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Preface

The Fifth International Workshop �Applied Methods of Statistical Analysis. Sta-
tistical Computation and Simulation� � AMSA'2019 is organized by Novosibirsk State
Technical University.

The �rst two Workshops AMSA'2011 and AMSA'2013, as well as AMSA'2019,
took place in Novosibirsk. AMSA'2015 was held in the resort Belokurikha located at
the foothills of Altai. AMSA'2017, organized together with Siberian State University
of Science and Technologies called after academician M.F. Reshetnev, took place in
Krasnoyarsk.

The First Workshop �Applied Methods of Statistical Analysis� AMSA'2011 was
focused on Simulations and Statistical Inference, AMSA'2013 � on Applications in
Survival Analysis, Reliability and Quality Control, AMSA'2015 � on Nonparametric
Approach and AMSA'2017 � on Nonparametric Methods in Cybernetics and System
Analysis.

The Workshop AMSA'2019 was mainly oriented to the discussion of problems
of Statistical Computation and Simulation, which are crucial for the development of
methods of applied mathematical statistics and their e�ective application in practice.

The Workshop proceedings would certainly be interesting and useful for special-
ists, who use statistical methods for data analysis in various applied problems arising
from engineering, biology, medicine, quality control, social sciences, economics and
business. The Proceedings of International Workshop �Applied Methods of Statistical
Analysis� are indexed in Scopus starting with 2017 materials.

The organization of the Fifth International Workshop �Applied Methods of Statis-
tical Analysis. Statistical Computation and Simulation� � AMSA'2019 was supported
by the Russian Ministry of Education and Science (project 1.1009.2017/4.6).

Prof. Boris Lemeshko



Applied Methods of Statistical Analysis

Contents

Yu. Grigoriev
Actuarial risk theory: becoming in Russia, main problems, and development
of concepts 11

Yu. Dmitriev, O. Gubina, G. Koshkin
Estimation of the present values of net premiums and life annuities for the
di�erent actuarial models 30

Z. Warsza, J. Puchalski
Method of the estimation of uncertainties in multiparameter measurements of
correlated quantities 47

Z. Warsza, J. Puchalski, A. Idzikowski
Application of the vector method for estimating characteristic function based
on measurements uncertainty at two control points 60

I. Malova, S. Malov
On estimation algorithms in nonparametric analysis of the current status right-
censored data 74

A. Abdushukurov
Survival function estimation from �xed design regression model in the presence
of dependent random censoring 85

N. Nurmukhamedova
Asymptotics of chi-square test based on the likelihood ratio statistics under
random censoring from both sides 90

L. Kakadjanova
Empirical processes of independence in presence of estimated parameter 96

D. Zakhidov, D. Iskandarov
Empirical likelihood con�dence intervals for truncated integrals 102

A. Popov, V. Karmanov
Construction of basic durability model of drilling with using fuzzy regression
models 105

E. Chetvertakova, E. Chimitova, E. Osintseva, R. Snetkov
The Wiener degradation model in the analysis of the laser module ILPN-134114

B. Lemeshko, S. Lemeshko, M. Semenova
Features of testing statistical hypotheses under big data analysis 122

5



Novosibirsk, 18-20 September, 2019

B. Lemeshko, I. Veretelnikova
On application of k-samples homogeneity tests 138

A. Voytishek, T. Bulgakova
On conditional optimization of �kernel� estimators of densities 152

O. Makhotkin
Investigation of the chi-squared test errors 160

P. Peresunko, K. Pakhomova, E. Soroka, S. Videnin
Comparison of generalisation error's methods on case of linear regression 165

P. Philonenko, S. Postovalov
On the distribution of the MIN3 two-sample test statistic 173

P. Philonenko, S. Postovalov
The research of the two-sample test statistics convergence rate 181

D. Politis, V. Vasiliev, S. Vorobeychikov
Optimal index estimation of log-gamma distribution 188

Yu. Dmitriev, G. Koshkin
Estimation of present value of de�ered life annuity using information about
expectation of life 195

V. Smagin, G. Koshkin, K. Kim
Robust extrapolation in discrete systems with random jump parameters and
incomplete information 203

T. Dogadova, V. Vasiliev
Adaptive prediction of Ornstein-Uhlenbeck process by observations with ad-
ditive noise 212

Yu. Burkatovskaya, V. Vasiliev
Parameter estimation with guaranteed accuracy for AR(1) by noised observa-
tions 219

D. Lisitsin, A. Usol'tsev
Minimum gamma-divergence estimation for non-homogeneous data with ap-
plication to ordered probit model 227

E. Pchelintