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Table 1: Models of the limiting distributions of statistics (1)

Model
By1(3.1575, 2.8730, 18.1238, 15.0000, -1.1600)
B111(3.5907, 4.5984, 7.8040, 14.1310, -1.5000)
Byr(4.2657, 5.7035, 5.3533, 12.8243, -1.7500)
B1(6.2992, 6.5558, 5.6833, 13.010, -2.0640)
By1(6.7446, 7.1047, 5.0450, 12.8562, -2.2000)
Brr1(6.7615, 7.4823, 4.0083, 11.800, -2.3150)
By;1(5.8057, 7.8755, 2.9244, 10.900, -2.3100)
Byr1(9.0736, 7.4112, 4.1072, 10.800, -2.6310)
By1(10.2571, 7.9758, 4.1383, 11.186, -2.7988)
Brr7(10.6848, 7.5950, 4.2041, 10.734, -2.8400)

N(0.0,1.0)

R 25| o] 0| ~1| o] o] k| wo| ro| 7=

where F,, = F(X,,), so that F,, = (m —0.5)/n, and the calculation F},, = F}(X,,) is
done as follows. At the initial moment j; = 0,7 = 1, k. If R; j,+1 = m, then j; :== j,+1
and F;,, = (j; — 0.5)/n;, otherwise, with R, ;, < m < R, j,+1, Fim = Ji/ni.

This is a right-hand test: the hypothesis Hy being tested is rejected at high
statistical values (3).

Statistic Z4 of the homogeneity test of k samples is defined by the following
expression [5]:

Fm lnEm +(1—-F,)h(l-F,)
ZZ (m—0.5)(n —m +0.5) ’ (4)

m=1 i=1

where £, and F;,, are calculated as shown above.

This is a left-side test: the hypothesis Hy being tested is rejected for small values
of statistics (4).

Distributions of the statistic (4) depend on the sample volume and the number of
samples compared as well.

Statistic Z¢ of the homogeneity test of k samples is defined by the following
expression [5]:

§:§2m<]_05—1)m(Rw 5 1). (5)

i=1 j=1
This is also a left-hand test: the tested hypothesis Hy is rejected at small values of
the statistic (5). The distributions G(Z¢ | Hyp) of the statistic depend on the sample
volume and the number of samples under analysis in the similar way.
The dependence of the distributions of statistics (3) - (5) of the volume of the
samples complicates the use of the Zhang test since there are problems with the
calculation of the evaluation of p,que.
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At the same time, the lack of information on the laws of distribution of statistics
and tables of critical values in modern conditions is not a serious disadvantage of the
tests as it is easy to calculate the achieved levels of significance of p,que With the
software that supports the application of the tests, merely using statistic simulating
methods.

1.3 k-samples Tests Based on 2-sample Ones

In order to analyze the k-samples it is possible to apply a two-sample test with the
S statistic to each pair (totaling (k — 1)k/2 pairs), and the decision on accepting or
rejecting the Hy hypothesis will be made on the strength of all results. The following
statistic can be taken as a statistic of this k-sample tests (when having a right-hand
two-sample criterion):

Sinaz = g%{&j}, (6)

i<j<k

where S;; are the values of the statistics of the used two-sample criterion as calculated
in the course of analysis of the i and the j* samples.

The hypothesis Hy to be tested will be rejected at large values of statistics S,4z-
The advantage of this kind of test is that as a result a pair of samples will be deter-
mined, the difference between them being the most significant from the standpoint
of the two-sample test used.

Statistics of the two-sample Smirnov, Lehmann-Rosenblatt and Anderson-Darling
tests can be used as S;;. In this case the distributions of the relevant statistics Sy,q4
converge to some limiting ones, models of which can be found on the results of
statistical modeling.

1.3.1 Smirnov Maximum Test

The D, , statistic used in the Smirnov test is calculated according to the following
formulae [8]:

Dr—tg,nl = 12714%%2{7:_2 - Fl,n1 (3:27“)] = 12}:%%1[}72,112 (:UQS) - %]7
oy — 121{%%2[}7‘1@1(%%) - Tn;;] = 122}51[% — Fny (215)]

Dyyny =max(DS D, ).

n2,mi1’ 7 nz,ni

With the H, hypothesis being true and with unlimited increase of the number of
samples the statistic

ning
s -+ N9

SC = DnQ,nl (7)

will in the limit fall with the Kolmogorov arrangement of K(.S) [8].
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In case of using the k-samples variant of the Smirnov test as S;; in (6) it seems
more preferable to use a modification of the Smirnov statistic

NN ny + no
Smo = Dn n s 8
d s + ) ( 2 + 4.6”1”2) ( )

its distribution being always closer to the limiting distribution of Kolmogorov K (S)
[16]. Statistic Synq. Will be defined as S5m in this case.

max

With equal volumes of samples under comparison the statistic distributions S

will be of substantial discreteness (similar to the two-sample case, see Fig. 1) and
be different from the asymptotic (limiting) distributions (see Fig. 2). If possible, it
is preferable to use co-primes as n;, then the distributions G(S | Hy) of the S5m
statistic will not be actually different from the asymptotic ones.

t es|H,
1.0 :
0.91 :
081
0.7 1
0.6
0.5 1
0.4.9
031
029
0.1

0.0 = ; ; ; ; ;
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Figure 1: Statistic distributions with n; = 1000,i = 1,k

Models of asymptotic S5m  statistic distributions with ¥ = 3 + 11 in the form
of beta distributions of the IIT type (2) Bjsr(6o, 01,602, 05,0,4) having exact values of
parameters and constructed in this paper based on the results of statistic modeling

are shown in Table 2.

1.3.2 Lehman-Rosenblatt Maximum Test

Statistic of the two-sample Lehmann-Rosenblatt test as introduced in [9] is used in
the following form [8]:

1 - . - , dnyng — 1
T=— i — i)+ - 2)——, 9
ning(ny + ng) (n2 2 (ri= i) k) (s =) 6(n1 + na) )

i=1 j=1

where 7; is the numerical order (rank) of xy;; s; is the numerical order (rank) of x;;
in the unified ordered series. In [10] it was shown that the statistic (9) at the limit is
distributed as al(t) [8].
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‘04 06 08 10 12 14 16 18 20 22

Figure 2: Asymptotic statistic distributions S°m

max

Table 2: Models of the limiting distributions of statistics S5

max

Model

K(95)
By11(6.3274, 6.6162, 2.8238, 2.4073, 0.4100)
By(7.2729, 7.2061, 2.6170, 2.3775, 0.4740)
Byy(7.1318, 7.3365, 2.4813, 2.3353, 0.5630)
Byr(7.0755, 8.0449, 2.3163, 2.3818, 0.6320)
Byy(7.7347, 8.6845, 2.3492, 2.4479, 0.6675)
( )
( )
( )
(7 )

Brr(7.8162, 8.9073, 2.2688, 2.4161, 0.7120
Byr(7.8436, 8.8805, 2.1696, 2.3309, 0.7500
By(7.8756, 8.9051, 2.1977, 2.3280, 0.7900
Brrr

QOO0 | O U = W N T

—| =
[l B

9122, 9.0411, 2.1173, 2.2860, 0.8200

In the case of using the k-samples variant of the Lehman-Rosenblatt test as S;;

in the statistic SEf of form (6) statistic (9) is used. Dependence of distributions of

statistic SE% on the number of samples with Hy being true is illustrated in Fig. 3.
The constructed models of asymptotic (limiting) distributions of statistic SZf
with the number of compared samples k = 3 <+ 11 are shown in Table 3. In this case

the Sb-Johnson distributions proved to be the best with the density of

2
9,6
fx) = Vom @ 0) (6o 032 X p{ {90 O In 5250 a::| }

with exact values of this law’s parameters, the law being shown in Table 3 as Sb(6,, 61,
0,,03). These represented models allow finding the estimates of pyaue by the values

of statistic SLI with corresponding & number of samples under comparison.
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Figure 3: Distributions of statistic SLE

Table 3: Models of the limiting distributions of statistics SLI

max

Model

al(t)
Sb(3.2854, 1.2036, 3.0000, 0.0215)
Sb(2.5801, 1.2167, 2.2367, 0.0356)
Sb(3.1719, 1.4134, 3.1500, 0.0320)
S6(2.9979, 1.4768, 2.9850, 0.0380)
Sb(3.2030, 1.5526, 3.4050, 0.0450)
Sb( )
Sb( )
Sb( )
Sb( )

3.2671, 1.6302, 3.5522, 0.0470
3.4548, 1.7127, 3.8800, 0.0490
3.4887, 1.7729, 3.9680, 0.0510
3.4627, 1.8168, 3.9680, 0.0544

QOO0 ~J| O U =] W DN

—|
— o

1.3.3 Anderson-Darling Maximum Test

The Anderson-Darling two-sample test was dealt with in [11]. This test’s statistic is
defined by the following expression:

oo | "1+Z"2:1 (Mi(ny + ng) — nai)? (10)
n nino i1 Z(Tll + ng — l) ’

where M, is the number of elements of the first sample, smaller or equal to the
element of the variation set of the unified sample. Distribution a2(¢) will be the
limiting distribution (10) with the tested hypothesis Hy being true [8].

In the case of using the k-samples variant of the Anderson-Darling test as .S;;
in the S22 statistic (6) statistic (10) will be used. Dependence of distributions of

max
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statistic S22 on the number of samples with Hy being true is shown in Fig. 4.

£
1.0 1
0.9 1
08 1
0.7
06 1
05 |
041
03 1 ]
00 (LA

0.0 = T T T T T
0.0 1.0 2.0 3.0 4.0 5:0 6.0

SAD

Figure 4: Distributions of statistic S/,

Models of asymptotic (limiting) distributions of statistic SAP for the k& number

of samples under comparison k& = 3 = 11 have been constructed for distributions
G(SAD | Hy) and shown in Table 4. In this case the beta distributions of the III

max
type proved to be the best (2) as shown as Bj;(0o, 61, 0s,03,604) with exact values
of parameters shown in Table 4; these can be used for estimating pyque Wwith the k

number of compared samples.

Table 4: Models of the limiting distributions of statistics S/2

max

Model

a2(t)
Byr1(4.4325, 2.7425, 12.1134, 8.500, 0.1850)
By11(5.2036, 3.2160, 10.7792, 10.000, 0.2320)
Byrr(5.7527, 3.3017, 9.7365, 10.000, 0.3000)
Byr1(5.5739, 3.4939, 7.7710, 10.000, 0.3750)
Byr1(6.4892, 3.6656, 8.0529, 10.500, 0.3920)
Byy1(6.3877, 3.8143, 7.3602, 10.800, 0.4800)
( )
( )
( )

O 0O ~J| O| U =] W DN

Brrr(6.7910, 3.9858, 7.1280, 11.100, 0.5150
Brrr(6.7533, 4.2779, 6.6457, 11.700, 0.5800
Brp(7.1745, 4.3469, 6.6161, 11.800, 0.6100

—| =
[l =

1.4 Homogeneity Test >

The homogeneity test x? can successfully be used to analyze k > 2 samples. In this
case the common area of the samples is split into r intervals (groups). Let n;; be the
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,
number of elements of the i sample of the j interval, then n; = 3 n;;.
i=1

The y? homogeneity test statistic will be of the following form:

s e (1 v n)? (e T
F=nd 3 = ) =

i=1 j=1

k

where v; = 3 m; is the total number of elements of all samples falling into the ;%
=1

interval. The y?-distribution with the number of degrees of freedom (k — 1)(r — 1)

shall be the asymptotic distribution of statistic [17].

2 Comparative analysis of powers

One of the main characteristics of the statistical test is its power relative to a given
competing hypothesis H;. The power is the remainder of 1 — 3, where 3 is the
possibility of type II error (accept hypothesis Hy with H; being true) at specified
probability « of type I error (reject Hy when true).

The power of k-samples tests was investigated for various k and situations when
the tested hypothesis Hy was whether all samples belonged to the standard normal
law, the competing hypothesis H; being if all samples but the last one belonged to the
standard normal law and the last sample belonged to the normal law with the shift
parameter ¢y = 0.1 and the scale parameter §; = 1; hypothesis Hy being that the
last sample belonged to the normal law with the shift parameter 6, = 0 and the scale
parameter ; = 1.1, the competing hypothesis H3 being the last sample belonged to
the logistic law with the density of

7(x—6 w(z—0,
F(0) = 5 exp{= T 1 + exp{~ Tty

and parameters #p = 0 and 6, = 1.

The power was evaluated on the results of modeling statistic distributions with
the tested G(S | Hy) being true, and competing hypotheses G(S | Hy), G(S | Hy) and
G(S | Hs) having equal volumes of n; compared samples. As an example, Tables 5
and 6 show evaluation of the power of tests with a« = 0.1 for ¥k = 3 and k = 4
correspondingly. In the case of the homogeneity test x? the unified sample was split
into r = 10 equifrequent intervals.

Thus-conducted power analysis of k-samples tests allows making some conclusions.

The tests can be organized power-wise with respect to changes in the shift pa-
rameter in the following way:

SAD o AD > SLE . GSm 7w Zu > T = X2

max max max
With respect to changes in the scale parameter:
Zo = o= Zg = AD = x? = SAD ' gosm . GLR

max max max’
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Table 5: Assessment of the power of test against alternatives Hy, Hy and Hs, k = 3,
n,=mn

Test | n; =20 [ n; =50 | n; =100 | n; = 300 | n; = 500 | n; = 10
Against alternative hypothesis H;
SAD 10,113 0.134 0.171 0.314 0.450 0.712
AD | 0.113 0.134 0.171 0.313 0.449 0.711
SLE 0.114 0.134 0.168 0.306 0.437 0.694
Som 1 0.110 0.128 0.155 0.272 0.383 0.622
Zo 0.113 0.131 0.160 0.273 0.380 0.612
Za 0.112 0.130 0.158 0.268 0.371 0.599
VA 0.110 0.125 0.144 0.231 0.321 0.525
x> 0.100 0.108 0.120 0.173 0.226 0.385
Against alternative hypothesis Ho
Zeo 0.107 0.125 0.160 0.319 0.475 0.771
Za 0.107 0.126 0.162 0.319 0.470 0.767
K 0.107 0.123 0.147 0.263 0.376 0.621
AD | 0.104 0.111 0.124 0.191 0.273 0.509
x> 0.105 0.114 0.129 0.202 0.277 0.495
SAD 10,102 0.107 0.114 0.165 0.231 0.446

max

Som 0.103 0.104 0.114 0.136 0.164 0.253

SER 1 0.103 | 0.104 0.108 0.127 0.152 0.241
Against alternative hypothesis Hj
Za 0.103 0.108 0.116 0.181 0.279 0.580
Zo 0.103 0.108 0.116 0.176 0.270 0.568
K 0.104 0.110 0.117 0.170 0.233 0.423
X2 0.100 0.113 0.121 0.173 0.226 0.382
AD 0.103 0.107 0.114 0.148 0.189 0.315
Som 0.102 0.105 0.111 0.148 0.183 0.288

max

SAD 0.102 0.104 0.110 0.134 0.166 0.272

max

SLE 0.103 0.104 0.107 0.124 0.145 0.218

max

At that, the Zhang tests of Z4 and Z¢ statistics are almost equivalent power-wise,
and the Anderson-Darling test is noticeably inferior to the Zhang tests.

The tests can be organized power-wise with respect to situations when all but one
sample belongs to the normal law and the last one belongs to the logistic law, in the
following way:

Za = Zo = Z = X2 = AD = S5m » SAD - QLR |

It can be noted that with the increase in the number of compared samples of
the same volumes the power of the criterion relative to similar competing hypotheses
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decreases as a rule, which is absolutely natural. Tt is more difficult to single out a
situation and to give preference to a competing hypothesis, when only one of the
analyzed samples belongs to some other law. We can’t but mention that the Zhang
tests with statistics of Zx, Z4, Z¢ possess quite substantial advantage in power with
respect to some alternatives.

Table 6: Assessment of the power of test against alternatives Hy, Hy and Hs, k = 4,
n,=mnm

Test | n; =20 | n; =50 | n; =100 | n; =300 | n; =500 | n; = 10°
Against alternative hypothesis H;

SAD 10,112 0.131 0.165 0.302 0.438 0.706

AD | 0.112 0.131 0.164 0.301 0.433 0.701

SLE 1 0.113 0.130 0.162 0.293 0.425 0.686

max

Sem 0111 0.125 0.151 0.261 0.366 0.605
Zo 0.111 0.126 0.155 0.260 0.368 0.595
Za 0.111 0.127 0.153 0.255 0.360 0.579
K 0.109 0.121 0.141 0.219 0.300 0.502
x? 0.102 0.109 0.118 0.167 0.221 0.358

Against alternative hypothesis Ho
e 0.106 0.122 0.158 0.306 0.468 0.761
Za 0.107 0.124 0.158 0.305 0.463 0.745
K 0.106 0.120 0.145 0.249 0.367 0.606
AD | 0.104 0.110 0.123 0.180 0.254 0.474
Y2 0.107 0.113 0.127 0.189 0.271 0.458

SAD 10,101 0.104 0.111 0.145 0.195 0.381

max

Som 0.102 0.105 0.108 0.128 0.153 0.221

SLE 10.102 0.103 0.105 0.118 0.135 0.197
Against alternative hypothesis Hj

Za 0.103 0.107 0.116 0.179 0.274 0.566

Zeo 0.103 0.107 0.115 0.173 0.257 0.555

A% 0.103 0.107 0.114 0.161 0.222 0.410

X2 0.102 0.110 0.116 0.164 0.218 0.357

AD | 0.102 0.106 0.113 0.143 0.179 0.291
Som - 10.103 0.104 0.112 0.138 0.166 0.257

max

SAD 0.101 0.103 0.107 0.124 0.147 0.229

max

SLE 0.102 0.102 0.105 0.116 0.130 0.183

max
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Conclusions

The constructed models of statistic limiting distributions for k-samples homogeneity
tests (the Anderson-Darling ones and those proposed in this paper) allows obtaining
correct and informational conclusions on and calculating the tests significance pyqiye-
Software can is available for this purpose [18].
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Abstract

In this paper, it is shown that the “kernel” algorithm for approximation of
probability densities, which includes the considerations of numerical mesh ap-
proximation of functions, is nearly equal to the randomized projection-mesh
functional numerical algorithm of the multi-dimensional analogue of the poly-
gon of frequencies method for approximation of solution of integral Fredholm
equation of the second kind. It means that the considerations of the condi-
tional optimization theory of the multi-dimensional analogue of the polygon of
frequencies method can be used for the “kernel” algorithm for approximation of
probability densities.

Keywords: the randomized projection-mesh functional numerical algo-
rithms, the multi-dimensional analogue of the polygon of frequencies method,
the “kernel” estimators for approximation of probability densities, numerical
mesh approximation of functions

1. The multi-dimensional analogue of the polygon
of frequencies method

In recent years, the theory of randomized functional algorithms is developed (espe-
cially in Novosibirsk scientific school of Monte Carlo methods); see, in particular,
[1-4]. The most informative examples of these algorithms are related to approxima-
tion of the unknown solution ¢(x), x € R? of the integral Fredholm equation of the
second kind

o(x) = / B, X)p(x) dx + f(x) or 9= Ko+, (L1)

in a bounded domain X C R% here k(x’,x) (the kernel of the integral operator K)
and f(x) (the free term of the equation) are given functions.

For approximation of the function ¢(x) we use the representations of classical
theory of numerical function approximation (see, for example, [5]), which have the
common form

p(x) = LMp(x) = Y wx(x) (1.2)
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for some specially selected set of basic functions

=M = [ (x), ..,y (x)} (1.3)

(the form of these functions defines the type of the approximation (1.2)) and coeffi-

cients
= {w(l),...,w(M)}, (1.4)

which are defined as functionals of the unknown approximated function ¢(x).

For the randomized functional algorithms, the coefficients (1.4) are calculated ap-
proximately using the Monte Carlo method with the test numbers n;: w® ~ @@ (n;)
(in this paper we investigate the case ny = ... = ny; = n), and the approximation

p(x) ~ LM Zw< (1.5)

is considered.

In the recent papers |6, 7| we have proposed the new (to compare with the works
[1-4]) classification of the randomized functional algorithms for approximation of the
solution ¢(x) of the equation (1.1). We have distinguished the mesh, the projection
and the projection-mesh algorithms (the type of a method is defined by the choice
of the basic functions (1.3) and the coefficients (1.4)). In these papers, we also have
presented the considerations why the mesh and the projection randomized functional
algorithms can be non-effective (and even unrealizable) for solution of practically
important problems related to solutions of integral equations of the form (1.1). In
particular, for the theoretically attractive mesh dependent test method, the smooth-
ness of the kernel k(x’,x) of the integral operator K is needed. But most part of
kernels in applied problems has the integrable singularities (up to delta-functions)
and even can not be calculated explicitly. The mesh adjoint random walk method is
too numerical laborious because of necessity for numerical simulating of individual
set of trajectories of the corresponding applied Markov chains for every node x; of
the introduced mesh

XM = Ixy, ..., xy} (1.6)

in the domain X. The projection methods have fairly obvious numerical instability.
The projection-mesh randomized functional algorithms have no such flows. For

these methods the basic functions (1.3) and the coefficients

w® = w® (M) M) = {p(x1),...,p(xpr)} from (1.4) are tied with the mesh

(1.6) such that they provide a small margin of the deterministic component of error

B( y
SV — o — LMo ||px

for the used normalized functional space B(X), together with stability of the approx-
imation (1.5), which is defined by the relative smallness (proximity to unit) of the

Lebesgue constant L = SUDy e x Zl L |X I(x ’ from the ratio
C(x ~ 7 i i) [~
Sston = 1L = LMy < L max [uw® (M) —w® (M0 (n))]
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(see, for example, [2]); here ™M) (n) = (% (n), ..., > (n)) and ¢&¥)(n) is the
Monte Carlo approximation of the value ¢(x;); i =1, ..., M.
In this case the approximations of the Monte Carlo method

WM = LW (), .., 0™ (n)}
of the coefficients (1.4) from the ratio (1.5) have the form
@ (n) = w” (g™ (n)), more often w ((,b(M) (n)) = ™ (n).

In turn, to obtain values @ (n) for randomized functional projection-mesh al-
gorithms the following special technology (which defines the difference from mesh
functional algorithms) is used. Choose the finite, having the same shape for all
{x1,...,xr} functions (versions of “kernel” function ™) (y) for various values of the
parameter x — see the Section 2 of this paper)

KM — {H(Xl)(y)’ . H("M)(y)} 7 (1.7)

related (as the basic functions (1.3)) to the mesh (1.6) such that

/gp(y)/ﬁ(xi)(y) dy ~ o(x;); i=1,..., M. (1.8)

Further we recall the classical (see, for example, Chapter 4 of the textbook [3])
considerations that for approximate calculation of linear functionals of the form

I, = /so(Y)h(Y) dy (1.9)

on the solution ¢(x) of the equation (1.1) it is expedient to use the main estimator
(or unbiased Monte Carlo collision estimate):

N
I =EG ¢=Y Q" (M), (1.10)
m=0
where
g0, eW, W (1.11)

is the applied Markov chain (or homogeneous Markov chain terminated with unit
probability) with the initial density 7(x) and the transition function p(x’,x) =
r(x',x) x [1—p@(x')] (here r(x',x) is the probability transition density and
0 < p@(x') < 1 defines the probability of a trajectory break; correspondingly, N
is a random number of the break state). The random weights {Q™} from (1.10) are
defined by the following recurrent ratios:

e <€<m—1>7 €<m))

(0)
QO = @ Q" = Q™Y x p <£<mfl>,g<m>)

)

- m=1,..,N. (1.12)
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Taking into account that the ratios (1.8) have the form (1.9), we get the following
randomzized projection-mesh functional algorithm.
ALGORITHM 1. Simulate n trajectories

N .
g0 e e =1, (1.13)

J 0
of the applied Markov chain (1.11) and get the values

n Nj
(s 1 (m) (xi) ((em) . .
P (m) = — S QKD (€M) 1 i =1, M

7j=1 m=0

here the wights {Q§m)} are calculated with respect to the formulas of the form (1.12):

wo_! <5§'0)>. (m) — Qimh) g <£§'m_1)’£§m)>.

Q" = @ Q; p(fgm’”,gg.m))’ j=

Then approzimate the function ¢(x) with respect to the formula of the form (1.5):

p(x) = LM o(x) = Z w? (¢ (n), ..., 3% (n)) XV (x). (1.14)

In the works [2—4|, the considerations of the theory of conditional optimization
are presented. In particular, the expediency of using the “absolutely stable” finite
functions of the multi-linear approzimation (or Strang — Fix approximation |8 with
the basis producing function SV (u), which is equal to the B-spline of the first order)
on a regular mesh with the step h with respect to every coordinate

' (1) (d)
X9 (x) = gV (% — jﬁ”) x ... x g0 (% — jf‘”>; (1.15)

u+1 for —1<u<0;
B(l)(u): —u+1 for 0 <u<l;
0 otherwise;

X = (x(l), ...,x(d)) X; = (ji(l)h, ...,ji(d)h); jl-(k) are integer numbers; =1,.... M
(1.16)
as basic functions (1.3) is proved; here the domain X, on which the solution p(x) of
the equation (1.1) is approximated, is equal to cuboid. Moreover, it was proposed to
use the “kernel” function from the ratios (1.7), (1.8) in the form

L for e A®
(x) — hd y )
K(y) { 0 otherwise, (1.17)

where A®) = {y = (y(l),...,y(d)) cox®) —h/2 <y <2 4 h/2; s =1,..,d;
x = (), .., 2@) ).
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For this case, the approximations of the coefficients (1.4) have the simplest form

w® (0D (n), ..., 3 (n)) = ) (). (1.18)

The Algorithm 1 with functions (1.15), (1.17) and approximation coefficients
(1.18) is called in [2-4| as the multi-dimensional analogue of the polygon of
frequencies method.

In the Section 2 of this paper, we show that the described approach to construction
of the projective-mesh Algorithm 1 is to a certain extent similar to construction of
the “kernel” estimators of probability densities (see, for example, [9]). It is especially
noted that in the the theory of “kernel” estimators (including [9]) the authors, who
reason about density approximation, unduly not include the elements of the theory of
numerical function approximation (see, for example, [5]). When adding this missing
item, the corresponding “kernel” approximation of a probability density is essentially
the same as the Algorithm 1.

2. Numerical approximation of probability densities
using the “kernel” estimators

In the classical paper [9], the nonparametric estimator of a probability distribution
density fé (x), x € R? of the form

fe0) = Zu(x) = - 36 (&), (2.1)

using the sample values {él, ey én} C R? from this distribution is considered. Here

k™) (y) is some finite parametric, having the same shape for all values of the parameter
x ‘“kernel” function. The approximation (2.1) is called the “kernel” estimator of the
density fé(x). By the way, in the paper [9] the term “kernel” is used without quotes.

In this paper we use quotes in order to distinguish the names of the functions k(x’, x)
(this is the kernel of the integral equation (1.1)) and £®(y).

For investigation of properties of the approximation (2.1), the following conse-
quence of the large numbers law

209 = 23 h (6) =B (&) = [W0memay  (22)

is used.

The evident constructive drawback of the “kernel” estimators theory (see, for
example [9]) is related to absence of considerations on the algorithm for practical
(firstly, numerical, computer) global approximation of the function fé’ (x) based on

the theory of mesh function approximation (see, for example, [5]). Such an algorithm
could look as follows.
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Suppose that the random variable é is distributed in the bounded domain X C R?

and consider the mesh (1.6) in this domain and also the approximation of the form
(1.2) for the function fé(x):

fe)~ L Zw (Fe0er). s T ean) ) X9 )

ALGORITHM 2. Calculate the values féxz (n) = Zn(x;); i =1, ..., M with respect

to the formulas of the form (2.1) and approzimate the function fg(x) with respect to
the formula of the form (1.14):

00~ L (9 Zw”( (0 P00 ) X000, (23

§
The Algorithm 2 is based on the analogs of the ratios (1.8):
/fE y)dy = flx) i= 1M, (2.4)

which are in turn based on the ratios (2.1), (2.2).
Compare the Algorithms 1 and 2 and get the main conclusion of this paper.
REMARK 1. The ‘“kernel” Algorithm 2 for approzimation of a probability den-
sity fE(X)’ based on approaches of the theory of mesh function approrimation, is

constructively equal to the randomized projection-mesh functional Algorithm 1 for
approzimation of the solution p(x) of Fredholm integral equation of the second kind
(1.1). Thus, it is expedient to use the new name the randomized “kernel” func-
tional algorithm for the Algorithm 1.

The only difference between the Algorithm 1 and 2 is defined by the distinction of
forms of Monte Carlo estimators for approximate calculation of functionals (1.8) and
(2.2) (which is related to the certain difference between functions ¢(x) and fé (x)).

The difference is also related to the fact that for the problem of approximation of
the density fé(x), the sample {él, . én} is considered to be given (and the number

n of sample values is fixed and cannot be increased), but for the function p(x) the
number n of the simulated trajectories (1.13) of the applied Markov chain (1.11) may
vary.

In connection with the main conclusion of the Remark 1, we can formulate the
following considerations.

REMARK 2. For the ‘“kernel” Algorithm 2 for approximation of a probability
density fé(x) we can use considerations of the theory of conditional optimization of

the randomized projection-mesh functional Algorithm 1 from the works [2—4].
By analogy of the works [2—4] we can recommend to use functions (1.15), (1.17),
the mesh (1.16) and approximation coefficients of the form (1.18), i.e

w® (fg%n), fg‘W(n)) = f&m). (25)
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in the Algorithm 2. In particular, it allows to get the following ratios for conditionally
optimal parameters of the Algorithm 2:

d/2

Hi[(2v +1)d + 4] e (26)

My =
P [ (2v+1)d

HZHY? (20 4 1)d + 472
Nopt =
g 16[(2v + 1)d]d/?

X (2In My, — InIn M,y + Hs) x v72742 (2.7)

for the fixed error level v > 0 and the specially selected positive constants Hh fIQ, H,
and v.

Taking into account the fact that the basis (1.15) is “modelled”, it is possible
to recommend to use the normalized function L™) f;(x) from the ratio (2.3) (with

functions (1.15), (1.17) and coeflicients (2.5)) as a density for numerical simulation
of additional sample values {ﬁj}, close in distribution to the values {éj} from the

ratio (2.1), using the corresponding version of the discrete superposition method (see
Sections 17, 18 of the book [10]).

REMARK 3. For development of the theory of construction and conditional op-
timization of the randomized projection-mesh functional Algorithm 1 it is possible to
use the considerations of the theory of “kernel” estimators of probability densities from
the paper |9].

Conclusion

In this paper, it is shown that if include the theory of numerical function approxi-
mation, then it is possible to get the “constructive” (practical) version of the “ker-
nel” estimator for approximation of an unknown probability density fé(x) using the

given sample values (Algorithm 2). This construction is analogous to the random-
ized projection-mesh functional algorithm for approximation of the solution p(x) of
Fredholm integral equation of the second kind (1.1) (i.e. to the Algorithm 1). If
additionally choose the approximation basis (1.15), the uniform mesh (1.16) in the
cuboid X, the “kernel” function (1.17) and the coefficients (2.5) (i.e. to consider the
version of the Algorithm 2, which corresponds to the multi-dimensional analogue of
the polygon of frequencies method) and use the technique presented in the works
[2-4], then we can get the ratios (2.6), (2.7) for conditionally optimal parameters of
the Algorithm 2.
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Abstract

In this paper, the second kind errors, which arise in the problem of testing the
hypothesis about the form of the sample density, are considered. The class of
the errors associated with the use in the test statistic the piecewise constant
approximation instead of the original density, was investigated in detail. The
results of the theoretical analysis and computer experiments are presented and
discussed.

Keywords: Chi-squared test, testing of hypothesis, L; distance,errors of the
second kind

Introduction

The chi-squared statistic is frequently used for testing the hypothesis about the form
of the sample probability distribution density function(p.d.d.f.). The null hypothesis
is simple. It states: the sample p.d.d.f ps(x) = p(z). The alternative hypothesis
is complex. It states: ps # p(x). The test has the four results: two correct and
two incorrect. The incorrect results are: the null hypothesis Hy is true, but it is
rejected, the Hj is false, but it is adopted.The value of the error of the I kind is
defined by the researcher( the confidence level «). The value of the error of the II
kind can be estimated only for a concrete probability density using the statistical
simulation method. In this paper, the alternative approach is investigated. It uses
the L, -distance between the tested p.d.d.f.} p(x) and the alternative densities pu;.

1 The structure of the chi-squared test

Let us suppose(for simplicity), that a tested p.d.d.f. p(x) is defined on (0,1). The
interval (0, 1) can be represented as an union of m subintervals A; = {z : 7,01 <z <
x; }",, where z; are the knots of the grid X,, ={zo=0< 2z < ... <z, =1}. The
piecewise constant function(h; = z; — x;_1)

m P m
prc(z Z h_ x(z]A) ZCiX($|Ai) (1)
=1 i=1

Lprobability distribution density function(s)

160



Applied Methods of Statistical Analysis

is the Galerkin approximation of p.d.d.f. p(x). Here the functions x(z|4;) = 1, if
x € A;, and = 0 otherwise, P, = fol p(z)x(z|A;)dz.
A sample Sy = {m,...,nn} defines the random piecewise density

pro(r) = Z N, — (x| A) Zh—x (x|A) Zczx (2)

=1

where m; = Zjv_l x(1;1A;). According to the theory, statistics

- ey TRy BT

i=1

asymptotically has the chi-squared dlstrlbutlon with m — 1 degrees of freedom, The
hypothesis Ho @ psample(z) = p(x) is adopted if x* < X2,_1 4> Xpy 14 IS the upper
critical value for confidence level o ( P(x3,_1 > Xo_1.0) = @).

2 Error of approximation

The chi-squared statistics (3) includes the piecewise constant approximation ppc(z)
instead of the test density p(x). The natural measure of the distance between any
two p.d.d.f. p(z), g(x), defined on X = (0, 1), is the Li-norm of their difference

L(p.g) = |Ip(x) ||—/ Ip(z) — g(a)\da.

According to the Scheffe theorem [1],

—QSup|/ dx—/ (I)d$|:25%p|P(B)_G(B)|a

where { B} are the Borel sets of X.
The value of L(p, ppc) defines the error of approximation of p.d.d.f. p(x) by the
piecewise p.d.d.f. ppc(x). For the calculation, it can be represented in the form

m MG 1
L(p.ppc) = hi Z hi Z/ f(ics + hihy(j — 1+ 1))dt,
i=1 j=1v0

where hy = 1/MG. f(z) = |p(z) —ppc(z)|. The integrals over ¢ can be approximated
by the Gauss quadrature with two knots. Successively increasing MG, it is possible
to obtain the integral estimation with the desirable number of the correct digits.
Example 1: the probability density

Fa?, 0 <z <4,
plr) = Fl? =3z —3)?%, 3 <2 <3, (4)
Z(1—x)?, <z <1

was approximated on the non-uniform grid with m intervals. The knots of the grid
were calculated by the formula: o =0, 21 =2/(m+2), z; = 1+ (i—1)/(m+2), i =
2.m — 1, z,, = 1. The calculated values of distances equal L(m=10)=1.105e-1,
L(m=20)=5.399¢-2.
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3 The artificial test densities

Formula (3) shows, that the chi-squared statistic contains the piecewise approxima-
tions of the p.d.d.f. p(x). The natural question can be formulated as follows: "Are
there the probability densities with the same values of {¢;} as the test p.d.d.f. p(x)?".
The p.d.d.f. f(x) gives the answer to the formulated question. It has the form

= cigi(ti(@))x (@A) =Y i1+ d(ti(x))x (] Ay),

i=1 i=1
where t;(z) = (x — x;_1)/hs, g(t) is an arbitrary p.d.d.f. on (0,1), ¢(t) = g(t) — 1.
The distance L(f,ppc) = fol |p(t)|dt. The formula for p.d.d.f. f(x) shows that
there are uncountable many probability densities with the same piecewise constant
approximation as the tested p.d.d.f. p(x).
The next two examples show the two classes of the alternative densities for which we
obtain the same value of x? as for p(z).
Example 2: ¢(t)(t) = 2sin?*(nt), L = 2/7 = 0.636. For this g(¢) p.d.d.f. f(z) is
continuous with the first derivative.
Example 3: the interval (0, 1) is divided into n equal parts. In (n — 1) subintervals
g(t)=1—r, 0 <r <1, in the last one g(t) =1+ (n — 1)r. L = 2r — 2r/n. For
r— 0.5, n =75 L is equal to 0.8. Fig. 1 shows the p.d.d.f. f(z) for Example 2

Fig. 1. The probability density f(z) with g(t) = 2sin®(nt).

Adopting for the use the test density p(x) instead the f(z) from the example 2 causes
sufficiently large differences in the probability of events: AP, = 0.318. However
adopting the principle of non-complexity to the practical distributions removes these
artificial densities. As the measure of complexity of the p.d.d.f. its full variation
can be used. For the p.d.d.f. in Fig. 1 \/(f(z)) = 38.22, the paternal density has

V(p(z)) = 4.5.

162



Applied Methods of Statistical Analysis

4 The piecewise constant alternative densities

The chi-squared statistics x? can be represented as the function of two probability
distributions P = {P;} and B = {B; = m;/N}:

X(P.B) = NZ(B — Bi)*/P.

For finding the probability distribution Y, the most deviating from P, the following
conditional maximum problem must be solved:

U(Y,P) =) |P-Y| = max,

=1

Example 4: p.d.d.f. (4) was used for calculations. It was approximated on the
grid X0 = {x; = i/10}!%,. The theoretical probability distribution P is presented
in the first column of the Table 1. Its sample estimation B with N = 100 equals
0,0.05,0.08,0.1,0.22,0.22,0.21,0.09,0.033,0. The chi-squared statistic x*(P, B) =
5.86, Upper critical value is equal to X%o.os = 16.9. The results of optimization is
presented in Table 1. The theoretical distribution P was used as the initial state
vector for the optimization procedure.

Tab. 1. Optimal vectors Y for two values of y2.

i P Yix*=4) | Yi(x* = 5.86)
1| 4.50e-3 4.89e-4 2.29e-4
2 | 3.15e-2 6.67e-2 6.66e-2
3 | 8.59e-2 6.67e-2 1.20e-1
4] 1.63e-1 9.04e-2 8.08e-2
5 | 2.16e-1 2.82e-1 1.68e-1
6 | 2.16e-1 1.88e-1 2.52e-1
7| 1.63e-1 2.14e-1 2.27e-1
8 | 8.59e-2 7.43e-2 6.64e-2
9| 3.15e-2 1.75e-2 1.91e-2
10 | 4.50e-3 3.91e-4 2.29e-4
v =0.30 v =0.34

For Y;(x? = 10) the value ¥ = 0.35 was obtained.
The Fig. 2 shows the piecewise constant densities for the probability distribution P
and for the optimal probability distribution Y.
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Fig. 2. The piecewise probability densities: 1 - for tested distribution P, 2 - for the
optimal distribution Y(x* = 4).

Summary

In this paper, the computer procedures were used for the calculations the errors,
associated with the use in the chi-squared test the piecewise constant approximations
instead of the real densities. Examples 2,3 show that there exist the uncountable
many artificial densities which have the same piecewise constant approximation as the
paternal density. However adopting the principle of non -complexity of the practical
densities avoids these cases. This principle demands that the practical densities were
not very complex. As the measure of complexity, the full variation of the density can
be used.
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Abstract

In feature selection process it is important to estimate generalized error of
selected model. There are a lot of methods based on resampling procedure.
All this methods have their features, and this work have a large study. Each
of selected method was run for 7200 times to find any pattern according to
samples and feature count of dataset. This research shows accuracy of each
method for Lasso regression in case of linear function.

Keywords: Generalization Error Estimation, Cross-Validation, Monte Carlo
Cross Validation, Cross-validation and cross-testing, Nested Cross Validation,
Lasso

Introduction

The goal of prediction regression analysis is to find a model that describes dependen-
cies in an accurate way. That model should have the small expected generalization
error. It was proven that the expected generalization error of the model decomposes
to an irreducible error, a bias and a variance [1]. The model may have hyperpa-
rameters, which control the learning process. Hyperparameters tuning may increase
the bias and decrease the variance, and vice versa. Hyperparameters’ values can be
selected via a grid search [2]. For example, in [3] a penalty term A\ was selected by the
grid search for Lasso regression. Model’s coefficients of Lasso regression depend on
the value of the penalty term A\ and each unique value of A may create a new model.
The desired model may be selected with model selection procedures. There are sev-
eral alternatives in the literature about the estimation of the expected generalized
error of the selected model.

For example, available samples may be divided into two parts: train and test
[4]. To measure generalized error, the model is fitted on train samples and makes a
prediction for unseen test samples. Then error on test samples is computed. RMSE
is one of the examples of error’s measure. Generalization error of the model may
be estimated with this approach if the model has no hyperparameters. If the model
has hyperparameters and they are chosen as based on minimization of test error,
test error will be biased and underestimate true generalization error. To overcome
it, all available samples are split into three parts: train, validation and test [5].
The model is fitted on train samples. Models are selected on the validation part.
With grid search, sets of hyperparameters are created. Error on validation samples
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are evaluated for each set of hyperparameters and hyperparameters’ values with the
smallest error are selected. The model with selected hyperparameters is refitted on
train and validation samples, and then test error is evaluated on test samples. This
test error approximates the generalization error.

Train and test split works well with a large number of samples. If the size of the
dataset is small, test error will depend on how exactly the dataset was split. Monte
Carlo cross validation may be used to reduce dependency on how the dataset was
split into train and test sets [13]. In this approach, all available samples split at
random on train and test samples N times. For each of IV splits model is fitted on
train samples and error is evaluated on test samples. After that, generalization error
is estimated by the average of N test errors. It has been proven that this method is
asymptotically consistent [7].

If the model has hyperparameters, all available samples should be separated into
train, validation and test samples. In Monte Carlo cross test validation approach, this
random separation on three parts should be repeated N times. The model is fitted
on train samples; model’s hyperparameters are tuning to have the smallest error on
validation samples. Then test error is evaluated on test samples for each separation.
Average of N test errors is the estimation of generalization error. Another solution to
the lack of samples is 7ross Validation (CV). In cross validation, all available samples
are split into k blocks. One of the blocks is used as a test set and other blocks are
used as a training set. Each of k blocks is selected as left out samples and the test
error is evaluated on each selected blocks in the loop. The average of test errors can
be considered as an estimate of the true generalization error. It was shown that the
CV error is an almost unbiased estimate of generalization error [8].

The problem of CV is the separation step. CV split samples into train and test
samples, so it works well if the model does not have hyperparameters. If the model
has hyperparameters and they are selected based on CV error, the CV error may be
biased and CV will underestimate the true generalization error. In that case, Nested
CV can be used [8]. As in CV, in Nested CV all samples split into k blocks. On the
next step, one block is used as a test set. The rest of k — 1 training blocks are used
in a CV to get a model’s hyperparameters with the loser CV error. Then the model
is refitted on k£ — 1 training blocks with selected hyperparameters, and error on the
test set is evaluated. Then next block is used as a test, and the rest of the blocks as
a training set and so on. In the results, k errors are evaluated. The average of these
errors is the estimation of the generalization error.

While Nested CV error has high accuracy, it has some disadvantages. Firstly, it
does not show which exactly hyperparameters are better on unseen data [9]. Secondly,
different models are selected on each of k blocks, and it does not allow to investigate
the final model. To overcome these drawbacks Cross validation and cross-testing
method was introduced [9]. In this approach, all available samples are divided into
train and test samples. Model’s hyperparameters with smallest cross validation error
on train data are chosen. Then test samples are divided into m parts. One of the m
test parts is selected and added to train dataset. Other parts are used to evaluate test
error. On the next iteration, another part from m test parts are selected and added
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to original train dataset, and the test error is evaluated on the remaining part. This
process continues until each of m test blocks was added to train samples at least once.
The average test error is the estimation of the true generalization error. It has been
shown [9] that sometimes CV and cross testing outperform nested cross validation.

1 Experiment

Methods of generalization error estimation are compared on real datasets in some
researches [10],|11]. The problem of these experiments is an unknown irreducible
error in data and real generalization error of the model. For this reason, simulation
data was created to test the generalization error estimate.

The main goal in each experiment is built Lasso regression and estimate its gen-
eralization error. There are two reasons to use. Firstly, it builds a linear model with
hyperparameters value, so methods of hyperparameters selection can be used in these
settings. Secondly, it is fast to fit this model.

Assume that the model has an input vector X7 = (X, X, ..., X,,,) and wants to
predict real valued Y. Suppose that true dthe ata generating process comes from
linear equitation

where € is random error, 3; is slope coefficients, X; is random variable. Mean
value of ¢ is 0, standard deviation of € equal to ¢ and generated from a Gaussian
distribution, i.e. ¢ N(0,02). Random error ¢ is independent of X.

Suppose that each of random variables X; comes from Gaussian distribution with
mean is 0 and standard equitation is 1, i.e. X; N(0,1). With those assumptions,
there is no reason to center and scale random values, or model’s input vector.

The first half of the coefficients 3; is equal to 0, so they are not significant. Count
of sithe gnificant coefficient is m* = [m/2]. With these settings, Lasso should remove
input variables with the coefficients equal to 0.

For each significant variables, the value of its coefficient 3; is given by

Vi

Yok

k=1

B =

*

Through this approach, all significant coefficients form an arithmetic progression
and variance of Y do not depend on the count of random variables. Calculate the
variance of Y to prove it.
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Therefore, the variance of Y depends on the variance of a random variable and
the variance of random error. On the first step of the proof, the variance of two
independent random variables is equals to the sum of the variance of each variable.
On the second step, the random variable scaled by a constant, and the variance is
scaled by the square of that constant.

Calculate the irreducible error of linear regression for this task. Assume that the
coefficient of linear regression is equivalent to the real coefficient of random variables,
ie. Bj =0, =1,2,...,m. In that case, irrean an ducible error can be derived by

B{(B(Y X1, X, Xo) = 9%} = B{(Y_ X8+ 2 = > X;6)} = E{(2)?) =
— B{(0- )’} = B{(M{e} — £} = Var{e} = o

Experiment’s parameters It is shown that the irreducible error in this task equals
the variance of random error. To test the estimation of generalizing error by different
methods in different situations, count of samples n and count of random variables m
should vary from experiment to experiment. Assume that values of n are generated
by this rule:

N = {z|r € 142" + 2i + 1],i = 2,17}

where [.| is the operation of rounding argument to the nearest whole number.

With this rule, set values of n is N ~ {8,11,15,19, 25, 32,40, 52, 68,90, 120, 163,
221,304,421,586}. Tt makes sense to use exponential low, as qthe uality of error
estimation grows with ca ount of samples. We can use inverse transformation to get
transformed back values of sample sizes, N' {3, ...,20}. It can be used in futhe ture
to plot the results of methods.

Suppose that values of m are generated by this rule:

M = {z|z € [1/36'"! 4+ 0.13],i = 0, 14}
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where [.] is the operation of rounding argument to the nearest whole number.

With this rule, set values of m is
M ~{1,2,3,4,5,6,9,12,16, 22,30, 40,55, 74,101}. Model’s input count often is less
than count of samples.

Model building and error estimation are made for each combination of n and m
values in this experiment. For each combination of samples’ count and input’s count,
error estimation depends on which exactly samples are generated. To reduce this
dependency, error estimation was made for 30 times for each combination of n and
m. Different methods of error estimation were performed on the same set of samples
to hold them under the same conditions.

For each set of n and m test samples was created too. Count of test samples is
100000. With this count, test samples are a good estimation of the true generalization
error of the model by the law of large numbers. Test error is the average of an error
on each test sample, so it will almost surely converge to mean error.

True mean g is linear combination of inputs and hence it is under Gaussian
distribution. Tt was shown that u = E(Y|X;, X5, ?, X,,,) have variance 0%. If 0% = 1,
then g if lied from -2 to 2 with probability 95.44% by three-sigma rule. Then set
0. = 0.4 to random error lies from -0.8 to 0.8 with probability of 95.44%.

For CV of count blocks k& = 10 [12]. For Monte Carlo Cross Validation 70 %
and 80% samples were selected as train samples [13]. Count of splitting was 10. In
another research, this count should be greater, but experiments will take too a lot of
time to run. For Monte Carlo Cross test validation, validation’s part is 20% and the
test part is 30%. In another experiment, validation’s part is 15%, the test is 20%.

2 The results of Experiment

Table with error estimation was created as the results of this experiment. For each
combination of n, m and method of error estimation 30 error estimations for different
datasets are created. Also for all rows, the absolute difference between the estimation
of the generalization error and true error is evaluated. This value is the error of the
error estimation method. This table has 57600 rows. Mood’s median test [14] was
performed to check if all methods have the same error. As a result, the p — value is
lower than 0.05, and to check which one methods differ, the post-hoc test is used. For
all pairs of methods Mood’s median test was conducted. Adjustments to the p-values
were made to avoid inflating the possibility of making a type-1 error. Benjamini and
Yekutieli correction was used |15]. Table 1 gives the results of these tests. Methods
with the same latter have an insignificant difference in median’s value. The threshold
for p — value is 0.05.

Methods with a lower median of error are a CV, MCCV, and Nested CV, their
median does not differ significantly.

For all combinations of samples count n and feature count m differences in errors’
median are not significant. But it is important to find out the best method for
different m and n. Figure 3 contour plot of the median absolute difference between
true errors and estimated by MCCV errors are shows 3. If the count of samples is
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Table 1: Pairwise median’s test results

? Method Parameters | Latter | Error’s median
1 CV k =10 A 0.035
2 | Nested CV k=10 A 0.036
3 CcvCeT 70% B 0.059
4 CvVCT 80% C 0.066
5 MCCV 70% D 0.04
6 MCCV 80% A 0.035
71 MCCTV | 20% and 30% E 0.043
8 | MCCTV | 15% and 20% DE 0.042

greater than the features’ count, a median of error is small and not differ a lot. In
another case the difference of errors are big. In that area all methods underestimate
true error, so makes sense to divide these areas and work on each of them separately.

- -0.05

--0.10

w©
HARRANIABRRIUNES S

a) Contour plot of median error b) Contour plot of median absolute error

Figure 1: The dependence between methods

Figure 2 for each n and m number of best method with minimal error is shown.
In a situation, where samples’ size is lower than features count, 35 times out of 48
MCCYV has the smallest error. It means that in most cases MCCV is the best method
for error estimating if the count of samples is lower than the count of features. If
n > m, Cross validation 86 times out of 181 times has the smallest absolute error,
Nested Cross Validation 62 times out of 181 has the smallest absolute error. But
there is no pattern of how to choose the method as they are scattered uniformly.

3 Discussion

A different method of true error estimation is considered in this work. It is shown
that in the case of linear model best methods are a CV, Nested CV, and MCCV.
If the count of samples is lower then count of features, it ought to use MCCV. In
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Figure 2: Number of the method with minimum absolute error

another case, CV or Nested CV can be used. It is ought to note that Nested CV
works k£ — 1 times longer more than a CV. For Monte Carlo, Cross Validation count
of repition should be greater, so maybe it’s quality will be better.

It is important to remember that in these experiments linear dipendency was

used. The Lasso have linear structure too, so it can approximate the true functioan
connection. Usually, the researcher does not know real structre of the model.

Lasso model is not flexible, so maybe that is the reason why CV and MCCV work

better than a nested CV. In the next researchers, another dataset and more flexible
models are planned to be used.
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Abstract

In our earlier papers, the MIN3 nonparametric two-sample test has been
proposed. The statistic of the MIN3 test is a minimum of three depen-
dent random variables. These random variables are p-values of the weighted
Kaplan-Meier test, Bagdonavicus-Nikulin test based on the MCE model and
Bagdonavicus-Nikulin test based on the SCE model.

The asymptotical distribution of the M IN3 two-sample test statistic is un-
known. However using Monte-Carlo simulation, we found that the distribution
of the M IN3 test statistic can be approximated by the Beta distribution of the
third kind.

In the paper, we study the distribution of the MIN3 test statistic by the
Monte-Carlo simulation. Estimated parameters and lower percentage points of
the MIN3 test statistic distribution are represented in the paper.

Keywords: survival analysis, randomly right-censored observations, hy-
pothesis testing, two-sample problem, Monte-Carlo simulation, MIN3 test,
Bagdonavicus-Nikulin SCE test, Bagdonavicus-Nikulin MCE test, Weighted
Kaplan-Meier test.

Introduction

One of the steps of hypothesis testing [1] consists in a comparison of the value of a
test statistic with some critical value that depends on the corresponding distribution
of the test statistics. It is known that the distribution of the test statistic under
limited samples size may differ from the corresponding limit distribution [2]. In tasks
with randomly right-censored observations, the distribution of censored time F¢(¢)
and censoring rate r can affect the distribution of the test statistic.

In our earlier papers, we propose the MIN3 test [3| for two-sample problem.
The asymptotical distribution of the M IN3 test statistic is unknown. This makes it
difficult to apply the M IN3 test in practice because every time it is required to use
special methods for the simulation of the test statistic distribution. For example, this
problem can be solved by the Monte-Carlo method [4]. In this paper, we study the
distribution of the M I N3 test statistic varying samples size, distribution of censored
time, and censoring rate by the Monte-Carlo simulation. According to the results
of the simulation, we estimate the parameters of the distribution of the M IN3 test
statistic using the Beta distribution of the third kind.

This research has been supported by the Russian Ministry of Education and Science as a part
of the state task (application number 1.1009.2017/4.6).
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In Section 1, we consider the problem statement and describe the model of ran-
domly right-censored observations. In section 2, we present the statistics of the
MIN3 test. In Section 3, we study the distribution of the M IN3 test statistic and
present the results of a Monte Carlo simulation.

1 Problem Statement

Suppose that we have two samples of continues variables & and & respectively,
X7 = {t11, t12, -, t1n, } and Xo = {ta1,t99, ..., tan, } of two survival distributions S (¢)
and Sy(t). The samples size are nj,ne (if ny = ng, then may be denoted as n).
The observation ¢;; = min (7;;, C;;), where T;; and Cj; are the failure and censoring
times for the j-th object of the i-th group. T;; and C;; are i.i.d. with a cumulative
distribution function (CDF) Fj(t) and FF(t) respectively. Survival curve means the
probability of survival in the time interval (0, )

Si(t) = P{& >t} =1 - F1).
Then the null hypothesis is
HO : Sl(t) = Sg(t)

against alternative hypothesis

H1 . Sl(t) 7é Sg(t)

Let an indicator of censoring c;; be equal 0 if ¢;; is a failure time and be equal 1
if t;; is a censored time.
Further, we consider a test statistic of the MIN3 test.

2 MIN3 Two-sample Test

A test statistic of the MIN3 test 3] is

Smins = min {pWKMapBN2apBN3} )

where
pwry =2 -min{Fyo1) (Swra), 1 — Fnon) (Swram)}
pN2 = 1 — Fya3) (Spn2) , pens =1 — Fye) (Seas),

Swim 1S a test statistic of the Weighted Kaplan-Meier test (the test statistic rep-
resented in [5]), Spn2 is a test statistic of the Bagdonavicus-Nikulin test based on
the MCE model (the test statistic represented in [6]), Spys is a test statistic of the
Bagdonavicus-Nikulin test based on the SCE model (the test statistic represented
in [7]), Fn(o,) (t) is a CDF of the standard normal distribution at time ¢ and Fz2() ()
is a CDF of the chi-square distribution with k degrees of freedom at time t.

The MIN3 test has a left-side critical area.

The asymptotical distribution of the M IN3 test statistic is unknown. However,
its distribution can be approximated by the Beta distribution of the third kind dis-
tribution that is represented in next section.
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3 Distribution of the MIN3 Test Statistic Under
Null Hypothesis

Because the p-value of any test is distributed asymptotically uniformly on the in-
terval [0,1] under the null hypothesis Hy, we can suppose that the distribution
Gn(Syins|Ho) of the test statistic Syrys that is a minimum of three dependent
random variables (p-values of the WKM, BN2 and BN3 tests) converges to the limit
distribution G(Sarns|Hp) asymptotically.

3.1 Simulation of the Distribution of the M IN3 Test Statistic

The distributions of the MIN3 test statistic were simulated by the Monte Carlo
method with N = 2 700 000 replications. It makes possible to conclude that the

difference [8] Dy = sup |Fi(t) — Fs,,,,(t)| between empirical CDF Fy(t) and CDF
t

of the MIN3 test statistic is not greater than 0.001 with a confidence probability
0.99. In Figures 1 and 2, the distributions of the MIN3 test statistic G(S,|Hp)
are shown in the uncensored and censored cases. On the graphics, we can see that
the CDF of the M IN3 test statistic tends to the limit distribution with growing n,
however this limit distribution is unknown now. If the sample includes the censored
observations, then the distribution of the M IN3 test statistic is slightly changed.

1,00
0,20
0,80
0,70
0,60
0,50
0,40
0,30
0,20
0,10 E
X

sope w4 4 L 4 04 9 4 & A&
000 010 0,20 030 040 0,50 060 070 0,80 0,90 1,00

Figure 1: CDF G, (S|Hy) of the MIN3 test statistic Sysrns for various samples size
n, = N9 = n in the uncensored case
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Figure 2: CDF G,,(S|Hy) of the MIN3 test statistic Sy;;y3 for sample size
n; = ng = 100 in the censored case

3.2 Approximation of the Distribution of the M N3 Test Statis-
tic

The approximation of the test statistic distribution is a possible way to the more
correct application of the statistical test [9]. To approximate the distribution of the
MIN3 test statistic, we are looking for a distribution from the class of the Beta-
Generated distributions that can be defined as

B(G(x), o, P)

F(z;a, ) = Ba.d)

1 T
where B(a, 8) = [y*}(1—y)’~'dy and B(z,a, ) = [ y*'(1—y)’~dy are complete
0 0

and incomplete beta functions, o and [ are parameters, and G(z) is a generating CDF
of some random variable that can also have own parameters. Using the different
generating functions G(z) we can obtain a lot of flexible distributions, for example,

e Beta distribution of the first kind, G(z) =z, 0 < z < 1;

e Beta distribution of the second kind, G(z) = 1, 0 < 2 < +o0;

Beta distribution of the third kind [10], G(z,d) = H(g—fl)x, 0<z <1,

Generalized Beta distribution [11], G(z,6,7) = 5=, 0 < 27 < ﬁ;

Pareto’s distribution, G(z) = ‘”7_1, 1<r<oo, a=1;
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e®

1+e®?

e Exponential generalized beta distribution of the second type, G(z) =
-0 <z < +00.

Since the M N3 test statistic is defined in the interval [0, 1] the Beta distribution
of the first and the third kind are the most suitable. However, the Beta distribution
of the first kind has only two parameters, while the Beta distribution of the third kind
has three parameters and is better suited for the approximation. The distribution of
the MIN3 test statistic can be good approximated by the Beta distribution of the
third kind with a probability density function (PDF) [10]

71— A+ (e—1D)2) "z e (0,1),a,bc> 0.

fBetaHI ($7 a, b? C) = B (a’ b)

The estimated parameters d,@ and ¢ of the Beta distribution of the third kind

A

and Kolmogorov’s distance [8] D, n = sup |F,, n(t) — Fpetarr1(t; a, b, c)| between the
t

empirical CDF Fn,N(t) of the MIN3 test statistic and their approximations
FBetarr1(t; a, b, ¢) for different n are shown in Table 1. The estimations were found by
the software system "ISW" [12|. As long as the sample size ny = ny = n increases,
the distance D, y is reduced and stabilized close to the simulation error 0.001. Using
the approximation, we can draw a PDF of the M IN3 test statistic that is shown in
Figure 3.

Table 1: Approximation of the M IN3 test statistic distribution using the Beta
distribution of the third kind

n a b ¢ Dn,N
10 ] 0.8603 | 2.8066 | 0.5579 | 0.0204
20 | 0.8308 | 2.2859 | 0.6813 | 0.0071
90 | 0.8576 | 2.0410 | 0.7957 | 0.0023
100 | 0.8769 | 1.9175 | 0.8583 | 0.0017
200 | 0.8859 | 1.8397 | 0.8908 | 0.0008
500 | 0.9020 | 1.7946 | 0.9172 | 0.0007
1000 | 0.9086 | 1.8007 | 0.9031 | 0.0008

3.3 Lower Percentage Points of the MIN3 Test Statistic Dis-
tribution

In Table 2, the lower percentage points of the distribution G,,(Syrn3|Ho) for samples
size n = n; = ngy in the range from 10 to 1000 observations without censoring are
shown. In Table 3, the distributions of the MIN3 test statistic G, (Syrns|Ho) for
samples size n; = ny = 100 and censoring rates in the range from 0% to 50%. Thus,
if a researcher has two samples with corresponding sizes n = n; = no, then the lower
percentage points in Tables 2 and 3 can be used for rejecting of the null hypothesis.
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Figure 3: PDF ¢, (S|Hy) of the MIN3 test statistic Syrns for sample size
ny = ne = n without censoring

In the general case, the p-value can be calculated using the simulation procedure by
the Monte Carlo method.

Conclusion

Using the Monte-Carlo simulation, it is possible to estimate the limit distribution
of the M IN3 test statistic. Special software ISW allows us to establish the closest
family of distributions describing the distribution of the MIN3J3 test statistic, as
well as to estimate the parameters of this family. In the paper, the parameters of the
distribution of M I N3 test statistic are represented both for a non-censoring case (r =
r(X1) = r(Xz),r = 0%) and for a censoring case (r = r(X;) = r(X3),10% < r <
50%).

The Kolmogorov’s distance between the empirical CDF of the M I N3 test statistic
and their approximations Fpearrr(t; a, b, ¢) for different n are shown in the paper.

The analytic form of the asymptotic distribution of the M 1N3 test statistic is a
next step of this test research. Nonetheless the approximation of the distribution of
the MIN3 test statistic and the tables of the percentage points can be used right
now.

The results obtained in the paper can be used as recommendations for using of
the M IN3 test in practice.
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Table 2: Lower percentage points of the M IN3 test statistic distribution under H
without censoring

—1
«a GSMIN3|H0 (@)
n=10|n=20 | n=50 | n=100 | n=200 | n =500 | n = 1000

0.001 | 0.0003 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0003 0.0003

0.005 | 0.0017 | 0.0013 | 0.0013 | 0.0015 | 0.0016 | 0.0018 0.0019

0.010 | 0.0038 | 0.0029 | 0.0029 | 0.0032 | 0.0034 | 0.0038 0.0040

0.020 | 0.0077 | 0.0066 | 0.0066 | 0.0070 | 0.0074 | 0.0080 0.0085

0.030 | 0.0119 | 0.0104 | 0.0105 | 0.0111 | 0.0117 | 0.0126 0.0131

0.040 | 0.0162 | 0.0146 | 0.0146 | 0.0154 | 0.0162 | 0.0172 0.0179

0.050 | 0.0200 | 0.0185 | 0.0188 | 0.0198 | 0.0208 | 0.0220 0.0229

0.060 | 0.0245 | 0.0230 | 0.0232 | 0.0244 | 0.0255 | 0.0269 0.0280

0.070 | 0.0299 | 0.0273 | 0.0278 | 0.0290 | 0.0303 | 0.0319 0.0331

0.080 | 0.0344 | 0.0321 | 0.0323 | 0.0337 | 0.0351 | 0.0369 0.0383

0.090 | 0.0379 | 0.0367 | 0.0371 | 0.0386 | 0.0402 | 0.0420 0.0436

0.100 | 0.0438 | 0.0412 | 0.0419 | 0.0435 | 0.0454 | 0.0473 0.0489
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Abstract

In the paper, we present the results of the computer simulation for the
convergence rate of two-sample test statistic distributions in the lifetime data
case. Various distributions of failure times and various distributions of censored
times are considered. In the result the dependence on the Kolmogorov’s distance
between a distribution of the two-sample test statistic and its limit distribution
is shown.

Keywords: Monte-Carlo method, survival analysis, hypothesis testing,
randomly right-censored observations, convergence rate, Gehan’s Generalized
Wilcoxon Test, Peto and Peto’s Generalized Wilcoxon Test, log-rank test, Cox-
Mantel test, Bagdonavicius-Nikulin tests, weighted log-rank tests, Kolmogorov’s
distance.

Introduction

When conducting a procedure for hypothesis testing, for example, the hypothesis of
homogeneity [1], it is necessary to compare the computed value of the test statistic
with a certain critical value. Such critical value represents a certain quantile of the
distribution of the test statistic. However under small sample size, the distribution
of test statistic can differ significantly from the limit distribution [2] which can lead
to wrong decision. Therefore, the goal of our work is to study distributions of test
statistic for various sample sizes and define the difference (in the sense of the Kol-
mogorov’s metric [3]) to the corresponding limit distribution using the Monte-Carlo
simulation.

In Section 2, we present the statement of the two-sample problem and considered
two-sample tests under randomly right-censored observations. Also in Section 2, we
give a methodology for studying the rate of convergence of the test statistic distribu-
tion to the corresponding limit distribution. In Section 3, we present the results of
computer simulation of the convergence rate study.

1 Problem Statement

Suppose that we have two samples of continues variables & and & respectively,
X1 = {tll,t127 ceey tlnl} and X2 = {tghtgg, ceey t2n2} of two survival distributions Sl (t)

This research has been supported by the Russian Ministry of Education and Science as a part
of the state task (application number 1.1009.2017/4.6).
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and Sy(t). The samples size are ni,ne (if n; = ng, then may be denoted as n).
The observation t;; = min (7;;, C;;) , where T;; and C;; are the failure and censoring
times for the j-th object of the i-th group. T;; and Cj; are i.i.d. with a cumulative
distribution function (CDF) Fj(t) and FC(t) respectively. Survival curve means the
probability of survival in the time interval (0,t)

Si(t) = P{& >t} =1 - Fi(t).

Then the null hypothesis is
HO . Sl(t) = Sg(t)

against alternative hypothesis

H1 . Sl(t) 7é Sg(t)

Let an indicator of censoring ¢;; be equal 0 if ¢;; is a failure time and be equal 1
if t;; is a censored time.
Censoring rate r for sample X is

2 Convergence Rate of Test Statistic Distribution
to the Limit Distribution

Let a test statistic S, has (when the hypothesis Hy is true) a pre-limit distribu-
tion G, (t) when sample sizes are n < oo and S, has the limit distribution G()
when n — oco. It is impossible to prove a convergence of G,,(t) to G(t) using simu-
lation but one can determine a sample size n providing a maximal distance between
the limit and pre-limit distributions no more than ¢, for example, ¢ = 0.01.

Finding an analytic form of the pre-limit distribution G, (t) is usually more dif-
ficult task than finding the limit distribution G(¢). However, one can estimate em-
pirical distribution function of G, (t) using the Monte Carlo method. Tt is neces-
sary simulate a sample (with a sample size N) contained test statistic values S,:

{S,(%l),S??), ...,ST(LN)} and compute empirical distribution function G, n(t). Hence,
the Kolmogorov’s distance [4],[5] is computed as

D, n = sup |G, (t) — G (1)].

[t]<oo

Surely, G,, n(t) differs from G,,(¢) with accurate to ey. But using the Kolmogorov’s
theorem [6], one can determine N that exy < €.
According to the Kolmogorov’s theorem

N—o0 || <o

lim P {m sup |Gy (z) — G()| < t} = K(t),
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where K (t) is the Kolmogorov’s distribution. One can find such N providing ey < €
with a some confidence probability. For instance, if we want a simulation error ey <
0.001 with the confidence probability 0.99, then required sample size N is

K=1(0.99)\7 162762 °
- 1~ 1 =2 649 147.
< 0.001 ) * ( 0.001 ) * 649 147

3 Two-Sample Tests

In the paper, we consider following statistical tests for the solution of the two-sample
problem:

1. the Gehan’s Generalized Wilcoxon Test ([7], [8]);

2. the Peto and Peto’s Generalized Wilcoxon Test ([8], [9]);

3. the log-rank test ([8], [10]);

4. the Cox-Mantel test (|8], [11]);

5. the Bagdonavicius-Nikulin tests based on the generalized Cox model [12];
6. the Bagdonavicius-Nikulin test based on the SCE model [13];

7. the Tarone-Ware test (weighted log-rank test) [13].

Additional information of these test statistics can be founded in presented papers.

4 Simulation

In the study of the distance between pre-limit G, n(t) and limit G(t) test statistic
distributions, we consider ¢ = 0.01, N = 2.7 - 10° replications (ey < 0.001), the
laws of failure time distributions are Weibull-Gnedenko and Exponential, the laws of
censoring time distribution are Weibull-Gnedenko and Gamma, censoring rate is in
the range from 0% and 50% (randomly right-censored observations). The results of
computer simulation are given in Tables 1-7.

From the obtained results, it is obvious that in the case of the Gehan test, if the
sample size n > 20 observations, the Kolmogorov’s distance does not exceed 0.01
both in the case of complete observations and in the case with a censoring rate 50%.
For the Peto, log-rank and Cox-Mantel two-sample tests, in the case of complete
data, if the sample size n > 20 observations, the Kolmogorov’s distance to the limit
distributions does not exceed 0.01, and in the case with censoring rate 50% a similar
result is achieved at n > 10.

For the Tarone-Ware two-sample test, if the sample size n > 20 observations, the
Kolmogorov’s distance to the limit distribution is no more than 0.01.
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Table 1: Simulated Kolmogorov’s distance between pre-limit and limit distributions
of the Gehan’s Generalized Wilcoxon test statistic

F~We, F~We, F~FExp, F~Exp,
n=n;=ny FC~We FO~T FC~We FO~T
0% 50% 0% 50% 0% 50% 0% 50%
10 0.0171 | 0.0227 | 0.0172 | 0.0114 | 0.0173 | 0.0328 | 0.0171 | 0.0126
20 0.0071 | 0.0075 | 0.0070 | 0.0039 | 0.0069 | 0.0113 | 0.0068 | 0.0040
30 0.0041 | 0.0045 | 0.0041 | 0.0022 | 0.0040 | 0.0061 | 0.0041 | 0.0019
40 0.0030 | 0.0030 | 0.0029 | 0.0014 | 0.0028 | 0.0044 | 0.0026 | 0.0016
50 0.0024 | 0.0018 | 0.0023 | 0.0011 | 0.0022 | 0.0030 | 0.0024 | 0.0015

Table 2: Simulated Kolmogorov’s distance between pre-limit and limit distributions
of the Peto and Peto’s Generalized Wilcoxon test statistic

F~We, F~We, F~Fxp, F~Fxp,
ny = No FC~We FC~T FC~We FC~T
0% 50% 0% 50% 0% 50% 0% 50%
10 0.0176 | 0.0058 | 0.0172 | 0.0050 | 0.0172 | 0.0063 | 0.0169 | 0.0048
20 0.0065 | 0.0030 | 0.0068 | 0.0025 | 0.0069 | 0.0028 | 0.0069 | 0.0024
30 0.0039 | 0.0018 | 0.0039 | 0.0016 | 0.0042 | 0.0018 | 0.0042 | 0.0022
40 0.0029 | 0.0020 | 0.0026 | 0.0014 | 0.0028 | 0.0019 | 0.0030 | 0.0015
50 0.0023 | 0.0013 | 0.0025 | 0.0009 | 0.0022 | 0.0014 | 0.0023 | 0.0012

Table 3: Simulated Kolmogorov’s distance between pre-limit and limit distributions
of the log-rank test statistic

F~We, F~We, F~FExp, F~FExp,
ny = no FC~We FO~T FC~We FC~T
0% 50% 0% 50% 0% 50% 0% 50%
10 0.0144 | 0.0071 | 0.0136 | 0.0046 | 0.0138 | 0.0084 | 0.0139 | 0.0056
20 0.0075 | 0.0038 | 0.0076 | 0.0025 | 0.0075 | 0.0045 | 0.0075 | 0.0027
30 0.0056 | 0.0028 | 0.0055 | 0.0022 | 0.0055 | 0.0033 | 0.0050 | 0.0018
40 0.0041 | 0.0020 | 0.0041 | 0.0015 | 0.0042 | 0.0025 | 0.0045 | 0.0019
50 0.0035 | 0.0020 | 0.0034 | 0.0014 | 0.0036 | 0.0024 | 0.0035 | 0.0013
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Table 4: Simulated Kolmogorov’s distance between pre-limit and limit distributions

of the Cox-Mantel test statistic

F~We, F~We, F~FExp, F~Exp,

ny = Ny FC~We FC~T FCWe FCO~T
0% 50% 0% 50% 0% 50% 0% 50%
10 0.0127 | 0.0068 | 0.0123 | 0.0044 | 0.0125 | 0.0087 | 0.0127 | 0.0051
20 0.0072 | 0.0037 | 0.0069 | 0.0021 | 0.0071 | 0.0043 | 0.0068 | 0.0028
30 0.0050 | 0.0024 | 0.0047 | 0.0018 | 0.0049 | 0.0031 | 0.0049 | 0.0018
40 0.0042 | 0.0021 | 0.0036 | 0.0013 | 0.0038 | 0.0025 | 0.0036 | 0.0017
50 0.0032 | 0.0019 | 0.0031 | 0.0012 | 0.0032 | 0.0022 | 0.0034 | 0.0014

Table 5: Simulated Kolmogorov’s distance between pre-limit and limit distributions

the Tarone-Ware test statistic (weighted log-rank test)

F~We, F~We, F~Fxp, F~Fxp,
ny = No FC~We FC~T FC~We FC~T
0% 50% 0% 50% 0% 50% 0% 50%
10 0.0108 | 0.0107 | 0.0109 | 0.0085 | 0.0104 | 0.0121 | 0.0105 | 0.0093
20 0.0056 | 0.0048 | 0.0053 | 0.0043 | 0.0054 | 0.0054 | 0.0056 | 0.0046
30 0.0034 | 0.0028 | 0.0032 | 0.0028 | 0.0035 | 0.0037 | 0.0038 | 0.0028
40 0.0031 | 0.0029 | 0.0028 | 0.0015 | 0.0025 | 0.0027 | 0.0024 | 0.0022
50 0.0020 | 0.0024 | 0.0026 | 0.0015 | 0.0024 | 0.0020 | 0.0019 | 0.0014

Table 6: Simulated Kolmogorov’s distance between pre-limit and limit distributions

of test statistic of the Bagdonavicius-Nikulin test based on the SCE model

F~We, F~We, F~FExp, F~FExp,
ny = no FC~We FO~T FC~We FC~T
0% 50% 0% 50% 0% 50% 0% 50%
10 0.0657 | 0.0472 | 0.0657 | 0.0304 | 0.0656 | 0.0577 | 0.0653 | 0.0357
20 0.0437 | 0.0264 | 0.0438 | 0.0132 | 0.0434 | 0.0357 | 0.0436 | 0.0178
30 0.0337 | 0.0196 | 0.0337 | 0.0094 | 0.0333 | 0.0275 | 0.0334 | 0.0123
40 0.0275 | 0.0158 | 0.0273 | 0.0063 | 0.0282 | 0.0226 | 0.0274 | 0.0098
50 0.0240 | 0.0136 | 0.0240 | 0.0053 | 0.0238 | 0.0202 | 0.0237 | 0.0082
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Table 7: Simulated Kolmogorov’s distance between pre-limit and limit distributions
of test statistic of the Bagdonavicius-Nikulin test based on the generalized Cox
model

F~We, F~We, F~FExp, F~FEzxp,

ny = No FCWe FC~T FCWe FC~T

0% 50% 0% 50% 0% 50% 0% 50%
10 0.0578 | 0.0455 | 0.0585 | 0.0294 | 0.0584 | 0.0555 | 0.0574 | 0.0348
20 0.0331 | 0.0245 | 0.0334 | 0.0129 | 0.0334 | 0.0317 | 0.0328 | 0.0173
30 0.0247 | 0.0173 | 0.0239 | 0.0086 | 0.0242 | 0.0234 | 0.0240 | 0.0113
40 0.0193 | 0.0138 | 0.0191 | 0.0060 | 0.0184 | 0.0194 | 0.0193 | 0.0089
50 0.0159 | 0.0114 | 0.0161 | 0.0050 | 0.0155 | 0.0164 | 0.0160 | 0.0076

For the Bagdonavicius-Nikulin tests, the results of the convergence rate are not
so ambiguous and may depend on the censored time distribution. However, if the
sample size n > 200 (for two-sample test based on the SCE model), and n > 100
(for a two-sample test based on generalized Cox model), the Kolmogorov’s distance
to the corresponding limit distribution does not exceed 0.01.

The results obtained can be used as recommendations on the application of these
criteria in practice.

Conclusions

Summing up, we note that in this paper we described a procedure on the basis of
which we can define such sample size that the distance between prelimit and limit
distributions does not exceed a certain value. It means the application of the limit
distribution for hypothesis testing is possible without loosing the accuracy in the
statistical conclusions. For this procedure, we conducted a computer simulation using
two-sample tests for both complete and censored observations. The obtained results
can be used as recommendations, starting from such volume the distance of the pre-
limit distribution to the limit distribution does not exceed 0.01. If the sample size is
not enough, then we can recommend to simulate the test statistics distribution using
the Monte-Carlo method.

The work was done with the financial support of the Ministry of Education and
Science of the Russian Federation as part of the project part of the state task (appli-
cation number 1.1009.2017/4.6).
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Abstract

The problem of optimal estimation of the heavy tail index is revisited from
the point of view of truncated estimation. A class of these estimators is in-
troduced having guaranteed accuracy based on a sample of fixed size [7]. The
optimality of considered log-gamma index estimators in the sense of a special
type risk function is established. The considered risk function makes possible
to optimize not only the asymptotic variances of the estimators, as well as used
for estimation of sample size. Optimization of the parameters of log-gamma
distribution is presented. Simulation results confirm theoretical one’s.

Keywords: Optimal parameter estimation, heavy tails, log-gamma distri-
bution, optimal convergence rate.

Introduction

This paper presents results of optimality for the parameter estimators of log-gamma
distribution, introduced in [7]. Some general properties of parameter estimators are
used only and are such that the considered class of estimators is sufficiently wide.

In this paper, we use the risk function of a special type which is a linear com-
bination of mean-square deviation of parameter estimators and sample size. The
requirement of both good parameter estimation quality and reasonable duration of
observations is formulated as a risk efficiency problem. The risk function of similar
structure was proposed in [1], see also references therein. The criterion is given by a
certain loss function and optimization is performed based on it.

Further the loss and risk functions of the type proposed in [1] were used in,
e.g., |8, 9] for optimization of interpolators and predictors of a scalar AR(1) process
with unknown parameters. Similar optimization problem of the sequential parameter
estimator of AR(1) was considered in [3]. There was considered a risk function
defined on the basis of squared estimation error of sequential estimator of the dynamic
parameter.

Later the results of those papers were refined and extended to other stochastic
models. In particular, this approach was applied to construction of optimal adaptive
predictors of the stochastic processes related with discrete and continuous-time dy-
namical systems, see, e.g, [16, 2]. The proposed procedures are based on the so-called
truncated estimators which have been developed in order to estimate ratio type func-
tionals from a wide class by dependent observations and by samples of fixed size so
that they had guaranteed accuracy in the sense of the Ly,,-norm, m > 1. Examples
of parameter estimation problems of discrete and continuous time systems on a time
interval of a fixed length are considered.
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The truncated estimators may keep asymptotic properties of the estimators they
are based upon. Another approaches do not guarantee prescribed estimation accuracy
when using samples of non-random finite size and lead up to complicated analytical
problems in adaptive procedures. Applications of truncated estimators with the said
quality makes possible to optimize the risk function which is a linear combination of
sample mean of mean-square deviation of predictors and sample size.

Results of non-asymptotic non-parametric problems can be found also in [5, 6]
among others. In particular, they have investigated non-asymptotic properties of the
regression and density function kernel-type estimators.

It should be noted that first truncated parameter estimation method was applied
for construction of adaptive optimal predictors of VAR(1) in [10]. Then this method
was applied to more complicated stochastic systems. Among the processes considered
are stable multivariate discrete time AR(1), ARMA(1,1) and RCA(1), as well as
continuous time diffusion and time delayed processes, see, e.g., [2]. The proposed
procedure is shown to be asymptotically risk efficient as the cost of prediction error
tends to infinity.

1 Log-gamma density function

Consider the parameter estimation problem based on i.i.d. observations Xi,..., X,
with the log-gamma density function

f(x) = Cpa= 0 og’ iz, x> 1.

Our main aim is to prove the optimality of the truncated estimators 3,, v, and
0, of the parameters 3, v and 6 presented in [7] in the sense of the risk function
considered above.
To define the truncated estimators we introduce, similar to |7] for some given
a > 0 the functional
®(a) = Flog" X;.

Using the definition of f(z) according to [7] we have
v
P(a) = —9> 1).
(@) = 52+ )
Analogously for a given b # a,

O(b) = ﬁ@(m 1).

Thus
f®(a) —v®(a+1) = —ad(a),
BP(b) —yP(b+ 1) = —bD(b)
and the solution of this system has the form
bP(b)P(a+ 1) — aP(a)P(b+1)
AV ’

b=
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Y= Ay )
as well as
g D
(b—a)®(a)®(b)’
where

Aup = P(a)®(b+1) — &(b)®(a + 1).

Now we define the empirical functional estimator

1 n
=— Z log® X},
n
k=1
of ®(a) and the truncated estimators 3, v, and 6, (see also [7]) as follows

b, (0)Pp(a +1) — a®y(a)Pp(b+1)

Bn = Aa,b(n) X<|Aa,b(n)‘ > logil n)? (1)
= L DPAL) (17, 0] > log ™ m), @
ab( )
= Bap(n) —a)®,(a og 'n
b= = @) g ) @

where

Aup(n) = @, (a)®y(b+ 1) — 0, (b)Py(a + 1).

From [7] it follows that the asymptotic normality property, defined in [7] is fulfilled
for the estimators ,, 6, and 3, with the rate o, = /n and the asymptotic variance
of n -7, is defined by equations

:(b_a)QAab o7 +2(b—a)® Aab 02+(b—a)2A;§-0§, (4)
where

= ®%(a)®(20) + (2a)D?(b) + 28 (a)P(b)®(a + b) — 402 (a)D*(b),

oy = —®(a)®(b+1)P(a+b) —P*(a)P(20+1) +P(a)®(a+1)P(2b) — D (2a)D(b)P(b+1)
+®(a+1)®(b)®@(a+b) + P*()P(2a + 1) +4P*(a)P(b)P(b+ 1) — 4P (a)P(a + 1)P*(b),

o3 = ®*(a)P*(b) - {®(2a)P*(b + 1) — 49%*(a)P*(b + 1) + ®*(a)®(2(b + 1))
+2®(a)®(b+ 1)®(a+ b+ 1) + ®*(a + 1)®(20) + &*(b)D(2(a + 1)) — 40 (a + 1)D?(b)
+20(a+ 1)) ®(a+b+1) — 28(a + 1)P(b+ 1)®(a + b) — 2®(a)P(a+ 1)P(2b + 1)

+8®(a)®(b)®(a+ 1)®(b+ 1) — 20(2a + 1)D(b)D(b+ 1) — 20(a)D(b)P(a + b+ 2)}.
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Consider the case of known (. The parameter Gamma can be represented in the
form

d(a)
1= gLy
the estimator is defined as
b, (a) 1
g - >
Yo = (B + a) Dot 1) x(®,(a+1)>log ' n)

and its asymptotic variance is equal to

P(2a)P(a+1) + P*(a)®P(a+ 1)P(2(a+ 1)) — 2®(a)P(2a + 1) 5)
P3(a+1)

O',QY = (B +a)?

Consider the optimization procedure of the parameter estimation of log-gamma
distribution.

Define for an estimator v, of parameter v the loss function
L, = A(’Vn - /7)2 + n.

Parameter A stands for a cost of mean square quality of the estimator v, of parameter
~v and n is a sample size. We suppose that the cost of observations is included in the
definition A (see, for comparison, [1]).

The corresponding risk function R,, = F'L,, has the form

Ry = AE(v, _’7)2 +n
and we solve the optimization problem
R, — min (6)

Consider two cases.
— Case of known asymptotic variance o of ~,.

Thus the principal term of the risk function has the form

A2
Rn:—g—l—n.
n

For A large enough the optimal sample size is equal to
ny = vVAs?, (7)

as well as the corresponding principal term of the risk function Rn%

RY, ::n—o—l—nA:2 Ao?. (8)
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As follows the problem is solved if the number o2 is known.

— Case of unknown 2.

First define the estimator o2 of the variance o as

52— ®,(2a)P,(a+ 1)+ P2 (a)®"(a + 1)P,(2(a + 1)) — 2®,(a)P,(2a + 1) (9)

O3 (a+1)
(b+a)*x(®p(a+1) > log™ " n).

Since (7) is directly involved in the expression (8) for RY, the optimal sample
size cannot be obtained as before. Similarly to Konev and Lai (1995), Sriram (1988),
Sriram and Iaci (2014) and Kusainov and Vasiliev (2014), one uses the stopping time
N4 as an estimator of n% replacing o2 in its definition with the estimator o2

Ny=inf{n >ns: n> Al/QEA}, (10)

where 4 = min{o, ,,log A}, 0, = \/02. We use here in comparison with mentioned
above papers the estimator @ 4 instead of ¢,, to simplify the proofs. At the same time
all results remain true.

It should be noted that for A large enough the following property is fulfilled

E(@% — 0*)* < 20, (p), (11)
where 7, (p) is some deterministic sequence such that
A-rp,(p)=0(1) as A— oo.
Indeed, for, e.g., log? A — 0? > 1, using the Chebyshev inequality we have
E(@% — 0*)* = E(o., — 0%)*x(0n, <logA) + (log®? A — 0*)P(0,,, > log A)
E(c? L o)
(log® A — o2)%
We prove the asymptotic equivalence of N4 and n9 in the almost surely and mean

senses (see Theorem 1 below) and the optimality of the adaptive estimation procedure
in the sense of equivalence of the obviously modified risk

EA = ELNA = AE(’}/NA — ’}/)2 + ENy. (12)

< ra(p) + (log> A — o%)

< 2r,,(p).

Theorem 1. The observation numbers (10) and (7) and corresponding risk functions
(12) and (8) are asymptotically equivalent in the following sense: as A — oo

N
;4—>1 a.s., (13)
ny
EN
21, (14)
ny
Ra
— 1. 15
= (13
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2 Simulation results

To illustrate the theoretical properties of the optimal adaptive procedure we give
some numerical results for log-gamma distribution. We obtained the estimators o>
of the variance of parameter estimators. The results for different values of n are
presented in Fig. 1. The horizontal line shows the asymptotic value of o2

1.84

1.82F

18F

1.78

176

174}

172

1.7

1.68

1.66

1.64

Figure 1: Log-gamma distribution. v = 1.666

The quantities Cy and C'r are given in Fig. 2, 3 where Cy = %, Cr = Eﬁ.

. A A

Here nf, R are defined by (7, 8) and N4, Ra — by (10, 12). Note that EN4 and
R4 were computed as an empirical average over 1000 Monte Carlo replications of the

experiment (for each value of A).

Figure 2: Log-gamma distribution. 7 = 1.6666 C\ - left, Cg - right

The obtained numerical results are close to the theoretical properties of the pro-
posed adaptive procedure.

Conclusion

The paper presents the method of optimal parameter estimation of log-gamma distri-
bution. The truncated estimator is used to minimize the loss function which includes
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the weighed mean square deviation and the sample size. It is shown that the proposed
procedure is asymptotically efficient.

The theoretical results are illustrated by numerical results which confirm the op-
timality properties.
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Abstract

The paper deals with the estimation problem of the actuarial present value
of the continuous deffered life annuity using auxiliary information about the
expectation of life. Nonparametric estimators of life annuity are constructed
by individuals’ death moments. It is shown that the usage of such auxiliary
information can often provide the mean squared error (MSE) smaller than that
of standard estimators. An adaptive estimator is also proposed. The asymptotic
normality of all these estimators is proved.

Keywords: nonparametric estimation; deffered life annuity; auxiliary in-
formation; mean squared error; asymptotic normality.

Introduction

Let x be the age of an individual and at the moment ¢ = 0 payments start. The
idea of the r-deferred life annuity in accordance with [4, p. 174] is this: from the
moment ¢t +7 = r, an individual starts receiving money once a year, which we take as
a monetary unit, and payments are made only during the lifetime of an individual.
It is known that the deferred life annuity is associated with the appropriate type of
insurance. Thus, the average total cost of the present continuous r-year deferred life
annuity is given by the following formula (see [4, p. 184]):

1 —T|Ax
a (5 = —
r|ax( ) 5 )

where ,a,(9) = / e~ f,(t)dt is the net premium (the expectation of the present
value of an insured unit sum for the deferred life insurance at age x), ¢ is a force of

flx +1)

S(x)
an individual (z) [4, p. 62|, f(z) is a probability density of lifetime X of an individual
(x), S(z) = P(X > z) is a survival function. Introduce the random variable

interest, f,(t) = is a probability density of future lifetime T'(z) = X — x of

1 — 676T(x)
z(z) = — T(x)>r. (1)

Then, by averaging the random variable z(x) (1), we get the formula of the deferred
life annuity (see [4]):

@ (5) = Ex(x) = % (1 - %) | @)
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[e.e]

where E is the symbol of the mathematical expectation, ®(xz, d,r) = € / e dE(t),
x+r
F(z) =P(X <z)=1-5(x) is a distribution function.

Note that the whole life annuity @, (9) is the special case of the deferred life annuity
(2) at r = 0.

1 Construction of the Deferred Annuity Estimator

Assume that we have a random sample X, ..., X,, of n individuals’ lifetimes. Using

1 n
the empirical survival function S, (z) = — E I(X; > ), where I(A) is the indicator
n
i=1

of an event A, obtain the following estimator of (2):

e’ Ze_axi](Xi >x+7) ( )
—n o 1 1=1 - 1 (I)n x,(S,T
S IXi >z +7)

=1

or M

®,(z,0,r) = < § e XX > x4 7).
n
=1

2 Bias and Mean Squared Error of Estimator ,a}())

In this section, we will obtain the principal term of the asymptotic MSE and the
bias convergence rate of the estimator (3). Introduce the notation according to
[6]: the function H(t) : R® — R, where t = t(z) = (ti(z),...,ts(x)) is an s-

OH (t -
dimensional bounded function; H;(t) = T()’ j=1,8, VH(t) = (Hi(t),..., Hs(t));
J
the symbol T denotes the transpose; ¢, = (t1,,...,ts,) is an s-dimensional statistic,

tin = tin(z) = tjn(z, X1, ..., X,), § = 1,8 ||[ta]l = /3, + ... + %, is the Euclidean
norm of ¢,; = N, {u, 0} is the symbol of weak convergence of sequence of random
variables to the s-dimensional normal random variable with a mean u = (p, .. ., fis)
and symmetric covariance matrix o = ||o||, 0 < 0j; = 0j;(x) < 00, j = 1,8 R is
the set of the integers.

Definition. The function H(t) : R® — R' and the sequence {H(t,)} are
said to belong to the class N, s(¢;7), provided that

1) there exists an e-neighborhood {z : |z; — t;| < ;4 = 1,s}, in which the

function H(z) and all its partial derivatives up to the order v are continuous

and bounded;
2) for any values of variables Xj, ..., X,, the sequence {H (t,)} is dominated by a
numerical sequence Cyd, such that d, 1 oo, as n — oo, and 0 < vy < 0.

Zj
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Theorem 1 [6]. Let the conditions 1) H(2),{H(t,)} € Nas(t,7),
2) E|lt, —t||'=0 (d;zﬂ) hold for all i € R. Then, for every k € R

‘E[H(tn)—H( ¥ — E[VH()(t, — 1) ‘— d7k+0/2) (4)

If in formula (4) k& = 1, we obtain the principal term E [VH(t)(t, —t)T] of
the bias E[H(t,) — H(t)] for H(t,), and at k = 2, we have the principal term
E [VH(t)(t, — t)7] of the MSE E [H(t,) — H(t)]>.

~ ®(x,20,7r)S(x) — ®*(x, 0,7

Denote C(,a.(6)) = ( )52(53)(95) ( )

Theorem 2 If the survival function S(z) > 0 and S(¢) is continuous at a point
x, then

1) for the bias b (,ja2(d)) of estimator (3) we have

b (;@(0))| = [Eqa@2(d) — @ (6)] = O (n1);

2) the MSE u? (,a2(0)) is given by the formula

2@ (0)) = B (a0) — a.(6))” = @ o ( 1 )

n3/2

Proof. For estimator @, (d) (3) in the notation of Theorem 1, we have: s = 2,

dp =mn, t, = (tin, ton) = (Pp(z,0,7), Sp(x)), H(t,) = % (1 — %) = |Gy (0),

1 t
t = (t17t2) = (q)(x7577n)7 S(l’)), H(t) 5 (1_ t_l) = r\ax(é)a Hl<t) =
2
O(x,0,71)
H =117 H(t)=(H H. .
o(0) =~ VH(O) = (Hi(0), Ha) #0
1
Sequence {H (t,)} satisfies the condition 1) of Theorem 1 with Cjy = 5(1 +e7%)
and v = 0. Indeed,

6S(x)’

e Z e";XiI(Xi >x+T)

1 ®,(x,6,r) 1 i1
Ht)| < =14 ——— | <=1 <
e < 5 (14 22880 ) < 2y 5 <
S IXi>a+r)
i=1
65‘”6*5(’3+”)ZI(XZ~>x+T)
1 i—1 1 s
<-11 = - ).
Z[(Xi>$—}—7“)

i=1
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Further, in view of to = S(x) > 0 the function H(t) satisfies the condition 1) of The-
orem 1. Also, this function satisfies the condition 2) of Theorem 1 due to Lemma 3.1
[5], as for all i € R such inequalities hold:

E{I'(X >0)} = S(z) <1, E{®%e XX > 0)} <% ?*S(x) = S(z) < 1.
Therefore,

E|®,(1,6,r) — ®(z,,r)| = O (n—%) . E|S.(z) - S(@) =0 (n—%> .

It is well known that S, (z) is the unbiased and consistent estimator of S(x). Show
that ®,(z,0,7) is the unbiased estimator of ®(z,d,7):

ox n
E®,(x,0,7) = B {Z e XX > + r)} = ®O(z,9,r).
i=1

n

The ratio of two unbiased estimators can have a bias. Considering that all the
conditions of Theorem 1 are fulfilled and E(t,, — t) = 0, in accordance with (4) we
get the order of the bias of ,ja}(¢):

|E [13(0) = 1a@:(0)] — B [VH@)(t. —)"]| = [E [ya; () — @ (0)]| = O (n7").
Now, calculate the variance of ®,(z,d,7):

20x "M

1
D®,(z,d,r) = €n2 iZID (e (Xi>a+7)} = - (®(x,20,7) — ©*(,6,7)) .
Similarly we find the components of covariance matrix o(,a,(0)) = [g” ?2} for
21 022

statistics ®,(x,d,r) and S, (x):
011 = nD®,(z,6,7) = ®(x,25,7) — ®*(2,0,7); 09 = nDS,(z) = S(z) — S*(z);
o12 = 091 = ncov (O, (z,d,r), Sp(z)) = (1 — S(x))P(z,d,r).

Using the previous results on the bias and the covariance matrix, we obtain

w(@(6)) = B[VH(®)(t, ~ )" + 0 (L) _

n3/2

3/2 n n3/2

= H2()o11 + H2(t) 09 + 2H (t) Hy(t) 012+ O (nl > _ Clia(9) +0 (L) . (5)

The proof of Theorem 2 is completed.
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3 Asymptotic Normality of Estimator ,a(d)

Theorem 3 (The usual central limit theorem) [1]. If &, ..., &,, ... is a sequence of
independent and identically distributed s-dimensional vectors,

E¢: =0, U(I) = E{fg&a}? tn = %ng,
k=1

then, as n — oo,
Vvnt, = N,{0,0(z)}.

Theorem 4 [6]. If g,(t, —t) = Ns{p, 0} for some number sequence ¢, T oo,
the function H(z) is differentiable at the point u, VH (u) # 0, then

Gn (H(tn) — H(p)) = N{VH () p", VH(u) o VH (1) }.
Theorem 5. Under the conditions of Theorem 2
Vil@i(8) = ()] = N1 {0,C (@ (0) }
Proof. In the notation of Theorem 3, we have s = 2, o(x) = o(,a(0)). Thus,

Vi (@n(z,0,7), Su(z)) = (B(2,0,7), S(z))} = N2{(0,0), 0(-j@(6)}.

The function H(z) is differentiable at the point ¢t = (®(z,d,r), S(x)), VH(t) # 0,
and ¢, = y/n. Consequently, all the conditions of Theorem 4 hold, and using (5), we
obtain the desired result.

The proof of Theorem 5 is completed.

4 Construction of Estimators Using Expected Life-
time
Suppose we know the expected lifetime
EX =a. (6)

The estimator by making use of such information according to [2, 3| can be taken in
the following form:

n 1 Py (x,0,7)

(0, 0) = = <1 NS AT - CL)) 7 (7)
ZXi is an estimator of a, parameter A we will find minimizing the
i=1
principal term of the asymptotic MSE of ,@?(é,A) (7). Estimator (7) combines the
available empirical information containing in (3) and prior information (6).

1

where 7 = —
n
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For estimator @2 (d, A) in the notation of Theorem 1, we have: s = 3; d,, = n;

tn = <t1n7t2n7t3n) = ((I)n(x757 T)JSTL<'I)JT)7 t= (t17t27t3) = (q)(ﬂf, 67 T),S(Z[’),CL);

Hty, to ts) — (15 (1 - % At — a)) _ % (1 - % “Aa— a)) @6\,

Ht,) = % (1 - % —/\(T—a)) — @ (5N,

VH() = (10, 10, 10) = (5505~ s =5 ) #0

5 Bias and MSE of ,a}(, \)

Arguing as in Section 2, it is easy to show that the sequence {H(t,)} satisfies the
1
condition 1) of Theorem 1 with Cy = 5(1 + e + |A\(w + a)), where w < oo is

the limiting age and v = 0; also, the statistic ¢, satisfies the condition 2) due to
Lemma 3.1 |5, provided that EX’ < w' < oo for all i € R. Hence, given that
E(t, —t) = 0, for the bias of (7) we obtain the following result:

|E [az(0,A) — na@o(6)] | = [b [n@z (5, M)]| =0 (n7"). 9)
011 012 013
Now, find the covariance matrix o(,@;(0,\)) = | 021 022 093 | for statistics
031 032 033

D, (z,0,7), Sp(x), and T: 093 = 039 = ncov (S, (z), T) = Co(x,r) — aS(z);
013 = 031 = ncov (P, (x,6,r), T) = Cy(z,0,1) — aP(x,20,7); 033 =nDT =DX,

o o0

where Ci(z,d,r) = e‘s”"/ e udF(u), Cylx,r) = / udF(u), and o1, 099,
T+r T+r
012 = 091 are defined in Section 2. Using (5) and (8), the above results for bias (9)

and covariance matrix o(,@,(0,\)), we obtain:

WP (@ (6,\) = B [VH()(t, — )] +0 (n;/2> = C(Taia’ V) Lo (#) , (10)

Cloye(8,0) = D > Hy(B)ap Hj(t) = Cloyaa(9)) + MQ1 = 22Qs,
(52 > O, Q2 _ Hl(t)O'lg —(;- Hg(t>0'23

respect to A is achived at \g = =2 Such Ao minimizes the principal term of MSE
1
(10), and this minimum is as follows:

i = Do (L) L (G - ) o ().

n

where 1 = . The minimum of C(,@, (6, \)) with
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So, the constant of the principal term of MSE (10) is less than the constant of the
principal term of MSE (5), i.e.,

Cl(6.30) = CLa() — 2 < Clalo) (1)
In accordance with (11), the estimator
@ (5, ho) = % (1 - %@5}” (@ - a)) , (12)

will be called the optimal (in the mean square sense) estimator. The non-negative
2

quantity % in (11) determines the decrease of the principal term of MSE for the
1

optimal estimator by using auxiliary information (6).

6 Adaptive Estimator

Theorem 6. For the optimal estimator ,ja} (0, A\g) under the conditions of Theorem 2

Vi [@(8, o) — na(8)] = N {o, (1 (6, )\0))} .

Proof. The statement of Theorems 6 follows from Theorem 4 with the usage of
the arguments of Sections 3-5.

The statistic @y (d, \g) can be used as an estimator for ,a,(d) if we know Ag;
otherwise, it is required to construct an adaptive estimator. We need a more detailed
formula for \g:

= ! (I(ST) T, T T — T r aP\T T
M= 5070 (s () = a8(0)) ~ i) 4 a2(a8r)) . (13

According to (13) construct the estimator

Ao = sQS ((Dn S Cg(m,r) — aSn(x)} — Cy(x,6,7) + a®y(, 0, r)) . (14)

— 7)? is an unbiased estimator of the variance DX,

where s?

M:

T n—1
=1

Y XI(X; > x+r), Ci(x,dr) =n” Ze*ﬁXzXI(X >z +7).

=1 =1

Theorem 7. For the adaptive estimator ,ja (J, Ao) under the conditions of Theorem 2

Vi 28, 3) = @ (8)] = Ny {0.Can(0.20) |
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Proof. The following equality holds:
\/ﬁ r|62<57 5\0> - T\ax<5)] = \/ﬁ [rlaZ<5> AU) - r\ax<5)] + Ry,

where R, = 61 (Xg — Ao)/n(Z —a). All the estimators, used in (14), converge almost
surely to their true values according to the strong law of large numbers (the Second
Theorem of Kolmogorov [7]. Thus, from the First Continuity Theorem of Borovkov
[1], estimator Ao converges almost surely to Ag. Based on the central limit theorem
Vn(T — a) = N; {0, DX}, we retrieve R,, = 0. Now, the statement of Theorem 7
is proved by making use of Theorem 6.

Conclusions

The paper deals with the estimation problem of the present values of the continuous
deffered life annuity using auxiliary information about the expectation of life. Tt is
shown that the usage of such auxiliary information can often provide the MSE smaller
than that of standard estimators. We proved the results on asymptotic properties of
the proposed estimators: unbiasedness, consistency and normality. Also, the principal
terms of the asymptotic MSEs of the estimators were found. An adaptive estimator
is constructed; such estimator is equivalent (in the sense of asymptotic distribution)
to the estimator with the optimal weight coefficient .
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with random jump parameters
and incomplete information
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Abstract

An algorithm for the synthesis of a robust extrapolator is considered, which
determines the estimate of the state vector of a discrete linear system with
random jump parameters described by a Markov chain with a finite number of
states under incomplete information about the model and the observation chan-
nel. The transfer matrix of the extrapolator are invited to choose independent
of the state of the jump process using the nonparametric smoothing procedure.

Keywords: discrete model, robust extrapolation, jump parameters, incom-
plete information, nonparametric smoothing.

Introduction

The problem of constructing estimates of extrapolation and filtering under incom-
plete information were considered in [3-6, 12, 13, 15]. In these papers, problems
of estimating using recurrent algorithms of the Kalman type under the condition of
the presence of unknown inputs in the model were considered, and the problem of
estimation in the presence of an unknown vector in the observation channel was also
considered in [16]. In [1, 2, 9-11, 14|, estimation problems in systems with random
jump parameters were considered. Such problems arise when building models of real
processes with possible failures. In this paper, we consider the problem of synthesiz-
ing a robust extrapolator for a discrete object with random jump parameters with a
finite number of states. Problems are considered for objects and observation chan-
nels with unknown parameters and unknown additive vectors. Using the procedure
of non-parametric smoothing, the problem of synthesizing a robust extrapolator is
solved, the transfer coefficients of which do not depend on the state of the jump
process. The simulation results are given.

1 Statement Problem

We consider the discrete stochastic system, which is described by the equation
ek + 1) = (A, + AA)a(k) + B, f(R) + g (R), 2(0) = o, 5
and available observations are set as follows:

y(k) = (S, + AS))x(k) + Hyp(k) + vy (k), (2)
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where z(k) € R™ is a state of the system; v = (k) is a jump parameter (Markov
chain with n states v1,v2, ..., vn); f(k), ¢(k) are unknown vectors; x, is a random vec-
tor (Zo = E{zo} and Ny; = E{(z0—T0) x(xo—T0)" /7 = 7i},i = 1,n); y(k) € R'is the
observation vector; A,, B, S,, H, are given matrices; AA,, AS, are unknown matri-
ces; ¢,(k), vy (k) are independent random sequences with the following characteristics:
E{a(K)} = 0, E {0, (K)} = 0, E{a,(K)aT (i)} = @yuis E {un ()T (1)} = Vi (E
denotes expectation and 7' denotes transposition of a matrix, d;; is the Kronecker
symbol).
The probability p;(k) = P {y(k) = v}, i = 1, n, satisfies the equation

k + ]. sz]pj pl 05 (3)

where p;; is the probability of transition from the state i to the state j in one step,
pio is the initial probability of the i-th state. According to the information received
at the k-th step, it is required to find estimates of extrapolation Z(k + 1) based on
the minimization of the following criterion:

J[0:T7] = —E{ Zzpz VRi(k)e(k)+
k=0 i=1 (4)

+ sz (Ty)e" (Ty)Li(Ty)e(T))/7(0) = 70},

where e(k) = x(k) — Z(k), R;(k) > 0, L;(k) > 0 are weight matrices, 7o is the initial
value of jump parameter 7.

2 Optimization of the Criterion

We present the system (1) in the following form:
z(k+1) = A,x(k) +rk) + ¢, (k), z(0) = zo, (5)

where (k) = AA,x(k) + B, f(k) is an unknown input. The channel of observations
we will present as

y(k) = Syx(k) + (k) + vy (k), (6)

where p(k) = AS,xz(k) + H,¢(k) is unknown vector in the observation channel.

To solve the problem of synthesizing a robust extrapolator, we use the separation
principle. This means that we first construct estimates of the vector under the as-
sumption that the vectors r(k) and (k) are known. For this, we use the recurrent
algorithm of Kalman extrapolation [1]

T(k+1) = Ay2(k) +r(k) + K(k)(y(k) — S,2(k) — @(k)), 2(0) = To.  (7)

In (7), we will look for a matrix K (k) independent of - (k) that will ensure the
extrapolator robustness with respect to the error of jump parameter v(k). Then, the
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estimates of the vectors 7(k) and @(k) are constructed under the assumption that the
prediction estimate of the state vector Z(k) is known.

We introduce the notation for the matrices @, V,, R, N, L, A,, S, at v =
as Q;, Vi, Ri, Ny, Ly, A;, S;, respectively (i = 1,n). Consider a theorem, in which we
construct an algorithm determining the matrix K (k) for extrapolator (7) based on
optimization of criterion (4).

Theorem. Let there exist positive definite matrices N; and L;, which are the
solution of a two-point boundary value problem:

Ni(k+1) = (Ai - K(k)Si)(Zpi,ij(k))(Ai — K(k)S)" + Qi+ @

+ K(RVK(E)T, N(0) = Ny

Li(k) = (A; Zp,j (k+ 1)) (A, — K(k)S)T + Ry, Li(Ty) = Ly, (9)

Then, the vector ct(K (k)), composed of transpose rows of the matrix K (k) and
providing the minimum of criterion (4), is determined by the formula:

) = (Zpi(k +1)[Li(k+1) @ Si(meN](k))ST—l—

(10)
+Li(k+1)®@V)])~ ZkaJrl (k+1)A Zp”
In (10), the symbol ® denotes the Kronecker product.
Proof. Let’s present the criterion (4) as a sum
J0; Ty = ZJ [k, Ty], k = 0, Ty. (11)
In (11) J;[k,T¥] is determined by the formula
Tp—1
Jilk; Ty = Z tr py (€)Ny(€) Ri(€) + tr pi(Ty)N; (Ty) Li(Ty), (12)
where tr is the trace of a matrix.
Introduce the following Lyapunov function:
W (k, Ni(k)) = trpi(k)N;(k) Ri(k) + tr Zpi(t)‘iji(t)l/i(t>> (13)

where L;(t) is determined by equation (9), W;(t) = Q; + K(#)V;K ()T + W,(t) (U,(¢)

is some positive definite matrix).
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Summing over k = t,Ty — 1, the finite differences of the function W (k, N;(k)),
taking into account formula (9), we obtain:

S AW O N (R) = S WG+ 1, NiGh + 1) — Wk, Ni(h)] =
Tr—1 . . (14)

- Ztr pi(k + 1D)Ny(k + 1)L;(k + 1) — pi(k)Ny(k)L; (k) — pi(k)¥; (k) L; (k)].
On the other hand, this expression can be represented as

> AWk, Ni(k)) = W(t+ 1, Ni(t+ 1)) = W(t, Ni(t)) + ...+

+W(Ty, Ni(Ty)) = W(Ty — 1L, N;(Ty — 1) = (15)
=t p; (TF)Ni(T5) L (T) — tr p; (£) Ny —tr Z pi(OT,(E)Li(€).

Add into (12) the difference of the right parts of (14) and (15). Considering that this
difference is zero, criterion (11) takes the form:

n Ty—1 Ty—1
J[0; Ty] = Z{Ztrpz NAOR(E) — Y trpi(&) Ni(€) Li(€)+
i=1 = E=k+1
Tf 1 (16)
+ ) trp(E DA - K(¢ pr )(A; — K(€)8)"+
&=k

+Q1+K(£)V¢K(£) JLi(§+ 1)}

Now, calculate the derivatives:

Ti—1 o
dJ Zztr (E+ Dpi(E+1) pr _
E=k =1
_pl(f +1 szj ST +pi(f + 1)[11(5 + 1)K(f)SZX (17)
X(D_pigNi(€)S] + Li€ + pi(€ + DK Zp”
j=1

+pi( €+ D Li(E+ DK Vi + Li(§ + )pi(f +DE(EVi].

Equating this derivative to zero, assuming that each summand of summation with
respect to i is zero, and using the Kronecker product operation [7], we obtain formula
(10) determining the matrix K (k).
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Calculate the finite difference of the Lyapunov function:
AW (k, Ni(k) = W(k + 1, Ni(k + 1)) — W(k, Ni(k)) =
:trpi(k + 1)N;(k + 1) Ri(k + 1)+

+r Z pi(D)[Qi + KOViK (k)" + W, ()] Li(t)—

—trp; (k) N; (k) R; (k) — terz [Qi + K@)V K (k)" 4 W(8)]Li(t) =
= trp;(k + 1)N;(k + 1) R;(k + 1) — trp; (k) N; (k) R;(k)—
—pi(K)[Qi + K (F)ViK (k)" + W;(k)]Li(k).

Since the matrices IN;, L; are positively determined by Theorem conditions, and
the matrix W;(t) > 0 is given arbitrarily, it is obvious that these matrices can be
chosen such that the final difference (18) becomes negative. This condition guarantees
the Lyapunov stability of the extrapolator dynamic. Theorem is proved.

To construct the prediction estimate, we use the Kalman extrapolator

T(k+1) = Ayz(k) +7(k) + K(k)(y(k) — S,2(k) — &(k)), 2(0) = Zo, (19)
where K (k) is the transfer matrix depending on k and independing of jump parameter
(k).

3 Synthesis of the Stationary Extrapolator

In this case, the matrix of transfer coefficients K (k) in Kalman extrapolator (19) will
be constant, and the criterion will take the form:

J[0;00] = lim —ZZ‘GI}Uz i(k)R; (k). (20)

Tf—>oo fklzl

The two-point boundary value problem is transformed into the following matrix equa-
tions:

= (4, — KS)) Zp,j (A — KS)" + Qi + KViK™, (21)
7=1
Li = (A; — KS;)T Zp” )(A; — KS)T + Ry, (22)

Zp2L®5’ Zp” N)ST+L;®Vi)) ZpZLA Zp”NST ), (23)

where p; are steady—state probabilities (solution of system (3) as k — o00).
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Thus, to synthesize a stationary extrapolator, it is necessary to solve the system
of matrix equations (21)—(23).

Note that if there are positively defined solutions N;, L; (i = 1,n) of matrix equa-
tions (21)—(23), then using the equation (22) and condition R; > 0 (see Theorem 1.6
[8]), it follows that a stationary extrapolator with jump parameters will be stochastic
stable.

4 Estimates of Unknown Vectors
As estimates of unknown vectors, various algorithms can be used [3-5]. When using

the LSM estimates, finding @(k) and 7(k) is based on minimizing of the following
criteria:

= 3w = 53O, + llett = D, (21)
Jo = Z(H?/(t) —p(t) — S,AZ(t — 1)”3[/2 + Hr(t _ 1)”12%)’ (25)

where Wy, Wi, Wy, Ws are weight matrices. At each step, the estimates of $(k) and
7(k) are constructed sequentially, first minimizing the criterion (24), then (25). In
constructing vector estimates 7(k), based on the criterion (25), are used p(k) vector
estimates obtained via the minimization of the criterion (24). Then, estimates of
unknown vectors by the LSM estimates are determined as follows:

P (k) = [STWLS, + WA ST WA {y(k) — S,2(k)}, (26)

PESID (k) = [STWaS, + Wo] L STWa{y(k) — B(k) — S, A,2(k — 1)} (27)

By analogy with [6], using estimates (26) and (27), we construct prediction estimates
by making use of the technique of nonparametric smoothing:

FNP) (k) = [STWLS, + WA] = STWAQ(k), (28)

TP (k) = [STWaS, + Wa] ' STWaQ (k). (29)

In (28) and (29) the components of the vectors Q and Q are determined by the

formulas: ~
Zk [y(i)—Sv(ﬂﬁ(i))]jG(k—z‘H)

i=1 : ;
(k) = o U= L) (30)
A G k=itl
Yh, LG
ko @)= =5 Ay (@E—D))ls v k—itl
Qs (k) = 2 2 uls(; hitl Sy (s =1,n), (31)
21 75, GO57)
where in relations (30), (31) G(-) is a kernel function, p; and fi, are bandwidth
parameters.
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5 Simulation Results

The simulation was performed for the following data:
= (S oon) 4= (Cooeois) B =2=(01):
== ("7 o) 2= (G S ) 2= (156 009 )
S =5, — ((1) (1)) AS, = <0.(())1 8) AS, = (0.(())08 8) 7
o () e (39, (2229
B=h= (061 0.?5) Wi=We = ((1) (1)> Wi =W = (061 091) !

0= (o ot ) o - (7))

We use the Gaussian kernels

a2
Glu) = 2,

Fig.1 shows the graphs of the values of the jump parameter 7.

s

0l L | L
0 50 100 150 k

Figure 1: The Values of the Jump Parameter ~

The transfer matrix K of the extrapolator is determined from the solution of
matrix equations (21)—(23).
The root-mean-square errors were calculated as follows:

o) = BB 0P _ T3)
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Table 1: Root-Mean-Square Errors for Estimating Accuracy of State (¢;(200))

Coordinate number (i) | LSM | Nonparametric smoothing
1 0.537 0.407
0.539 0.479

The corresponding values of the errors of extrapolation of the state vector (see
Table 1) were obtained using estimates of unknown vectors of the form (26)—(31).

As can be seen from Table 1, the estimation algorithm with nonparametric smooth-
ing of unknown additive vectors in the object model and in the model of the obser-
vation channel allows us to increase the extrapolation accuracy for discrete models
with jump parameters.

Conclusions

The solution of the problem of synthesizing stationary and non-stationary robust
extrapolators for a linear discrete models with random Markov jump parameters
under incomplete information was obtained. The simulation results showed that the
application of the robust extrapolation algorithm using the non-parametric smoothing
procedure allows one to increase the prediction accuracy.
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Abstract

This paper considers the Ornstein-Uhlenbeck process by observations with
additive noise that also satisfies Ornstein-Uhlenbeck equation. The truncated
parameter estimation problem of non-observable process with guaranteed accu-
racy is solved. On the basis of these estimators adaptive predictors of observable
process are constructed. Asymptotic property of predictors is established. The
presented algorithm works for predictors of any depth.

Keywords: Truncated estimation method, fixed sample size, Ornstein-
Uhlenbeck process, guaranteed accuracy, adaptive prediction

Intrduction

One of the important problems of modern applied mathematics is the construction of
mathematical models and development of the identification and prediction algorithms
with guaranteed accuracy for discrete and continuous time stochastic dynamic sys-
tems. Such systems are widely used for the description of databases, for information
processing, as well as for mathematical model construction of random processes in
economics, financial mathematics, physics, sociology, biology, medicine etc.

The most frequently used for these purposes continuous-time models are the
diffusion-type models and the Tto processes. The structure of the abovementioned
models implies essential dependence of observations which corresponds to demands
for real stochastic processes.

According to Ljung’s concept the prediction is a crucial part in constructing com-
plete probabilistic models of dynamical systems (see [1, 2]). A model is considered
to be useful if it allows to make predictions of high statistical quality.

Models of dynamical systems often have unknown parameters, which requires es-
timation in order to build adaptive predictors. The quality of adaptive prediction
explicitly depends on the chosen estimators of model parameters. Possible estima-
tion methods include the classic stochastic approximation, maximum likelihood, least
squares and sequential estimation methods among others. The first three methods
provide estimators with given statistical properties under asymptotic assumptions,
when the duration of observations tends to infinity (see, e.g., [3, 4]).

The sequential estimation method makes it possible to obtain estimators with
guaranteed accuracy by samples of finite but random and unbounded size (see, e.g.,
[4]-[11] among others).

Both approaches do not guarantee prescribed estimation accuracy when using
samples of non-random finite size and lead up to complicated analytical problems in
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adaptive procedures.

However, the more recent truncated sequential estimation method yields estima-
tors with prescribed accuracy by samples of random but bounded size, see [7], [8]
among others.

Then the truncated estimation method was introduced in [12]. Truncated esti-
mators were constructed for ratio type multivariate functionals by samples of fixed
size and have guaranteed accuracy in the sense of the Lo,-norm, m > 1 (see also
[11]). The truncated estimation method is simpler in implementation then the trun-
cated sequential estimation one. At the same time, both methods are very effective
in problems of parameter estimation of dynamical systems.

The main aim of the paper is the construction and investigation of adaptive pre-
dictors’ properties of observable process wich is a sum of two unobservable Ornstein-
Uhlenbeck processes. The presented algorithm based on the usage of truncated
estimators and works for making predictions of any depth. Similar problems for
continuous-time systems were solved in, e.g., [13, 14]. Properties of adaptive optimal
control of continuous-time processes constructed on the basis of sequential parame-
ters were considered in [15]. Adaptive optimal predictors for discre-time multivariate
system were constructed in [16].

1 Problem statement. Guaranteed parameter
estimation of Ornstein-Uhlenbeck process

Consider the estimation problem of the parameter a of the first order stable autore-
gressive process
dr; = ax,dt + dwy, t>0 (1)

with the initial value zy by oservation of the process y, with the known parameter \
of the noise 0
Yt = Tt + (975, 9,5 = )\Qtdt 'f‘ d’Ut7 (2)

where w; and v; are independent standard Wiener processes,f - initional value for 0,
a<0,\A<0, \2#ad

Let’s substitute an unobservable process x; in differential equation (1) by the
difference y; — 6, and get the eqation

dy, = aydt + dw, + df, — ab,dt. (3)
Since the parameter X\ is known, we have a possibility to exclude the dependent
noise 6; from the equation (3). To this end we integrate it from 0 to ¢ and multiply
the result by dt
t t
yedt = yodt + a/ ysdsdt + wdt + d,dt — a/ O,dsdt.
0 0
Multiply the obtained equation by A and subtract it from the equation (3)

t
dy; — \ypdt = —Ayodt + a [yt — )\/ ysds] dt + dwy + \db,dt
0
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t
—dwdt — a [Gt - /\/ HSds] dt.
0

Define z; = y; — )\f(f ysds and then dz; = dy, — \y,dt. From the equation df, —

A0, dt = dv, it follows, that 0, — A f(f O.ds = 0y + v;. Last equation can be written in
a form
dz = azdt + d(wy + vy) — (Awg + avy)dt — (Ayo + aby)dt.

Let us define the difference operator d,z; = z; — 2z;—, with a step h, h > 0 and
apply it to the previous equation

dopzy = adpzdt + d(opwy + 0pvy) — (ANOpwy + adpvy)dt. (4)

Note that d;,2; is an observable process as well. In view of the fact that d,2; and model
noises are correlated, we construct the correlation (or Yule-Walker) type estimator
with the shift A

- f;f; (Sth_hd(sth

B f;}; 5th_h5thdt .

We rewrite the deviation of estimator (5), having replaced ddjz; by the right hand
side of (4)

()

ar

1 T
dT —a = |:/ 6hzt,hd(5hwt + 6hvt>
2h

B f;}; 5th_h(5thdt

T
— / (5hzt,h()\(5hwt + aéhvt)dt} .
2h

Analogously to [17, 18],

1

T T
— [/ Onzi—nd(dpwe + dpvy) — / Onzt—n(AOpwy + aéhvt)dt} —0 a.s.
T [ Jon 2h

Taking into account the independence d;,2;_;, from d,w; and d,vy,

T T 2
E |:/ 5th_hd((5hwt + 5hvt) - / 5hzt_h()\5hwt + aéhvt)dt}
2

h 2h

T
<C.E / (Gnzan)2dt < C (6)
2h

and there exists the limit

1 [T
O';ZL = lim —/ Onzi—nOnzedt  a.s.,
2

T—o0 h

2 A2\ eal—1
Whereah—< — 23 ) 55— #0.

It is easy to verify that

lim ar = a a.s.
n—0o0
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and for every T' > 0 the following inequality holds

17 e
E |:f /2h 5hzt_h5hztdt - 0'2:| S ﬁ (7)

The truncated estimator ar of the parameter a can be defined similar to [12] for
some Ty > 0 as

_— f;f;éhzt—hd%zt . (

ar = — 7
f2h (5hzt,h5hztdt

T
/ 5hzt_h5hztdt|‘ >T - log™! T) ) (8)
2h

Using (13), (7) and similar to the scheme of the proof for truncated estimators in
[12], we get

E(ar —a)* < % T > Tp. (9)

By the condition a < —r, r > 0 the estimator o7 has the form

A2\ ea” — 1
2: 1-— 2=
Th ( a2 2a

where @ = proj_., _,1ds and satisfy the condition

E(o; — 0%)* < %, T >1T,.

Without a priory information about a, the truncated estimation method can be
applied for estimation o7 .

2 Adaptive prediction

Consider the model (1), (2). The purpose is to construct an adaptive predictor for y;
by observations ¢ = (ys)o<s<t—u. Here u > 0 - is a fixed time delay.
Using the solution of the equation (1), we get

Ty = Ty + & pu, t2>u, (10)

t
where &, = [ e Fdw,, p=e™.

t—u
Define
s =e™",  s>0. (11)
Here
Qs = PrOj(_oo,0s:
as is a projection of the truncated estimator a, of the parameter a, defined in (7).
It can be shown that

C
E(u—m* <2, p=1 (12)
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Replacing z; in the formula (9) using (2) we get

Yt = UYp—oy T gt—u,t + gt - Met—u;

Introduce the notation

t
A(t—s e Au — Au
Nt—ut :/ € ( )dwsa gtfu,t —¢€ 5t—2u,t—u> ntfu,t —€ 5t—2u,t—u-
t—u

and
2t =Yt — e/\uytfu-
The function z; satisfies the equation
2t = WZ—y T Et—u,t + Mt — M0 —u- (13)

Applying operator of conditional mathematical expectation E(-|y'~3%) to the last
equation we get,

E(zly'™) = pE(zuly'™").
By the definition of z; we have
E(zt\yt_3“) — E(yt\yt_?’“) - 6A“E(yt7u|yt_3“).

Let us define s;(t) = E(y;|y*™™), i = 1, 3.
The equation for optimal predictions s;(t), i = 1,3, has the form

s3(t) = (e™ + M) sy(t) + e @TVs (2).

Define adaptive predictors 8;(t), i = 1,3. The equation for 5;(t), is constructed
with truncated estimators instead of unknown parameters

§3 (t) = (66”73“1‘ + 6)\”)§2 (t) + 6(&t73“+)\)u§1 (t)

Prediction errors can be written as

It can be shown that

lim;_,oo Ee?(t) < oo, i=1,3.

7

In the conclusion we note that obtained property for this model probably can not
be improved in view of complicated structure of noise dependence. At the same time
this property reflects proximity of adaptive and optimal predictors in L, - metric,
which is important in analytical investigations and practical applications.
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Abstract

This paper presents a truncated estimator of the dynamic parameter of a
stable AR(1) process by observations with additive noise. The estimator is
constructed by a sample of a fixed size and it has a known upper bound of the
mean square deviation. Cases of known and unknown variance of observation
noise are considered.

Keywords: autoregressive process, fixed sample size, guaranteed accuracy,
observations with noise.

1 Introduction and problem statement

Development of parameter estimation methods of dynamic systems by samples of
finite or fixed size is very important in statistical problems such that model construc-
tion and various adaptive problems (prediction, control, filtration etc.).

One of the possibilities for finding estimators with the guaranteed quality of infer-
ence using a sample of fixed size is provided by the approach of truncated estimation.
Truncated estimators were constructed in [9] for ratio type multivariate functionals
by a fixed-size sample. They have guaranteed accuracy in the sense of the Ly,,-norm,
m > 1. This fact allows one to obtain desired non-asymptotic and asymptotic prop-
erties of the estimators. The truncated estimation method was developed in [1] and
others for parameter estimation problems in discrete-time dynamic models. Solutions
of some non-asymptotic parametric and non-parametric problems can be found also
in [4], [8], [5], [6], among others. In particular, [8] established the minimax optimality
of the least-squares estimator of the dynamic parameter in AR(1) model.

In this paper, the truncated estimation method introduced in [9] is applied for
the parameter estimation of AR(1) by additively-noised observations with unknown
noise variance (another applications of this method can be found, e.g., in [2], [3]).

Consider the estimation problem of the parameter A of the scalar first-order au-
toregressive process (z,),>o satisfying the equation

Tp=Alp_1+&, n>1 (1)
by observations
Yn =Tp + M, N > 0. (2)

Process (1) is supposed to be stable, i.e. |A| < 1. Introduce the notation ¢ =
(20, &1, Mmo-) The processes (&,), (n,) and xq are supposed to be mutually independent;
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noises &, and 7, form sequences of i.i.d. random variables such that E¢ = 0, E||C||* <
00. Denote 02 = En2. We assume that the variance of & is known. Then without
loss of generality we put F& = 1.

The main aim of the paper is to construct truncated estimators of A € (—1,1)
with guaranteed accuracy in the mean square sense by sample of fixed size. Cases of
both known and unknown values of o will be considered.

A similar problem has been solved in, e.g., [10] on the basis of the sequential

approach (when the sample size is a random value determined by a special stopping
rule) for A € (—1,0) N (0, 1)

2 Parameter estimation of AR(1) with known noise
variance

To estimate the parameter A, we use the correlation method. To this end, we obtain
from the system (1), (2) the recurrent equation for the observed process y = (yn)n>o0 :

y’l’b = Ay’n—l _I_ 6717 n Z 17
5n = fn + Nn — >\77n—1-

(3)

Due to the dependence of noises d,,, the least squares estimator (LSE) of A obtained
from equation (3) is asymptotically biased, see, e.g., [7], [L0]. Equation (3) implies
the following formula for correlations of the process (y,):

Exynyn-1 = AEA(y2_, —0%), n>1.

Hence, the consistent correlation estimator A, of A has the following form (see [7])

A Z YrYr—1
Ang = —= . on>1. (4)

n

> (Y1 — 0?)

k=1

It is easy to verify that

n

" 1
lim — Z(yz_l —0?) = T~ 1 P\—a.s. (5)

n—oo N,
k=1

Thus, according to the general procedure described in [9], it is reasonable to
construct the truncated estimator A, of A as follows:

n

5‘% = 5‘n : X(Z(?qu - 02) > hn), n=>1, (6)
k=1

where h € (0,1) and x(A) is the indicator of the set A.
The following theorem gives the first main result of this paper.
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Theorem 1. Assume model (1), (2). Then for every |A\| < 1 and n > 1, estimator
(7) has the property

E)\(S\n - )\)2 S

s 1a

(7)

The proofs of theorems and lemmas are given in Section 5.

3 Parameter estimation of AR(1) with unknown noise
variance

To estimate A € (—1,1), we use an adaptive modification of estimator (5):

% > Yrlk—1
A= = , n>1 (8)
% Yiy — 02
k=1

Taking into account (6), we construct the estimator o2 of o2 as follows

:—Zykl )\2, n>1 9)

where ), is the pilot estimator of A

A = proj[_lyl]jxn, n>1, (10)
. Z YrYrk—2 n
An = 2_2— : X(| Zyqukd > Hn), n>1. (11)

Z Yk—1Yk—2 k=2
k=2

Here we put H,, = n(logn)~!. According to the general truncated estimation method
[9], the multiplier (logn)~" in the definition of H,, can be any other slowly-decreasing
function.

It should be noted that the estimator (10) is constructed on the bases of the
correlation (Yule-Walker type) estimator which can not be used if A = 0 (see Lemma
1 below). Our main aim is to construct an estimator of A without this restriction.

Taking into account (10), estimator (9) can be written in the form

A= (1= A2)— Zykyk Lon> 1. (12)
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Lemma 1. Assume that in model (1), (2), E||C||® < oco. Then estimator (10) for
every A € (—1,0) U (0,1) and n > 1 has the following property

1 4
Exm -2 < & h g, x
n n

This lemma makes possible to obtain the main result of the section.

Theorem 2. Assume that in model (1), (2), E||C||® < co. Then for every |\ < 1
and n > 1, estimator (12) satisfies the following condition

1 4
EA()\;*Z—)\)QS%JrCOg o

n2

4 Simulation Results and Discussion

We conducted numerical simulation of the proposed estimation algorithm. For every
set of the parameters, the experiment was performed 100 times, the number of ob-
servations is equal to 100, the parameter of the procedure h = 0,5. Table 1 presents
the results of simulation. Here A and o are the parameters of model (1), A, and \*
are the mean estimators of the parameter A\ when the noise variance o2 is supposed
to be known and unknown, correspondingly; d, and d; are sample standard errors of
the corresponding estimators.

One can see that d,, < d’ in all experiments; thus, if the noise variance is unknown
then the standard error increases at least twice (if A = 0,5); but df, can be fully ten
times larger than d,, if A = 0,9. Both deviations increase with the grow of o2, as one

should expect; besides, d,, decreases and d; increases with the increase of .

5 Proofs

5.1 Proof of Theorem 1

To investigate the non-asymptotic properties of A, we use the following representation
of the deviation

b= A= 22 (gl 2 ) = Al < ) 13
where
1 n
fn = ” Z[yk—1(fk + 1) — MYr—1mr—1 — 0],
k=1
1 n
9n = E Z(yi—l - 0-2)
k=1
It can be directly verified that for |A\| <1
—1 p—
Byf? < L)"U). (14)
n
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Table 1: Simulation results

A

An

dy,

)\*

d*

0,5
0,5
0,5
0,5
0,5

0,09
0,25
0,49
0,81

0,477
0,492
0,487
0,475
0,473

0,0092
0,0111
0,0150
0,0229
0,0419

0,452
0,490
0,470
0,418
0,424

0,0294
0,0314
0,0488
0,0795
0,0953

0,8
0,8
0,8
0,8
0,8

0,09
0,25
0,49
0,81

0,786
0,794
0,786
0,772
0,788

0,0046
0,0054
0,0054
0,0120
0,0122

0,796
0,854
0,789
0,765
0,797

0,0465
0,0793
0,0737
0,1435
0,1590

0,9
0,9
0,9
0,9
0,9

0,09
0,25
0,49
0,81

0,876
0,889
0,888
0,874
0,891

0,0038
0,0018
0,0030
0,0044
0,0028

0,865
0,913
0,910
0,886
0,801

0,0772
0,0596
0,1044
0,1822
0,1780

Introduce the notation g = 1/(1 — A?). Then, using a representation

n

gn—g=%2(w

k=1

and the following formula (see, e.g., the proof of Theorem 2 in [9])

it is easy to prove that

Further, similar to [9] using the Chebyshev inequality we estimate

Ek(gn - 9)2

Py(lgn| < h) < P\(|gn — —h) < < ;
Algnl < h) < Pa(Ign — gl > g = h) “h)2 ~ (1-h)n

Using (13-16), we estimate

E)\(gn - 9)2 S

Co

Y
n

n>1.

2 « 1<
i1 0%) + - Zxk—lnk—l +- 2(7713—1 —0?)
k=1 k=1

g n n
n [z — 22 + 2)\;%1& + ;(fi - 1)],

Co

(g

) 1
Ex(A=))* < ﬁEAfs + Py(|lgn| < h) <

and obtain assertion (7).
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5.2  Proof of Lemma 1

The proof of Lemma 1 is similar to the proof of the second assertion of Theorem 1
in [9].
Definition (10) of A, implies
Ex(An — N2 < Ex(An — V)2

Introduce the following notations

1 — 1 — A
———E DY) n———E 1Yp_ =———  h,=(l L
n 2 Yk—20k, G n L Yk—1Yk—2, g EVE (Og”)

By the definition of A in (11), its deviation has the form

S A= 22 (1gal = ) = A x(lgal < ) = J; 2(1gal = )

X(|gn| > hn) - A X(|gn| < hn) = Jl + J2 + JB-

Using the Cauchy-Schwarz-Bunyakovsky and Chebyshev’s inequalities, estimate
the second moments of these summands:

1
E\J} < CEyf2, EpJ; < W\/ExfﬁEA(gn —9)4, E\J: < h *Ex(g. —g)*

In view of the structure of the function f, it is easy to verify that E\f} < C/n?.
By the definition of g, we have

)\
Zyk 1Yk—2 — lefk 1Tg—2 — 75 2
1 n
+ﬁ Z Tp—1Mk—2 + " Z Mk—1Tk—2 + ” Z Mk—1Mk—2 = ( Z Thz ~ 7 )\2>
k=1 k=1 k=1
1 & 1 &
+E ; Tp-1Mk—2 + - ;(Uk_1 + §k—1)Th—2 + - ; Mk—1Mk—2-

Using this representation, it is easy to verify similarly the proof of Theorem 1
that

C
Ex(gn—g)' < =

Thus we have

2 4
n

1 1 1
EJ?<C-, E<c2l pJi<c®
n n

n
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5.3  Proof of Theorem 2

Introduce the following notations

A 1 1 2\ —
An = ()\2 — )\i) + (1 — /\721))\ { ([Eg — )\233%_1) + 7 ;xk—2€k—l

1— A2
T Y SYIRSTIES o [P )
n 4 k-1 n n) Te—1Mk—1 T Ye—1\Gk T Tk )]

2
Definition (12) of the estimator A and equation (3) imply

n

1
A =(1- )\i)g ZP\?/EA + Yr—1(Ek + M) — AYp—17—1]

k=1

=(1-\%) {)\% > g+ 1 Z[/\l'k—lnk—l + ye-1(& + ﬁk)]}

k=1 k 1
A
I A
1 — 2\ a B 3 — )2
+( )\n)n;[)\% 111+ Yk 1(5k:+77k)] A+ (N =X) e

+(1—>\Z))\1_1)\2 {l( +—Zxk 2€k—1 + — Z fk 1= —1}

n

1
+(1 - Ai); Az 1me—1 + Ye—1(& +1m0)] = A+ Ayl
k=1

Thus the mean square deviation of the estimator A} has the following form
Ex(AS = A2 = E\AZ - x(A=0) + ExAZ - x(A #0) = [ + I,

where
n

I = B((1 = X) - S lper (G m)))? - XA = 0)

k=1
n

= E\((1— )\i)% Z(fk—l + k-1) (& +m0))% - X(A = 0),

I, = E\A2 - x(A #£0).

From assumptions of Theorem 2 it follows I; < C/n. In view of Lemma 1 and the
property |\, + A| < 2, we have

12 (x0+xk1

2|1 A, — A
I, < E), <|1_—)\2‘X()\ #0) +
+l i1 ix +l i (& + k)
" n |4 E—1Tk—1 Yk—1\Sk T Nk
c C log* n

< CE\(A\ — M)? ()\7&0)+C+—<E C—

2 n
— E l‘szli
n

o2

)

1 n
+- d G-

k=2

n
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Abstract

In paper, optimality properties of the minimum gamma-divergence estima-
tor (MGDE) relative to weighted Lo-norm of Hampel’s influence function, and
also Shurygin’s model of the point Bayesian contamination under theory of
parameter estimation from multivariate non-homogeneous data are considered.
Influence functions of the MGDE and close to it of the minimum beta-divergence
estimator and the generalized radical estimators for the ordered probit model
are compared. The MGDE applicability is evaluated using a simulated dataset.

Keywords: M-estimator, robust estimation, influence function, gamma-
divergence, beta-divergence, non-homogeneous data, ordered probit model.

Introduction

The classical statistic procedures are based on a number of assumptions which cannot
be fulfilled in practice. Under such conditions a lot of widespread statistic procedures
lose their positive qualities. For instance, the procedures, which rest on the maximum
likelihood estimator (MLE). However, this problem can be solved by using robust
estimators. Generally, robustness theory has been developed for the quantitative
continuous random variables modeling [3, 12]. Much less attention is paid to the
modeling of ordinal regression, and existing approaches are often based on semi-
heuristic nature. Few papers are devoted to robust parameter estimation of the
cumulative link model and the ordinal probit model as its particular case (see, for
example [4, 10, 19]).

Previously, we developed the general theory of asymptotically optimal estimation
of unknown model parameters from multivariate non-homogeneous incomplete data
(see |5]). At the bottom of this theory we find synthesis of approach by F.R. Hampel
|8] which is associated with the influence function and approach by A.M. Shurygin [18]
which is associated with the point Bayesian contamination model. Resulting methods
are robust against the model misspecification, estimators often have redescending
property [17, 18]. This theory is applied to cases with non-homogeneous quantitative
(including count), qualitative, mixed data, and also in the presence of missing data
(see references in [3]). The application to qualitative response regression models is
considered in [12].

The very robust minimum gamma-divergence (or logarithmic density power di-
vergence) estimator (MGDE) is used for a parameter estimation of distributions [11],
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regression [6], heteroscedactic regression [14], dichotomous logistic regression [9]. In
the latter two cases the data are non-homogeneous. Many well-known robust estima-
tors of location are special versions of the MGDE for suitable model (see, for example,
[16, 17]). These are the estimators associated to names of Tukey (biweight), Andrews
(sine), Huber (skipped mean), Welsch, Smith, Bernoulli, Charbonnier (generalized
version). For example, the latter case is related to the Student’s ¢ distribution.

In connection with the above, it is important to find out optimality properties of
the MGDE, corresponding results are given in Section 1. In Section 2, we apply the
MGDE to the ordered probit model, namely, we compare influence functions of the
MGDE and similar estimators, also present the result for one simulated dataset.

1 Optimality properties of the MGDE

Let n-dimensional independent random variables ¢; = (G,...,Gn)', i = 1,..., N,
have an assumed (or ideal) probability density functions (p.d.f.’s) gi(z|9), z; € R™,
with respect to a o-finite measure p, ¢ is p-vector of parameters. 3

M-estimate <5 of vector ¢ is obtained from the observations (;, ¢ = 1,..., N, of
random variables (;, ¢ = 1,..., N, by means of a solution of the system of estimating
equations

N ~ A
Z wi(Civ ¢) = 07
i=1

where 1;(C;, ngS) is p-dimensional estimating function satisfying further condition
E@/Jz(zl,gb):(), Z:1,7N, (1)

E is expectation under the assumed p.d.f. [1]. Alternative (but no equivalent) way
of definning M-estimate is optimization, namely

A N -~ -
¢ = arg min ) pi(G, ¢),

¢ i=1

where p;(C, @) is a loss function [1]. We obtain the first way by choosing v;(z;, @)
proportional to the gradient of p;(z;, gzg)

Robust estimates have high quality not only in the assumed distribution, but in
the case of deviations from it. One form of deviation is defined by the contaminated
distribution such that the real p.d.f. of observations is determined by the mixture
model (1—¢)g;(zi|¢) +¢chi(z;), where 0 < & < 1 is an amount of contamination, h;(z;)
is a contamination p.d.f.

One of the major indicators of estimator’s robustness is the influence function
[8]. In our case, for M-estimator under certain regularity conditions, the influence
function for the ith observation take the form [5]

IF;i(z;,¢) = M~ "y(24, ),
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where o = (Y7, ..., )T,

N0
M:_z 7E¢<Zl’¢

=1

8 i\~
- Z/¢z 17 ga;-|—|¢) dp“

=

is non-singular p X p matrix.
Indicator of estimation badness can be written as square of the weighted Lo-norm
of the influence function [5]

N
M) = 3 [ 1T 0) W IE, (1 005 10) s 2

zlen
where s = (s1,...,sn5)7, si(zi|¢) > 0 is weight function, W = W(¢) is a symmetric

positive definite weight matrix of size p x p (under some conditions W can provide
invariance of Ay to one-to-one differentiable parameter transformation).
Optimal estimating function is a solution of minimization problem [5]:

Y7 = argmin A, (y)
under constraints (1) and has the form

9i(z|9)
“ o0 si(zil9)’

where C' = C(¢) is insignificant non-singular matrix, b, = b;(¢) is determined from
condition (1).

Also, indicator (2) can be interpreted in accordance with the model of the point
Bayesian contamination [18|.

Consider a version non-homogeneous point Bayesian contamination model (see
[14]). There is a series of samples with random point contamination. A random
contamination point in the ith observation has a p.d.f. x;(zi|¢), z; € R™, with respect
to measure p. The ith observation is the only one contaminated in all samples and has
a random contamination point 2, in the kth sample and an amount of contamination
equal to &;.

The asymptotic bias of the estimate under a small amount of contamination and
certain regularity conditions is B;(z};) ~ &;1F;(2;,1). The sum of the expected values
of Bl (2;,)WB;(2;;), i =1,..., N, approximately equal to

lngl(zl|¢) + b;

w:,z‘(ziv ¢) - (3)

xe() = 25 E, [IFT(ZHQ/})WIF@'(%’?/})]; (4)

where X = (x1,.--,xn)", € = (€1,...,en)", E,, is expection under the p.d.f. x;(zi|®).
This sum coincides with (2) for the weight function s;(z;|¢) = xi(zi|@).
Let

Xi(zl9) = 6; 7 (z]0)/1,4(0), (5)
where 7 > 0 is a parameter, L, ;(¢) = [, g7 "(2i|) dp, and
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ei = /L i(0)A,i(9),

where ¢ is a proportionality factor, A, ;(¢ URn 14y (z:]®) du} ”7. Then weight
function given by

si(zi0) = g; 7 (2:l0)Ari(9). (6)

Optimum estimating function (3) is

9. (zil9)

A (9) @)

03u000) = { L maalo) + .}
and corresponds to loss function

P%i@z‘, ¢) = _97(51‘¢)/A71(¢)

This loss function defines the MGDE with robustness parameter . Although, in
our opinion, it is more natural to associate this estimator with the pseudo-spherical
divergence (cf. |6, 9, 13|).

Distribution (5) has optimality properties from the point of view of information
theory [3, 16]. In regression problems the amount of contamination can be considered
as dependent on input variables (see also [6]).

If g, 7 (z]¢) is not integrable, then we can consider some sequence of integrable
functions 7. (2]¢), u = 1,2,..., converging to g, "(z]¢), the correspondyng se-
quence of integrals Y;,(¢) = [, 7iu(2i|¢)du, and sequence of amounts of con-

tamination €;, = c\/Ti77L(¢)A77i(q5). Then, under certain regularity conditions, the
weight (6) will be the limit of functions ef}uni,u(zﬂqzﬁ)/Ti’u(gb) = Aniu(zi|0) A i (9),
and indicator (4) will be the limit of sequence of integrals A;, ., (¢)), where 7, =
(nl,u(zi|¢>/T1ﬂL(¢>7 s 777N,7L(Zi|¢)/TN,U(¢))T= €y = (Elﬂw s vEN,U)T (See also [15])

Note that we can postulate a constant amount of contamination and multiply the
terms in sum (4) by the products L, ;(¢)A, ;(¢) as additional weights of observations.
Moreover, we obtain the estimating function (7), if we directly use weight (6) in the
square of the weighted Lo-norm of the influence function (2) without using model of
the point Bayesian contamination.

Choosing s;(zi|¢) = g "(zi|¢) and s;(z]¢) = xi(zi|d) (xi from (5)) we obtain
generalized radical estimators (GRE’s) [3, 12, 14, 15, 16], but, in order to distinguish
them, we will name the latter the Bayesian GRE (BGRE), since its weight function
is p.d.f.

The GRE and BGRE don’t have optimization formulation. Therefore, choosing
the estimate as one of the estimating equation solutions can be problematic. In this
case, a frequently used approach is to choose a suitable initial approximation with the
calculation of the estimate using a local solution method. This initial approximation
usually is a good (in some sense) estimate [3]. Such an estimate can be the MLE or
the MGDE.

An alternative is the minimum beta-divergence (or density power divergence)
estimator (MBDE) [11]. For non-homogeneous data, it is defined by the loss function

7]
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pi(Gr ) = / 0 o) d— (14 77) g7 (G,
J

The remarkable fact is that the MBDE applied to the qualitative response regres-
sion model is a version of the Bianco and Yohai estimator (cf. |2, 3]).

Note that the MGDE, GRE, and BGRE are actually the same for homogeneous
data; for this case, optimality properties were discussed earlier (see, for example,
[15, 16]).

2 Robust estimation of the ordered probit model

We will apply the above theory to regression with a discrete output variable (re-
sponse), in this case p is counting measure.

Let the assumed distribution of a discrete random variable (; under the 7th ob-
servation be given by a set of probabilities

P{CZ:]|[[‘Z,¢}:g(]|$“¢),lzl,,N,]:]_,,J,

where z; is a vector of deterministic input variables.

For modeling dependence of the ordinal response on input variables the following
cumulative link model is often used. Consider latent variable ¢/ under the ith obser-
vation that satisfies the regression model (f = F(z;)a + e;, where F(x;) is a vector
of nonconstant regressors (functions of input variables), « is a vector of parameters,
e; is a random error with a cumulative distribution function G. When [,_; < (f < [;,
where —oc0 =y < [} < --- < lj_1 < l; = 400, the response (; takes the value j.
Corresponding probabilities are

9(jlzi, ¢) = G (l; — F(xi)a) — G (lj-1 — F(z)a).

If errors have standard normal distribution, we obtain the ordered probit model. The

vector of estimated parameters is ¢ = (Iy,...,l;_1,a")T.
Consider the following model: J = 3, single input variable (also it is regressor)
takes values in N = 301 nodes of the uniform grid on the segment X = [—1.5,1.5],

¢ =(—1.51.5,28)T.

The study of influence functions for the MGDE, MBDE, GRE, and BGRE shows
that under small values ~ all estimates are close. The MBDE differs from other
estimators in that the influence of observations with values j = 1 and j = 3 increases
in parts of X with small probabilities of these values as v increases (all investigated
in [3]| estimators had similar properties), and in the case of v > 0.5 such difference is
too noticeable. In the case of 7 < 1 other estimators are very close. In the case of
v > 1 the BGRE differs from other estimators in that the influence of observations
with value j = 2 increases in parts of X with small probabilities of this value as
v increases. For this reason in the case of v > 1.3 the BGRE seems too different
from the other three estimators. This is due to the specificity of the BGRE weight
function. The GRE and MGDE are close in the wide range of v values. Thus, the
MGDE seems to be the most preferable estimator.
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Results are illustrated by Figure 1 where for the case of v = 1.5 dependences of the
element of the influence function corresponding to « on input variable are presented.
Here and below, dependences for different values j are designated by lines of different
styles: solid for j = 1, dotted for j = 2, dashed for j = 3. For comparing of influence
functions it is convenient to use dependences g(j|x, ¢); they are represented in Figure
2 by gray lines.

v eTSS

-0.12

-0.07 ) -0.16

Figure 1: Influence functions

To evaluate the applicability of the MGDE, a small numerical experiment was
performed using a simulated dataset. The MLE and MGDE were compared under
the same model as above. Real distribution was homogeneous contaminated, contam-
ination distribution was uniform, ¢ = 0.1. And the robustness parameter was v = 1
(there is some analogy with the estimator of minimum variance sensitivity [17]). The
results of the MLE are gfg = (—0.9808874,0.7818217,1.615199)". And corresponding
results of the MGDE are ¢ = (—1.444982,1.253272,2.317606)".

Figure 2 shows us estimated dependences of probabilities on the input variable;
they are represented by black lines. The left panel corresponds to the MLE, the right
panel corresponds to the MGDE. As a results of the experiment, the MGDE is less
affected by contamination than the MLE.
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Figure 2: Ideal (gray lines) and estimated (black lines) probabilities
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Abstract

The article studies the asymptotic properties of an adaptive model selection
procedure for estimation an unknown drift coefficient in diffusion processes. It
is shown that the procedure is asymptotically efficient, i.e. it is established
that the asymptotic quadratic risk of the procedure coincides with the Pinsker
constant, which provides an exact lower bound of the quadratic risk for all
possible estimates.

Keywords: improved estimation, stochastic diffusion process, mean-square
accuracy, oracle inequalities, Pinsker constant, asymptotic efficiency.

Introduction

Consider the problem of asymptotically efficient estimation of the unknown drift coef-
ficient in diffusion process, described by the following stochastic differential equation:

dy, = S(y,)dt +dw,, 0<t<T), (1)

where (w,);>0 is a scalar standard Wiener process, the initial value y, is some given
constant, and S(-) is an unknown function. Note that such models are widely used
in financial markets, radio-physics, etc. [1]. The problem is to estimate the function
S(x), x € [a,b], from the observations (y:)o<t<r. The main goal of this paper to
prove the asymptotic efficiency property of the improved model selection procedure
proposed in [2]| for estimating the function S in (1). The concept of asymptotic
efficiency is associated with the optimal rate of convergence of the minimax risk, i.e.
An important issue in the optimality results is the study of the exact asymptotic
of the minimax risk. The problem of asymptotic non-parametric estimation in the
model of heteroscedastic regression was studied by Efroimovich [3] and Pinsker [4].
To prove the asymptotic efficiency of the procedure, it is necessary to show that
its asymptotic quadratic risk coincides with the lower bound defined by the Pinsker
constant [5, 6]. In this paper, the problem is solved using an approach based on the
model selection methods and sharp oracle inequalities. Recall that the model selection
method appeared in the pioneering works of Akaike [7] and Mallows [8], in which
proposed to introduce a penalization term in the criteria of maximum likelihood.
Further, Barron, Birgé and Massart |9], Massart [10| and Kneip [11]| developed this
method to obtain non-asymptotic oracle inequalities in non-parametric regression
models with Gaussian noise in discrete time. Unfortunately, this method cannot be
applied in our case to prove an asymptotic efficiency property, since the coefficient
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in main term of the resulting oracle inequalities is greater then one. For this reason,
in this paper we will use the method proposed in [12]. This paper deals with the
estimating the unknown function S(z), a < x < b, in the sense of the mean square
risk

b
R(3;.5) = Bgll8r— 8|2, |IS]P = / P(2)de, @)

where §T is some estimate of S by observations (y,)o<;<p, @ < b are some real
numbers. Here Eg is the expectation with respect to the distribution Pg of the
random process (v, )o<t<r given the drift function S. To obtain a reliable estimator
of function S, it is necessary that the process (1) has the ergodicity property. For
this we suppose that unknown function S belongs to the following functional class:

Sy ={S € Lip,(R) : |S(N)| < L; V|jz| > N, 3 5(z) € C(R)

such that — L < inf S(x) < sup S(z) < —1/L}, (3)
|z|>N |z|>N

where L > 1, N > |a| + |b], S(z)— derivative S(z). For estimating the drift S
in (1) Galtchouk and Pergamenshchikov [13] have proposed to apply the sequential
approach. First step is a passage to a discrete time regression model by making use
of the truncated sequential procedure introduced in [5|. To this end, at any point
x;, of an equidistant partition of the interval [a,b], we define a sequential procedure
(7, S;) with a stopping rule 7, and an estimators S;. For Y, = S} with 1 <k < n,

we come to the regression equation on some set I' C (supSEZLN P,(I'¢) < II,,

where lim,_, 7™ 1l = 0 for any m > 0):
Ve =S(xp) + G- (4)

Here, in contrast with the classical regression model, the noise sequence ((;);<x<,
has a complicated structure, namely,

kaakfk‘l‘ék’ (5)

where (0);<p<, 1S a sequence of some observed random variables, (0,);<<, IS a
sequence of bounded random variables and (&,),<.<,, is a sequence of i.i.d. random
variables AV(0, 1) which are independent of (¢},);<,.<,-

In order to estimate the function S in model (4) we make use of the model selection
method based on improved weighted least squares estimates proposed [18]. Improved
estimation method in nonparametric regression models has been developed in |15, 16,
17].

1 Oracle inequalities

To estimate the unknown function in model (4), we use improved weighted least
squares estimates, defined in [2],

Si(w) =Y NGO, b)) 1, 1<1<n, (6)
j=1
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where (¢,);<1 is an orthonormal functions system, the vector of weight coefficients
A = (A1, ..., An) belongs some finite set A from [0, 1]",

d

* C(d) ) 32 0 ~ b—a —
O = (1 - 1o, ’1{1<j<d}> T N s ZQM, 0;n = - ZY@j(xl).
=1

n| j=1

Here the coefficient d = n/Inn, 0 < € < 1, ¢(d) = d/n. Now we define the estimate
for S in (1). We set for any a <z <b

Sj\(l’) = S:<x1)1{a§x§x1} + Z S:(xl)l{a:lfl<x§ml} : (7)

=2

In order to obtain a good estimator, we have to write a rule to choose a weight vector
A € Ain (7). It is obvious, that the best way is to minimize the empirical squared
error with respect to A:

Err,(A) = ||S; — S|I? — min .

Making use of (7) and the Fourier transformation of S imply

Err,( ZA2 )62 — QZ/\ MM+Z@

Since the coefficient ;. is unknown, we need to replace the term 67 6, by some its
estimator which we choose as

)1 jn ]’I'L n Jn n

. b—a ) b—a «—
19 =6, 0 — s;, with s. = - Zofqﬁ?(a:l).

One has to pay a penalty for this substitution in the empirical squared error. Finally,
we define the cost function of the form

N =D N3G -2 Z XG) V., + pP(N),
=1
where the penalty term is defined as
b—a .y, .
=—> N()s
j=1

and 0 < p < 1 is some positive constant which will be chosen later. We set

N = argmin, _, J,(\)
and define an estimator of S of the form (7):
S*(x) = S5(z) for a<x<bh. (8)

Now we obtain the non asymptotic upper bound for the quadratical risk of the esti-
mator (8).
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Theorem 1. Let A C [0,1]" be any finite set such that the first d < n components
of the weight vector \ are equal to 1. Then, for any n > 3 and 0 < p < 1/6, the
estimator (8) satisfies the following oracle inequality

1+6p

Bl5" — S12 < 1 pin B3, — 2 + 22

where lim, o, ¥, (p)/n = 0.

Now we consider the estimation problem (1) via model (4). We apply the estimat-
ing procedure (8) with special weight set introduced in [5] to the regression scheme
(4). Denoting S* = S} we set

S* =S8 with @ =argmin _, Ju(),).
Theorem 2. Assume that S € ¥} y and the number of the points n = n(T') in the
model (4) . Then the procedure S* satisfies, for any T > 32, the following inequality

(1+p)*(1+6p) . R(S",S)+ BT_@’

R(S*,9) <
(5%,8) < 1—6p acA, n

where limy_,oo By (p)/n(T) =

2 Asymptotic efficiency

In order to study the asymptotic efficiency we define the following functional Sobolev
ball

={f € Ci(la,b]) Z IFOU? < r}, (9)

where r > 0 and k£ > 1 are some unknown parameters, Cf([a,b]) is the space of k
times differentiable functions f : R — R such that

fO(x)=0, for 0<i<k—1 and z¢ [a,b].

We will call such functions periodic on the interval [a,b]. Let S, be a fixed k+1 times
continuously differentiable function from ¥ . We set

Gk,r = {S = SO + f7 f € W]Sﬂn} : (10)

In order to formulate our asymptotic results we define the following normalizing

coefficient
J(S)k ) 2% /(2k+1)

2(8) = (1 + 2K)r) /2D ( (1)

m(k+1)
i J(S) = /b de 4s(2) = exp{2 [} S(z)dz}
o gs(x)y fj;o exp{2 [/ S (z)dz}dy
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It is well known that for any S € ©, , the optimal rate of convergence is T'~2/(2k+1)
(see, for example, [18]). On the basis of the model selection procedure (8) in the next
section we construct the adaptive procedure S* for which we obtain the following
asymptotic upper bound for the quadratic risk.

Theorem 3. The quadratic risk (2) for the estimating procedure S* has the following
asymptotic upper bound

R(S*, S
lim sup T2/ kD gup R(S", 5) <1. (12)
T—o0 S€EO . ’Y(S)
Moreover, we show that this upper bound is sharp in the following sense.

Theorem 4. For any estimator S of S measurable with respect to Fr.,

lim inf inf 7%/CFD qup R(5,9) >1, (13)
T=eo 3 S€O v(S)

where FY. is a o—field generated by observations (y;)o<t<r-

Remark 1. It should be noted that the choice of the functional class © . in the form
of (10) is related to the ergodicity of the process (1). This property is provided when
the drift derivative is negative on the outside of a finite interval. The last excludes
the choice of periodic functions as a class of admissible drifts. For this reason, we
use the Sobolev ball of periodic functions with a non periodic center Sy as a class of
admassible drift functions.

Remark 2. Note that the inequalities (14) and (13) imply that the function (11) is
the Pinsker constant in this case (cf. [4]).

Corollary 1. From Theorems 2 and 3 it follows that the procedure for choosing a
model S*, defined in (8), is asymptotically efficient, i.e.

lim T25/@E+D) g R(S*,S)

=1. 14
=00 50, ., v(S) 14

3 Numerical simulations

We suppose that in the model (1)
S(x) = 2?sin(27z) + 2%(1 — x) cos(4nx).

For weight coefficients we choose n =T,

— 1 1
k* =100 + IHTL, €= 1_7 m = 1H2 n, Wq= 100 + (A,Btn) 28+1

nn

The empirical risk:
1000

2
R(S",5) mOOZH - 81

Table 1 shows the results of the behavior of empirical mean-square risks for the
proposed estimation procedure (8).
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Table 1: Empirical quadratic asymptotic risks

n 501 | 1001 | 2001 | 10001
Tk DS | 47257 | 2.0856 | 1.0072 | 0.9012

~

From Table 1 it is clear that with an increase in the number of observations n,
the normalized empirical mean-square risks tend to unity, which confirm numerically
the Corollary 1.

The figures show the behavior of observation processes (y:)o<t<1, function S (red
line), and improved estimate S* (green line):

M .M " m
NI il

Figure 1: n=501

1

Figure 2: n=1001
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Figure 3: n=10001
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Abstract

When solving real-world problems, there are often processes that take place
not in the area defined by the vectors of input and output variables, but in a
sub-area. The article describes the following types of processes: H-processes,
K-processes.

Keywords: Discrete-continuous systems, H-processes, K-processes.

Introdution

The controlled processes that occur continuously in time and the control variables
that are carried out at discrete points in time traditionally refers to the class of
discrete-continuous processes. In particular, A.A. Feldbaum in the first works on the
theory of dual control in the monograph |2| considered the following system.

| I
X 5 gs
B g | Regulator Us JG Vs N Object Xs N
¥s lhs
H e

Figure 1: Block diagram of the discrete-continuous control system

In Figure 1, the following symbols are used: x} is setting effect, that through the
channel H* is mixed with the noise A and enters as a regulator yI; zs is an output
of the object, that passing through channel H and mixing with the noise h, in the
form of y, also enters the regulator; u, is a control action that, passing through the
channel G and mixing with the g, interference, comes in the form of v, to the object
that is affected by the interference &;; s is discrete time. The object was represented
as rs = av,, i.e., the object was parameterized with the accuracy of the parameter
«, and the equations of communication channels were assumed as additive ones with
normally distributed noise.

When identifying dynamic processes, a situation often arises when the measure-
ment of output variables is carried out in considerable time intervals. Moreover, the
technology of these variables measuring is such that the time spent on it can be quite
significant. As a result, the total time exceeds the object constant. Ultimately, it
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leads to the fact that we are forced to consider the object as inertial with delay. Such
a process on the appropriate channel of the object should be presented in the form

z(t) = flu(t —7),&(1)), (1)
where x(t) is the output variable of the object; u(t — 7) is input variable, here 7 is
delay; £ is random perturbation influencing the object; (t) is continuous time period.
The measurement channels with interferences h*, h”, and measurement discrete-
ness AT >> At are given in Figure 1. In principle, the object delay 7 may be absent
and then we deal with a normal dynamic object, but due to the large value of AT. In
this case we are to consider it as a static delay determined by the measurement time
duration of the variable x(t). Note that the time constant of the object is much less
than AT, i.e., AT >> At . Thus, a sample of observations in a discrete form can be
represented as follows: ult],z[t +n + m| , where t = 1,2,...,s; n is delay discrete-
ness, n = 7/At, m is delay caused by the duration of the monitoring, m = AT /At
. Carrying out the implementation shift in cycles, a sample of observations can be
rewritten as follows: {uy,z;,t = 1, s} without reducing the generality, reduce the task
to identification of a static object.

Consider v = (ul,...,uz) € Qu) C R* x € Q(z) C R'. Generally speaking,
each component of the vector u; € [a;;b;],i = 1,k, and = € [c;d]. In real processes
investigation, values of the coefficients {a;, b;, cd},i = 1,k, are always known. In
technological processes, values of these coefficients are controlled by the technological
regulations (by a technological map). Further, we will take these intervals as single
ones without breaking the generality, then 2(u) is a single hypercube, and Q(x) =
[0;1], 1. e, z € [0;1].

Usually the identification problem of the static object is reduced to parametric
identification [3, 3, 4], that consists of two main stages: selection (definition) of the
parametric model (1) in the form & = f(u, «), where « is a parameter vector, and the
subsequent estimation of the parameters o based on the incoming sample elements
(uy, z1), (ug, x2), ..., (us, Ts), i.e., getting the estimation ag. In this case, an adaptive
model will be as follows:

A~

b= flu, o) (2)

If a row is taken as a function f(u, )

&= flu,a) = Z ajp;(u), (3)

where ¢;(u),j = 1, N is a system of linearly independent functions of a vector
argument u = (ug,...,ur) € Q(u), then, according to the method of stochastic
approximations [3], we obtain

N
Cl/i = ai—l + ’Xi(xs - Zai—lgpl(us»gpl(uS)’l =1,....N, (4)

Jj=1

where 7., 1 = 1, N are Robbins — Monroe coefficients.
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This is the general scheme for solving parametric identification problems. Note
that the weakness here is a choice of the parametric structure of the model. If a
rather serious mistake has been made at the first stage, then the resulting model is
unlikely to be satisfactory. Note that the models of the form (2) are hypersurfaces in
the object input-output variable region: (u,z) € Q(u,x) C R¥.

Let us analyze two important circumstances that arise while modeling real pro-
cesses. The first of these is that a sample size s {x;,u;,i = 1,s} is often rather
insufficient relative to the dimension of the vector u = (uq, ..., u;) € Q(u), as math-
ematical statistics requires. For example, in practice we often have the following
situation when 20 ...30, and s = 900 ...1 000, and therefore a satisfactory solution
to the problem of identification cannot be obtained. The second circumstance is that
if, according to the available data, a model of the type (2) has been developed, and
then at u € Q(u) C R* we can get the estimation z, ¢ Q(z), i.e., the estimation of x
outside the process regulations and even physically unrealizable values x(u). Both of
these circumstances can be explained taking into account the following considerations.

So, the investigated process without loss of generality proceeds in a single cube
Qu, ) = Quy,us, ) C R3 If we omit the influence of random perturbations &(t)
and measurement mistakes g, ug, , i.e., the absence of h* h* and £ (Figure 1) then,
for simplicity, the process takes place in the space Q (u, z) C Q(u, z), as follows from
the model of the form (2), which is a surface in the space Q(u, z) (Figure 2).
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Figure 2: Scheme of the H-process

The actual values that process variables will take may be known to the researcher,
for example, from process regulations. Thus, a real process takes place in a certain
region Q(uy,usz, ), in our example, in a unit cube. In the case of the stochastic
dependence of the input variables, a process does not proceed in the entire region
Q(uy,uz, ), but only in its subspace Q (u1,us, ) C Q(uy,uz, ) which is always
unknown. And since we do not know anything about the subspace Q(u,x), we
cannot say for sure that the investigated object has this feature. This is the main
problem of modeling this kind of processes, which is called H-processes. When one
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uses models of the form (2) for individual values of input variables of the process
u € Qu) C R™, for which a relationship u ¢ Qf holds, we can get estimation
7y ¢ QO (u,z) (point B in Figure 2) or even #, ¢ Q(u,x) (point C in Figure 2). In
this case, the identification results will be unsatisfactory.

If the investigated process has a tube structure, then models (2) and (3) need to
be corrected as follow:

Ts(u) = I@(u)f(u’ as), (5)

or N
is(w) = L(w) Y ae0s(u), (6)
j=1
where the indicator I5(u) is as follows:

: H
I(u) = {(1) e 1)
, ifu ¢ Q7 (u)

Models (5) and (6) will be called H-models.

Generally speaking, it should be noted that the space Q% (u), is unknown and
only a sample {z;,u;,i = 1, s} is known. If an indicator is equal to zero, then the
estimation #(u) cannot be calculated, i.e., with such values of component vector
u € Q(u) the process cannot proceed. If an indicator I4(u) at any value u € Q(u)
is equal to one, then a model (5) coincides with model (2), and model (6) coincides
with model (3).

As the estimation of the indicator I(u), it is possible to take the following ap-
proximation [5]:

Is(u) = sgn(sc,) ™ Z ey (ws(u) — 1)) H (! (W —u)), (8)

where

a blur parameter c¢; and the bell-shaped function ®(-) satisfy the convergence
conditions given in [5].

Thus, at a known value u = u’ € Q(u), first it is necessary to build the estimation
zs(u = u') using the formula (9), and then it is necessary to calculate the indicator
and only then to use the models (5) or (6) if the indicator turns out to be equal to
zero. If the indicator is equal to one, then this means that although u € Q(u) but
u ¢ QH(u), i.e., vector components u = u' = (u}, ..., u},) are defined incorrectly and
the actual flowing tube process does not correspond to the set of specified values of
the vector component u = u’. Tt is natural to assume that the identification process of
the object in a parametric formulation should also be carried out taking into account

246



Applied Methods of Statistical Analysis

the tube structure of the object. In conclusion, we note that the nature of H-processes
differs from fractal [6] and attractors.

If we interpret H-processes in a more general case as a function of several variables,
then the variability of this function over time can be shown in the following chain of
ratios operating in time:

The diagram of a dynamic object and the control of input and output variables
is given below.

The input of the investigated process receives a vector of input variables u(t) =
(ui(t),...u,(t)) € Q(u) C R™, the a vector of input variables gives
z(t) = (x1(t),...,xn(t)) € Q) C R™, &(t) is the output of the model. Both vari-
ables are controlled at discrete instants of time through the interval At. In the
process of the object investigation, a sample of observations z; = (21, ..., ZTim), u; =
(Wi1, ..., Uin),% = 1,5 (where s is a training sample) can be obtained £(t) is a vector
of random impacts operating on an object whose expectation is equal to zero, and
the dispersion is limited. The random noises h"(¢) and operating in the measurement
channels also have zero expectation and limited dispersion.

The peculiarity of identifying a multidimensional object is that the investigated
process is described by a system of implicit stochastic equations.

Fi(u(t = 7),2(t),6(t) =0,j =Tm (10)

where Fj(-) are unknown, 7 is a delay along the various channels of the multidi-
mensional system. Here 7 means a delay known for all channels of the process under
study. Further, 7 will be omitted for reasons of simplicity. Objects will be treated as
static. In subsequent models one can easily achieve it by the corresponding shift of the
elements of the sample of observations z; = (Zy1, ..., Tim), Ui = (Ui1, -+ ., Uin), 5 = 1, 5.
The identification problem is to build a model of the system presented in Figure 3 with
the presence of a priori information and the training sample z; = (21, ..., Tim), u; =
(Wit, -+, Uin), % = 1,5. When identifying multidimensional inertialess systems, the
representation of the object model is traditionally used in the form:

z; = fi(ur,ug, ..., up,0),j =1,m (11)

where the parametric structure of the object is found from the available a priori
information, and « is a vector of parameters estimated by the existing or incoming
training sample.

In the case of a stochastic components dependence of the output variables of an
object, its model in the parametric version is:

Ej(u,z,0) =0, =1,m (12)

From practical considerations, it is natural to assume that at
z(t) = (1(t), ..., zm(t)) € Qx) C R™ and u(t) = (ur(t), ..., un(t)) € Qu) C R" a
system has a unique root.

Due to the lack of a priori information, the type of the functions FJ(),j =1m
cannot be determined with accuracy to the parameters a. It leads to the necessity
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to consider the investigated process as a T-process, and its model as a T-model
respectively.

In general, the investigated multidimensional system that implements the T-
process can be represented in Figure 3.

uy o

>
U, l X,
_—
. .

> > >

Figure 3: Multidimensional object

In the figure, the following symbols are taken: u = (uq, ..., u,) is the n-dimensional
vector of input variables, © = (z1,...,2,,) is the m-dimensional vector of the output
variables. Through various channels of the investigated process, the dependence of
the j-th component of the vector u can be represented as a dependence on certain com-
ponents of the vector u: <> = f;(u=9>),j = (1,m). Each j-th channel depends on
several components of the vector u, for example u=°> = (uy, us, ug) where ©<°> means
a compound vector. The vector components u : uy, us are not included in its struc-
ture due to the reasons of the nature of the investigated process, or <% = (1, z3)
is also a compound vector. The vertical arrows in Figure 3 for the components of the
vector x(t) illustrate their stochastic dependence, which is unknown. In this case, the
T-model of such a process should be considered as a system:

Fy(u7,2%77) = 0,j = T,m (13)

As a result of measuring input and output variables, a sample z; = (21, . .., Tim),
w; = (Us - ., Uin), 5 = (1,5), used to develop an adaptive model of this object, can be
obtained. In this case it is necessary to solve a system of the type (13) for the given
values of input impacts u; = u),us = u),...,u, = u,,. As a result, we can obtain
estimates of the components of the vector x for the corresponding values of the input
impact.

K-models. The diagram that takes into account the reality while investigating
some technological processes is given below.

Consider the problem of building a model of a dynamic process, shown in Figure
4. Note that the time intervals AT and T significantly exceed a constant of the object
time along all other channels. Without breaking the generality, one can assume that
the control of variables u(t), u(t), w(t), z(t) is carried out in time interval At, At <<
AT << T. Consequently, the processes for channels q(t) and z(t) can be assigned to
the class of inertialess with a delay, and through the channels w(¢) and z(t) can be
assigned to the dynamic class, since the control of variables u(t), u(t),w(t) is carried
out in an interval At that is significantly smaller than the constant of the object time
through the corresponding channels. In this case, a rather general K-model can be
accepted as
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Figure 4: Block diagram of the interrelated stochastic process

fz( <z>( — 1), (<> (t—7),w <i> (t —7), £<i> ®), dw<i>(t)’

d2 <1>(t) dt

T’ .. ) = O 7= ,k'

filus>(t T) Pt = 1), W (= 1), 25 (8), ¢ ()27 (1), B)I; = 0,
i=k+1,1,

S (= 7). (1 = ) (= 1), (0,0 (05 (0, W) =0,
i =1+1m,

(14)

Let us explain the symbols of the vector <% (¢), which is a compound vector, in
particular x<*>(t) = (x1(t), 23(t)), 22> (t) = (22(t), 3(t), z4(t)) , and etc. This vec-
tor is not composed of all the components of the vector , but of their part, due to the
nature of the investigated process. Other variables u~<" (t —7), u<* (t —7),w<" (t —7)
are also the corresponding compound vectors. Here it is important to pay attention
to the fact that various compound vectors are formed exclusively from practical con-
siderations when analyzing various real processes.

The first group of equations system (14) is found on the basis of the known
fundamental laws that correspond to the process under study with an accuracy of
parameters o. The second group of equations of the object is obtained on the basis
of the available prior information up to the vector of parameters 5. The third group
of equations S, is not known up to parameters, but a class of functions describing the
relationship between input-output and intermediate variables is determined on the
basis of a priori information. A symbol W > appearing here is a combination of all
the i-th observations of variables with volume s:

W5<i> _ ( <z>’ M <z‘>7 l,<i>’ q<z‘>Z<i>)’@' = m (15)

The values estimation of the components of the vectors of output variables
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x(t),q(t), z(t) can be found as a result of solving the system of equations (14) with
the fixed values u(t), u(t), w(t).

K-models are fundamentally different from those generally accepted first of all
because they take into account all the available variables and interrelations between
them in a situation where the discreteness of control of the latter is significantly
different, as are the levels of a priori information about the various channels of the
process being investigated. Thus, K-models are an organic synthesis that describes
the process under investigation or a system of interconnected objects in all their
diversity.

Thus, various processes occurring in real-life processes are considered. The fol-
lowing notion should be noted. H-T-processes appear as a result of the real processes
functioning. Tt generates H-T-models. And K-models are obtained as a result of a
lack of a priori information through various channels and they are based on the triad:
fundamental laws, parametric equations obtained as a result of engineering research
and some dependencies due to the lack of a priori information when only qualitative
properties are known. It should also be noted that the exact mathematical formula-
tion of the control problem in Figure 1, taken from the monograph written by A.A.
Feldbaum, is a removed a bit from the specific operating systems. The representation
of the object in Figure 4 does not make possible to get a similar mathematical formu-
lation of the problem due to the lack of a priori information through various channels,
and it means that a more adequate formulation of the control problem reflecting the
reality is needed.
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Abstract

In the formulation of the problem of identification and control, the impor-
tance of the available volume of a priori information about the process under
study. A priori information is classified by the levels of a priori information
depending on the volume. The non-parametric level of a priori information has
been reviewed which implies that there is no data on the parametric structure
of the process under study.

Keywords: priori information, H-processes, changing space dimension.

Introduction

A. Feldbaum [2] was one of the first scientists who paid attention to systems with
various information and, accordingly, to the levels of a priori information. A.A.
Feldbaum identified some levels of a priori information in his known book. They are
as follows:

e systems with complete information;

e systems with maximum but incomplete information;
e systems with incomplete information;

e systems with active accumulation of information.

Later, Ya.Z. Tsypkin considered systems with parametric uncertainty. That is,
it is a case when there is enough information a priori to determine the parametric
structure of the object under investigation. He considers in [3] various problems in
the theory of adaptive systems from these points of view. For example, an object
model can be represented as a function of input actions.

x(t) = f(i, ), (1)

where x is the object’s output, and @ are input variables, t is time. If f(*) is known
up to parameters, then (1) is as follows:

CB(t) = f(ﬁv a, t)’ (2)

where @ is a parameter vector.
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This path is connected directly with approximations of the projection type. For us,
the presence of an approximation of a local character is essential. A classic example
of such an approximation of a function is the Lagrange interpolation polynomial

Denote a training sample (implementation of observations) as (x;,;),i = 1, s. In
this case, the function approximating (1), in particular, the regression function from
observations, can be represented as follows:

x(t) = f(d,t, 25, u5), (3)

where 7y, uy are time vectors. @y = (x1, T, ..., Ty), Us = (U1, Usg, ..., Us)-

As Y.Z. Tsypkin noted several times, a priori information is a tool for mathemat-
ical formulation of the problem, and current information is a tool for its solving.

We consider the levels of a priori information corresponding to the levels of para-
metric and non-parametric uncertainty in more detail.

Parametric uncertainty means the fact that a priori information is sufficient to
determine reasonably the equation of the process under study with an accuracy of
the parameter vector. The next steps in this operation are to estimate these pa-
rameters based on the current available information. This method is described in
numerous monographs, in particular [3]. The application of the stochastic approx-
imation method is described in some detail in the book written by Ya.Z. Tsypkin
[3]. In particular, according to this book, algorithms of stochastic approximations
are used to solve various problems of the adaptive systems theory [3].

Non-parametric uncertainty means the fact that a priori information is insufficient
for a reasonable determination of the parametric equation of the process under inves-
tigation with an accuracy of the parameter vector when only its qualitative properties
are known. For dynamic processes these features are linearity or non-linearity class;
for inertialess systems with delay these features are unambiguous characteristics of
different channels of an object or ambiguity. In this case, the objects can be described
by the equations: x(t) = f(u,t, zs,us), or F(Z(t),u(t),t, 75, us) = 0, where {(.), F(.)
are unknown.

In general, the investigated multidimensional system can be represented in Figure

li (t)
X,

1,
u,

Yy.v
A\ 4

v

L ——
Hy —

Figure 1: Multidimensional object
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In the figure, the following designations are used: @ = (uq, ..., u,) is n-dimensional
vector of input controlled variables, @ = (u1, ..., ) l-dimensional vector of unman-
aged input variables, but controlled, ¥ = (x1,...,x,,) is m-dimensional vector of

output variables.

Each component of the output variable vector can be represented using compound
vectors.

Let’s explain a term "a compound vector". It is a vector composed of some com-
ponents of the corresponding input vectors. For example, the components of the
vector of input variables v(t)(Figure 1) may have the form v} = (ul, u,u?),v? =
(u?,u}, put, ) and ete. The components of the compound vectors are directly depen-
dent on the specifics of the process under investigation, the availability of a priori
information about it, its characteristics, properties, etc.

The formation of compound vectors is carried out on the basis of the available
a prior information. If it is absent, then the compound vector combines all the
components of the corresponding variables.

A lot of really occurring processes in technologies and nature reveal the follow-
ing feature: components of the vector of input and output variables turn out to
be stochastically dependent (Figure 1).So, in particular, if the input variables of a
multidimensional system are stochastically dependent, then the process under inves-
tigation takes place in a subregion of the “tube” structure. A frequent variant of such
a structure is shown in Figure 2.

X Y-
. e QF (uy.uy ,x)

Q(uy,u,,x) Q(u,,u, )

Figure 2: Process with a "tube" structure

In Figure 2, the following designations are used: (uq, ug, z) is a region of the pro-
cess without taking into account the stochastic dependence between the components
of the vector of input variables; Q (u1, uy, x) is a region of the process taking into
account the stochastic dependence between the components of the vector of input
variables.

Such processes are called H-processes.

It is natural to assume that the identifying process of an object in a parametric
formulation should also be carried out taking into account the tube structure of the
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object. In conclusion, we note that the nature H-processes are different from fractals
and attractors.

If we interpret H-processes in a more general case as a function of several variables,
then the variability of this function over time can be shown in the following chain of
ratios operating in time:

(2 = f(t,uy,ug,us, uy, us) — T1;

x = f(t,ug,us, ug, uy, us) — To;

x = f(t, 1, u, us, uyg, us) — Ts;

r=f(t, ,ug, ug,y,us, ;) — Ty )
x = f(t, 0, uy, us, ty, us, ug) — Tk;

x = f(t,ug,ug, s, 101, us, ug) — Th;

r = f(t,u,ug, ', 1., us,us) — I7;

(7 = f(t,u,uz, ,,us,ug, ) —Ts.

Further the explanation of our designations is given. The darkest color (u;) in-
dicates the variables that have the strongest effect on x (possibly, functional depen-
dence). The less obscure designation (u) indicates a weaker influence of the variable
on x (perhaps, a stochastic dependence), and the variables and wu; have a still
weaker effect on x.

Thus, in actual H-processes, the influence of variable values changes significantly:
some variables may lose their value, some variables may first lose value and then
restore it, and some variables may appear for the first time, such as ug, u7.

The case when the components of the vector are stochastically related isimportant
from the practical point of view. Then the dependency z(u) can be described by a
system of implicit functions of the following type:

F(Z,d@) =0 (5)

In this case, a system (4) can be represented as follows:

(F(t,2,u1, 02, U3, us, us) = 0 — T;

F(t,z,uy,us, us, ug, us) =0 — To;

F(t, 2,0, ug, uz, g, us) = 0 — Ts;

F(t,z, ug,us, s, us,us) =0—"Ty; -
F(t,x, 1, ug, us, g, us, ug) =0 — Tg;

F(t,z,uy, ug, s, 1, us, ug) = 0 — Tg;

F(t,z,uy,ug, 0, us,ug) =0 — T

(F(t,z,u1,uz, , ,us,ue, 1) =0—Ts.

Let us examine Figure 1 from the point of view of the availability of a priori
information, both parametric and non-parametric. Often a situation arises when,
through some channels of a multidimensional object, its parametric structure can
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be determined. And through other channels an investigator is under non-parametric
uncertainty, that is, under conditions where the parametric structure cannot be de-
termined due to lack of a priori information. Only some qualitative properties of the
process under investigation are known. In this regard, a priori information is applied
to both parametric and non-parametric levels of uncertainty. In such a situation, the
development of the model is significantly different from the traditional approaches to
the theory of identification.

Let us consider a grinding process of a specific product, a relatively typical for
many industries. We mean grinding the clinker in three-chamber mills for dry grinding
(the clinker is granules obtained as a result of burning raw mix, grinding which leads
to the production of cement.

A dry grinding mill (Figure 3) is a cylindrical rotating drum, divided by grid
partitions into three chambers loaded with grinding bodies: chamber I contains fairly
large metal balls, chamber II contains smaller balls, chamber III contains cylinders
(metal cylinders small size). The clinker entering the mill is crushed in chambers I,
IT, TIT and it is converted into cement. Thus, from a technological point of view, the
entrance of the mill is clinker loading, and the output is cement.

u(z) A)
) I i ool

V4
At Ar | ofr) ML d

S &l @l

Figure 3: Scheme of the ball three-chamber mill

The following designations are introduced in Figure 3 p(t) is uncontrolled input
variable (grindability of the clinker); w(¢) is input variable controlled with a random
error (load / number of the clinker); w(t) is noise in the first chamber, monitored by
induction sensor A in an interval of time Atf. It is used as an output signal of the
grinding process in current control systems; q(t) is output of the mill (a technological
parameter "fineness of grinding"), measured after an interval of time AT >> At;z(t)
- the main indicator of the cement quality is the activity (strength of the cement
beam under compression in 28 days after its mixing), monitored over a period of
time 7' >> AT >> At. The object time constant is about 5-7 minutes, u(t) and
w(t) in local analog control systems are monitored continuously, and it is discrete in
digital control systems in an interval of time At (can be measured in a few seconds).

The control of the output variables ¢(t), z(t) is carried out in the laboratory
according to the technology regulated by the standard, with AT = 2 hours and
T = 28 days. Note that q(t) in this case is a technological indicator of the grinding
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process, and z(t) is the main indicator of the quality (grade) of cement (cement
activity), which depends not only on the refinement of grinding ¢(t), but also on the
performance of previous technological conversions: raw mix preparation, grinding,
burning.

The variable u(t) shown in Figure 3, is an important technological indicator of the
grindability of the clinker, which significantly affects the grinding process of the latter,
but cannot be measured.Of course, expert assessments of the grindability of clinker
and the analysis of one of its granules by means of petrography and etc are possible.
But everything requires much time. They are very laborious, unrepresentative, and
they give rough average results. However, it was possible to develop a sufficiently
high-quality system for controlling the process of dry grinding without measuring in
this case such an indicator as the grindability of clinker. It was done as a result of the
system analysis of the control unit and the technological unit of the grinding process,
that led to a slightly different control system in the industry at that time.

Thus, the technology of variables control that affects significantly the grinding
process is laborious in various time intervals, and the controlled process is a subject
to various random factors, that leads to serious difficulties in modeling such pro-
cesses. But this is a relatively simple technological process, which is typical for many
industries, but even this process does not fit to the classical scheme of identification
problem.

Hence one can understand the importance of a priori information for solving
identification and control problems. Moreover, it can be seen that it can be different
for different channels of the studied multidimensional system. Naturally, this leads
to a special regard at the solution of the problems described above.

In conclusion, it should be noted that the levels of a priori information in the
formulation of certain problems of identification and control inevitably lead to the
necessity to use the relevant divisions of the control theory, which, of course, may
be different.We have already talked about deterministic control, stochastic theories
and etc. Each of the “floors” of a priori information corresponds to its own specific
theory, both in the problems of the identification theory and in the problems of the
control theory. The last level of non-parametric uncertainty should correspond to
the theory of non-parametric systems [1]. The problems of identification and control
under non-parametric uncertainty are also considered there.
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The task of nonparametric estimating the probability density function is
considered in this paper. The author investigates the orthogonal series estima-
tor when its coefficients are adjusted with the method of moments. It is given
the method of adjusting the series length. Given estimator is compared with
Rosenblatt — Parzen estimator.
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Introduction

The task of recovering the distribution of random variable, particularly, estimating
the probability density function, is one of main objectives in mathematical statistics
[5]. In this case the researcher often finds himself in a situation of nonparametric un-
certainty [12]. The situation is complicated also by small amount of data. At present
time there is range of nonparametric estimates of probability density, including kernel
estimates, orthogonal series estimates, nearest neighbors method, etc. Due to this
the task of choice the best method of estimation for given class of distributions and
given amount of data n appears.

At present time the problem of comparison the quality of probability density
function estimators is complex to compute even on model distributions. The quality
of approximation, as a rule, is evaluated by a functional in a form of mathematical
expectation of a random variable with unknown distribution. In this research the
quality functional is numerically calculated by the Monte Carlo method.

1 Calculation the coefficients of orthogonal estima-
tor with the method of moments

Let x4, ..., 2, be independent sample of continuous random variable £ with unknown
probability density f(z) belonging to a Hilbert space H(2) of measurable real func-
tions with the domain €2 C R. We choose in the space H(2) a complete orthonormal
system (basis):

{0, 015,01, -}
We call an orthogonal series estimate 3] of the probability density function the ran-
dom function in form

f(@) = agpo(@) + aro1(z) + -+ + api(),
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where random variables [, ag, ..., a; are parameters of this estimate, that should be
adjusted.

We will now estimate the coefficients ag, ..., a;, having in view that series length
[ is fixed. Assume that investigating random variable £ has row moments of order
j = 1,...,1. Then values a; we can find from equality between estimate of j-th
raw moment, found with the orthogonal series estimate f (x), and j-th sample raw
moment:

+oo 1 n )
J dr = — I j=0,...,L 1
[ ofwa= 3 = (1)

o
The conditions (1) are equivalent to the system of linear equations about a;:

ao(Ll,00) + -+ a(l,¢) =1

ao(z,00) + -+ ai(z, ) =iy

ao(xlv ‘pO) +oet al(xlv SOZ) = ﬁl

where 7; is j-th sample raw moment of the :

1 Zﬂ j
vy = E 2 Ig,
(f,g) is inner product in the space H(2):

(ﬁmzéf@m@m.

Using matrix notations

(17900) (1790l> Qo 790
B = : .. : :

(xl,.gpo) (xl,.gol) a.l vy
we can rewrite the system (2) by such a way:
Ba=70.
Now, if the determinant |B| # 0 then there exists unique solution
a=B"'D. (3)

We suggest to use the elements of found column matrix a as estimates of coeffi-
cients for f(z).
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2 Calculation of series length

The choice of series length [ significantly affects the quality of orthogonal series es-
timate. We will characterize the quality of estimator f(z) by mean global quadratic
approximation error [6], which we will minimize by :

2
— min.
H(Q)} 1

After simplifying this functional has a form:

Qﬁ}—M{W—f

QUfy = M{IfI* —2(f,. 0} + I£1*

The last summand in received expression does not depend on [, so it can be omit
within minimization. Thus, for adjusting the series length we define the functional

wify =M {IfI2 -2/, N} (1)

As shown in [10], the minimum of functional (4) is achieved with finite /. When
we use the formula (3) for estimation the coefficients a;, the functional (4) takes the
form:

W{f} =uB (M {297} (B™)" — 2wal), (5)
where
v= (..., n)", a=(a,...,o)",
+o0
vi= (2, f) = / 2 f(x)dx — j-th raw moment of random variable &;

“+oo
a; = (p;, f) = / 2 f(x)dz — j-th Fourier coefficient of series of the density f(x)
by basis {¢;}. B

During research the unbiased sample estimate of the functional (5) was built:

Wi=uB! (907 (B7)" —2G), (6)
where
do,0 --- 4o,
gio --- gl

1 n ) n n ]
Gk = am—T) (Z oY onlw) - Zx;%(m) |
=1 =1 =1

Then we can choose series length estimate | by minimization the (6):

Z: argmlin VVl
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Figure 1: Dependence of estimator quality on sample amount

Due to asymptotic features of the method of moments [4], built estimator of prob-
ability density function is consistent, and it is also confirmed in numerical experiments
(fig. 1).

Fig. 1 shows the dependence of quality functional (2) on sample amount n withing
the task of recovering the standard normal distribution, where {¢;(x)} is the Hermite
basis |5, ch. 12|. Values of the functional (2) was calculated by Monte Carlo method
described in [1].

Also during research the quality comparison between suggested estimator and ker-
nel Rosenblatt — Parzen estimator [11] has been implemented. The spread parameter
of the kernel estimator is calculated by method of minimizing the estimate of quality
functional [1] or maximum likelihood method [7] (fig. 2).

On fig. 2 we made following notations:

° fél)(x) is suggested orthogonal series estimator;

. f,?) (x) is Rozenblatt — Parzen estimator in which

~ . 1 " " Ty — Ty 2 " - Tj — Xy
hmanenin | 72305 (U2 ) - D3 e (B0 |
=1 j=1 =1 ];l
JF#

®(z) — Gaussian kernel function;
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Figure 2: Comparison the quality of density estimators

o ¥ (x) is Rozenblatt — Parzen estimator in which

h = zr My _ )
argm}?XZan(ID ( ? ) nln((n — 1)h)
=1 7j=1
J#i
This comparison is implemented to recover the probability density of standard
normal distribution. As we can see, suggested estimator gives lesser mean global

square error approximation than Rozenblatt — Parzen estimator in sufficiently wide
range of sample amount n (at least when 20 < n < 60 ).

Conclusions

Thus, in the paper we have considered applying the method of moments to build
the orthogonal series estimator of probability density function of continuous random
variable. It should be noted that to use the orthogonal series estimator requirement
that true density belongs to Hilbert space is not too restrictive, because, as shown in
[2], for each probability density function f(x) exists a Hilbert space in form Ly ,,(€2)
that contains f(x).

Given method of comparison nonparametric estimators can be also applied to
compare other nonparametric estimators, e.g. histogram, k-nearest neighbors [9],
etc.
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Abstract

In the work new robust correlation coefficients on the basis of weighted
maximum likelihood method are suggested. The research is conducted on the
efficiency of proposed estimates on the class of elliptical distribution. It is shown
that the estimates got have a high level of efficiency while having outliers of
Tukey’s model.
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Introduction

The task of the estimation of parameters of statistical models is one of the main
tasks of mathematical statistics. By now quite a number of estimates, having different
qualities, have been proposed. The choice of the estimates depends on the information
given a priori. The researches show that in real observations outliers may often
present (abnormal observations), which can degrade classical estimates. If there
is such information, we deal with robust statistics. Within this theory, estimates
resistant to outliers on the basis of different criteria have been suggested [1]-[3]. In
robust statistics much attention is paid to the construction of robust estimates of
distribution parameters and a little less attention is paid to the estimation of links
between random variables. It is known that sample Pearson correlation coefficient
is resistant to the outlier presence and its proposed robust analogues [1]-[6]. do not
have high efficiency in the conditions of outlier absence. The criteria of efficiency
and resistance appear to be competitive. Often effective estimates own low robust
qualities and, vice a versa, high robust estimates own low efficiency without outliers.
So, it is necessary to get “compromise” estimates, capable to adjust to the form and
level of “contamination” of observations, staying robust to outliers and at the same
time having high efficiency.

1 Estimates of weighed maximum likelihood method

Let’s consider two-dimensional random variable (X, Y"), having elliptical distribution
[7] with joint density of the form:

- S (11p2 Kxu)Q o (z;zuz) <y;yuy> N (ysyuyﬂ> LW
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where g(z) is a generating function (R — R*), fulfilling condition [~ g(z) dz < oo;

8 = (Mim Ny7 81?7 8y7p)T7

iz and pi,, location parameters of random variables X, Y respectively;
s, and s, are scale parameters of random variable X, Y respectively;
p is a correlation coefficient;

c is a norming quantity.

According to the weighed maximum-likelihood method (WMLM) [8] the param-
eter estimate 6 of a random variable X with density f(x,0) will be determined by
equation of the form:

> (T ) ) =0 ©)

where [y, is a parameter, answering for unbiasedness of the estimate,
[ is a radical parameter, [ € [0; 1].
Using the weighed maximum likelihood method (2) for parameter estimation of
two-dimensional random variable (X,Y’) with density (1), defining parameters /3, as
well as using identity substitution, the estimates of the following from will be got:

~

(xi - ,&x)w('xza Yi, é)fl(xivyh 9) = 07

M =

1

-
Il

(yl - ﬂy)w(xiv Yi, é)fl<xl7 Yi, é) = 07

M-

=1
S (52 o) 4| i) =0 )
w(x;, Ys, 71 Tir ¥, v) =1

3 . Y [+1 y

S| (=) iy + | Ay — 0

221 sy b] ) l+1 ) b b

N o A .

Z Li — Ha Yi ~ My w(w;, s 9)+L fH(wi,95,0) = 0

> | : Sy ) Iy l"—l ) Iy 9
2f'(z,y,0)

w(m,yﬁ):m’

— c / 1 T —pra ) L7 Hae \ (YT By vy
f(xvyae)_Smsy 1—p g<1p2 [( Sy )—2]7( Sz )( Sy >+( Sy )])

If for joint density of the distribution f(x,y,#) marginal densities of the distribu-
tion can be received analytically, the system of equation (3) may be divided into two
systems of equation for the parameter estimation of random variables X and Y and
non-linear equation for estimation of correlation coefficient.

[¥)
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The efficiency of estimates (3) depends on the radical parameter I. At [ = 0 we
get estimates of maximum likelihood method, at [ = 0.5 - radical estimates [3] and
at [ = 1 — estimates of maximum stability [3]. The radical parameter defines robust
qualities and efficiency of estimates. The higher the radical parameter is, the higher
the robust qualities of the estimate are, though in the conditions of outlier absence
the efficiency of such estimates, as the researches show [9]-[12], is not high. Under
the conditions of coincidence of a priori distribution with real distribution the radical
parameter must approach to 0 (estimate of maximum likelihood method). However
estimates of maximum likelihood method of distribution parameters with light tail
while having outliers may own an extremely low efficiency. That’s why a procedure
of estimate adaptation of WMLM is required on the radical parameter to the form
and a fraction of outliers.

Let only correlation coefficient p be estimated, while all the other parameters are
parasitic. In this case the optimal value of the radical parameter will be defined
through the solution of optimization problem of the form:

[* = min V(p,1),

lel0;1]

where V(p, 1) is a mean square error of estimate p from true value.
In practice when there is only one sample it is suggested to use its estimation on the
basis of bootstrap method instead of mean square error of estimate [13].

2 Study of estimate efficiency

2.1 Two-dimensional elliptical distributions

In the work the research is carried out on the efficiency of correlation coefficient p
estimates for distributions with different degree of tail stretching, belonging to the
class of elliptical distributions: two-dimensional 4th degree generalized normal distri-
bution (GND4), two-dimensional normal distribution (ND), two-dimensional Laplace
distribution (LD), two-dimensional Cauchy distribution (CD). Analytic expressions
of generic functions and norming quantity values are given in table 1.

Table 1: Elliptical two-dimensional distributions

Distribution

Generic function

Norming quantity

4th degree GND

Normal distribution
Laplace distribution
Cauchy distribution

2

(&

efrp/2

e_\/E
(1+2)3/?
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Graphic representations of joint densities of distributions are given in figures 1-4.



Novosibirsk, 18-20 September, 2019

Figure 1: Density of Figure 2: Density of
two-dimensional 4th generalized two-dimensional normal
normal distribution distribution

Figure 3: Density of
two-dimensional Laplace
distribution

Figure 4: Density of
two-dimensional Cauchy
distribution

Within the research of the received estimates scale parameters of the studied dis-
tributions have been estimated so that quantiles of level 0.95 of marginal distributions
coincided.

2.2 Models of outliers

To research the behavior of estimates while having outliers Tukey’s supermodel has
been used [1], [2], [4] with a fraction of outliers e:

1. Model of asymmetrical outliers:

f('rvy) = (1 - g)g(xay7lufcuuy78$78yap> + Eg(x7y7/“L1B - 87:uy - 87 S$C7Syap)‘
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2. Model of symmetrical outliers:

flz,y) = (1 —e)g(z, y, fo, fbys Sus Sy, P) + €9(X, Y, P, fly, 35z, 3Sy, D).

3. Model of outliers on parameter p:

f(x’y) = (]- - g)g($7y7ﬂ'ccnuy78xa Syvp) + 59(xayaﬂa:7ﬂya Sz Sy, _p)

Graphic representations of samples of mixture of two-dimensional 4th degree gener-
alized normal distributions are given in figures 5-7.

10

Figure 5: Model of Figure 6: Model of Figure 7: Model of
asymmetrical outliers symmetrical outliers outliers on parameter p

2.3 Results of research of estimate efficiency

The efficiency of received estimates is compared to the efficiency of classical estimates.
Let us introduce the following notation:

AED4 — estimation of parameter p of two-dimensional 4th degree generalized
normal distribution on the basis of the weighed maximum likelihood method with
adaptation on the radical parameter.

AEND — estimation of parameter p of two-dimensional normal distribution on
the basis of the measured maximum-likelihood method with adaptation on the radical
parameter.

AELD - estimation of parameter p of two-dimensional Laplace distribution on
the basis of the measured maximume-likelihood method with adaptation on the radical
parameter.

AECD — estimation of parameter p of two-dimensional Cauchy distribution on
the basis of the measured maximum-likelihood method with adaptation on the radical
parameter.

SCP — sample Pearson correlation coefficient.

FQ — quick robust estimate of Shevlyakov-Smirnov [5], [6].

It is important to note that while modeling package robcor was used [14], in which
FQ-estimate is realized. Parameters for FQ- estimate were chosen by default.

In tables 3-6 a part of results of research of estimate efficiency of correlation
coefficient on different samples at the presence and absence of outliers of Tukey’s
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model is presented. Parameters of real distributions are given in table 2. Sample
scope has comprised 1000 observations, the number of samples is 500.
Relative estimate efficiency has been defined within the chosen estimates:

(5, F) min(MSE(p;, F))

€ =

b MSE(p,F)

where M SE(p, F') is a mean-square error of estimate p on distribution F.

The reference was considered the estimate, which has a minimum MSE among
the studied estimates.

Table 2: Parameters of real distributions

Parameter o
4th degree generalized normal distribution | 0
Normal distribution 0
Laplace distribution 0
Cauchy distribution 0

1.6 1.6 |05 0.1
0.51]0.1
0.6 06 05]0.1
0210205]0.1

o oo of
—
—_

Table 3: Efficiencies and mean square error of estimates at two-dimensionalc 4th
degree generalized normal distribution and presence of asymmetrical outliers

Estimates | AED4 | AEND | AELD | AECD | SCP FQ
MSE 0.000422 | 0.000593 | 0.001243 | 0.001719 | 0.197704 | 0.024029
Efficiency |  1.00 0.71 0.34 0.25 0.00 0.02

Table 4: Efficiencies and mean square error of estimates at two-dimensional normal
distribution

Estimates | AED4 | AEND | AELD | AECD | SCP | FQ

MSE 0.000589 | 0.000520 | 0.000589 | 0.001062 | 0.000520 | 0.000642

Efficiency | 0.88 1.00 0.88 0.49 1.00 0.81
Conclusions

According to the results of the researches it is possible to make the following conclu-
sions:
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Table 5: Efficiencies and mean square error of estimates at two-dimensional Laplace
distribution and presence of symmetrical outliers

Estimates | AED4 | AEND | AELD | AECD | SCP | FQ
MSE 0.002341 | 0.001700 | 0.001333 | 0.002117 | 0.009875 | 0.002860
Efficiency | 0.57 0.78 1.00 0.63 0.14 0.47

Table 6: Efficiencies and mean square error of estimates at two-dimensional Cauchy
distribution and presence of outliers on parameter p

Estimates | AED4 | AEND | AELD | AECD | SCP | FQ
MSE 0.009596 | 0.008149 | 0.007794 | 0.007391 | 0.130750 | 0.008602
Efficiency |  0.77 0.91 0.95 1.00 0.05 0.86

1. Sample Pearson correlation coefficient has an extremely low efficiency at the
presence of outliers.

2. Quick robust estimate of Shevlyakov-Smirnov has quite a high efficiency on all
the models, excepting for the model with asymmetrical outliers. The doubtless
advantage of this estimate is its low level of calculation in relation to WMLM.

3. The estimates of the weighed maximum likelihood method have a high effi-
ciency only on condition of coincidence of a priori distribution with basic real
distribution. Otherwise estimate of the weighed maximum likelihood method
may have not a very high efficiency even with the use of adaptation procedure.
So, it is necessary to use adaptation not only to outliers but to the form of
basic distribution of Tukey’s model with the use of non-parametric estimates
of density [12].

4. The estimates of WMLM are not able to suppress inner outliers (outliers on
parameter p) because of "compressed" qualities of weight function f(z;, ).

So, the received robust estimates of WMLM may be used effectively for estima-
tion of correlation coefficient in the conditions of semi-parametric level of a priori
information at the presence or absence of symmetrical and asymmetrical outliers.
The proposed procedure to define optimal value of radical parameter contributes to
the adaptation of the estimates of WMLM to a fraction of outliers, increasing their
efficiency.
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Abstract

Regression recovery from observations with errors can be performed within
the parametric or nonparametric setting. The problems of nonparametric es-
timation of regression characteristics by measurements of variables with errors
under some features are considered below.

Keywords: : mutually ambiguous characteristics, nonparametric model,
nonparametric estimates of the regression function, robust estimation.

Introduction

The identification tasks [1,2| of inertialess systems with delay, as mentioned above,
are often close to estimating regression characteristics according to observation of
input-output variables. These tasks are focused on the restoration of the regression
function according to the observations, when the studied processes are described by
mutually ambiguous characteristics [3-6]. These tasks are reduced to the problem of
approximation, the feature of which is the absence of a priori information about the
parametric structure of the model of the process under study. A non-parametric eval-
uation of mutually ambiguous characteristics [7, 8] and a robust estimation technique
[9-12] are proposed.

1 Nonparametric estimates of mutually ambiguous
regression function from observations

To restore the regression function, the non-parametric Nadaraya-Watson estimate is
used, for a one-dimensional case, as follows (1):

2 i)
Y ()

s

Yi(r) = (1)

where ®(v) - the core - is a finite bell-shaped function satisfying the properties:

0<P(v) <ooVoe((v), éf@(%)dmzl,limn_,ooé@ (w) =6 (z— ),

Cs

cs- blur parameter with properties:
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k

cs > 0, limg_,o $(c5)" = 00, limg_y0o s = 0

if  is a k-dimensional vector, then the formula takes the form (2):

i
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When restoring the mutually ambiguous regression function, the Nadaraya-Watson
estimate should be changed as follows [3, 14]:

\% (ZL‘ ) . Zle yiq)(xt;xi)(b<mtflc—s$i—l)(b(yt—lc—syi_l)
s\+t) — s Ti—x; Tt 1—Ti—1 A ,
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Cs Cs Cs

(2)

(3)

where x;_1, y;_1 are the coordinates of the regression function at the previous step
of its estimation.

It is advisable (3) to correct, as shown by numerous computational experiments,
as follows (4):

Zle yi®($t6—sl‘i )@0(1#1;%_1 )@0(%71;%_1 ) (4)
Zj:l @(It;xz )®O($t71;$i—1 )®O(yt,1;yi_l ) )

S

Yi(z:) =

where ®°(v) repeats with accuracy ®(v), and ®°(v) = 1, if v < 1 and 0 in other
cases. In this case, ®°(v) will not affect the recovery error, but will allow “fixing” the
previous data area at the estimated point as it moves along the chosen trajectory.

2 Computational Experiments

Below we present the results of some computational experiments for reconstructing
mutually ambiguous characteristics from observations. When conducting a compu-
tational experiment, mutually ambiguous characteristics may have different shapes:
circles, ellipses, hysteresis loops, Cassini oval, cardioid, and other curves.

We considered cases with the addition of random noise h on the values of y
in computational experiments. The interference to each observation of the output
variable forms as follows (5):

hi = ly&, (5)

where £ € [—1,1], level of interference I = 0%; 5%; 10%.
As a non-parametric evaluation accuracy criterion, we used the ratio (6):

w=>> "y —ys (@) /D lvi—7l, (6)
=1 =1

where § = 1377 | y; - average; y,(z;) - nonparametric evaluation; y; - the real
sample.
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We present the results of a numerical study illustrating the efficiency of the algo-
rithm. A triangular core was used as the bell-shaped function. The algorithm was

tested on training samples of various sizes.

Let us designate in all figures by the digit (1) - the training sample, (2) - non-

parametric estimation.

Figures 1 and 2 show the operation of the algorithm (3). Figures 3 and 4 show

the operation of the algorithm (4).

1

Figure 1: S=100; w=0,0205

Ay

Figure 3: S—100; 1=0%; w—0,0062

51%

Figure 2: S—100; 1=10%; w—0,0404

Figure 4: S=100; 1=10%; w=0,0098

These figures show some fragments of numerous computational experiments. Al-
gorithms (3) and (4) were used. They differ from the well-known non-parametric
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algorithms for estimating the Nadaraya-Watson regression function by observation.
Some modifications of non-parametric estimates are given, in such conditions atten-
tion is paid to the method of bypassing the entered non-parametric estimates along
the trajectory determined by the elements of the training set.

In other words, algorithms suitable for recovering ambiguous dependencies that
are described by more complex curves are proposed. We only know: a sample of
observations of the process under study. Such identification tasks may appear when
building robotic devices when driving in unknown terrain.

3 Non-parametric robust estimation

When solving the problem of identification with inertia-free objects with a delay,
sometimes there are overshoots that affect the variable characteristics of the object.
Actually, there is a robust statistics, which designed to reduce the impact of a miss
on the further evaluation of statistical characteristics as subsequent measurements
arrive.

Below are a few approaches, different from [11,12], which restore the values of the
estimates of various statistical characteristics. The impact of emissions will disappear
as relevant variable measurements become available. The differences in the considered
approach consist in the detection and exclusion of an overshoot from the training
sample [15], which is used for the statistical evaluation of certain parameters or
various characteristics. In this case, algorithms for nonparametric estimation of the
regression function were used according to observations (3,4).

The computational experiment was carried out as follows:

1. A training sample of regression of the type y = sin(z)? dependence was formed.
Emissions were artificially added when forming the training set.

2. Select the bell-shaped function, set the blur parameter. The triangular core is
used as a bell-shaped function:

_ 1=, v <1,
‘P(”)—{o, o] > 1.

3. Determined the exam sample for the implementation of the exam or the exam
was conducted in a sliding mode.

4. Check each sampling point for the quality of estimation.
Next, we work with the entire sample, constructing a function and its restoration

we find the accuracy criterion. As a non-parametric estimate accuracy criterion, we
use the quadratic criterion:

o? = Zle (yi — yS(xi))Q )
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where y;,— measured variable value y, ys(x;) — its nonparametric evaluation (1).

After checking the accuracy criterion, we draw attention to the points that have
a large recovery error and they satisfy the criterion (7). The elements of the training
sample that meet the requirement:

pPi > 20’2, (7)
where p; = (y; — ys(x;)),i = 1,s are selected and removed from the original
sample. In the figures, the following notation is used: 1 is a training sample, 2

is a non-parametric assessment. A triangular core was used as a bell-shaped finite
function.

We present the results of a numerical study illustrating the efficiency of the algo-
rithm (7). Consider restoring the regression function from observations, which has
several overshoots with a sample size of 100.

Figures 5 and 6 show a sample with two overshoots, in the first case there is no
interference, and in the second case 10% is added. Figure 7 shows the operation of
the algorithm (7).
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Figures 8 and 9 show the function y = cos(z)?* sin(z) with one overshoot. Figure
10 shows the operation of the algorithm (9)

We can conclude about the effectiveness of the proposed algorithms from the anal-
ysis of the conducted numerical studies for nonparametric estimation of the regression
function from observations with misses.

It is possible to obtain significantly better quality of function recovery from ob-
servations using the proposed robust estimation technique. The accuracy of recovery
y increased significantly after eliminating overshoots. For clarity, the experiment was
considered several functions y = f(x). We also considered cases that correspond to
different levels: 0, 5 and 10% on y.

Conclusions

When constructing models of multidimensional inertia-free objects with delay, it is
advisable to use the above algorithms for recovering mutually ambiguous characteris-
tics from observations with overshoots. As shown by computational experiments, the
accuracy of the predicted variables is significantly increased. Solving such problems
required a certain change in the traditional approaches to nonparametric estima-
tion of the regression function, as well as a different approach to estimating y(z) in
the presence of overshoots. The restoration of mutually ambiguous characteristics is
largely due to the direction of movement along the path chosen by the researcher. it
is arbitrary, but it is obligatory to return to the same point from which the movement
began.

Nonparametric robust estimation algorithms differ significantly from the generally
accepted approach in robust statistics. The main feature of this is the detection and
elimination of a slip from the training set.

Both of these tasks are typical in identifying multidimensional inertialess objects.
Conducted numerous computational experiments confirm their effectiveness in con-
structing models of objects. The article presents some typical fragments of the results
of extensive numerical studies.
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Abstract

The work is devoted to the problem of acute pancreatitis severity classifi-
cation. This problem is characterized by a small amount of data, which leads
to unstable estimations for new patients and a strong influence of the training
sample on the predictions. In this paper prediction stability visualization based
on violin plot is proposed and applied. A simulation experiments are carried
out to study the stability of linear regression, support vector machine, random
forest trained with various subsets.

Keywords: classification, machine learning, visualization, violin plot, boot-
strapping.

Introduction

Early recognition of disease severity is important to identify patients on admission
or during the first 24 to 48 hours who will require aggressive resuscitation. These
patients should be treated in an intensive care unit or transferred to a high-acuity
care hospital.

Classification of acute pancreatitis defines 3 degrees of severity according to the
morbidity: mild, moderately severe, and severe acute pancreatitis.

Mild acute pancreatitis lacks organ failure or local or systemic complications. Pan-
creatitis resolves rapidly, mortality is rare, pancreatic imaging is often not required.

Moderately severe acute pancreatitis has transient organ failure, local complica-
tions, and/or systemic complications but not persistent (>48 hour) organ failure.
The morbidity is increased as is mortality (< 8%) compared with that of mild acute
pancreatitis.

Severe acute pancreatitis is defined by persistent organ failure and patients usually
have 1 or more local and/or systemic complications. Patients with severe acute
pancreatitis that develops within the early phase are at a markedly increased risk

(36%-50%) of death [1].

! The reported study was funded by Krasnoyarsk Regional Fund of Science, to the research project:
Development, and implementation of decision support system for acute pancreatitis diagnosis and
treatment in the Krasnoyarsk Territory
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The study was based on a retrospective analysis of 130 cases of acute pancreati-
tis: 47 cases from Krasnoyarsk Regional Clinical Hospital and 83 cases from RSBHI
Regional Interdistrict Clinical Hospital 20 named after I.S. Berzon in the period from
2015 to 2017.

The task is to estimate of acute pancreatitis severity by using patient clinical ex-
amination data D = {(Z;,v;),7 = 1, ..., 130}, where 7 = {x', ..., 2?7} is set of features
(Clinical Blood Analysis, Biochemical Blood Analysis, Ultrasound of pancreas, the
results of the examination of the patient) measured in 130 patients.

1 Data preparation

1.1 Feature Scaling

Since the range of values of raw data varies widely, in some machine learning al-
gorithms, objective functions will not work properly without normalization. For
example, the Support Vector Machine is based on the distances between points. If
one of the features has a broad range of values, the distance will be governed by this
particular feature. Therefore, the range of all features should be normalized so that
each feature contributes approximately proportionately to the final distance.

All variables are preprocessed using the min-max scaling.

Min-max scaling is the simplest method and consists in rescaling the range of

features to scale the range in |0, 1]. The general formula is given as:
x — min(x)

=

max(x) — min(x)

, where x is an original value, z’ is the normalized value.

1.2 Filling missing values

Data scientists often check data for missing values and then perform various opera-

tions to fix the data or insert new values. The goal of such cleaning operations is to

prevent problems caused by missing data that can arise when training a model.
Two types of operations for "cleaning" missing values are implemented:

e Replacing missing values with a linear regression. If two features are strongly
correlated linear regression is used to fill missing values. For example, the size of
the head, body or tail of the pancreas may be absent due to poor visualization
of the pancreas on ultrasound examination of the abdominal cavity. However,
the size of the head, body and tail of the pancreas is highly linearly correlated
and can be filled.

e Replacing missing values with a within-class median. If features there are not
correlated missing values are replaced using a within-class median. This tech-
nique allows to avoid reduction of the influence of feature with a large number of
missing values as in the case of replacement with median for the whole sample.
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2 Accuracy estimation

Since the three classes are strictly ranked, the multi-class classification problem can
be solved as a regression problem. As a result, each new object (patient) instead of
the class number (1 - mild acute pancreatitis; 2 - moderately severe acute pancreatitis;
3 - severe acute pancreatitis) will be assigned a value from 1 to 3, characterizing not
only the class of disease severity, but also how likely this severity class. For example,
if the first patient has prediction 1.1 and the second has prediction 1.3, then although
they will both be assigned to patients with mild severity of acute pancreatitis, but
the probability that the first patient has a mild severity is higher than the second has

one.

As accuracy criteria the following indicators were chosen:

Mean Absolute Error (MAE);
Mean Squared Error (MSE);
Correlation Coefficient (Corrcoef);

Number of Mistakes (NoM). If the prediction differs from the actual value by
more than 0.5, it means that the classifier predict wrong class. Such forecasts
will be called mistakes.

Number of Mistakes x2 (NoM x2). If the prediction differs from the actual
value by more than 1.5, it means that the classification error is more than one
class (mild acute pancreatitis instead of severe acute pancreatitis or vice versa).
Such forecasts will be called mistakes x2.

Table 1 contains accuracy of different algorithms calculated using leave-one-out
cross-validation technique. Experiments show that SVM provides the greatest accu-
racy in all indicators.

Table 1: Accuracy of Linear Regression, SVM and Random Forest

‘ MAE ‘ MSE ‘ Corrcoef‘ NoM NoM x2

Linear Regression 0.375 0.269 0.783 44 1
Support Vector Machine 0.354 0.243 0.808 35 0
Random Forest 0.413 0.293 0.765 43 1

3 Robustness

3.1

Small dataset problem

Acute pancreatitis severity classification task is characterized by small sample size
for objective reasons. Analysts in medicine face with small dataset problem due to
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the prohibition on disclosure and dissemination of personal data. In such tasks, the
analyst deals with the following challenges:

e Overfitting. With only a few data, the risk to overfit model is higher;

e Outliers. If analysts have millions of data, a couple of outliers will not be a
problem. But with only a few, they will definitely skew prediction results.

The bootstrap procedure [2| can be used to evaluate the robustness of the pre-
dictions for the original sample and the effect of certain observations from the initial
sample on the predictions.

3.2 Bootstrapping

The basic idea of bootstrapping is that inference about a population from sample
data (training set) can be modelled by resampling the sample data and performing
inference about a sample from resampled data. As the population is unknown, the
true error in a sample statistic against its population value is unknown. In bootstrap-
resamples, the 'population’ is in fact the sample, and this is known; hence the quality
of inference of the 'true’ sample from resampled data is measurable.

The bootstrap creates a large number of datasets that we might have seen and
computes the statistic on each of these datasets. Thus we get a distribution of the
statistic.

In our task, we are interested in the acute pancreatitis severity class of people
worldwide. But we cannot measure all the people in the global population, so instead
we sample only a tiny part of it, and measure that. Assume the sample (the training
dataset) is of size N; that is, we measure the features (Clinical Blood Analysis,
Biochemical Blood Analysis, Ultrasound of pancreas, the results of the examination
of the patient) of N individuals. From that single sample, only one acute pancreatitis
severity prediction can be obtained for each new patient. In order to reason about
the population, we need some sense of the variability of the prediction that we have
computed.

The most popular bootstrap method involves taking the original data set of N
patients and randomly sampling from it to form a new sample (bootstrap sample)
that is also of size N. The bootstrap sample is taken from the original by using
sampling with replacement. On the first step, we randomly choose N; patients from
the original data, On the second step, we randomly choose N — N1 patients from
chosen on the first step. The key parameter for bootstrapping is the ratio between the
number of unique observations in the bootstrap sample (N;) and the initial sample
size (N): p = % This process is repeated a large number of times, and for each of
these bootstrap samples we fit model (Linear Regression, Support Vector Machine
and Random Forest) and make predictions for new patients.

After applying the bootstrap technique we can have a set of predictions for each
new patient that can be analyzed and visualized to make the final decision.
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4 Visualisation

4.1 Violin plot

Many different graphs and statistics interpret the characteristics of dataset.

While a box plot [3]| only shows summary statistics such as median and interquar-
tile ranges and gives information about location, scale, symmetry and tail thickness,
the kernel density estimation shows the full distribution of the data. The difference
between the box plot and kernel density estimation is particularly useful when the
data distribution is multimodal. In this case a density trace shows the presence of
different peaks, their position and relative amplitude.

Violin plots [4] combines the box plot and density trace smoothed by a kernel
density estimator and can be used to show robustness of machine learning algorithms.

4.2 Comparison of Machine Learning algorithms

Figure 1 illustrates the influence of the training set on the prediction stability for typ-
ical observations from different classes (classes were determined by a medical expert):
a - mild acute pancreatitis; b - moderately severe acute pancreatitis; c - severe acute
pancreatitis. The ratio p between the number of unique observations in the bootstrap
sample (N7) and the initial sample size (N) is equal to 0.9. The density trace is plot-
ted symmetrically to the upper and the lower of the horizontal box plot. Symmetric
plot makes it easier to see the magnitude of the density. The black vertical line shows
the median of the predictions, while the gray rectangle depicts interquartile range.

The graph demonstrates ambiguity of severity predictions produced different ma-
chine learning algorithms. Note that the Random Forest makes different predictions
even with the same training set because of the elements of randomness in the model.
When different bootstrap samples are used to fit model, the range of possible fore-
casts becomes even higher for almost all patients. On the contrary, SVM predicts
based on several basic observations. In the case when both bootstrap subsets contain
the same basic observations (support vectors), the models trained on them give very
close the acute pancreatitis severity estimations. The diversity of SVM forecasts is
achieved by subsets that do not contain one or more support vectors.

The Figure 2 shows a comparison of predictions made by different algorithms for
patients of the same class (severe acute pancreatitis):

e The predictions of algorithms can be inconsistent, as in the case of Figure
2.a. While Random Forest tends to determine the moderately severe acute
pancreatitis, Linear Regression and Support Vector Machine predict a severe
acute pancreatitis;

e The predictions of algorithms can be consistent, as in the case of Figure 2.b.

This is observed for typical class members for whom the initial training set
contains many similar patients.
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Figure 1: Violin plots based on various model predictions for typical observations
from different classes: a - mild acute pancreatitis; b - moderately severe acute
pancreatitis; ¢ - severe acute pancreatitis

e The predictions of the algorithms can be incorrect, as in the case of Figure 2.c.
Note the large scatter of the random forest predictions to the side of severe
acute pancreatitis class that can be interpreted as classifier hesitation.

4.3 The effect of the bootstrap parameter p to the prediction
diversity

The ratio between the number of unique observations in the bootstrap sample and
the initial sample size p has an impact on predictions. The smaller the value of the
parameter p, the smaller the subsets intersect and the greater the differences in the
forecasts.

Figure 3 shows the effect of the parameter p on the prediction diversity by the
example of one patient. If the parameter p is 0.95, the subsets differ by a maximum of
7 observations and the predictions of the class are compact on the numerical axis. If
the parameter p is 0.9, the subsets differ by a maximum of 14 observations, medians
change slightly, but the prediction diversity increases significantly for all models. And
further, with a decrease in the parameter, this trend continues. When the parameter
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Figure 2: Violin plots based on various model predictions for patients with severe
acute pancreatitis

p reaches 0.7, the linear regression and random forest predictions cover almost half
of the numeric axis in the range [1, 3].

Taking the final decision on the severity of acute pancreatitis, it is important
to consider not only the average value of the forecasts, but also the variance of the
forecasts.

Conclusions

Prediction stability visualization procedure was proposed and applied to estimation
of acute pancreatitis severity. Visualization method allows to evaluate the prediction
diversity of different machine learning algorithms for observation on a single graph.
The study compared the stability of forecasts of Linear Regression, Support Vector
Machine, Random Forest. This research can be useful to estimate the current dataset
quality and to justify the need initial dataset increasing.
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Figure 3: Violin plots based on various model predictions and influence of the ratio
p between the number of unique observations in the bootstrap sample and the
initial sample size on the stability of predictions
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Abstract

The report is devoted to the control algorithms of inertialess processes. A
feature of the problem under consideration is that the components of the input
variables vector in the processes under study are in a stochastic dependence. In
this regard, the proposed control algorithm, taking into account the specified
feature.

Keywords: control algorithms, dual control, non-parametric dual control,
H-processes.

Description of the investigated processes

When controlling multidimensional processes, a situation may often occur when the
components of the input variables vector are stochastically dependent, and the nature
of the relationship between these components is unknown. Such a dependence leads
to the fact that the process does not take place in the entire region defined by the
input-output variables, but in a certain subdomain. In the following, for reasons
of brevity, processes with stochastically dependent input variables will be called H-
processes 1. For clarity, we give an example of an H-process with two input variables
and one output variable(Figure 1).

The following notation is used in the figure 1: Q¥ (i) is the domain of definition of
input actions without taking into account the dependence between the input variables;
Qf (@) is the domain of input actions with regard to the relationship between the input
variables.

Process under investigation

The article deals with the task of managing multidimensional inertialess H-processes
under nonparametric uncertainty. The figure 2 presents the classical object control
scheme.

i(t) - vector of input controlled actions, of dimension n; Z(t) is the vector of
output variables of the process, of dimension k; 2* - vector of defining actions (task);
£(t) - interference effect on the process.

It is important to note the features that arise when controlling the H-process. As
noted above, the process does not take place in the whole area defined by the vector
of input and output variables. This means that when choosing a driver action, it is
necessary to make sure that the driver action is included in the subdomain of the
process. In other words, the driving force is achievable.
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Figure 1: Example of an H-process
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Figure 2: The classical object control scheme

Algorithm of non-parametric dual control

The nonparametric dual control algorithm is an improvement to the algorithm pro-
posed by A.A. Feldbaum [2|, which allows researcher to move away from the definition
of a parametric model.

It was designed and researched by A.V. Medvedev|[1].

The analytical expression of this control algorithm is as follows:

Typ1 = Ws(T) + Otlssr (T, 7). (1)

Us(Z*) — is the component responsible for the accumulation of information about
the controlled process (study of the control object). In the initial stages of regulation,
this variable is close to zero and does not affect the management of the process,
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but with the accumulation of the training sample, its role increases and becomes
dominant; * — setting effect; z; is the sample of observations consisting of the values
of the components of the vector of output variables .

The component (") is the mathematical expectation of « for a given value of

%,

us(77) = M(u(7)) (2)

In the non-parametric dual control algorithm, the non-parametric estimate of the
regression function from observations is used as the estimate of M (d(z*)). [3]:

S w T, oy
Lo v~ 1= (T,n), (3)

s k TG =4,
> i [ (=)

Csj

M{(w(77)) =

®(x) — bell-shaped function, ¢y, 7 = 1,k — blur options.

Ol 41 (Z*, Ts) — this is the "search step" algorithm. In the initial stages of regu-
lation, this variable makes the main contribution to the management of the process,
but with the accumulation of the training sample, its role in management becomes
insignificant.

The component dtig, (2

, T) is calculated by the formula 4:
k
Ougy1 (7", Ts) = mZ(«%’f —x4),J = (1,n), (4)

=1

(xf — ) is difference between the task and the past output of the object, and m is
the parameter responsible for the value of the "step"

Impacts produced by the non-parametric dual algorithm have two functions at
once: the study of the object and its management. This is the reason for its duality.

Adaptation of non-parametric dual control algorithm
for the case of control of the H-process

Note that when controlling a multidimensional H-process, the driving forces deter-
mining the desired values of the components of the output vector cannot be chosen
arbitrarily, as is customary in control theory. This is due to the fact that it is possible
to set such a vector of defining influences that Hle Q1 () = @,1i other words, this
action is not achievable for all components of the vector £*. In this regard, researcher
must first select the achievable (consistent) setting effects #* € []i_, QF (%), that is,
define z7, 23, ..., z}.
The following method of solving the problem is proposed:

1. Calculate value Y7, H?Zl (ID(%C_Q_T”), 7* - defining actions, s - sample size of
sj
observations;
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2. If the calculated value >°7 | H (;—jj) is not equal to 0, it means that
the defining influence is achievable, 0therw1se it is mean that the defining influence
cannot be achieved.

In the non-parametric dual control, the search step 0ty is calculated using the
formula (4). In the case of controlling the H-process with several output variables, the
described method for calculating the search step du,,, does not fit, since in addition
to bringing the object to the task, it is necessary to take into account that the input
action must belong to the region H§:1 QH ().

Based on the described feature, for calculating i, it is proposed to use an
algorithm with the punishment by randomness.

The modified non-parametric dual control algorithm is as follows:

1) us(2*) is calculated;

2) a random vector i,y is selected;

3) the value u5+1( *) is calculated;

4) if 4 u5+1 € QH (@), then we use i, as a control, otherwise, return to step 2;

5)if S8 |iain — 23| < SO @i, — aF], then as the next value of the search step
0lsyo it is necessary to take dus,q , otherwise, again, a random vector is selected as
6ﬁ5+2;

6) go back to step 1.

The length of the vector du is m|x* — x|, where m is a customizable coefficient.

The proposed algorithm was used to control the H-process, which has the following
structure:

$1:U1+U2+2 (5)
Ty = —2u1 + 3U2 +1
ug = sin(

) +€ (6)

Computational experiments were conducted for 3 cases:

1. the algorithm has no training sample;
2. the algorithm has a small training sample;

3. the algorithm has a large training sample.

The first case in which the size of the training sample s=0 is shown at the figure

As can be seen from the figure, at the beginning the algorithm controls the object
rather roughly, but then improves its characteristics due to the experience gained.

The second case, where s=20 is shown at the Figure 4:

As can be seen in the figure 4, the quality of control has improved dramatically,
even with a small training sample.

The second case, where s=100 is shown at the Figure 5

As expected, a large amount of the training sample led to precise control of the
H-process.
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Figure 3: The control process in the case when the algorithm does not have a
training sample
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Figure 4: The control process in the case when the algorithm has a small size of
training sample

Numerous computational experiments were carried out to control various multi-
dimensional H-processes using the proposed algorithm. Experiments have confirmed
that the proposed modification of non-parametric dual control allows researcher to
successfully manage the multidimensional H-process.
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Figure 5: The control process in the case when the algorithm has a large amount of
training sample
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Abstract

The problem of classification by data with gaps, bypassing the stage of their
filling, is considered. An adaptive restructuring of algorithms is proposed as a
result of the introduction of corresponding indicators into them. The indicators
take into account the flow of current information, on the basis of which a decision
is made to change the algorithm and the data processing technology itself at
each cycle. Computational procedures are based on non-parametric estimation,
are given their settings and the results of numerical modeling.

Keywords: supervised learning, missing data, adaptive algorithm, non-
parametric estimation of probability density, smoothing window, kernel func-
tion, numeric and nominal features.

Introduction

When solving practical problems, the fact of missing values in real data has tradi-
tionally been the case. It is possible to solve the problem of processing gaps in the
data using different techniques, among which are both suggestions to form training
samples only from completely filled objects and fill in the missing values with various
approaches and methods. Any initial information about the object is of great value
for the researcher, therefore, they most often resort to recovering the missing data,
which is already a traditional stage of data preprocessing [1, 3].

The authors of the article were engaged in solving an applied problem related
to the classification of objects with a teacher, having a very small sample of data,
obtaining of which is also slow. Differences between objects affect the shift of their
statistical characteristics in each class. Due to the bias of statistical evaluations of
objects of different classes, the choice of tactics for restoring gaps in a training sample
for building a classifier and in a new object entering to determine its class is difficult
(2, 3].

Also, it was not possible to search for dependencies between features to fill in
the gaps due to the smallness of the samples. Therefore, an adaptive classification
algorithm was developed that will be able to process data with gaps without a pro-
cedure for filling them. The article presents the essence of the algorithm, identifies
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the conditions for its use, provides the results of numerical experiments on simulation
data and widely known data (Fisher’s Iris data set).

The adaptive nature of the classification algorithms is expressed in the reshaping
of the training sample from the original, depending on the set of filled features. The
computational algorithm changes at each step of the iterative procedure, depending
on the completeness of the current information.

To construct adaptive classification algorithms, a modification multidimensional
non-parametric probability estimate of the Rosenblatt-Parzen is applied [4].

1 Problem formulation

Let there be a set of objects {O;,i = 1, s}, where s, which are described by a known
set of features is the sample size {p;,7 = 1,n}, measured in numeric (n;) and nominal
(ng) scales: my + ny = n. . For each object there is an indication of the label (i.e.,
class): O; € Z)l = 1, L}, L - number of classes. We denote feature measurements for
each object with a set of values {(zl,xf) i =1,54 = 1,n}, where 2] - value of p;
feature at O; object, z; - class, s; - number of class objects Z;, Zle S; = s.

Object feature measurements contain omissions. It is necessary to build a clas-
sification algorithm that operates with data that contains gaps without a process of
their filling, and to develop procedures for setting parameters.

2 Classification algorithm for objects with missing
data

For each classified object O, it is necessary to evaluate its belonging to each class.
This procedure involves a comparison with the objects of the training set of each
class. The basic idea of the algorithm is to use for evaluation only a set of features O,
that have initial values p. At each ¢ step of the algorithm, the entire training set must
be re-sorted relative to the existing set of features p of Oy, presented for classification.
Then the size of the training data set may change: Zlel st =" <'s, where s} - class
data set Z;, s' - total data set after selection of non-empty attributes. Since the set
of attributes for assessing the similarity with objects of each class will change, then
we denote the number of numeric and nominal features n! and n, respectively.

Let us demonstrate the idea visually using the example of 3 classes. In the tables
below, the filled attributes are highlighted in gray, the features with missing values
are displayed without highlighting.

Table 1: Features p of O; without specifying a teacher

1 2 3 4 5 6 7 8 Doyt
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Table 2: Initial selection of objects with the teacher

Ne Class| 1 2 3 4 5 6 7 Dy +ny
1 21

22
s Zs

Subsequent lines of the training set are formed similarly.
For each class, we enter the following value:

a- S Mo (155 M =12
=1 11=1 J2=1

which constructively repeats the Rosenblatt-Parzen multidimensional nonparametric
estimator of probability density. As a bell-shaped function in (1), a triangular kernel,
a truncated parabola, a Gaussian kernel, cos, the Sobolev function, and others can
be used for features on an numeric scale. For nominal features, the Kronecker delta
indicator is used:

1, ifal?= x
1ol af?) = i )
) if 7 # ]

J2>
where ¢;,, 0 < d;, < 1 — some threshold value for each feature. The specific value
of the threshold is selected in the process of training the classifier. Kernel functions
satisfy the convergence conditions for nonparametric estimates and are discussed in
detail [4].

If n! = 0 or ny = 0, then the resulting value of the product is limited to some
threshold value from the bottom of the entire product, in order to preserve the non-
zero value of the other indicators. The more objects differ in the values of the nominal
features, the closer the whole work tends to zero, reducing the total weight of the
influence of points on the assignment of class values. But at the same time, the
difference in only one attribute does not reduce the magnitude of the assessment of
the general belonging of an object to a class. A lower bound on the result of the
entire work is introduced:

t

0<d< J[1al ) <1 (3)

7
Jo=1
The smoothing parameter is a vector (by the number of quantitative features).
The optimization procedure for setting the parameters of the algorithm is carried out
according to the number of points & under the bell-shaped function, the threshold
values 9, 0, .
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The value of estimates the belonging of an object O, to a class Z; according to
the initial set. For each new object O, presented for classification, the volume of
the training set for calculating relation (1) will vary due to a different set of unfilled
features. Thus, the number of items to be calculated within one class of objects will
change. This fact reflects the adaptive nature of the computational procedure, which
uses for each object arriving to the classification the newly formed training set from
the original.

The next step for deciding whether an object belongs to a particular class is the
calculation of normalized estimates 3} based on the calculated ones «}:

L
8 = af / 3l (1)
=1

The probability that an object belongs to a class is proportional to the relative
assessment of belonging. The closer it is to 1, the higher the probability of the truth
of this class. This can be formulated as follows:

Oy € Zi| B = max(f)) (5)
I=T,L

As a quality criterion of the classifier, an estimate of the area under the ROC-curve
(AUC) is used.

3 Numerical experiment

The numerical study of the algorithm was carried out on three data sets. The first
data set corresponded to two non-intersecting classes in the three-dimensional at-
tribute space. The second data set had two intersecting classes in the space of 7
features: 2 in nominal and 5 in numeric scales. To assess the accuracy of the clas-
sification, cross-validation using the Monte-Carlo method was used to divide the
training and test samples. The calculation results contain the AUC mean value for
each sample.

Figure 1: Example of a sample with random gaps

The first sample demonstrates how the algorithm works under favorable con-
ditions. This sample was used with and without gaps. In the case of gaps, two
approaches were used: random imitation of gaps (Fig. 1, left side) and random imi-
tation of sequential pairs with disjointed gaps (Fig. 2, right side). The difference of
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these approaches is shown in Figure 1. Gaps were introduced in each class in equal
numbers, similarly by features.

The share of gaps in both variants was 10% for each attribute, class. Table 1
contains the results of setting the number of points under the kernel function, é due

to the small number of features was set as following: § = (5;?, 9, = 0,01.
Table 3: First data set, non-intersecting classes
AUC
k No gaps Random gaps | sequential filled with a
pairs of | median
disjointed
gaps
5 1 0.89 0.9096 1
10 1 0.991 0.994 1
20 1 0.99997 0.9999 1
30 1 0.99956 0.9995 1
Max |1 0.99845 0.9987 1
—— AUC mean value
1.00 - BN AUC range

0.93 1
0.90 4
0.85
0.80
0.75
0.70 4
0.65 1

0.60

23 50 75 100 125 150 175 200 225 230 275 300 325 350 375

Figure 2: Dynamics of changes in AUC depending on k

The second data set with the intersection of classes contained about 7% of volume
of the initial sample of common points in the intersection area. The results of the
classification for this sample are presented in Fig. 2, which shows the dynamics
of AUC (range and average value) depending on the number of points k under the
nuclear function. The average value of accuracy has a stable position, and taking
into account the spread of AUC, the best values of k are in the range [169; 178].

The Fischer’s Iris appears as the third data set. Table 2 shows the results of
the algorithm on accuracy of two Iris classes. Classes with maximum intersection of
versicolor and virginica are selected.

To compare the accuracy of the algorithm under the same conditions, in addition
to Table 5, the algorithm was tested on a sample with gaps filled with a median by
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Table 4: The Fischer’s Iris without gaps

2 AUC minimum | AUC maximum | AUC mean value
value value

1 0.55 1 0.8358
2 0.59 1 0.84305
3 0.7 1 0.91355
4 0.7 1 0.9141
5 0.7 1 0.9225
6 0.75 1 0.92725
7 0.75 1 0.9338
8 0.8 1 0.9428
9 0.8 1 0.9528
10 0.8 1 0.9563
11 0.8 1 0.95525
12 0.8 1 0.95435

class (Table 6). The filling was done before the stage of dividing the data set into
training and test sets, simulating the process of analyzing the labeled data. But in
real conditions for newly received unlabeled data it is not possible to use the principle
of filling with a median by class.

During the launches of the algorithm, with a gap proportion of 0.1, its accuracy
deteriorated by 0.02035 relative to the sample with gaps filled with the median by
class and the original sample (Table 6). However, medians for the Fischer’s Iris
artificially overestimate the accuracy. They contribute to the separation of classes in
the original space, because the medians differ from each other. This effect is more
clearly observed with an increase in the median filling percentage. Also Table 3 shows
the change in the accuracy of the algorithm with different percentage of gaps for each
feature. As a result, the algorithm was able to maintain an accuracy of 0.9 under the
conditions of 120 gaps from 400 values.

Conclusions

The proposed algorithm can be applied to solve the classification problem if the initial
data have gaps. In this case, the algorithm does not require the step of filling the
gaps, therefore, its result is not affected by the bias of estimates of the restored gap
values. A comprehensive study of the algorithm features requires a comparison with
traditional approaches. Also, the further development of the algorithm is supposed
to be directed to the formulation of criteria for identifying significant features or their
sets for the classification with the teacher in case of having gaps in initial data.
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Table 5: First data set, non-intersecting classes

Average AUC

k Percentage  of | Percentage  of | Percentage  of

gaps 0.1 gaps 0.2 gaps 0.3
1 0.70205 0.6639 0.6726
2 0.7374 0.691 0.711
3 0.8847 0.80545 0.80595
4 0.8897 0.81185 0.8336
5 0.9075 0.8474 0.88205
6 0.9136 0.85805 0.8869
7 0.93275 0.87895 0.8969
8 0.9344 0.891 0.89745
9 0.93575 0.9078 0.8987
10 0.93595 0.9155 0.9008
11 0.93785 - -
12 0.93745 - -
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Abstract

The article is devoted to the construction of a new class of models in the
context of lack of priori information. It centers around multidimensional in-
ertialess objects, when the components of the output vector are stochastically
dependent, but the nature of this dependence is unknown. In the process of
building a model it is necessary to accomplish the solution of implicit functions
when the inputs and outputs vectors are non-linear. It should be noted that the
form of these functions with an accuracy of the parameters vector is unknown.
In this regard, it is necessary to use T-models, when the prediction of output
variables is carried out using known input.

Keywords: identification, forecasting, mathematical modeling, T-models,
T-processes.

Introduction

Identification of multidimensional stochastic processes is a topical issue for many
technological processes of discrete-continuous nature. In real practical problems,
such as in [1], the discreteness of object’s output variables control can be performed
differently. For example, some indicators are measured electrically and others by
physico-mechanical or laboratory tests.

A discrete-continuous process is a process that is continuous, but the data is
recorded in a discrete time interval. This leads to the fact that dynamic processes,
by their nature, are forced to be considered as inertialess with delay.

This article centers around the problem of identifying processes whose output
variables are stochastically dependent, however, that dependence is unknown. It is
called T-processes |[2| and the identification problem in this case is to build T-models
of multidimensional statistical objects.

It should be mentioned that the term “process” is not considered as a process of
probabilistic nature (for instance, stationary, Gaussian, Markov etc. [3]). Below we
discuss the T-processes which occur or develop in time, for instance, technological or
economical ones. These processes were first mentioned by A. V. Medvedev in [4].

1 T-model

The system of equations describing T-processes in general form |[5] can be represented
as follows:
Fj(u(t),x(t)) =0, j=1n, (1)
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where u(t) is an input vector of variables, z(t) is an output vector of variables.
Although, in practice, it is more likely to be a situation when the system of equations
(1) can be represented in the following form:

Fy(u™> (t),2%9> (1)) =0, j=T,n, (2)

where u~7>(t), z<7>(t) are composite vectors. Composite vector is the vector which
includes some components, for instance: x<7>(t) = (uy(t), us(t), z2(t), z7(t)). At the
same time, the main feature of modeling such process under nonparametric uncer-
tainty is the fact that the type of functions in (1) is unknown. In this case, the system
of equations takes the form:

Fy (w9 (), 259> (t), Z,,@,) = 0, j=T1,n, (3)

where T, U, are time vectors (data set received at the s-th time point), for exam-
ple: T = (1,...,2,) = ([L‘ll,x&..,Ilfls,...,I‘Ql,ﬂfgg,...,.I'QS,...7$n1,$n2,...,$n5).
However, functions Fj(-), j = 1,n remain unknown for this case. In the theory of
identification, such problems are not only considered, but even not defined. Most
often it is followed the path of choosing the parametric structure (1) but overcoming
this stage is difficult due to the lack of a priori information [6]. In addition, it takes
a long time to determine the parametric structure, i.e. model representation in the
form of:

Fi(uS9> (), 259 (t),a) =0, j=T1,n, (4)

where « is parameter vector.

Further, there is a procedure for estimating the parameters using the training
sample u;, z;, i = 1, s and the subsequent solution of the nonlinear interrelated ratios
system. The success of building a model in this case depends on the qualitative
parametrization of the system (4) |[7].

2 Computational experiment

For the computational experiment we have multidimensional object with five input
variables u(t) = {u(t), ua(t), us(t), ug(t), us(t)}, which take random values in the in-
terval u(t) € [0;3] and with four output variables z(t) = {z1(t), x2(t), z3(t), x4(t)}
which take their values in the following intervals: z1(t) € [—0.54;18.23], x5 €
[—0.58;35.9], x3 € [—2.27;60.5], x4 € [—3.23;75.73].

It is formed a sample of input and output variables for the object based on the sys-
tem of equations, which are chosen arbitrarily (under a computational experiment):

x1(t) — 2ua(t) — us(t) — 0.325(t) =

2o(t) — ud(t) — 0.3usz(t) — 0. 5x1(t) 0 %)
x3(t) —ui(t) — Jus(t) — 0.2x4(t) = 0;

z4(t) — us — uz(t) — 0.4x3(t) = 0.
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> .

Figure 1: Multidimensional object

The system of equations (5) is not a description of the real process and is introduced
only for a given computational experiment. Such representation allows to conduct
a modeling process and compare the results of output vector components estimates
which are obtained using the T-model. In examine real-world problems the training
and test samples are obtained by conducting a series of numerous experiments with
the studied object.

At the first stage of the computational experiment we solve the system (5). To do
this we define it relative to x(¢) with known values of the wu(t), which can be formed
randomly from the mentioned above intervals.

In the form of qualitative dependence system (5) can be represented as follows:

Fyy (1 (8), wa(t) ua(t), s (¢
li’z (x1(t), xo(t), uq (t), us(t
Foy(x3(t), x4(t), ug(t), us(t
Fy(2s(t) (t), us(

4$3t,$4()U2t,U3t)

) =0;
) =0;
)= 0. (6)
)=0.

Thus, it is necessary to estimate the values of the output variables using the
known components of the input u(t) = {ux(t),k = 1,5}. This is the main result
of the identification problem solution. Surely, one is tempted to name the system
of equations (6) as a model of the process under study, but the reality is different
due to the functions F(z) are unknown. That is why the chain of corresponding
non-parametric statistics acts as the T-model.

At the first stage of the experiment it is calculated the residual errors for each
component of the output vector using the following formula:

S il TT 0 (‘—”)

i=1 Csuk

i=1 k=1

(7)

gj(1) = Feju<j>a;()) = (1) —

where j = 1,n and < m > < m is the number of dimensions of the composite vector

Uk .

uy, — ug[d]
Csuy,

vergence conditions [8] and have the following properties:

P(+) < oo;

Bell-shaped functions ¢ < ) and bandwidth parameter c,, satisty con-
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it [ (e u—w))du =1;

lim ;' ®(c; (v — w;)) = 6(u — w;);

lim ¢, = 0;
5§—00

lim sc, = oo.
§—00
In this experiment, the triangular core was chosen as a bell-shaped function.
It should be added that the residual errors can be represented in the form which
is mentioned below:

£1(0) = o, (a(8), (1), b (0), ul ()
i) = Foy (1), (1), (1), () 5
(i) = Py (4 (1), 4(0), 4 0), ()
e4(i) = oy (w5 (8), 5,0), wh(0), wh ()

Accordingly, each residual error is compliant to a specific output of the object.

In order to understand how accurate the model corresponds to the object, it
is necessary to calculate the error value, which mathematical description presented
below:

S Ja () — a5 (w <> (1))
4 =1 )
> [y (t) ~ M|

In the computational experiment it is calculated the optimal bandwidth parame-
ter. Sample sizes are s = 1000 and s = 3000. The results are presented in the figures
2, 3, 4, 5 and the table 1 below.

Table 1: The error values (9) for different noise levels and sample sizes

s = 1000 s = 3000

without noise | 6; = 0.01 | 6; = 0.002
5% mnoise 5 =0.264 | §; = 0.261
10% noise 01 =0.431 | 6; = 0.337

Figures 2 and 3 show the true values of the output variables and their prediction.
As it can be seen, the process of modeling gives quite accurate result (according to
values in table 1 without noise). This indicates the high accuracy of the T-model.

In the second computational experiment we show how the 5% and 10% noise
levels, which are imposed on the output component values, affect the final simulation
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Figure 2: Output variable x; model values without noise, s = 1000, optimal ¢, = 0.3
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Figure 3: Output variable x1 model values without noise, s = 3000, optimal ¢, = 0.3
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Figure 5: Output variable z; model values with noise equals 10%, s = 1000, optimal
c, = 0.3
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results. The sample size is set to s = 1000 and s = 3000. We also give graphs for
one of the outputs as it has been done above (figures 4 and 5).

Figures 4 and 5 show the true and predicted values of the output variables with
different noise levels. Results in table 1 and figures 4, 5 show how accurate the model
approximates the object.

Conclusions

The article has been considered the problem of identifying inertialess multidimen-
sional objects with delay as well as unknown stochastic connections of the compo-
nents of the output vector. The experiments described in the paper include a change
in a sample size. In addition, the output variables of the model were subjected to
stochastic noise of various levels. Computational experiments have shown the high
efficiency of the T-modeling process according to values of modeling mistakes.
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Abstract

The article devotes to the problem of controlling discrete linear dynamic
systems under non-parametric uncertainty. Control action are calculated in
which the difference equation degree of a dynamic process model is refined based
on the rule of selection of significant variables. The computational experiments
confirmed the efficiency of using non-parametric algorithms to control dynamic
systems in comparison with the PID algorithm and the quasi-optimal control
system.

Keywords: non-parametric algorithm, discrete dynamic system, priory in-
formation.

Introduction

Designing intelligent systems for controlling dynamic objects is one of the important
task of system analysis. Previously, algorithms of control dynamic objects were de-
veloped, in particular, the most widely used standard control algorithms. In some
cases, their use is not effective enough. Into contemporary scientific approaches, op-
timal control algorithms are used. However, for their application, as a rule, a priori
knowledge of the structure and parameters of the controlled object is necessary.

In the conditions when there is no prior information, the development of new
control algorithms is a significant scientific problem. One of the ways to solve this
task to use non-parametric methods [5]. For the application of non-parametric
methods, it is necessary to know only about the quality characteristics of the object
under study.

1 Dual control

Dual control was suggested by A.A. Feldbaum [7] and developed on the basis of the
theory of statistical solutions. The theory of dual control was further developed in
the studies of various authors [4], in particular B. Wittenmark [2]. It should be
noted that a system in which dual control algorithms are used is an adaptive system,
because as current information is received from an object, the quality of functioning
increases.
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2 Problem set-up and algorithm

The paper considers classes of control objects that can be described by linear differ-
ence equations of the form (1).

Ty = F(:Et—la ~--7$t—k>ut7€t)' (1)

where [’ is an unknown linear functional, k£ is the degree of a difference equation,
which is limited k£ < k,,4.. The input u; and output z; of a dynamic object are
represented by measurements that form a sample of the form z;,u;,i = 1, s, where s
is the sample size, u;, x; are the measurements of the input and output of the object
at a time instant ¢;.

For a dynamic object that can be described by difference equation (1), the control
problem is to find the control functions u;. The control function translates the output
of an object x; to a specified value z} in some finite time ¢,. In this case, the functional
F is assumed to be unknown from a priori information, but there is a sample of
observations z;, u;,7 = 1, s. Non-parametric dual control algorithm has the following
form (2) [3]:

Usi1 = Uy + Ay, (2)

where u? is the component accumulating information about the object under study,
Augy = e(x}, | —x5) is the “studying” search step. The dual control scheme is shown
in Figure 1.

| |
| i |
| |
| |
Al
| |
| | 4
x*(f) + | | i d) X
5 (5_' »  Dynamic object ok
hlj | | e -
— & 1
1 | |
E— 1 *

Figure 1: Dual control scheme of a dynamic object

In this case, we use the following estimation to get the value u} from equation

(3):
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S x: —Z4 k Ts—j—Ti—j
. > it ® (%) : Hj:l <C—>
Us = (3)

S @ () T (B

where v} is a kernel function, c¥, 2 are bandwidths. The optimal bandwidths are
found by minimizing a quadratic error function by using the sliding exam method.

3 Essential variables

The control algorithm for dynamic systems is constructed as follows. The differential
equation degree of the dynamic process model k is determined on the bases of the
rule of selection of essential variables. The vale k is further used in the calculation of
control actions in (3), where only selected variables are present.

Formulation of the rule: in formula (3), each variable z,_1, ..., x,_ is assigned its
own bandwidths ¢ ... ¢®V! the greater bandwidths, the less influence this variable
has on the output of the object.

The algorithm for calculating significant variables x;_; is based on the following

scheme. First, the initial value of k is given. The model is constructed by equation.

Dy ® (“%) 15 (%)
L 1 u j=1 - "

Y
s us—u; \ . TTF Ts—j—Ti—j
Yo @ () T ()

and the relative error W, is calculated:

i=1 i=1

where m, is an expected value.
For each i - th iteration, the following set of actions is performed:

- 1 k . - 1
1. For each coefficient ¢ ,...,c! the optimal value is found: ¢! = c

2 k k
*r — *Tr .,
c ,cr =iy

s goas

X
S

2. The maximum of all the values obtained is found: ¢*’

mazs’

3. The model is constructed by the equation (4). The multiplier ® (“C;u“> is

2
mazs "

excluded, taking into account that 7 is a number for ¢
4. A relative error W; is calculated.

These actions will be repeated until W; > W,_;.

We choose a non-gradient multidimensional optimization the Nelder-Mead method
as an optimization algorithm, since this method is effective at a low speed of cal-
culation of the minimized function. To select the initial vertices of a deformable
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polyhedron, a region of possible values of bandwidths of the kernel functions was set,
from which n + k + 1 points were chosen arbitrarily, where n is the number of input
variables, k is the degree of the difference equation, which form the simplex n + k.

In the case of the relation of an object to a class of linear, the algorithm allows
one to determine the structure of the model with an accuracy of parameters.

4 Computational experiment

To illustrate the performance of the proposed algorithm, an example will be consid-
ered.The results of controlling a dynamic object using a non-parametric dual control
algorithm (3) were compared with the control results of a typical control algorithm
(PID), and with the results of using an quasi-optimal control system (criterion is
control time).

The control quality was estimated by the control time (t,) —the time from the
beginning of the control to the moment when the output quantity differs from of no
more than some given value a. (o =5%). As an example, we give the work of three
control algorithms. The control object is a series connection of three aperiodic links.
Detailed control results are shown in table.

Table 1: Comparison results of the non-parametric dual control algorithm (NDCA)
with the PID controller and the quasi-optimal control system (QOCS)

Type of con- | ¢,
trol systems
1 PID 7.9
2 NDCA 8.1 (at the stage of information accumulation)
1.2 (after passing the stage of accumulation of information)
3 QOCS 3.5

The dualism of the algorithm (3) is as follows. At the first control cycles, the main
role in the formation of control actions is played by the term Awg,; from formula
(3). But with the accumulation of information about the object, the role of the term

*

u; increases. Thus, the use of the non-parametric algorithm after passing through
the stage of accumulation of information alows it possible to reduce the control time
under equal conditions of noise and sample size compared to a typical PID controller

and a quasi-optimal control system.

Conclusions

Nonparametric dual control algorithms for dynamic objects have been developed. A
distinctive feature of the algorithms is the use of information about the order of a
difference equation of a dynamic object when calculating control actions. The task
of controlling dynamic objects is most effectively solved by the proposed algorithm,
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as compared with typical control algorithms, in particular, the PID algorithm and
the quasi-optimal control system.
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Abstract

In this paper, a numerical stochastic model of the joint non-stationary time-
series of the wind speed modulus, air temperature and relative humidity is
proposed. It is shown that this model may be used for studying the statistical
properties of the time series of the bioclimatic index of severity of climatic
regime.

Keywords: stochastic simulation, periodically correlated random process,
meteorological time series, bioclimatic index of severity of climatic regime.

Introduction

Air temperature and relative humidity, wind speed and atmospheric pressure, as well
as other meteorological parameters significantly affect the state of a human being and
his or her ability to work. To describe the combined effects of various meteorological
parameters, different climatic indicators and weather indices are used. Some of them,
such as the heat index, are used to describe the effects of high temperatures and of a
high relative humidity [1]. Other indices, such as the Siple index and the Hill wind
chill index, are used to characterize the effects of low temperatures and high winds
[9, 17]. One of the most universal indicators is the bioclimatic index of severity of
climatic regime (BISCR), proposed in [5, 6|. In this paper, probabilistic properties
of the time series of the BISCR are studied, as well as the possibility of constructing
an appropriate stochastic model.

1 Bioclimatic index of severity of climatic regime

In this paper, the probabilistic properties of the time series of the bioclimatic index
of severity of climatic regime (BISCR) are investigated. According to |7], the BISCR
is an integral indicator to the degree of bioclimatic discomfort in various types of the
vital activity. The BISCR (a non-dimensional value) is a function of a number of me-
teorological and physiographic parameters, including air temperature (measured in
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degrees Celsius), atmospheric pressure (in hectopascals), wind speed modulus (in me-
ters per second), relative humidity of the air (measured in percentage), and elevation
of the terrain under consideration above the sea level (in meters).

To calculate the BISCR, the following formula is used |[3, 12|

B— T(P—266)(1—0.02V)
- 75RS ’

where T, R, S are the temperature, humidity and radiation coefficients, P,V are the
atmospheric pressure and the wind speed modulus, respectively. The coefficients are
determined by the following formulas:

s [1-0.0080(22-T), T <22
1—0.0263(T —22), if T > 22,

100

1+0.06%E20 " if R > 50.

A {1 10.069%=R) if R < 50,

Here T, R are air temperature and relative humidity. The radiation coefficient S
depends only on the elevation H of the terrain above the sea level:

1+ 0.45UL2990) - if /T > 2000.

5 {1, if H < 2000,

We should note that as the basis for the creation of the BISCR are empirical concepts
of "comfort" and "extremes" of the influence of meteorological factors on a human
being, as well as the condition that the index equals 10 under special meteorological
and geographical conditions, i.e. at T = 22 °C, R =50 %, V =0 m/s, P =
1016 hPa, H < 2000 m |[3, 7].

2 A stochastic model

—

We have to simulate the time series B = (B, ..., Bg, B, ..., Bsy) of the BISCR on N
days interval with 8 measurements per day.

There are two approaches to the simulation of the time series B. The first ap-
proach is that the “real” BISCR is calculated based on real data for the atmospheric
pressure, wind speed modulus, air temperature and relative humidity. After that, the
values obtained are used to evaluate parameters of a stochastic model of the BISCR.
In the second approach, parameters of the stochastic model of the joint meteoro-
logical time series are estimated from observation data and then “artificial” BISCR
series are constructed on the simulated trajectories of the joint time series. Each of
these approaches has its advantages and disadvantages. Models of the first type are
numerically implemented faster than models of the second type (since when using
the first approach, it is necessary to simulate the scalar time series, and when using
the second — the vector time series). However, models of the second type allow us to
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study properties of the BISCR as functions of one or several meteorological parame-
ters. In this paper, we use the second approach to study the properties of the BISCR
time series.

The following assumptions will be used:

1. The meteorological time series, as well as the time series of the BISCR, are
assumed to be periodically correlated random processes. On the one hand, this
assumption allows one to take into account the daily variation of real meteoro-
logical processes, and on the other hand - to reduce the simulation complexity
as compared to the case when non-stationary (both by one-dimensional distri-
butions and by correlations) time series are simulated.

2. Since the daily variation of the atmospheric pressure time series is mild, the
atmospheric pressure Pij, i=1,8, j =1, N is assumed to be constant and equal
to the sample average pressure calculated over the considered N days interval.
Due to this assumption, instead of the joint series of the four meteorological

parameters, it is possible to simulate the time series C' = (C ,C° .. C ) of

the three parameters, where

C = (T},..., T{, R}, .., RL, Vi, ., Vi), j=T1,N,

T?, R}, V7 are the values of air temperature, relative humidity and the wind

speed modulus at the measurement number 7 per a day number j (i = 1,8, j =
1,N).

3. Tt is also assumed that the one-dimensional distribution of T/ is a mixture of
the two Gaussian distributions. In this paper, the parameters of the mixtures
for all i = 1,8,j = 1, N were chosen using the algorithm, proposed in [13]. Tt
is shown in [10] that the use of such a method for approximating the sample
one-dimensional density of air temperature distribution allows one to simulate
the time series of this weather element with a high accuracy.

In [11], the sample one-dimensional distributions of relative humidity, de-
pending on the weather station under consideration, were approximated with
mixtures of beta distributions, mixtures of truncated (Gaussian or gamma-
distributions. In this paper, for unification, we use piecewise-linear approxi-
mation of the sample distribution function of a relative humidity R’.

To approximate the one-dimensional distribution densities of the wind speed
modulus, the Weibull distribution is often used (see, for example, [2, 8]). How-
ever, the numerical experiments have shown that approximation with a mix-
ture of the two gamma-distributions with the mixture parameters determined
according to the algorithm, presented in [14], allows one to reproduce more pre-
cisely the sample coefficients of asymmetry and kurtosis (in comparison with
the approximation with the Weibull distribution). The usage of the mixtures
of two gamma-distributions also minimizes the deviation of the approximating
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density from the sample one in the sense of the Pearson functional. Therefore,
in this paper, we assume that V has one-dimensional distributions in the form
of a mixture of two gamma-distributions.

4. For the simulation of the joint time-series é, the sample correlation matrix R
was used. Analysis of real data shows that for all meteorological stations and
time intervals considered, the amplitudes of diurnal oscillations of the auto-
and cross-correlation functions of meteorological elements are significant. For
estimating the sample correlation coefficients, the biased estimator was used
[15].

For the simulation of the joint time series C' with given one-dimensional distri-
butions of Tij, R{, Vij, i=1,8,5 =1, N and a given correlation matrix R, the
method of inverse distribution function was used. The simulation of an auxil-
lary standard Gaussian sequence was done using the Cholesky decomposition
of its correlation matrix [16].

3 Numerical experiments

Any stochastic model has to be verified before one starts to use the simulated tra-
jectories to study properties of a simulated process. For the model verification, it is
necessary to compare the simulated and the real data based on estimations of such
characteristics, which, on the one hand, are reliably estimated by real data, and on
the other hand are not input parameters of the model. A number of examples of such
characteristics are presented below. Although all examples in this paper are given
only for the stations in the cities of Tomsk (West Siberia, Russia; subarctic cyclonic
climate) and Pogranichniy (Russian Far East; arctic climate), all the conclusions are
valid for all the considered weather stations situated in different climatic zones. For
the verification, the data collected in 1966-2016 were used.

It should be noted that hereafter 10° simulated trajectories for estimations were
used . To denote the estimations based on the real and simulated data, abbreviations
RD and MD are used, respectively. Hereinafter, o is the statistical estimate of the
standard deviation of the characteristic under consideration when estimating with
real data.

The first characteristic to be compared was the average number AN of days over
the considered time interval with the average daily BISCR belonging to the given
interval. The intervals were chosen according to distinguished levels of discomfort,
for example, the BISCR from 10 to 8 points is the level of comfort and the BISCR
from 4 to 0 points is the level of non-compensable discomfort [4]. Table 1 shows the
corresponding estimations, obtained based on of the real and simulated data. The
estimations based on real and simulated data agree reasonably well.

The next characteristic used for the comparison of the real and simulated BISCR
time series is the average number AD (I) of days over the interval considered, in
which the daily minimum BISCR is below the specified level [. The numerical
analysis shows that for most of the considered time-intervals, the simulated data
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based estimations belong to the corresponding the real data confidence intervals
(AD (1) —0,AD (l) + o), see, for example, Table 2.

One more characteristic that can be used to investigate how much the stochastic
model of the joint time-series C fits for studying the properties of the BISCR is the
portion s (v, n) of periods of n measurements with the BISCR not exceeding v among
all the periods of measurements. Tables 3 and 4 present examples of estimations of
s (v,n) from real and simulated data. The numerical analysis shows that for almost all
the considered weather stations, time intervals, levels v and lengths n, the deviations
of estimations based on the simulated data from the corresponding estimations from
real data do not exceed 3o.

We have also compared the probabilities Py (A) of the BISCR change greater
than by A in 24 hours, estimated on real and simulated data. Examples of the
estimations of the P,y (A) are shown in Table 5. In these examples, the proba-
bilities, estimated based on of the simulated data, belong to the corresponding in-
tervals (P (A) — 30, Poy (A) + 30), calculated withe the use of real data, but for
other weather stations and time-intervals, in, approximately, 25% of cases (mostly
for A < 0.8) this is not true. The reason why the model proposed unsatisfactorily re-
produces this characteristic of the joint time-series 5, is unclear and calls for further
investigations.

The results of the numerical analysis show that the trajectories of the model
proposed are close in their statistical properties to the real time series of the BISCR.
Therefore, it is possible to use the model in question to study the extreme weather
events that are characterized by unfavorable values of the BISCR and to study the
dependence of the BISCR properties on the climate change.

Table 1: The Average Number AN of Days on the Considered Time Interval with
the Average Daily BISCR Belonging to the Given Interval

Interval | Pogranichniy, Tomsk, January
July 1-15 16-30

RD AN o MD RD AN +0 | MD
[10;8] | 0.065 £ 0.048 | 0.107 | 0.000 = 0.000 | 0.000
(8;7] | 13.065 £ 0.241 | 13.245 | 0.000 £ 0.000 | 0.004
(7; 6] 1.870 £0.234 | 1.645 | 0.900 £ 0.028 | 1.094
(6; 5] 0.000 = 0.000 | 0.000 | 8.460 £ 0.531 | 8.500
(5; 4] 0.000 £ 0.000 | 0.000 | 5.4404+0.533 | 5.159
[4;0] 0.000 £ 0.000 | 0.000 | 0.200 4+ 0.001 | 0.244

Conclusions

In this paper it is shown that the proposed stochastic model of the joint time series
of the wind speed modulus, air temperature and relative humidity may be used for
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Table 2: The Average Number AD (I) of Days on the Considered Interval, in Which
the Daily Minimum BISCR is Below the Level [

[ Pogranichniy, Tomsk. July
January 1-15 1-15

RDAD(l)xo | MD |RD AD(l)+0 | MD
10.0 | 15.000 £ 0.000 | 15.000 | 15.000 £ 0.000 | 15.000
9.5 | 15.000 £ 0.000 | 15.000 | 14.920 £ 0.032 | 14.948
9.0 | 15.000 £0.004 | 14.999 | 11.580 +0.281 | 11.425
8.5 | 15.000 £0.010 | 14.996 | 6.600 &+ 0.357 | 5.707
8.0 | 14978 £0.023 | 14.981 | 2.680 £ 0.255 | 2.170
7.5 | 14913 £0.066 | 14.851 | 0.620 = 0.127 | 0.562
7.0 | 13.783£0.204 | 13.707 | 0.120£0.042 | 0.073
6.5 | 10.022£0.386 | 9.676 | 0.000 £ 0.006 | 0.006
6.0 | 3.9574+0.348 | 3.824 | 0.000 £ 0.002 | 0.000
2.5 | 0.826 £0.148 | 0.6690 | 0.000 £ 0.001 | 0.000
5.0 | 0.0224+0.036 | 0.049 | 0.000 £ 0.000 | 0.000
4.5 | 0.000%0.006 | 0.002 | 0.000 4 0.000 | 0.000
4.0 | 0.000%0.001 | 0.000 | 0.000 =4 0.000 | 0.000

Table 3: Probabilities s (v,n). Tomsk. January, 1-15

n|{v="7 v=>=0

RD s(v,n)£30 | MD | RD s(v,n)£3c | MD
0.995 £+ 0.002 0.999 0.913 £0.045 | 0.899
0.991 £0.003 | 0.999 0.877£0.059 | 0.855
0.987 £0.004 | 0.999 0.849 £ 0.069 | 0.820
0.983 £ 0.005 0.998 0.824 £0.078 | 0.790
0.978 £0.007 | 0.998 0.804 £0.086 | 0.762
0.973 £0.008 | 0.998 0.785£0.093 | 0.736

14 | 0.969 £0.009 | 0.997 | 0.769£0.010 | 0.712

—_ =
O O X O =D

studying the probabilistic properties of the high resolution time series of the biocli-
matic index of severity of climatic regime on the time intervals on which a seasonal
variation has not a significant influence on the real meteorological processes. In the
future, similar studies will be conducted on longer time intervals. Since the character-
istics of the atmospheric pressure change significantly over long time intervals, instead
of the model of a periodically correlated complex “air temperature - relative humidity
- wind speed modulus”, a model of the non-stationary joint time series “temperature
- relative humidity - wind speed modulus - atmospheric pressure” will be used. This
will allow us to take into account both the daily and the seasonal variations of real
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Table 4: Probabilities s (v,n). Tomsk. January, 1-15

n|v=>5 v=4

RD s(v,n)£30 | MD | RD s(v,n)£3c | MD
0.321 £0.084 | 0.293 0.015£0.018 | 0.019
0.254 £0.078 | 0.223 0.007 £0.013 | 0.010
0.213+£0.073 | 0.181 0.003 £0.010 | 0.006
0.185£0.068 | 0.150 0.002 £ 0.008 | 0.004
0.164 £0.064 | 0.126 0.002 £0.007 | 0.003
0.146 £0.060 | 0.106 0.001 £0.005 | 0.002

14 | 0.131 £0.057 | 0.090 0.001 £0.004 | 0.001

—_ =
MOOO@»—%[\D

Table 5: Probabilities Py (A) of the BISCR change more than by A in 24 hours

A | Tomsk, July 16- Pogranichniy,

30 July 16-30

RD Py (A)£30 | MD | RD Py (A)+30 | MD
0.1 | 1.0000 + 0.000 | 1.000 1.000 +£ 0.000 1.000
0.5 0.980£0.012 ]0.98 | 0.887£0.026 | 0.935
1.0 | 0.8324+0.046 | 0.858 | 0.4544+0.075 | 0.522
1.5 | 0.524+0.072 | 0.591 0.173 +£0.059 | 0.189
2.0 0.224+0.061 0.268 | 0.049 4+ 0.031 0.056

meteorological processes.
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Abstract

This research is devoted to the development of an approximate numerical
stochastic modeling based on real data of a periodically correlated Gaussian
process based on a spectral representation in which the Fourier coeflicients
form a stationary vector Gaussian process.

Keywords: spectral model, vector process, matrix correlation function.

Introduction

In [5], a spectral model of a scalar periodically correlated random process was con-
sidered, based on the representation of

= "y (t)exp <z—pt> (1)

pEZ

and 7, (t) - are the components of the vector infinite-dimensional stationary random
process with zero means and the matrix correlation function K,, (t —s), p,q € Z ,
T- is an arbitrary deterministic value having the dimension of time. This process is
a periodically correlated process with a period T [4] that has such properties

En(t)=Ent+T), Dn(t)=Dnt+1T),
Em(t)—En(t)(n(s)—En(s)=R(ts)=Rt+T,s+T).

In our research it will be shown that covariance function of this process is

LN

peEZ

and this function covers the entire class of covariance functions of an arbitrary peri-
odically correlated process. In this study, this representation is used to construct an
approximate stochastic model of a periodically correlated random process, in which an
infinite-dimensional random vector 7 (¢) is replaced by a finite-dimensional dimension
n. Here we note that the algorithms for constructing periodically correlated processes
based on other approaches were considered in [6], [8], [7] based on Markov chains
with a periodically changing transition probability matrix, based on Poisson flows
with a periodic intensity, based on spectral representation with periodically varying
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spectral density. The most common approach to modeling periodically correlated
processes is an approach based on modeling vector Gaussian stationary processes of
a discrete argument with a constant time step, which also allows you to simulate
non-Gaussian periodically correlated sequences based on the method of inverse dis-
tribution functions |[3], [4]. Models based on the spectral representation make it
possible to model processes with an uneven time step [30], [31] without additional
computational costs.

1 Construction of a spectral model of periodically
correlated processes with using real data

We consider a periodically correlated random process £ (t) of continuous time in the
interval [0, co) with a period of correlation 7. We divide the time axis into intervals
(k—=1)T+1, kT +1], k= 1,2, .... Consider the representation (1) in the form

)= (mkeos (i) + 6, (05 (2t) ), @)

p=0

where t € [(k—1)T +1, kT + 1], n, (k) and (, (k) - are components of stationary
vector Gaussian random processes with mean i, (k) and v, (), variances o7, (k)
and o¢, (k) and a joint matrix correlation function

Algorithm for numerical simulation of the process (2) and methods for estimating
the parameters of the model based on real data are considered in this study. In
meteorological tasks, in order to choose one or another approximation, for example,
stationarity or periodic correlation, time intervals are considered at relatively short
time intervals, most often one month long or less. Time series for the same mo-
ments of time within a year, but corresponding to different years of observation, are
approximately considered independent and are analogous to the trajectories of the
process & (). Lets represent [-th trajectory of a periodically correlated process &(t) ,
[ =1,2,... with a discrete argument and a period of correlation equal to T' = m in
the form of

§(t1)s - &tm) s &(tmgr)s s &ltam), - &t 1ymt1)s - - & (k) -+ -

We divide the range of values of its argument into intervals [(k — 1)T + 1, kT + 1],
k= 1,2, .... Let m+1 - the number of measurements in each of these intervals. In
each k-th interval, process values are given in a discrete sequence of points.

(k? — 1)T +1= t(k—l)m+1 < t(k—l)m+2 <o < t(k—l)m—i—m < t(k—l)m+m+1 = kT + 1.
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The process values &(t) = & 4(t) in these points are denoted as

él,k‘(t(k—l)m—&-l)a ey Eup (),

where k - is interval number. Interpolate & (t) in the interval [(k—1)T+1, kT +1],
k= 1,2, ..., by its values él,k(t(k_l)mﬂ), - Ex(temsr) at these points. In each k-th
interval [(k—1)T 41, kT + 1] we represent [-th trajectory &(t), I = 0,1,... process
¢ (t) as a Fourier series

) =)= 3 (s Weos (o) +Gumyom (Fnt))

p=0

where 7, (k) and {,; (k) are the Fourier coefficients and these coefficients are deter-
mined by the expressions

T/2
2 [ - 2
Mpi(k) = T / &k (1) cos(%pt)dt, te [(k—1D)T+1, kT +1],
~T/2
T/2
~ 2 ~ . 2w
k) = 2 / G () sin(ompt)dt, € [(k=1T+1, KT+1], ()
—T/2
p=1,2....n,
T/2
) 1 )
(k) = / Gr)dt, te [(k—1)T+1, KT +1], (k) =0.
~T/2

and for each [ form scalar sequences 7}, ; (k) and fm(k), p=01,....,.n,k=0,1,... K.
We represent these sequences as a single vector sequence

&l,o; él,l) ey él,K) (5)

where

Gk = G (R), G (R)) = (s k), Ana(k), - flaa (), Calk), - Cuak)” — (6)

is vector formed from the Fourier coefficients for the [-th trajectory and interval
[(k—=1)T+1, KT +1]. Here the number of components for the sub-vectors 7/ (k) and

Q_;T(k) of the vector ¢, is equal to n+1 and n while the numbering of the second sub-
vector begins with p = 1. The sequence (5) forms a sample of a stationary sequence

G0, D11, . - . of vectors formed from the Fourier coefficients 7, (k) and (,; (k). The
stationarity of this sequence directly follows from the periodic correlation of the

process £ (t).
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It is assumed that the period of correlation is known in advance. For example,
when modeling meteorological series, this period is usually determined by a daily
or annual cycle. If the period of correlation is determined by other factors, then
special additional studies are needed to determine it [5], [9],. The algorithm for sim-
ulating a Gaussian periodically correlated sequence based on the representation (2)
and relations (3)-(5) based on real data is reduced to the following transformations:
Algorithm

1. The original time interval is divided into sub-intervals [(k — 1)T' + 1, kT + 1],
k= 1, .. K.

2. The values of the series k-th in the subinterval fm(t(k,l)mﬂ), . ,fbk(tkmﬂ)
are interpolated to each point of this interval. As a result, we obtained the
functions &, (¢), t € [(k—1)T+1, KT +1].

3. Integrals (4) are calculated for each value & = 1, ..., K, [ = 1,2,...,L,
p=0,1,....n

4. For each p = 0,1,....n k = 1,...,K, | = 1,2,...,L vector sequences
GLo, D11, - - Gk (5) are formed from the obtained values 7,;(k) and (,;(k),
forming a sample of vector sequences length K in which the dimension of the
vectors is 2n + 1.

5. For this sample, the mean values i@ = (uy, ..., ton_1)7, variances
7 = (02,...,02 )T and matrix correlation function ®(7) of the vector se-

quence of Fourier coefficients are estimated.

6. Next, a Gaussian stationary vector sequence ¢, ¢ 1, ..., @1 i is simulated with
zero mean, unit variance and correlation matrix ®(7).

7. Based on the obtained vector sequence, a stationary vector sequence of model
Fourier coefficients is constructed by multiplying the obtained components

of the Gaussian vectors le,g,q_;l,l, ..., 01k by the corresponding sample stan-
dard deviations and additions with the corresponding sample means u;, ¢ =
1,...,2n+ 1.

8. The final periodically correlated process is constructed using the relation (3)
for te [(k—1)T+1, kT), k=1,..., K.

2 Numerical experiments

As an example, in this paper, the considered algorithm is used to simulate periodically
correlated time series of air temperature according to four-time observations of the
temperature at the Sverdlovsk meteorological station in the month of May for the
period from 1936 to 1984 years. The period of correlation in this case is one day (or
four periods of observation T'= m = 4). In this research, the values of a real time
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series é(tl), g(tg), o ,é(tM) correspond to conditional time points ti,ts, ..., ta, ¢ =
i with a step At =t;,1 —t; = 1. Here M = K x T = 31 x 4 (K- number of days
in May, T' = t;1,, — t; = 4 - period of correlation). The original time interval is
divided into subintervals [(k —1)T'+ 1, kT + 1], k= 1, ..., K. The interpolation
is a piecewise linear interpolation from the Algorithm point 2. In each k-th interval
[(k—1)T+1, kKT + 1] the integrals (4) are calculated by the Simpson method. And
further, Algorithm points 5-7 are implemented.

The Gaussian vector sequence QZ_S;,O, gz?l,l, cee ggl,K is simulated based on the spec-
tral decomposition of the matrix ®(7). In the calculations, n was chosen equal to
9. L = 10000 of process trajectories were used in the calculations. The matrix
correlation functions R(7) of the model £ (¢) and real él(t), 1 = 1,..., L processes
at the points t1,t5,...,ty, t; =1 were calculated along these trajectories. We note
that a periodically correlated scalar process defined at equally spaced points is equiv-
alent to a vector stationary process in which the dimension of the vectors is equal
to the correlation period |[5]. Therefore the correlation function of a periodically
correlated scalar process is equivalent to the matrix correlation function R(7) of a

vector stationary process. These functions for model and real processes are shown in
Tablel.

Table 1.

Model and real matrix correlation functions of the process

Modeldata Realdata

7=0 7=0
1.000 0.848 0.718 0.701 1.000 0.834 0.709 0.694
0.848 1.000 0.841 0.704 0.834 1.000 0.837 0.692
0.718 0.841 1.000 0.904 0.709 0.837 1.000 0.897
0.701 0.704 0.904 1.000 0.694 0.692 0.897 1.000
T=1 T=1
0.669 0.517 0.426 0.435 0.678 0.516 0.437 0.460
0.640 0.659 0.510 0.411 0.638 0.665 0.523 0.422
0.791 0.772 0.645 0.543 0.792 0.781 0.662 0.560
0.892 0.785 0.701 0.666 0.894 0.784 0.709 0.677
T =2 T =2
0.423 0.293 0.233 0.276 0.459 0.327 0.283 0.329
0.359 0.379 0.286 0.241 0.380 0.416 0.333 0.281
0.480 0.459 0.380 0.327 0.505 0.493 0.422 0.365
0.615 0.494 0.415 0.411 0.634 0.514 0.446 0.445
T=23 T=3
0.287 0.183 0.147 0.170 0.335 0.219 0.200 0.256
0.209 0.252 0.184 0.130 0.249 0.296 0.251 0.213
0.296 0.293 0.208 0.160 0.325 0.331 0.280 0.241
0.384 0.282 0.219 0.232 0.424 0.321 0.281 0.303

W N PSR WN SR WD SR WN S
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The difference in the values of the model and real correlation matrices is de-
termined by such factors as, for example, the accuracy of the calculation of the
integrals, the limited number of harmonics used. If the estimation of the matrix
correlation function is carried out at points different from ¢,ts, ..., t), t; = 7,0ther
than, the corresponding values of the model matrix are determined by the method of
interpolation of the initial vector sequence in the intervals [(k — )T+ 1, kT + 1],
k= 1, ..., K.

Conclusion

In conclusion, we note that by increasing the number of harmonics and the accuracy
of calculating the integrals, we can significantly increase the accuracy of modeling.
The accuracy of the simulation is checked by the magnitude of the proximity of
the sample and model matrix correlation functions, which are estimated at the time
points of real observations. The real correlation function of the process is not an
input information to the model, but the matrix correlation function of vectors from
the Fourier coefficients that significantly depends on the sample size, so the sample
size implicitly affects the accuracy of the simulation. The model reproduces the real
process, which is initially set on a regular grid in arbitrary points of the considered
time domain and everywhere, except for the moments in which the initial process is
specified, is determined to the interpolation method. Thus it is of further interest to
study the dependence of the properties of the correlation function of the simulated
process on the choice of interpolation method. Probably the considered approach
can be generalized to the case of a nonstationary process of a more general form. Tt
should also be noted that interpolation methods can also be applied to the methods
considered in [3], [5], however, the difference is that in this investigation interpolation
is applied to the source data within intervals [(k-1)T+1, kT+1], k=1,...,K, and in
methods based in the simulation of stationary vector processes, interpolation should
be applied to the modeling process.
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Abstract

The effective coefficients for equations of the convective diffusion are ob-
tained. The correlated fields of conductivity and porosity are approximated by
the Kolmogorov multiplicative continuous cascades with a lognormal probability
distribution. The theoretical results for the incompressible flow are compared
with the results from direct 3D numerical simulations.

Keywords: effective coefficients, convective diffusion, lognormal probabil-
ity distribution, multiplicative continuous cascades.

Introduction

In natural conditions, as a rule, the spatial geometry of small-scale heterogeneities
is not exactly known, and the irregularity of conductivity and porosity abruptly
increases as the scale of measurements decreases. Since generally porosity and con-
ductivity vary in an irregular manner, it is customary to regard them as random
space functions characterized by the joint probability distribution functions and they
are taken into account with the help of the effective parameters. Many natural me-
dia are "scale regular" in the sense that they can be described by multifractals and
hierarchical cascade models. In this paper, by the method of subgrid modeling, we
obtain formulas of effective coefficients for for equations of the convective diffusion.
The effective coefficients depend not only on means and variances of the parameters,
but also on the correlation between the conductivity and porosity. The theoretical
results are verified with the help of direct 3D numerical simulations.

1 Governing equations and model of the medium

At low Reynolds numbers, the filtration velocity v and the pressure are related by
Darcy law v = —o(x)Vp , where a random function of the spatial coordinates o(x)
is a conductivity coefficient. The condition of incompressibility yields the equation

Ve (x)Vp(x)] =0, (1)

where x is the three-dimensional vector of spatial coordinates, p(x) is the pressure.
At the initial time a colored liquid flow-in into a volume filled with a pure liquid. The
interface is labelled with passive particles, which are moved by a stationary velocity
field. Since both liquids have the same physical parameters, their filtration velocities
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satisfies the Darcy equation (1). The movement of the labelled particles is described
by the equation |[1]

m(x;) dt( ) = —0(x;)Vp, x(0) = Xy, : (2)
where i = 1,..., N is the number of a particle. The pressure p is defined by equation

(1) and gradient is calculated at the point x;, m(x) is the porosity coefficient.

Let the conductivity field be known. This means that it is measured at each
point as the fluid is pumped through a sample of small size. In an experiment, one
measures a conductivity fields within the accuracy of a minimal scale [5. A random
function of spatial coordinates o(x) is considered as limit of conductivity, as, we
have [y — 0, o(x);,, = o(x). Let the conductivity field satisfies o(x) = o(x);,. To
pass to a coarser grid [;, one can smooth the resultant field o(x);, using the scale
[y > lp. The obtained field is not the true conductivity that describes filtration in
the interval of scales (ly, L), where L is the maximum scale of heterogeneities. To
find conductivity on a coarser grid one has to repeat the measurements, pumping
the fluid through larger sample of size [;. This procedure is necessary, since the
fluctuations of conductivity within the scale interval (ly,[;) have correlations with
pressure fluctuations induced by them (equation (1)). The search of a transformation
law of the effective conductivity, when the scale grid varies, is not so difficult for the
self-similar medium. Similar to [3], we consider a dimensionless field ¢ equal to
the ratio of conductivity smoothed using two different scales (I,1;). More detail this
approach have been described in |2]. The field o(x); is o(x);, smoothed over scale

L (x, 1 1) = Z((XT))Z; If 4 — [ we obtain dlno (x,l) /0Inl = ¢ (x,l), where function

o(x,1) = thl defines the all statistical properties of porous medium [2]. The
solution to this equation gives the conductivity as the function of field ¢ with the

given distribution:
[ dl
o(x)1y = doexp | — / olx )7 |, 3)
lo

where o( is constant. The field ¢ determines statistical properties of the conduc-
tivity. According to the limit theorem for sums of independent random variables,
if the variance of ¢(x,[) is finite, the integral in (3) tends to a field with a normal
distribution as the ratio L/l increases. If the variance of ¢(x,1) is infinite and there
exists a non-degenerate limit of the integral in (3), the integral tends to a field with a
stable distribution. In this paper, it is assumed that the conductivity o(z);,, = o(x)
has heterogeneities of the scale [ in the interval |y < [ < L and a correlation function
of field p(x,1) is statistically homogeneous, isotropic

7 (x, v, 1, 1') = (p(x, ey, 1)) — (o(x,1)) (o, 1) = 89 (|x — y|,1) 6(Inl — 7).

(4)
For simplicity, we use the same notation ®¥¥ in right-hand side. The angle brackets
denote the ensemble averaging. It follows from (4) that the fluctuations of p(x,[) at
different scales do not correlate. This assumption is standard in the scaling models,
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see [3], and is due to the fact that the statistical dependence is small if the scales of
fluctuations are different. To derive subgrid formulas to calculate effective coefficients,
this assumption may be ignored. However, this assumption is important for the
numerical simulation of the field ¢(x,l). Here we assume that the random field
©(x,1) has the Gaussian distribution. For a scale invariant medium, the following
relation holds for any positive K: ®%¢ (|x —y|,[,l') = ®**(K |x — y|, KI, Kl').

If for any [ the equality < o(x); >= 0y is valid (the conservative cascade), then
it follows from (3) and (4) that ®§¥ = 2 (p), where ®F” = &¥¥ (0,1).

The porosity coefficient m(x) is constructed similar to the conductivity coefficient:

L

m(x);, = moexp —/X(X,l)% : (5)

lo

The function x(x,!) is assumed to have a normal distribution and to be delta corre-
lated in the logarithm of scale. From the physical essence of the porosity follows that
the parameters of the porosity field is satisfied: ®§* =2 (x) .

The correlation between the porosity and conductivity fields is determined via the
correlation of the fields p(x,[) and x(x,1):

@@X(&X’[’ l/) = <90(X7 Z)X(Xv l/)> - <(10(X7 l)) <X(X7 l/>> = (I)gxé(hll —In l/);

2 Effective coefficients

The conductivity function o(x), m(x) are divided into two components with respect
to the scale [. The large-scale (ongrid) components o(x,[), m(x,l) are obtained,
respectively, by statistical averaging over all o(x, 1), x(x,1;) with [y <) <[, -1y =
dl, where dl is small. The small-scale (subgrid) components are equal to o'(x) =
o(x) —o(x,1), m'(x) = m(x) — m(x,1):

L !
dl dl
o(x,1) = ogexp —/go(x, l1)l—1 <exp —/gp(x,ll)l—l >, (6)
1 1
!

lo
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We carry out similar partitions for the displacement and the pressure:

x(t) = x(t,1) +x' (1), p(x) =p(x,1) +p'(x), x'(1)) =0, {p'(x)) =0,

where x(¢,1), p(x,1) are respectively solutions to equations (1), (2) averaged over the
small-scale fields o/, m’. Averaging equations (1),(2) over m’, o’ with given m(x,1),
o(x,1) yields the ongrid equations:

7 el) S ) = = (51000 570 () ®)
The subgrid terms <8%0'/ (x) - (%p' (X)>, <m’$> in equations (8), (9) are un-

known. This terms cannot be neglected without preliminary estimation since the
correlation between the field ¢’ (x), m’ (x) and the derivatives p’ (x), x/(t) may be
significant. Subtracting equations (8), (9) from equations (1), (2) and taking into
account only the first order terms, we obtain the subgrid equations:

A ) = o (00 5 ) (10
mix, z)dxd—f) = ()P () — o' (x)Vp(x, 1) — (%) dxfli’ Do an

To evaluate subgrid terms in equations (8), (9), the right-hand sides of equations
(10),(11) are considered to be known. This approach are described in detail in [4],
[2], [5]. We suppose o(x,1), p(x,1), z(t,]) and their derivatives varying slower than,
o'(x), p'(x), 2/(t and their derivatives (the property of multiplicative cascades). Using
the Green function, we can approximate the solution of equation (10):

/ 1 ]‘ a / / Iap(x7l) /

R - =|x—x]. 12

P ool o [ g G TR repexl )
14

The correlation functions are small outside the domain with radius L < Ly and the
center at the point x, where L is the scale of the domain V. Thus, integration over the

finite volume V' is changed to integration with an infinite limit. Using (12), formula
2 . . . . . .

az(?&r'% = —%&-j , integrating by parts and changing the Cartesiasian coordinates to
10T

spherical coordinates, we obtain, that

op' (x) 1 dl dp (x,1)
N\ 2N o 2R (1) het i
(700~ Lage () F o ) 2 (13
In the same manner we can evaluate the correlation between m/(x) and %JS():
op' (x) 1 dl Op(x,1)
! ~—-OX (1) — ) ———=. 14
(m! () 22 & 0 (1) T (o, 0) L (14)
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For the second subgrid term in (9) we have from the equation (11):

<m/ (X) L(t)> - _ <m/ X) o' (X)>Vp (X, l) o o (X7 l) <m/ (X) vp/ (X)>

dt m(X, l) m(X, l)
(m’ (x) m'(x)) dx (t, 1)
 om(x,]) dt (15)
Substituting (13), (14), (15) in equations (8), (9), we get
D7 dl
V{U(x l) [1—TT}}V]9(X,Z) ~ 0, (16)
m(x,1) {1 — @XX(?} dxc(li,l) ~ o (x,1) {(%W + §(I>“DX> # — 1] Vo (x,1).

The effective coefficients o (x)¢/ and m (x) are evaluated by the formulas:

ef L dly of L dly
o(x);” =ogexp| — l o(x,l1)— L ,m (x);" = mgyexp |— l X(Xl)l1 ,

ool ~ 0 [1+ (— (o) + 2<I>W> ﬂ [1 - (I);w‘ﬂ ~ 00 [1+ (— (o) + 6<1>W> ‘ﬂ :

dl
mo, = My |:1—(I)XXZ:|

dl oY 2 dl
o4 = 00 [1 + <— () + 2@‘”) l } {(g - 3<I>gx) T 1] ~
1 2 dl
~ —0( [1 + <— (@) + 6@’5@ — 3<I>gx> l] .

For di — 0 we obtain

dlno 1 dlnm ,

Il ZOZ = —(p) + ECD?D, oo, = 00, Wlm = =0, me, =mo,
dlnoy, 1 2

DU ()4 205 205 o, = 00 (17)

In scale invariant media the solution of the equations (17) have the form:

1\ (o5t 1\ 2" X [\ (5 -F g
oo = 09 (lo> , Mo = My (lo) yEol = €0 (E) . (18)

The variance of velocity vector in the scale-invariant medium is evaluated by the

formulas:
dx(t)\> dx(t)\* 1 dx (t,1)\*
— =Q|-A-WF 1

<< dt ) Cdt g4~ dt ’ (19)

_4<I>O¢X >f Y >_ﬁ+¢><x

where Q) = (i) ° P and Q) = (%) e , the main diagonal

_ @%’80 5
elements of matrix A equal 2 (%) (#67/5) + 1 and all other array elements are equal

to — (L)(_ég%) +1.

lo
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3 Numerical modeling

The equations (1), (2) are numerically solved in a cube Ly on edge. On the sides
of the cube 25 = 0, x3 = Ly the pressure is constant p(z1, T, 23) |zy=0 = p1,
p (21,22, 23) |oy=r, = P2, P1 > P2. On the other sides of the cube, the pressure is
specified by the linear relation for xs: p = p1+(p2—p1)y/Lo. The basic filtration flow
is directed along zo:-axis. For the numerical calculation the dimensionless variables
are used. The all lengths are measured in terms of Ly, the unit difference of pressure
is chose difference p; — po, the conductivity is measured in terms of oy. Thus, the
problem is solved in unit cube with unit differential pressure for o = 1. For the
spatial variables, we use 5123 grid. At the first, the conductivity and the porosity
fields are modelled. The integrals in (3), (5) are replaced by a finite difference
formula, in which it is convenient to pass to the logarithm with base 2:

0 0
o(x);, = exp [— In2 Z o(x, Tk)(ST] ,m(X)1, = Mo exp [— In2 Z X(X,Tk)(%] . (20)
k=—8 k=—8
o XX XX
o) =\ o GO0 ) + {0 xGe ) = [ 12 (7€ Gem) + VI = s (i) ) + T
(21)

Here is, I, = 2™, 7, = k0T, 67 = 1 is discretization step in the logarithm of the scale,
—1 < r < 1 is a correlation coefficient. The fields p(x,7%), x(x,7x) are generated
separately for each [. The total power exponents in (20) are summed over statistically
independent layers. The number of additives in (20) and scales were chosen so that
the largest scale of displacement pulsations would allow us to replace the probabilistic
mean values by spatially average values, while the smallest scale of pulsations would
provide that the numerical methods would approximate equations (1), (2) quite well
on all the scales. Thus, three layers are used in the calculations l; = 8h, 16h, 32h. A
minimal scale is [ = 1/64. The independent Gaussian fields ((x,7x), ¢ (x,7) have

unit variance, zero mean and correlation function e[~C¥05 /2] Ror the modeling
the random fields the method [6] is used . For solving equation (1) an iterative
method combined with the Fourier transform and the sweep method [7] and for
solving equations (2) the Runge-Kutta method of second order accuracy are used.
We use parameters:mg = 0.15, ®§* = 0.1, () = 0.2, &F¥ = 0.4, (x) = 0.05, r = 0.8,
PF* = \/DF¥ O . For evaluation the mean velocity of the front is applied formula

1 9
log, <d$2d§fk)> = ay, a = ((@ - g%” + 5‘1’3" - CI%‘X) k, (22)

where k = 1,2, 3 is the number of layers in (20). In the figure 1 The dashed line is
the result obtained by the conventional perturbation theory, solid line is the result
obtained by the effective equations, stars is the result of numerical modeling. In figure
2 the variance of x5(t) in double logarithmic coordinates is described. The increase
in square thickness occurs according to a power law with an exponent 1.77. The
exponent depending on time of particle size domain is equal to 0.87 > 0.5, (1/ D, (t)
t%87) that indicates the super diffusion process. In figure 3 the theoretical results
described by (22) are compared with result of direct 3D numerical modeling and the
result obtained by conventional perturbation theory.
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Figure 1: Mean velocity (xs(t)). Figure 2: The dependence

D,, = In ((xo(t) — (x2(t)))?) on Int.

Conclusions

We have presented the effective coefficients for the wave equation if its parameters
are described by extremely irregular small-scale fields that are close to multifractals.
The multifractals can be obtained if a minimum scale [y in formulas (3), (5), tends
to zero. As a minimum scale is finite, any singularities are absent, we use only the
theory of differential equations and the theory of stochastic processes. The numerical
verify, when use the spatial averaging and following additional averaging over Gibbs
ensemble, gives good agreement with the theoretical results.
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Abstract

The paper deals with the estimation problem for random processes in dy-
namical systems whose mathematical models are described by stochastic dif-
ferential equations with a compound Poisson process. The particle method
and the maximum cross section method are applied for estimating (filtering,
smoothing, and prediction).

Keywords: stochastic differential equation, Poisson process, estimation, fil-
tering, smoothing, prediction, particle method, maximum cross section method,
statistical modeling.

Introduction

In many practical problems [6, 8, 13, 16, 19, 20|, such as the tracking, navigation,
and financial analysis, it is necessary to estimate parameters or the state vector of a
dynamical system given the observations. In this paper, the estimation problem is
considered for jump-diffusion systems [9, 18].

The estimation of parameters or the state vector of the jump-diffusion system is
considered for the current time (filtering problem) and for the past or future (smooth-
ing or prediction, respectively) |7, 17|. The particle method, which involves modeling
trajectories of a dynamical system, is used for solving these problems. Previously, the
particle method was already applied to solve filtering problem for jump-diffusion sys-
tems [15], but the simplest method was used to simulate points of the Poisson process
(the mathematical model of the jump-diffusion system involves the stochastic differ-
ential equation (SDE) with a compound Poisson process). Here, it is suggested to use
the maximum cross section method and its modification [11, 12] for modeling these
points in estimation algorithms. These methods provide more accurate estimation in
the filtering, smoothing, and prediction problems. The complexity of these methods
and their constructive dimension is lower due to fewer random number generator
calls.
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1 Estimation problem for jump-diffusion systems

We consider a stochastic continuous-time observation system that includes two equa-
tions:

dX(t) = f(t,X(t))dt+a(t,X(t))dW(t)+/v(t,X(t—),§)y(dt x df),

X(0) = Xo, (1)

dY (t) = c(t, X (t))dt + ¢(t)dV (), Y(0) =Yy =0. (2)

The equation (1) is the Ito SDE with a compound Poisson process, where X € R"
is a state vector, t € T = [0,7T)], f(t,z): T x R* — R", o(t,x): T x R* — R"**,
v(t,z,€): T x R" x E - R", £ = R% W(t) is the s-dimensional standard Wiener
process, v is the Poisson random measure on 7' x = with the characteristic measure
I1, given by the function 7(¢,z,£): T x R" x = — R,; Xy is an initial state vector
with a given distribution.

The equation (2) is also SDE, where Y € R™ is an observation, c(t,z): T x R" —
R™, ¢(t): T — R™% V(t) is the d-dimensional standard Wiener process. The
matrix 7(t) = ((t)¢"(t) is nondegenerate, i.e., det n(t) # 0 for any ¢ € T. The initial
state vector Xy, Wiener processes W (t) and V (t), the Poisson random measure v are
independent.

Let A\(¢,z): T x R" — R, denote the jump rate (or intensity) and let ¢ (¢,40): T x
R™ — R, denote the probability density function for jumps (random increments
of the state vector). These two functions define the characteristic measure IT,,, the
Poisson random measure v, and the function v(t, z,§). Thus,

Pr(P(t + At) — P(t) = 1| X(t) = z) = A(t,z) At + o(At)

for small At, where Pr is a probability, P(t) is the Poisson process such that [9, 10|

Pt) = /Ot/Eu(dt « d€) = v([0,1] x 2),

and (7}, ) is the probability density function for the jump A; at time 7;, {7;} are
points of the Poisson process P(t), 1o = 0, i.e.,

X(n)=X(r;)+ 4y, j=12,..., (3)
¢ P(t)
Pe(t) :/0 /:v(t,X(t—),g)u(dt x df) = ZAJ,

where P¢(t) is the compound Poisson process.

Functions f(t,z), o(t,x), A(t,z), ¥(t,9), c(t,z), and ((t) are given, they satisfy
the conditions on the existence and uniqueness of the solution of SDEs [18]. In
addition, E|X,|* < oo, where E is an expectation or mean.
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The optimal estimation problem is to find an estimate X (0) given the observations
Yy ={Y(7), 7 € [0,t]} such that X (0) = (0, Y7), where the function (0, -) satisfies
for all § € T the following condition:

~ ~

E[(X(6) - X(9))" (X(6) — X(6))] - min .

This implies that X (6) = (6, Y{) = E[X(0)|Y{].
For § = t we have the filtering problem, for § < ¢t and 6 > t we have the smoothing
problem and the prediction problem, respectively.

2 Particle method for estimation of jump-diffusion
random processes

The algorithm based on modeling a special random process with terminating and
branching paths was proposed in [14] to solve the optimal filtering problem. Paths
of such process are completely determined by the SDE (1), and the observations de-
scribed by the SDE (2) affect on the terminating and branching rates (or intensities).
Then, this algorithm was modified so that it was possible to solve not only the fil-
tering problem but also the prediction problem [4]. The smoothing problem is more
difficult in this way, therefore, we will use the particle method [5].

The weight function w(t) should be defined in the particle method [5]. This is
a random process, which depends on the process X (¢) determined by the SDE (1)
and observations Y. For example, the estimate X (t) in the filtering problem for the
diffusion random process is the normalized weighted mean, i.e.,

- E0X0)

In this paper it is proposed to apply the particle method in the filtering, smooth-
ing, and prediction problems for the jump-diffusion random process. We will focus
only on modeling paths for the jump-diffusion random process using the maximum
cross section method, modeling paths of the weight function, and finding the optimal
estimate.

Let {tx} be a discretization of the time interval T with a variable step size hy, > 0:

tk+1:tk+hk, k:1,2,...,N; tOZO, tN:T.

Denote by X}, a discrete-time approximation of the random process X (¢) deter-
mined by a numerical method for the It6 SDE (1) without the compound Poisson
process [3, 9, 13|, i.e., the random vector X} is an approximation of X (¢) at time t,
and A(t,z) = 0. For example,

Xir1 = Xg + hif(te, Xi) + V hio(tr, Xi) ¢ (Euler—-Maruyama method); — (4)
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h
Xir1 = X + ?k(CL(tkka;) + atyr1, X7))

I
+ §< (tr, Xi) + 0(tis1, X2)) ¢ (Derivative-free Heun method), (5)

where X,f = Xk + hk f(tk,Xk) + \/h_kO'(tk, Xk) Ck;

hk hk 8a(tk, Xk)
Xp1 = Xp + — | [ — 200 28
k1 = Xp + 5 [ 5 o7

I
+ g( (tr, Xi) + o(te, X2)) e (Rosenbrock type method), (6)

:| ( (tk7Xk) +a(t;§,X,f))

where [ is the n-dimensional identity matrix, X! = X}, + v/h o(tg, X.) G, and
ate) = fit) — 2SS 2D s 1o
i 2.2 o, 2., m.

In relations given above (; is an s-dimensional random vector with independent co-
ordinates having the standard normal distribution for all &.
According to [5] the weight function w(t) is defined by

wlt) = exp{/ot &, X (7)) ()Y (7) — %/Ot c(T,X(ﬂ)n—l(T)c(T,X(T))dr},

and a discrete-time approximation of the random process w(t) at time ¢, is denoted
by wg, where

Wha1 = W eXp{CT(tk, X () (Y (tre1) =Y (8) —% "ty )~ (tk)c(ty, Xk:)hk},
Wy = 1. (7)

The discretization {¢;} is a superposition of the discretization of the time interval
T with a fixed step size h > 0 and points of the Poisson process P(t). It is suggested
to use the maximum cross section method for modeling these points {7;}. According
to |1, 2, 11, 12|, if there exists A* such that A(¢) < A*, then the random time between
neighboring points 7; and 7;4, should be simulated as follows:

9
T =0y, N:min{ﬁz agéw}, Qﬁzzgi,
i=1

)\*
where &4,€%,...,€Y ... is a sequence of independent random variables having the
exponential distribution with parameter \*: ¢ = —1InB;/\*; aj,as,...,qy,...,
B, Ba, ..., By, ... is a sequence of independent random variables having the uniform

distribution on the interval (0, 1), and A(t) = (¢, X (1)).
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The modified maximum cross section method [1, 2, 12] is more efficient, and for
this modified method the number N is defined by

wminfor - T (1- 2590 )

i=1

where « is a random variable having the uniform distribution on the interval (0, 1).
To find the approximate solution of the filtering, smoothing, and prediction prob-
lems it is necessary to simulate M sample paths X*(¢) of the random process X (t)
and the corresponding paths w'(t) of the weight function w(t) by the scheme (4), (5)
or (6) and the relation (7) taking into consideration points of the Poisson process
P(t) and the relation (3),7i=1,2,..., M.
The approximate solution of the optimal estimation problem is the normalized

weighted mean:

A A M . -1 A[ . .

X(ty) = Xy = (Z w,@) Zw;X;,

i=1 i=1

where the index k corresponds to the current time ¢t = ¢; and the index x corresponds
to the time 6 = t,, for which the state vector estimate is calculated. The higher order
moments can be also found as well as estimations of the probability density function
or distribution function of the state vector.

Thus, it is obtained the approximate solution of the filtering problem if Kk = k. We
have the approximate solution of the smoothing problem and the prediction problem
if kK <k and k > k, respectively.

Note that in the smoothing problem unlike the filtering problem it is necessary
to store paths of the random process X (t) in the computer memory. In the filtering
problem it is enough to store the states for the current time only, these states define
the initial data in the prediction problem [4].
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Abstract

In this paper, a model of a random-structure system is constructed. The
model describes control of an unmanned aerial vehicle (AV). The model is tested
by using a specially designed statistical algorithm.

Keywords: unmanned aerial vehicle, block diagram, random structure sys-
tem, stochastic differential equation, statistical algorithm

Introduction

At present, dynamic systems with random changes in the conditions of functioning
and perturbations causing abrupt changes in the structure as a whole (that is, struc-
tural uncertainty) are widely used. A systematic description of such problems and
methods of their analysis can be found in [3].

Such models have been developed in many branches of science to perform scientific
research related to modeling of complicated phenomena and control processes. These
are, for instance, problems of automatic control of a system with different operation
modes and different structures in non-overlapping time intervals. Such systems are
called dynamic systems with random structure change (DSRSC) or random-structure
systems.

Examples of random-structure systems are airborne collision avoidance systems,
systems of search for and interception of signals in navigation and AV flight control,
combined target guidance systems, as well as systems with possible failures.

1 Construction of a stochastic model for an
unmanned aerial vehicle control system

We construct a mathematical model of a control system (CS) of an unmanned aerial
vehicle (AV) of the DSRSC class.

The system being simulated has two states: The first (basic) state is searching
for a target and tracking by AV angular coordinates and distance using a radar
information system. The second one is target interception and autotracking by the
angular coordinates and distance using a laser locator. If the laser information system
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Figure 1: Block diagram of the guidance loop of a remote controlled AV in a
vertical plane

fails, it rapidly changes to the radar information system, that is, the system returns
to the first state.

Transitions from the r-th structure to the [-th one are governed by using transition
intensities v (¢) or conditional probabilities P! (¢, A) calculated as convolutions
of the probability density distribution (PDD) of the “life” times preceding the [-th
structure.

The PDD of the DSRSC “life” times in each of the possible structures, f()(7) and
f@(7), is determined from results of natural (or seminatural) experiments.

Fig. 1 presents a typical block diagram of the guidance loop of a distance controlled
AV in a vertical plane with an integrated (radar-laser) information system. The
following notation is used in this figure:

FF, transfer functions of the forming filters in the form of oscillatory links, pro-
viding the formation of the output error of measurement of the difference between
the angular coordinates of the target and AV in a vertical plane in the [-th structure
(phase coordinate);

R(t), deterministic function approximating the current slant distance to AV;

CGD, transfer function of the command guidance system of AV in a vertical plane;

PM, transfer function of the AV control actuator in the form of an aperiodic link;

3UP, transfer characteristic of the AV in the form of an oscillatory link with
nonstationary parameters;

DG, transfer function of damping gyroscope;

K3, transfer function of nonstationary kinematic link of the AV remote controlled
loop.

The following assumptions and constraints are used in the AV remote controlled
loop block diagram shown in Fig. 1:

1) a two-dimensional model of the AV remote controlled loop is considered only
in one (vertical) guidance plane;

2) strong radar and laser signals reflected from the target are considered, in which
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the ratio of the signal power to the noise power is much larger than unity;

3) pulsed control commands transmitted to the AV are not taken into account,
since the re-mote controlled loop is a narrow-band tracking system:;

4) measurement errors of the difference in the angular coordinates of a single
target and in vertical and horizontal planes are assumed to be Gaussian random
processes with exponential-oscillatory correlation functions

KL (1) = DY e"Flcos(80|7]).

Table 1: Description of the phase coordinates of the AV control system

phase phase coordinate unit
coord. name

g () AV tilt angle at the kinematic link output in the i-th CS rad

structure
yél) (t) Pitch angle in the [-th CS structure rad
yél) (t) Angular velocity of rotation of the AV velocity vector in a rad
vertical plane in the [-th CS structure
yfll) (t) Angular acceleration of rotation of the AV velocity vector rad
in a vertical plane in the [-th CS structure

yél) (1) AV elevator deflection angle in the [-th CS structure rad

yél) (t) | AV control command at the onboard command decoder output | rad
output in the [-th CS structure

yy) (t) AV control command in a vertical plane at the CGD output m
(up to the stopper) sent to the AV in the [-th CS structure

yél) (t) Signal at the output of the second CGD forming filter m
in the [-th CS structure

yél) (t) Signal derivative at the output of the second CGD forming =

filter in the [-th CS structure

yﬂ} (t) Signal at the output of the first CGD forming filter rad
in the [-th CS structure

yﬁ) (t) Error derivative of measurement of the difference between rad

the angles of target location and AV at the FF
output in the [-th CS structure

yg (t) Error of measurement of the difference between the angles of rad
target location and AV at the FF output in the [-th structure

When investigating only the AV remote controlled loop this allows replacing the
radar and laser systems of measuring the difference in the angular coordinates of
the target and vehicle by two equivalent forming filters in the form of oscillatory
links. The parameters of these forming filters are calculated using the values of the
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parameters DU o 3" in the exponential-oscillation correlation functions for every
structure of the control system.

The input master control in the AV remote controlled loop is the current angle of
target location in a vertical plane g.

The deterministic function Mgi(t) takes into account the nonstationary mean
error in the measurement of the difference of the angular coordinates of the target
and AV in a vertical guiding plane in the [-th structure.

The deterministic function h(l)( t) is used to form a preemptive kinematic trajec-
tory of AV flight Wlth respect to the target sighting line.

The function h ( ) compensates for the dynamic error of the AV guidance loop
in the [-th structure

The function gcos(6,)/(v/2V,) takes into account the effect of the AV mass on the
pitch angle variation rate (the angle of inclination of the AV velocity vector to the
horizon).

Phase coordinates are introduced only at the outputs of inertial links (integrators,
aperiodic and oscillatory ones). The physical meaning and dimensions of the phase
coordinates (see Fig. 1) of the AV control system under study is explained in the
table.

Using standard rules, a random-structure system is constructed for each [-th (I =
1, 2) state of the structure:

o ! l
B = 1 00— ot + ),

dyS) _ cos(by) (1)
i = 90 T

dy (1)

dt = y4 )
ayl 1.0 260, (1) | k@) (D)
i = meY T Tod e W)
dyH kokpm ¢ (1 l
o = e (0 Ty D) b (s — 5+ o Vi (1)),

O]

dyl I IR EDTO ! D
i = ) R ) + Vi) + Tt im0 + Tw),

O] (1) (1) )
Y e (R0 + MY~y + o] + a0 + ) +

Til) (Tél))2Tél) 1>

@100 O 10 | kO@ETD 26T ) | KOTHT )
T2 8 gkt 010 9 (D2 J10°
dylh l
e =y,
dyy” ;" O 0, O, 20, 20 2" IO
Lo — U)—M<R(t)[€0(t)+MAg_y1 Y13+ ha’ + 1y, )‘Tysa + s (W10 —¥s )
(1) 7 (12
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dyD 7O _p0) l l (
ne = S (RO (ot) + MAL — o + i) + b + ) = i,

(1)
dy) ORI U O
fliﬁl = (T(l))Z Y — T(l) Y11 + (T(l) ‘/1< )
dy'Y 0
=Yt

These equations are nonstationary and nonlinear with additive white noises V,,, V].
Nonlinearity: ¢\”(y7) limits the control command size, and ¢\ (y5) limits the angle
of deviation of the AV steering wheels.

This system can be written as a system with random structure given by stochastic
differential equations:

dY (t) = FO@t, Y (t)dt + 2(t)Ddw(t),

where w(t) is 2-dimensional standard Winer process.
The input master control for the AV control system under study is the current
target location angle €y(t), described by the expression

yo(t) _ - yo(t)
o (t) 0 (t) )

€0 (t) =

where yo(t) is the current target flight altitude; ro(t) = \/23(t) + y2(¢) is the current
slant distance to the target in a vertical plane; and z((t) is the current horizontal
distance to the target.

2 Statistical modeling of the control system

When changing the structures, some natural conditions of reconstruction are con-
sidered. The exception is yg( t), which is reconstructed in the neighborhood of the
functions Mé (t) and MA (t)).

LA error in the vertical plane in the [-th structure is calculated by the formula
! ! ! !
W = (eo+ MO =y + i) R(t),

where t, is the point of contact. An indicator of the efficiency of the AV control
system is the probability of getting into a circle of radlus Rpp specified with respect
to the target. Under a normal PDD of the error, f(h )) is calculated by the following
formula:

P(—Rpp < hy < Rpp) = [, f(h1)dhy = @(—Rpi_M’”> + <D<_RPB“‘4’11>7

hq Ulr,l
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where hy is the unconditional (taking into account the two states of the structure)
AV error in a vertical plane; M, is the unconditional mean of the AV error in a
vertical guidance plane; oy, is the unconditional standard deviation of the AV error

in a vertical guidance plane; and ®(u) = \/LQF fou e édt is the Laplace function.
Statistical modeling of the solutions of system (1) allows estimating various proba-
bilistic characteristics of the solution, including the PDD error. The above-developed
stochastic model of the DSRSC class was studied on an Intel Core i5 3330 PC (3.00
GHz) using an algorithm for statistical modeling of random-structure systems with

distributed transitions described in |1] and stochastic Euler method
Yop1 =Yy + FO(t,, Yo b+ SO (t,) VG,

where (,, are independent standard Gaussian variables, n = 1,2, ...,

Cas—1 = vV —2Inagcos(2mfs), (os = vV—2Inagsin(27f;), s = 1,2, ...

The RND128 pseudorandom generator [5] (with a modulus 2'?® and a multiplier
5100109) was used for the simulation of uniform random variables «, 3, on the interval
(0,1). N = 10° samples of the solution were used in numerical examples. The time
mesh nodes include a uniform mesh with the step A = 0.1 and the moments of change
of structure.

The constant parameters of the model are shown in table 2.

Table 2: The constant parameters of the model

ift<21.2 |ift>212

ko 0.591 -0.039
ky -0.0147 0.016

ko 0.537 -0.2364
ks -0.014 0.022

ke 0.06857 -0.0261
ks -0.0018 0.0026
ke 0.1205 -0.0063
k7 -0.0015 0.0044
ks 251 2662

ko 14.1666 -108.53
ko | -0.1334 0.9559
k11 -834 -21494

The following nondimensional parameters of the model were specified for the test
calculations:
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ko = 0,707, & = 0,27, T\ = 0.76, T =037, kY =1, k2 =3, £ =0.8,
ket = 0.5, Thyr = 0.035, k, = 0.375, TV = 1.8, T = 1.0, T3V = 0.33,
TP = 0174, TV = 0.14, T = 0.0725, T3 = 0.14, T = 0.063,
T = 5.0, T = 2.5, Tr = 0,04, Tyy(t) = ko + kut,
Ty(t) = kg + kst, kp(t) = ko + kst, &,(t) = ke + kst
rp(t) = ki + kst + 267 + H043) V,(¢) = ks + kot + kot?.

Conclusions

In this paper, a stochastic model of a control system of unmanned aerial vehicles of the
DSRSC class has been developed. Test calculations with this model using a statistical
algorithm have shown that it can be successfully used with some nondimensional
parameters of natural and semi-natural tests. It is planned to

e develop an analytical mathematical model with the same AV remote controlled
loop according to the method [4];

e perform additional studies with a modified statistical algorithm [2] of the stochas-
tic CS model constructed in the present paper;

e compare the results of calculations in analytical and statistical modeling.
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Abstract

The main objective of this study is to examine the impact of tourism on
the economic growth in Tunisia during the period (1985-2017). To achieve
this goal, the ARDL model was used in its form reduced using two variables
(tourism revenues (TOUR), exchange rate (EX)). The unit root test was also
used to determine if the variables were stable over time and if the variable
(LTOUR) was stable at the level, but the variables (LGDP, LEX) were stable
after the first difference level. The results of the study showed a positive effect
of the tourism revenues, but the effect of exchange rate was not significant in
the long term.

Keywords: Tunisian economy, Tourism revenues, Autoregressive-Distributed
Lag model (ARDL).

Introduction

According to the WTO, Holloway and others [3, 12|, tourism activity is defined as the
activities of people on their journey and residence in a place outside their habitual
residence during a continuous period of less than one year for recreation, business
or other purposes. Thus, income from tourism can be defined as follows: the total
income from tourism activities during the year.

The focus of tourism research since the 1930s has been on the importance of
tourism as a source of foreign exchange. But the contribution of tourism and its im-
pact on development and macroeconomic variables have only recently been discussed.
There is no doubt that tourism is the main engine of a country’s economy and that
it has a positive impact on the economy.

The World Travel and Tourism Council succinctly summarized the important role
that travel and tourism play in the growth of global economy as follows:

In 2017, Travel & Tourism’ s total contribution to the global economy has risen
to 10.4% of global GDP (US $8.3 trillion), as it grows at a faster pace than most
other important sectors such as trade, finance, transportation and manufacturing. In
total, nearly 313 million jobs related to tourism were created, which means that 1
of 10 jobs around the world come from the travel and tourism sector. Travel and
tourism still capable of generating high levels of employment through ever-increasing
demand, demonstrating the importance and value of the sector as a tool for economic
development and job creation [11].

In this paper, the impact of tourism on economic growth in Tunisia will be mea-
sured through the use of the Nicolas Detsakis’s model.
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1 Pilot study methodology

Cointegrating tests, such as Engle and Granger (1987), Johansen (1988) and Johansen
and Juselius (1990), require that variables be in the same level: in this case they
cannot be performed with integral variables of different levels, i.e. I(0) and I(1).
Therefore, the Autoregressive-Distributed Lag (ARDL) model has become the best
alternative to what does not require that the estimated variables have the same level
of integration.
The ARDL method used to test the overall cointegrating has many advantages:
It can be applied regardless of whether the variables studied are cointegrated from
I(0) or I(1) or cointegrated in different levels, that is, they can be used when the
degree of cointegration is unknown or not homogeneous for all variables. This would
be good if the sample size (number of observations) is small, and this is not the case
for most traditional cointegration tests that require a large sample size so that the
results are more effective. Moreover, its use allows us to simultaneously evaluate the
components of the long-term and short-term (relations) in one equation instead of
two separate equations [4].

The ARDL method will be used in three stages: at the first stage, cointegration
test within the UECM, which adopts the following formula, imposing a relationship
between Y (dependent variable) and X (independent variable vector):

AY; =00+ Y BoAYioi+ Y OAX, i+ MY+ MaXe g+ (1)

i=1 =0

Where A\, Ay expresses long-term ratios, and 5, © expresses short-term ratios, and
A denotes the first differences of variables, while each from (m, n) lag for variables
(although not necessarily Number of time delay periods) for variables on the same
level or quantity (m # n) [9]. And 75 the random error, which has an average equal
to zero and a constant variance and does not have consecutive correlations between
them.

Cointegration is checked between variables in equation (1) using the following
assumptions: Null hypothesis (HO): no cointegration: A\; = Ay = 0, in comparison
with the alternative hypothesis (H1): cointegration \; # Ay # 0 Because the distri-
bution of test F is non-standard and depends on: (1) whether the variables included
in the ARDL form are cointegrated from 1(0) or I(1); (2) the number of independent
variables; (3) sample size, and therefore the null hypothesis is rejected by comparing
the calculated F values with the values set within the critical limits proposed by Pe-
saran et al. (2001), Two sets of asymptotic critical values are provided: one when all
regressors are I(1) and the other if they are all I(0). These two sets of critical values
provide a band covering all possible classifications of the regressors into 1(0), I(1) or
mutually cointegrated [5|. If the calculated value for F is greater than UCB, in this
case the null hypothesis is rejected and an alternative hypothesis (cointegration) is
accepted. Conversely, if the calculated F is less than the LCB, in this case the null
hypothesis is accepted (no cointegration). If the F value is between UCB and LCB,
the result will not be adjusted.
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In the case of general cointegration of variables, the second stage includes an
assessment of the long-term equation as follows:

P q
Y, = ag+ Zﬁiyrtfi + ZUiXt—l + Pt (2)

i=1 =0

Where 19, o coefficients of the variables and p, q indicates the delay periods for these
variables, p is the random error limit.

The delay rank is selected in the ARDL model according to Akaike (AIC) or
Schwarz Bayesian Criterion (SBC) before evaluating the OLS model to eliminate
sequential or self-correlation of random errors. Pesaran and Shin (2009) recommended
a maximum of two periods of deceleration for annual data [6].

In the third stage, the ARDL specification can be obtained for short-term dynam-
ics by building the following error correction model (ECM):

p q
AY,=c+ Y AY, i+ Y oiAX,; +PECT, . +p (3)
=1 =0

Where ECTt-1 is the error correction term, and all the coefficients of the short-
term equation are related to the short-term dynamics of the model’s proximity to
equilibrium, 1 is the coefficient of the error correction term, which measures the
adjustment speed at which the imbalance is equal to the corrected in the short-term
direction long-run equilibrium.

2 Specifications and model data

The main objective of this paper is measuring the impact of tourism on the economic
growth. To do this, we will evaluate this relationship, in particular, by the Tunisia
experience (as an example) and, therefore, on the basis of economic theory, as well
as empirical models in previous studies (Du & others 2016; Dritsakis 2012) on the
same issue |1, 2], equation will be evaluated to measure the impact of tourism on the
economic growth (taking into account the exchange rate as an independent variable)
in Tunisia during the period: 1985-2017.

LGDP, = o+ B LTOUR, + BoBLEXR, + ¢, t=1,2,......T (4)

Where GDP is real GDP per capita, TOUR is tourism revenues and EXR is the
exchange rate.

3 Empirical Results

Before considering the combined cointegration of the ARDL model and evaluation its
results, it is important to conduct unit root tests to determine the degree of stability of
variables, that is not a necessary condition for using the ARDL model, but the model
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does not work exactly if some variables are stationary in the second difference 1(2).
According to the test results shown in table (1), LGDP & LEX variables stationary
at the first difference, with the exception to LTOUR is stationary at the level.

Table 1: Unit root tests

level series first difference series

PP ‘ ADF PP ‘ ADF

LGDP -0.34 -0.31 -5.81* -5.84*
LTOUR | -3.69* -2.16 -5.55* -5.54*
LEXR 0.90 0.75 -5.21* -5.21*

Notes: data include all variables, they are in natural logarithms.The numbers in
parentheses are p-values. * Rejection of null hypothesis at the 1%, 5% and 10% level
of significance, respectively. The null hypothesis of these tests is that the time series
has a unit root (nonstationary series)

Source: output from Eviews 10.

4 Autoregressive Distributed Lag (ARDL) cointe-
gration technique

The ARDL model, based on the UECM and ARDL Bound Testing Approach models,
proposed by Pesaran et al (2001), is most suitable for detecting the cointegration
of model variables. Cointegration is estimated by evaluating the UECM model as
follows:

p q q
ALGDP, = fy+ Y BALGDP_;+» O,ALTOUR,_;+ Y wALEXR,;
=1 =0 =0

—f—)\lLGDPt_l + /\QLTOURt_l -+ AgLEXt_l + €¢ (5)

To test the cointegration of variables, hypotheses are formulated as follows: Null
hypothesis (HO0): no cointegration : A\; = Ay = A3 = 0, Alternative hypothesis (H1):
cointegration : Ay # Ao # A3 # 0

From the table (2) of cointegration results using the model (ARDL), it is clear
that its (F) calculated values are greater than the critical value at a significant 1%
level, and then reject the null hypothesis that there is no cointegration between the
variables and existence long-term relationships between variables.

Since there is cointegration between model variables, this cointegration includes
long-term relationships between these variables, which accept the following formula:

p q q
LGDP,=fy+ Y BLGDP_;+» ©,LTOUR,_;+ Y wLEXR, ;+e (6)

i=1 =0 =0
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Table 2: Conditional Error Correction Regression

Regressor Coefficient STD

C 1.377743%** 0.352211

LGDP(-1)* -0.223266*** 0.052741

LIT(-1) 0.066957*** 0.015451

LEX(-1) 0.049234 0.037576
D(LIT) 0.034423* 0.017370
D(LIT(-1)) -0.057722%** 0.016469
D(L EX) -0.017244 0.047454
D(LEX(-1)) -0.101720* 0.052050
D(LEX(-2)) -0.122552%* 0.054218

‘ Case 2: Restricted Constant and No Trend

LIT 0.299900*** 0.046453

LEX 0.220519 0.140680

¢ 6.170858*** 0.331246

‘ F-Bounds Test

F-statistic 20.91202

K 2

10% 2.63 3.35

5% 3.1 3.87

2.5% 3.55 4.38

1% 4.13 5

Note: *, ** and *** indicates significance at 10, 5 and 1% level.
Source: output from Eviews 10.

In light of the ARDL criteria (1, 2, 3), to determine the variance of the variables, it
was found that the total sum of the balanced weight of the long-term relationship has a
negative and significant factor indicating that there is an error correction mechanism,
and the equation can be written as follows:

LGDP =0.2999 x LTOUR + 0.2205 * LEXR 4 6.1709 (7)

The results showed that the error correction parameter was significant by compar-
ing the calculated value of t (t = -4.2332) with the tabulated values of the t_bound
test of pesaran et all (2001). Where the test value for the case 2 was -3.66, for two
explained estimators and level of significance of 1%. Thus, the error correction pa-
rameter is significant at the 1% significance level. The results indicate that the
value of this parameter is smaller than zero, which confirms the existence of a coin-
tegration relationship and the possibility of correcting short-term errors to return to
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the long-term equilibrium position at a speed of 0.2233 annually, which means that
we need 4.29 years to address the effects of one shock occurs in the short term.

On the other hand, the F_bound test indicates that the calculated value is much
greater than the tabulated value at the 1% significance level. Which reconfirms the
previous result i.e. a common integration relationship between model variables. The
results show that the increase in tourism income in Tunisia by 1% leads to an increase
in GDP by 0.2999% annually. All are significant values at the level of less than 1% as
indicated by Prob. Finally, the results did not show a long-term relationship between
the Tunisian dinar exchange rate and GDP.

The Diagnostic tests of the residual of the model. The Breusch-Godfrey Se-
rial Correlation LM test indicates that accept the null hypothesis: that is no auto-
correlation, Prob. Chi-Square(2)=0.5530> 0,05. And the Breusch-Pagan-Godfrey
indicates that we can’t reject the null hypothesis of homoscedasticity, Prob. Chi-
Square(8)=0.1884> 0,05. The normality test for Jarque-Bera shows that the null
hypothesis cannot be rejected and therefore the residuals are naturally distributed,
Probability=0.832278> 0,05

5 The test results on the structural stability of the
estimated ARDL modelg

According to Pesaran and Pesaran (1997), the next step after evaluating the formula
for the ARDL model is to check the structural stability of short-term and long-term
transactions. This means that the data used in this study do not have any structural
changes over time. Two tests are used for this: CUSUM (cumulative sum) and
CUSUM-sq (CUSUM squared) [7].

The structural stability of the estimated coefficients is achieved if the CUSUM
and CUSUMSQ histogram is within critical limits at a significant level of 5%. Conse-
quently, these coefficients are unstable if the graph of the above two tests is exceeded
at this level.

From Figure 1, it can be seen that the calculated coefficients are structurally
stationary during the study period, the test statistics diagram is within the critical
limits at a significant level of 5%.

Conclusions

The purpose of this study is to investigate the relationship between tourism rev-
enues (as an independent variable) and economic growth (as a dependant variable) in
Tunisia in the period 1985-2017. To achieve the objective of the study, an autoregres-
sive distributed delay model (ARDL) was used after using the necessary diagnostic
tests of time series (i.e. unit root tests).

The results showed a positive impact for tourism on the economic growth in
Tunisia during the long term, with elasticity coefficient equal 0.2999, while the ex-

354



Applied Methods of Statistical Analysis

S R

10

LE]
06

[¥]
(1]

e |02

Figure 1: CUSUM and CUSUMSQ
Source: Researchers based on the results (Eviews 10).

change rate was not significant, which might be due to the relative stability in the
exchange rate during the period under review.

Therefore, this study recommends focusing on both short and long periods in

terms of maintaining moderate exchange rate, and taking appropriate measures (such
as marketing campaigns) to attract as many tourists as possible to increase the income
from tourism in Tunisia.
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Abstract

The article presents an iteration algorithm for the estimation of regression
parameters using inverse operations. Possible usages in the case of linear and
nonlinear dependences are provided for. The application of the developed al-
gorithm for solving more complex problems is considered, in particular, results
of neural network training using a hybrid algorithm are presented.

Keywords: inverse calculations, regression, optimization.

Introduction

Problems of deriving regression equations have become widespread in various fields:
economics, medicine, and technology. Parameter values are determined using a set of
input and output data. Both simple methods (for example, the mean-value method)
and more complex methods based on optimization problems solving can be used
to estimate regression parameters depending on the conditions of the problem, the
requirements for the accuracy of the solution and the resources of the researcher. The
most common method is the least square method. In the case of linear regression,
the following formula can be used to estimate the parameter vector 6:

0= (XTX)"'XTY, (1)

where X is the matrix of input values, Y is the column vector of output variable
values.

In the case of nonlinear dependence, it is necessary to use optimization methods (the
method of gradient descent, the Fletcher-Reeves method, etc.) [6].

This paper is devoted to the development of an iteration algorithm based on inverse
operations to estimate regression parameters, which can also be used in conjunction
with other methods to reduce the search time and improve the solution accuracy.

1 Algorithm for Determining Linear Regression Pa-
rameters Based on Inverse Operations

The mathemiatical expectation of remainders shall be equal to zero - it is one of
the conditions of the classical linear model of multiple regression. According to the
mathematical expectation formula, the condition will be met, if the sum of remainders
is close to zero. Fig.1 shows examples of two lines built provided that the sum of
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remainders is equal to zero. You can see that line y = 1.66+0.57x is the best in terms
of minimizing the sum of squares of deviation remainders. So, the following principle
of parameters determination can be considered: derivation of a regression equation
so that the sum of remainders is equal to zero, consistent changing of its position
while maintaining the equality of the sum of remainders to zero, and selection of the
best optimized parameter from the point of view of the value (in our case - the sum
of remainder squares).

Y &
8 — y=0.13+0.89x
6 —
4 7 _
5 y=1.66+057x
— T T T T T T *

1 2 3 4 5 6 70X

Figure 1: Setting up a regression equation

Let us use a simple example to consider the solution of the problem of determining
the parameters of equation y = b+ ax. The values of x are 5, 6, 2, the corresponding
values of y are 30, 50, 10 (the initial values of the parameters a = 1, b = 1). So, it
is necessary to solve the following equation to find the values of the parameters at
which the sum of remainders will be zero:

3b + 13a = 90 (2)

Let us derive parameter a from the equation, the resulting line is shown in Fig.2. It
is a set of a and b combinations, at which the equality (2) is fulfilled. Let us now
consider two ways of transition from starting point A (1; 1) to the point on the line:

1. Calculate value a by substituting the initial value of b: a = 901’33'1 =6.69. As a
result we get point B (1; 6.69).

2. Determine the shortest distance to the line:
Aa? + Ab? — min
(b+ AD) + (a+ Aa)x = 90.

The solution of such a problem with the help of inverse operations [5] is considered
in [3]. So, it is necessary to solve the system of equations to determine argument
increments:
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a A
g | B ¢ a=(90-35)/13
6 —
4 — b
A1 A4 2 >
I I I I
1 2 3 4 b

Figure 2: Possible solutions of the equation

3(1+ Ab) + 13(1 + Aa) = 90

Ab 3

Aa 13
So, Ab = 1.247, Aa = 5.404 . We get point C (2.247; 6.404). Now we need to calculate
the value of the sum of error squares at obtained point B (or C), change parameter
b by some value to the higher or lower side (points Al, A2), determine the sum of
error squares at new points B1, B2 (or C1, C2) and remember the solution with the
lowest value of the calculated indicator. The resulting algorithm can be presented as
follows ( 0- parameter change step, € - specified accuracy, u - step reduction factor):
Step 1. Initialization of parameters a and b by random numbers (a* = a, b* = b).
Step 2. Calculation of variables to form the sum of errors.
Step 3. Solution of the problem of determining parameters a* and b* to achieve the
sum of the error equal to zero. Calculation of the sum of squares of remainders:

N

s = > (yi — di)?
i=1

where N is the number of observations, y; is the actual value of the output variable,
d; is the model value of the output variable.
Step 4. Increasing parameter b by the value of § and determining the parameters to
achieve the total error equal to zero (the resulting values of the parameters are equal
to aq,by). Calculation of the sum of squares of remainders s;.
Reduction of parameter b by the value of and determining the parameters to achieve
the total error equal to zero (the resulting values of the parameters are equal to
as, be). Calculation of the sum of squares of remainders s, .
If s1 < s, then a* = ay,b0* = by, s = sq,
else if so < s, then a* = as,b* = by, s = 59,
otherwise, ¢ increment reduction in accordance with u factor: § =
Step 5. Checking the end of the algorithm. If § < ¢, then the algorlthm is completed,
otherwise - go to step 4.
In the case of multiple regression, the number of variables changed in step 4 will be
equal to the number of variables in the model reduced by 1.
The formula for the formation of the function of the sum of errors is as follows:
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where m is the number of explanatory variables in the model. Then, when using the
method based on inverse operations, it is necessary to solve the following system:

N(b+ Ab) +ZZ a; + Aaj)z Zyz

=1 =1

Ab N
N
T,

; :

;7 =1..m.

\

Changes of weighing factors to achieve the sum of errors equal to zero will be:

m

N
N+ Z( 2=y
j=li= i=1

Ab = ,
—(N+ z<z 2)2/N)
Jj=1 i=
% 2
ACLJ' = AblZIN

Comparing the two ways of calculating the parameters (substitution of the initial
value of the parameter in the dependence equation and use of the smallest increments)
we can draw the following conclusion. The first way to find a solution is simpler to
implement, because it does not require calculating increments by solving a system of
equations. However, it is less preferable in those cases where the calculation scheme
does not provide for reduction of step ¢ (step 4 of the algorithm), since it is more likely
to find the best solution (move to new point C1 or C2) using the method based on
the minimum increments of arguments at each iteration. This is due to the following
fact: when using the first method with a slight change in one parameter (step J is
small), the second one can increase or decrease to a much greater extent, which will
result in a significant change in the sum of squares of errors, so the best solution
in the vicinity of the point being studied may not be found. An example of such a
problem is neural network training, when weighing factors are adjusted in each epoch
(steps 2-4 of the algorithm, the condition with step d reduction is eliminated).
Table 1 presents the subsequent iterations when using inverse operations for the
example shown in Fig.2. The results obtained using formula (1): b= -10, a = 9.23,
the sum of squares of remainders is 61.54.

2 Estimation of Nonlinear Regression Parameters

In the case of nonlinear dependence, if possible, linearization shall be performed. In
the case of nonlinear dependence that cannot be linearized, it is necessary to derive
one of the variables and calculate partial derivatives of the function obtained to use
the approach based on inverse operations. This is how the shortest distance to the
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Table 1: Results of the search for linear function parameters

Step, 0 Parameter b Parameter a Sum of error
squares, S
1 2.247 6.404 130.791
2 20 -16.742 10.787 82.528
3 10 -7.247 8.596 65.031
4 5 -11.994 9.691 63.374
5 2.5 -9.691 9.143 61.605
6 0.625 -10.214 9.28 61.559
7 0.313 -9.917 9.212 61.542

line tangent to the graph of the line of the level of variables is determined [3]. Now
let us consider the following function as an example:

y=a-z’+p,

where g is the value of a random remainder.

Initial data: = values are 2, 5, 6, the corresponding values of y are 49, 748, 1297. The
initial values of parameters a and b are equal to 1. Here is a corresponding problem
of optimization at the first iteration:

Aa? + Ab* — min
(a+ Aa)20+2Y) 1 (a + Aa)502Y) 4 (0 + Aa)6bT2Y = 2094

Let us consider problem solution using inverse operations. We will derive parameter
a: a(b) = %. The value of the derivative at the initial point is a’(1) = —250.091.
The system of equations is as follows:

Ab
— = 250.091
Ao 50.09

(14 Aa)2H8Y 4 (1 4 Ag)53H2Y 4 (1 4 Aa)6UT2Y) = 2094,

After solving the system we get: Aa = 0.01215, Ab = 3.0382. After that the deriva-
tive value is determined at new point a’(1 + 0.01215) = —1.745, and the new system
of equations is solved, in which the ratio of increments will be equal to the ob-
tained value. Iterations are performed until the stop condition is met (the change
in increments becomes less than the specified accuracy). The results of parameters
calculation (accuracy € = 0.001): a=5.899, b=3.010, s=3.941; to find the root of the
equation, Newton’s method with an accuracy of 1077 was used (the values of param-
eters obtained using Mathcad package: a = 5.865, b = 3.013). The time required to
solve the problem was 0.0073 seconds (VBA language was used for the implementa-
tion). The problem was solved using the method of gradient descent at the descent
parameter equal to or less than 5 - 1078 , since the objective function increased at
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large values. 212,163 iterations and 13.3047 seconds were required to get the solution
found with the help of inverse operations using the method of gradient descent. The
solution at the given accuracy was found in 0.37 seconds using the random search
method with a step of 0.1.

3 Use of the Algorithm for Neural Network Training

The developed algorithm based on inverse operations assumes a step-by-step imple-
mentation and can be used in iterative algorithms in conjunction with other methods,
for example, the method of gradient descent, as well as in various heuristic algorithms.
So, we considered the use of this algorithm when implementing hybrid algorithms for
neural networks training. These algorithms imply the use of various methods in
training different layers of a neural network. When solving optimization problems,
besides hybrid algorithms [4], [2] portfolios of algorithms [4] are created, where every
subgroup of observations uses its own algorithm for solving the problem.

Computational experiments were conducted using the developed algorithm (VBA
language was used for the implementation). The data set included 2 variables, 100
numbers were randomly generated, output variable values were set depending on the
threshold values (Fig.3, the elements belonging to the first class are black, to the
second class - gray). The simulation was performed for 50 random implementations,
the maximum number of iterations in the stochastic search was 50, while the param-
eters in the stochastic algorithm were changed in increments of 0.1. The used neural

50
40 [ LN
30 | @ "-\"l‘ e °*
T20 L4 @D 0P o UD@J}@' ¢
10 El o DD O ;.? DD&'DD .
0 10 20 30 40 50
Xy

Figure 3: Source data set

network consisting of three layers is shown in Fig.4. The logistic activation function
was used for first layer neurons, and the linear function was used for neurons of the
subsequent layers. The following options for neural network training were considered:

1. The hybrid algorithm presented in [2], which uses formula (1) to calculate the
weighing factors associated with the output neuron.

2. The hybrid algorithm described in [4], which uses the delta rule [7] to calculate
the weighing factors associated with the output neuron.
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X1

X,

Figure 4: Three-layer neural network

3. A modification of the hybrid algorithm considered in [4], which uses inverse
operations to calculate the weighing factors associated with the output neuron
(every epoch uses one iteration of the algorithm presented above).

The average value of the sum of squares of errors was obtained for the first algorithm.
It was equal to 20.856, the minimum value of the sum of squares of errors was 16.16.
Fig. 5 shows values of the sum of squares of errors of the second and third algorithms
with the number of epochs equal to 20 and the best values of algorithm parameters
(the parameter of the delta rule descent was 0.004, the sum of squares of errors was
17.618, the minimum value of the sum of squares of errors was 10.063; the step for ¢
parameters change in the method of inverse operations was 0.4, the sum of squares
of errors was 13.569, the minimum value of the sum of squares of errors was 6.426).
The Figure also shows the results of the algorithm, which is a combination of the
delta rule and the method based on inverse operations: in each epoch a solution was
determined using these two methods and the one that provided the smallest sum of
squares of errors was selected. Using this algorithm the average value of the sum of
squares of errors turned out to be 11.64, the minimum value of the sum of squares
of errors was 6.852. In this case the solution obtained using the method of inverse
operations was adopted as the best one 815 times, the delta rule - 185 times. So, the
combination of the two methods provided the smallest value of the sum of squares of
errors, however, the time required to solve the problem increased.

Conclusions

The article investigates the possibility of using an algorithm based on inverse opera-
tions to solve regression problems. The presented algorithm is simple to implement
and allows solving the problems considered in the article at a higher speed as com-
pared to the method of gradient descent and stochastic algorithm. In the course
of the work two hybrid algorithms presented in the literature were implemented to
train a neural network, and a modification of one of them that consists in using in-
verse operations to determine the weighing factors associated with the output neuron
was proposed. The proposed algorithm can be used to solve regression problems
both independently and in conjunction with other methods to increase the speed and
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Figure 5: Values of the sum of squares of errors for three algorithms

accuracy of problem solution.
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Abstract

We consider Grubbs’s statistics for normal sample, i.e. the standardized
maximum and minimum. One-parameter distribution of these statistics is con-
sidered. We extract one-parameter copula by an inversion method from the
joint distribution of Grubbs’s statistics. We describe properties of the rotated
versions of Grubbs’s copula. It is proved the existance of domains in which ro-
tated by 90 and 270 degrees Grubbs’s copulas coincide with Frechet-Hoeffding
upper bound. It is found that rotated by 90 and 270 degrees Grubbs’s copulas
can model positive dependence between the marginals.

Keywords: symmetric copula, Frechet-Hoeffding lower and upper bounds,
rotated copulas, joint distribution function of standardized maximum and min-
imum.

Introduction

Dependence modeling by means copulas are used in many areas. New copula-function
can be extracted from the new joint distribution of random variables. Therefore
Grubbs’s copula which is extracted from the joint distribution of Grubbs’ statistics
can be of practical interest. The goal of this article is to investigate the properties of
rotated versions Grubbs’s copula.

1 On the joint distribution of Grubbs’s statistics

Let X1, X5, ..., X,,_1, X,, be arandom sample from a normal distribution with mean
a and variance o2. We consider one-sided Grubbs’ statistics that are extreme studen-
tized deviations of observations from sample mean:

T — - " T, ) = ot
n S ; n,(1) g ;

where X = 13" | X, is the sample mean and 5? = - 3" | (X; — X)? is the sample
variance.

F.E. Grubbs proposed to use these statistics for testing a normal sample on the
presence of anomalous observations [3|. It is known that distributions of statistics

73" and T, 1) coincide, i.c. P(T\" <) = P(T, 1) < t).
We denote Fél)(t) = P(Tél) < t). The distribution function of of Grubbs’s statis-
tic can be found with special recursive procedure which has been described in the
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A recursive formula for describing the distribution function

book [1] (pp.115-116).
has the form [1],[8]

1 .
07 ZS \/_ﬁv n Z 27
FO@) = P10 < 1) = 0 [ F(ga(@) fr(0)de, = <t <22l n>3 ()
%
1Lt>22 n>2;
where
n—4
1 n n—1 n—2 n 2 n—1
= - r 1— 2 — (2
= i () e () (1- i) T el < )
<>=/€xlf@,
—1
b n>s. (3)

n— 2
)y < ti, T( ) < ts) be the joint distribution function of the

gn(@ _n—1/\/n_1 i11)2 )’|x|< Nl

Let A (tl,tg) = P(T
statistics T3 and 7T, 1) It can be proved that recursive relationships for distribution

function A, (-) in the case n > 2 have the form [5]

( AV (1), t > 2L
1
FT(Lt)(tl)v lo Z Tnla
A, (ti,t2) = 2 4
B2 0 f s oalts =), gn() (@, (1) € 8
7
\07 (t17t2)¢An7 i < f>t2< f’
where distribution function F{" () can be calculated with using (1)
n—1
‘ (5)

_l’_
u n—2

()
n—1 n
2
pulu.v) = n_1/¢ - ) el <
functions g, (z) and fr, (x) can be calculated with using (3) and (2) correspondingly;
nl.

[1/v/n<ti <(n—1)/vn;1/y/n <ty <(n—1)/yn]

A, =
In case n = 2 they are given by
Aty t2) = { L (t,t) € Do, Ag = [ <ty < 0033 < 1y < o0 (6)
| 0, (t1,t2) ¢ Ao.

Note some properties of the joint distribution function A, (¢1,%2) which can be
derived from (4) .

366



Applied Methods of Statistical Analysis

L. Function A, (t1,t2) is symmetrical [5], i.e.
An(t1,ta) = Ayt t).

2. Tt is valid for (t1, t2) € ¥,, and n > 3 [7]:

Ap(ti ) = FV(t) + F{D(ts) — 1, (7)

where X, = [\/Lﬁ <t < ”—\/_ﬁl;Gn(tl) <ty < n—\/_ﬁlL

ty — nt?
(t1) n—l+ " (n—1)2 (®)
3. In the case n = 3 we can write|6]
0, (t1,t2) € Az\X3

As(ty, ts) = 9
00 = { ) F -1, (it €5 )

where F?fl)(t) 3 arcsin <*/7§t> — %, 1/\/3 <t< 2/\/§

o

2 Construction of Grubbs copula

To construct Grubbs’s copula by extruction from A,, we apply Sclar’s Theorem [4].
Denote ¢, () is inverse- function for F, (1), i.e. the equalities are true

F{V(¢n(z)) =z, Yo € [0,1],

and
On(FRV (1) =8, V€ [L/Vn, (n = 1)/V/n].
Then Grubbs’s copula C¢" : [0,1]? — [0, 1] has the following form
CO (u,vim) = An(dn (1), 6n(v)) (10)

Note some properties of the Grubbs’s copula which can be deducted from the
properties of the joint distribution function A, (+).
1. Grubbs’s copula is symmetrical [6], i.e.

C% (u,v;n) = C%(v,u;n), Y(u,v) € [0,1].

2. Letn>3and E, =0 <u < 1;0,(u) < v <1]. Then V(u,v) € =, Grubbs’s
copula coincides with Frechet-Hoeffding lower bound [7], i.e.

Co(u,v;n) =u+v—1, (11)

where

0u(u) = FD (0 (60 (w)); (12)
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functions 6,,(-) and F$V(-) is calculated by formulas (8) and (1), respectively.
3. In the case n = 3 Grubbs’s copula coincides with Frechet-Hoeffding lower bound
6], i.e.

CY (u,v;3) = max(u +v — 1;0), ¥(u,v) € [0,1]% (13)

Analyzing properties 2—3 we lead to conclusion that the bound 6, (u) of the
domain =, contains the points with coordinates (0,1) and (1,0). Besides, d3(u) =
1 —u. If v=90,(u) then Vu € [0,1] and n > 3 we obtain

C (u, 8, (u);n) = u+ 6,(u) — 1.
Hence, Yu € [0,1] and n > 3 we have
C (u, 8, (u);n) = 6, (u) — d3(u).
We can write in accordance with copulas definition [4]
CY (u,v;n) >0, VY(u,v) €[0,1]%, n>3.
Then
On(u) > d3(u), Yue[0,1], n>3. (14)

Thus, the domain =, is bounded by the lines u = 1, v = 1 and the curve v = §,(u).
With the increasing parameter n the bound v = §,(u) is removed from the main
diagonal u 4+ v = 1 of the unit square.

3 Rotated versions of Grubbs’s copula

Grubbs’s copula allows to describe negative dependencies between marginals. In ad-
dition to this copula we can introduce its rotated versions. Rotation by 180 degrees
leads to the survival copula. Survival copula C%, can be extracted from the corre-

sponding joint survival function A, (t1,t2) = P(Ty,1) > t, TV > ty). Then we have

4]

Aty ta) = CE(F (1), FP (ta); m),

where F\V(t) = P(TY" > t) = P(T,, 1) > t).
It is valid the following equality

Cr(u,v;n) =u+v—1+C (1 —u,1 —uv;n). (15)

When rotating Grubbs’s copula by 90 and 270 degrees we obtain its rotated ver-
sions which allow to describe the positive dependence.
Rotated versions of C“" are given as follows [2]

C&r(u,v;n) = v —C9(1 —u,v;n); (16)
CSn(u,v;n) = u — C% (u, 1 —v;n). (17)

Some properties of rotated versions of Grubbs’s copula are contained in the next
theorems.

368



Applied Methods of Statistical Analysis

Theorem 1. Let Z” = {0 <u < 1;6,(1—u) <v<1}L 2P ={0<u<1;0<
v<1—=0,(1 —u)}, =0 = {0 <u<1;0<v<1—-6,(u)} and function 6,(-) is
defined in accordance with (12). Then for n > 3 the next equalities take place

CST (u,v;n) = min(u, v) = u, V(u,v) € 2, (18)
O (u,v;n) =0, Y(u,v) € 2180, (19)
CSh (u,v;n) = min(u,v) = v, Y(u,v) € 27, (20)

Proof. Taking into account formula (11) we obtain
Co(1—u,v;n) =v—u, Y(u,v)eZ,
Applying (16) we can write

CST (u,v;n) = u, Y(u,v) € =(90) (21)

n

Taking into account inequality (14) we have §,,(1 —u) > u, Yu € [0;1]. Therefore
V(u,v) € =99 we can write u < dn(1 —u) < v. Hence, Y(u,v) € =99 we obtain
min(u,v) = u. Then the formula (21) takes the form (18). Similarly, it is possible to

prove the validity of equality (19) and (20).

Theorem 2. Let n = 3. Then rotated copulas C§" and C$h coincide with Frechet-
Hoeffding upper bound and C coincides with Frechet-Hoeffding lower bound, i.e.

C&r(u,v;n) = CEr (u, v;n) = min(u,v), Y(u,v) € [0;1]% (22)
O (u,v;n) = max(u +v — 1;0), VY(u,v) € [0;1]2 (23)
Proof. If n = 3 then d3(u) = (1 — u). Taking into account formula (13) we can write

0 0<u<l,0<v<1l—u
Gr . — ’ - -7 = =
c (u’v’3)_{u+v—1,0§u§1,1—u§0§%

Hence,
0, 0<u<l,0<v<u

Gr — . =
C (1 U,U,3) {U_u70§u§17u§1)§1,

Taking into account formula (16) we obtain (22). Similarly, it is possible to prove the
validity of equality (23).

Conclusions

1. While Grubbs’s copula models negative dependence between the marginals, its
rotated by 90 and 270 degrees versions can model positive dependence between the
marginals.

2. For all parameter’s values n > 3 there are domains in which rotated by 90 and
270 degrees Grubbs’s copulas coincide with Frechet-Hoeffding upper bound.

3. If copulas parameter n = 3 then rotated by 90 and 270 degrees Grubbs’s copulas
completely coincide with Frechet-Hoeffding upper bound and rotated by 180 degrees
Grubbs’s copula completely coincides with Frechet-Hoeffding lower bound.
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Abstract

For exploring student characteristics of retention, a logistic regression model
is constructed. Candidate predictors correlate strongly. Hence the problem of
variable selection arises. For stabilizing the LASSO the Bolasso is used. But the
choice of the regularization parameter based on cross-validation does not give a
well-interpretable model. Therefore, approach to analyzing the regularization
path is being developed to select a model structure that includes only relevant
covariates. For this, simple indicators of multicollinearity and significance are
introduced. The applicability of the proposed approach is shown by example of
identifying the reasons why students are left to study in the master’s program.

Keywords: LASSO, bootstrap, regularization path, student retention, lo-
gistic regression, variable selection.

Introduction

Logistic regression is often used to estimate the impact of various factors on student
retention [7|. From a large number of attributes related to university drop-out and
persistence, the LASSO regression selects the relevant variables during the model con-
struction process. The LASSO estimates are however known to be highly unstable for
several reasons. First, irrelevant attributes can enter the model randomly with strictly
positive probability. This problem can be solved using the Bolasso [1] that asymptot-
ically selects with overwhelming probability the correct relevant variables. Secondly,
the regression solution is sensitive to the penalty parameter chosen. Cross-validation
is often used to select an optimal value of the regularization parameter. For stabiliz-
ing the LASSO against cross-validation variability the percentile-lasso is introduced
[6]. But cross-validation evaluates a model prediction performance, so too many co-
variates can be selected, and the model can lack interpretability. A "one-standard
error" rule [4] gives the more parsimonious model, but not always a sufficiently sparse
solution. Third, when variables are highly correlated, a single variable is picked at
random. Some kinds of modified penalty functions [3] have been developed to this
instability. However, they lose some of computationally attractiveness.

In contrast to the loss function modification, we propose to analyze the Bolasso
regularization path. This paper introduces new simple indicators that allow to find
a meaningful model structure. The model selection procedure is semi-automatic and
incorporates a subjective assessment of strong correlated input variables. This is
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a more flexible approach, since the initial set of variables can be extended by interac-
tion effects and combined categorical variables. The approach is however applicable
only in medium-dimensional problems (no more than a hundred variables). It is this
number of factors that influence the student retention that can be extracted from
databases of educational institutions.

1 Logistic regression

Let us introduce a Bernoulli random variable n which takes the value 1 in case of
student retention. Suppose a conditional probability of student persistence for a given
vector x of explanatory variables is modeled by logistic regression [5]:

Pr(n = 1jx) = E(nlx) = F(u +x'0), (1)

where F' is a logistic distribution function, 0 is a vector of effects of explanatory
variables to be estimated, u is an intercept.

The regression coefficients in (1) can be estimated by minimizing the negative
log-likelihood:

_L(VHO) = ZPM,B(Xia?/i)7 (2)

where y; is a value of n for ¢-th student, x; is a vector of values of covariates for i-th
student, N is a total number of students, the loss function is defined as p, ¢(x;, v;) =
—yi(p +x;0) + log(1 + exp(p + x;0)).

The initial set of variables usually includes some irrelevant attributes and redun-
dant ones. This makes the model too complex. Thus, optimization of (2) results
in overfitting that can produce misleading regression coefficients. The regularization
can be performed in order to enhance the interpretability of the logistic model.

2 LASSO regularization

The LASSO regularization imposes a constraint on the model parameters to shrink
some regression estimates towards zero [4]. The estimation problem is defined as
follows:

N
1
in — 4L0(Xi, yi) + |0, 3
rg}gnN;plﬂ(X yi) + All6]: (3)
where A is a regularization parameter, || - ||; is the ¢;-norm.

The sparsity of the solution in the problem (3) depends on the choice of the
regularization parameter \.

2.1 Bolasso

Drastic changes in LASSO-regression coefficients are however known to arise in the
case of small data perturbations. So for a given value of A the subset of selected
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variables is also unstable. This can be revealed by resampling methods such as the
bootstrap. The intersection of subsets of selected variables for the bootstrap samples
defines the Bolasso model structure [1|. Thus, the final subset contains only those
attributes that were entered simultaneously in all LASSO regression models. As a
result, the Bolasso can select the correct relevant variables.

The Bolasso regression estimates are computed simultaneously for a large number
of regularization parameters. That allows to find the entire regularization path. Let
a decreasing sequence of the regularization parameter values be given A\, ..., Ay, that
is, A1 corresponds to the simplest model with fewer variables.

The Bolasso is sometimes too strict in intersecting models. We preferred a soft
version of the Bolasso (referred to as Bolasso-S), where we select those variables
which are present in at least 90% of the bootstrap replications. Then, at each );, the
empirical frequency f;; of that the estimates of j-th covariate do not get shrunk to
exactly zero is calculated. The subset of relevant variables is defined by the condition
fjt > v, where ~ is the threshold value (1 for the Bolasso, 0.9 for the Bolasso-S). For
each such subset, the parameter vector of the ordinary logistic regression is estimated
by minimizing (2). The vectors obtained may have a different number of elements
depending on t. In order to avoid this, we fill the missing elements of the vectors (the
coefficients of eliminated variables) with zeros. Denote such a vector as ;.

The optimal value of the regularization parameter and the corresponding model
structure can be selected using cross-validation. However, it provides a good predic-
tive ability of the model, but does not guarantee its simplicity and interpretability.
Moreover, in presence of strong correlations between variables, the estimates cannot
be consistent. Further, we propose to analyze the entire regularization path in order
to select an interpretable model structure.

2.2 Analysis of the Bolasso Regularization Path

There are two main problems that arise by entering a new variable in the model:

e this variable has no significant effect on the response and is not correlated with
other input variables;

e this variable is significantly related to the response and other relevant covariates
already entered in the model.

The significance of attribute effect can be tested by t-statistic for the correspond-
ing coefficient. If the calculated p-value will be above the threshold « chosen for
statistical significance (usually the 0.10, the 0.05, or 0.01 level), then the effect of this
attribute on the response is insignificant.

However, in the second case, the t-test can give misleading results due to the
multicollinearity. By adding some predictor variables to a regression model that are
highly related, the estimated regression coefficients change drastically. It is proposed
to detect this case by calculating the maximum absolute deviation of the parameter
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estimates:
Oit — Oie—1)

: (4)

where Iy = {i : 0;; # 0&0;;—1) # 0}, 0y is i-th element of the vector 6; corresponding
to the value of the regularization parameter ;.

If the deviation (4) is large, then multicollinearity may be present in a model. In
this case, strong correlated input variables are evaluated subjectively. The decision
on which of the correlated variables should be added to the model can be made on
the basis of their correlation with the response or economic considerations.

Additionally, it makes sense to check whether a large deviation is actually caused
by multicollinearity, by calculating the maximum correlation between the predictors.
Since student retention is influenced by numerical as well as nominal attributes, it is
proposed to use mutual information of the variables X;, X; to measure the dependence
between them.

D; = max
icly

Oit—1)

MI(X;, X;) = H(X;) — H(X;| X)),
calculated on the basis of entropies:

H(X:) = = 525 p(X; = k) log p(X: = k).
H(Xi| X)) = = 30y Xy P(Xs = k, X = m) log p(X; = k| X; = m),

where p(A) is the relative frequency of the event A, p(X; = k|X; = m) is the relative
frequency with which i-th variable takes the value k under the condition that j-
th variable is equal to m, K, M are the numbers of categories of the i-th and j-th
variables, respectively. The discretization of the numerical attributes is performed.
In empirical study quartiles were used as discretization thresholds.

The multicollinearity indicator proposed is the maximum of the mutual informa-
tion of all pairs of predictors entered in the model for a given A;:

max M [; = max MI(X;, X;), (5)
1,7€U
where U, = {4, : fiu > v&fjr > v&i # j}.

The jump of the indicator (5) should detect that the model structure at \; differs
from one at \;_; in that a predictor correlated with the other variables was included.

The proposed analysis of the the regularization path involves the following steps.

Step 1. For all values of the regularization parameter, the multicollinearity indi-
cators log Dy, max M I;, t = 1, ..., T are calculated.

Step 2. Student’s t-test is used to determine which regression parameters are not
significantly different from zero. The p-value is computed for such parameters which
are added to the model at A, (6;:—1) = 0&0;; # 0) or excluded from the model at
(0it—1) # 0&80;; = 0). Denote the set of p-values calculated for a given X\, as PV;.

Step 3. Set t := 2.

Step 4. If log D; < 1 and |max M I; — max M1, 1| < 6, where 0 is a small positive
value, then go to step 5, otherwise, multicollinearity is detected when the variable
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subset at \;_; changes to the subset at A\;. Then the redundant (correlated or du-
plicated) variables are eliminated from the model or interaction effects (or combined
categorical variables) are added to the model.

Step 5. Exclude from the model those covariates for which PV, > «, except for
those variables that were not significant due to multicollinearity and were left in the
model at step 4.

Step 6. Set t :=t+ 1 and go to step 4, while ¢t < T.

We have implemented the proposed analyze the regularization path using a stan-
dard set of R packages. In addition a publicly available package glmnet [2]| is used
for fitting the entire lasso regularization path for logistic regression model. For the
Bolasso, samples of size N were drawn uniformly at random with replacement from
the original data. Three hundred bootstrap replications were generated.

3 Empirical results

The empirical study is devoted to analysis of choice of a master’s degree at the uni-
versity. The dataset is collected from the information system of the largest university
in Novosibirsk. Table 1 presents the original set of variables influencing the choice of
a master’s degree. For categorical attributes the first level is the reference. The set
contains strong correlated predictors, in particular Grade Point Average (GPA) on a
5-point system and on a 100-point one.

Table 1: Candidate predictors of master’s degree applicant’s choice

Index | Variable Categories
1 Faculty 8 technical, 4 humanitarian
2 Year of the first publication No, 1st-2nd, 3rd, 4th
3-5 Number of publications: total, 3rd, | 0, 1, 2, more than 2
4th course
6 WoS publication No, yes
7 Publication language No or russian, foreign
8 Independence of publications No, independent, co-authored
9-12 | GPA on 1st-4th years On a 5-point system
13-16 | GPA on 1st-4th years On a 100-point system
17 Government grant support Budget, contract
18 Residence other, Novosibirsk
19 Year of the first research No, 1st-2nd, 3rd, 4th
20 Obtaining funding No, yes
21 Amount of funding in logarithms, "no" replaced by 0

A preliminary analysis revealed that the probability of choosing a master’s degree

differs for technical and humanitarian faculties. Therefore, it was decided to build
two different logistic models. Figure 1 shows the empirical frequencies of selecting
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any given variable for the Bolasso as the regularization parameter varies. The large
frequencies are in white, the small values are in black. The horizontal axis shows the
values of — log ;.
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= = =
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3 4 5 6 7 8 3 4 5 6 T 8
Regularization parameter Regularization parameter

Figure 1: The relative frequencies of variable selection
for technical (left) and humanitarian (right) faculties

By estimating a model for technical faculties, the Bolasso does not work so badly.
First variable included in the model is the amount of funding. Further, significant
factors are added: GPA on 4th year on a 100-point system, the government grant
support, the faculty, the residence, and the year of the first research. Next, an
insignificant variable of GPA on 2th year on a 5-point system is included. Adding
GPA on 2th year on a 100-point system causes multicollinearity. In Figure 2 this can
be clearly seen from the peak value of log D; with a sharp increase in max M I;. At the
same value of \;, an insignificant factor of the publication language is added. Further,
the number of publications on the 4th year and their total number are added. They
are significant, but highly correlated, so we enter into the model the second only. All
further included variables are insignificant or correlated (duplicated) and ignored.

Figure 3 shows that for humanitarian faculties at large values of the regularization
parameter, only the first three changes in the model structure led to selection of
significant attributes: GPA on the 4th year on a 5-point system, the faculty, the
residence, the independence of publications. The number of publications on the 4th
yvear is significant at 10% level, we will neglect it. Further, only insignificant variables
are added while the total number of publications and the number of publications for
the 3rd year are included. This causes a jump in log D;. max M I; also increases
sharply. Thus, only the total number of publications should be included in the model.
However, this attribute has the same level with the independence of publications,
namely "no publications". Therefore, it was decided to combine these two categorical
variables into one with the reference level "no publications".

The significant factors added to the model at large values of —log\; are the
government grant support, the obtaining and amount of funding. They correlate
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Figure 2: The multicollinearity indicators
for technical (left) and humanitarian (right) faculties

strongly, this causes the last two peaks of log D;. All budget students are supported
by a government grant. So it is impossible for them to estimate the impact of not
funding. At the same time, for contract students, funding is so rare that it is difficult
to estimate the impact of its amount. Therefore, it was decided to include the factor
Contract and the interaction between Contract and Obtaining funding. Thus, in
order to obtain the final structure of the model, it was necessary to analyze the entire
regularization path up to the minimum value of the regularization parameter.

Conclusions

The Bolasso is used to stabilize the results of the LASSO regression estimation. How-
ever, the choice of the regularization parameter that provides a good interpretation
can be a serious issue. In the presence of multicollinearity the parameter estimates
may get counterintuitive signs. An empirical study showed that in such cases it is
impossible to find the optimal value of the regularization parameter, which ensures
the simplicity and meaningfulness of the regression model. Therefore, the proposed
analysis of the regularization path is a good solution to the problem. It allowed us to
understand what predictors it makes sense to include in the model. As a result, we
extended the original set of attributes by interaction effects and combined categorical
variables. This would not have been achieved by optimal choice of the regularization
parameter.
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Abstract

The article studies geostatistical methods for estimating individual transport
speeds in a populated area. The authors proposed spatial models of velocities,
namely the model of geographically-weighted regression and and interpolation
using universal kriging and kriging with external drift. Optimal parameters of
the models were chosen and a comparison of the proposed methods was made.
The study was carried out on the data of road users in Novosibirsk, Russia.

Keywords: traffic speeds, spatial speed model, geographically weighted
regression model, universal kriging, kriging with external drift.

Introduction

Residents of the modern metropolis constantly face the problem of traffic conges-
tion and inefficient operation of the transport system in general. The authorities of
population center need tools to support management decisions to optimize the trans-
portation system. The model of the transport system can serve as an instrument
that displays not only the current state of transport complex, but also predicts the
consequences of management impacts. Practically suitable methods of creating such
models are extremely limited nowadays.

With the development of spatial data collection technologies, new methods of statis-
tical analysis that take into account the location of the objects of research appear.
Such methods include the method of geographically-weighted regression (GWR) [2]
and methods of the kriging family [5]. In the paper, it is proposed to adapt these
methods for constructing a model of transport speed in a populated area that is part
of the transport system model as a whole. Using the methods of geostatistics allows
to take into account the spatial heterogeneity of the data and to obtain more accu-
rate models. Application of the methods of geographically weighted regression and
universal kriging to estimate transport speeds was proposed for the first time in [1].
Interpolation of transport speeds by kriging with external drift and comparison of
the quality of estimation of all three methods in this paper was carried out for the
first time.

This research has been supported by the Ministry of Education and Science of the Russian
Federation as part of the state task (project No 2.7996.2017).
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1 Geographically weighted regression

We divide the entire study area into m areas, each characterizes a certain point of
interest with coordinates (u;, v;). There are n; observation in each such area. Total
data used for analysis contains /N observations. Then the model of geographically-
weighted speed regression is following:

y' = Bolus,v;) + Zﬁk(ui, v)xh + € i = 1..m, (1)
k=1

where 3y’ - individual transport speed (km/h) in some area which characterizes by
point ¢ with coordinates (u;,v;); Br(u;, v;) - an estimated parameter that is an im-
plementation of a continuous function B(u,v) at point 4; €' - random error at point
i, Vi # j cov(e',€?) = 0; % - significance of the explanatory factor Fj,. The paper
considers r = 16 input factors; the list of them and their possible values are:

e F) - Road section type, F; € {rural road, highway with signal controled traf-
fic, main street of regional, importance (pedestrian-transport), main street of
district importance (transport-pedestrian), non, stop city-wide main street ,
city-wide main street with signal controled traffic and transit flow, city-wide
main street with signal controled traffic, street of urban housing, street in in-
dustrial district, pedestrian street, street with a dedicated lane};

e F, - Number of lanes, F» € {1,2,3,4,5,6 };
e Fy - The maximum allowed speed (km/h), F3 > 0;
e F, - Max. throughput (vel./h), Fy > 0;

e F5 - Intersection regulation of the road section start, Fy €{1-traffic light, 0-
without regulation};

e Fy - Intersection regulation of the road section end, Fg €{l-traffic light, 0-
without regulation};

e [ - Right turn at the road section start, 7 €{1- allowed, O-denied };

e Fy - Left turn at the road section start, Fg €{1- allowed, 0-denied };

e Fy - Backward turn at the road section start, Fy €{1- allowed, O-denied };
e Fo - Go straight at the road section start, Fjo €{1- allowed, 0-denied };

e F; - Right turn at the road section end, Fj; €{1- allowed, 0-denied };

e Fo - Left turn at the road section end, Fi5 €{1- allowed, 0-denied };

e F3 - Backward turn at the road section end, Fi3 €{1- allowed, 0-denied };

e F4 - Go straight at the road section end, Fy4 €{1- allowed, 0-denied };
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e F5 - Share of the traversed path to the road section end, Fi5 €[0,1];

e Fis - Length of the road section (km), Fig > 0.

Some factors are qualitative and have several possible levels, therefore, the corre-
sponding sets of dummy variables [4] were used to estimate the regression parameters.
The parameters of the regression equation (1) at each point of interest i with coordi-
nates (u;,v;) can be estimated by the following formula:

Blui, vi) = (XFW (ui, ) X)) " X]W (w, 0:) i, (2)
Bo (wi,v;)

~ xi ]}i
where f(u;,v;) = - e

- vector of parameters estimations 3, (u;, v;), X; =

% %

Br(ui,vi) Ty, o Thn,

- matrix of size n; * r of values of input factors Fj, at observation points for i-th area,

Y, = yll - vector of values of the dependent variable 3’ at observation points, W (u;, v;)
Yn1

- matrix of weights for each point (u;,v;). The elements of the matrix W (u;,v;) are

chosen so that observations near the point (u;, v;) have a greater weight than obser-

vations that are far away. Matrix has the following form:

W(uia Ui) = diag{wih -~-wini}7 (3)

where w;; - weight of observation at point j for point 7. Weight can be calculated as
follows:

wi; = 670-5(dij/h)27 (4)

where d;; - is Euclidean distance between points ¢ and j, and h - a parameter that
affects the bandwidth of a geographically weighted regression.

Matrix M = X W (u;, v;) X; of size r*r , undergoing the operation of reversal in (2),
for certain sets of observations may become degenerate. This happens because sets
of dummy variables were used for qualitative factors. Therefore, instead of the usual
inversion in (2), the pseudo-inversion operation of Moore-Penrose was used:

M =UDVY Mt =VD'U", (5)

where U and V - unitary matrices of order r, consisting of left and right singular
vectors, respectively, and D is a diagonal matrix of size r % r , containing singular
numbers on the main diagonal.

2 Methods of kriging family

To predict the value of Z; in some point of interest ¢ of area (); using methods of
kriging family, it is necessary to average existing observations (6):

Z; = Z&k<uiyvi)zk7 (6)

k=1
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where (u;,v;) € §; - point of interest with coordinates (u;,v;), where the value of Z;
(speed) is predicted, Z- value of transport speed observation in (uy,vy), ag(u;, v;)-
unknown weight coefficient, n; - the number of observations Zj in €);.

To predict the values of Z; one needs to find ay(u;,v;). At the first stage, it is
necessary to analyze the spatial correlation structure of the initial set of observations.
To do this, one should use a statistical moment such as a variogram [6]. Its values
are explicitly included in the kriging equations.

Variogram is a correlation measure for two values of the observed variable in points
Zy, and Z;, located at a distance d(Zy, Z;) = h from each other:

v(h) = 0,5Var[Zy — Z;] = 0,5E[Z), — Z;]*. (7)

For N, observation points, located at a distance h from each other,
An =A{(Zy, Z;)|d(Zk — Z;) = h}:

M=o S [Z-2 )
h
(Zx,Zj)EAR
To construct an experimental semivariogram, it is necessary to group all pairs
of measurement points by distance and calculate the semivariogram values for all
groups using formula (8). A permissible range of distances, called a lag, is used dur-
ing variogram calculation. Pairs of points are grouped using lag value and it provides
some reduction in the effect of the emissions on its values. Kriging methods require
knowledge of the variogram values for all distances. For this purpose, a theoretical
semivariogram model is constructed §(h) - a function that approximates the values
of the experimental variogram. The functions that were used to approximate the
experimental variogram are given in [7]. These models are functions defined up to
parameters. One of the parameters is the correlation radius, which is the limiting
distance between points, at which a correlation effect is still observed. After the stage
of the semivariogram calculation, one should proceed to the direct prediction of the
values of the observed quantity.
It is possible to decompose observed variable Z(u, v) into the sum of the deterministic
and stochastic components: Z(u,v) = m(u,v) + R(u,v). The methods of the krig-
ing family differ with each other by propositions about the form of the deterministic
component - mean of the function m(u,v).

2.1 Universal kriging

To calculate the estimates in this paper, universal kriging was applied. Universal
kriging [5] suggests that the deterministic component m(u,v) of Z(u,v) is a linear
combination of certain basis functions f,(u,v), with coefficients \,(u, v). These coef-
ficients are assumed to be constant in €2;.

m(u,v) = Ap(u, ) fip(u, v), 9)

p=0
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where (u,v) € €, fp(u,v) - selected basis functions, fo(u,v) =1, A\,(u,v) - unknown
coefficients, 7'+ 1 - the number of used basis functions.

It should be noted that kriging methods, including universal one, allow calculating
local estimates of the function Z(u,v), namely, to use for estimation only those
measurements that are located in some neighborhood €; of point (u,v).

The solution of the problem of finding unknown weights is carried out using the
minimization of the functional o2 (u,v), where in addition to the variation of the
estimation error by the kriging method, the unbiasedness of the estimate with weight
coefficients y, are included (the Lagrange multipliers):

n;
7 (ui, vy) Zzak Ui, 03) 0 (i, 0:) (0% = Arg) —

k=1 j5=1

-2 Z i (ui, v:) (03 — Jir) + 0+

5 (10)
+2410 (s, v3) (1 =Y Qs v3))+
k=1
+2> (i, 0) (fp(wiy 03) = > (s, v3) fy (g, v)
p=1 k=1

where yy; = 4(d(Zy — Z;)).

The system of universal kriging equations, obtained by differentiating the variation
(10) by weights &; and coefficients u, and equating the derivative to zero, looks as
follows:

Z =1 O‘J( )'Vk] + IUO( ) + 2221 Mp(ui7vi)fp(uk7 Uk) = ’AYik:a k=1, oy Ty
ft G (g, vg) = 1, (11)
Zk 1 ak( )fp(ukﬂvk) = fp(uiﬂvi)vp =1,...,T.

The variation of universal kriging can be calculated fr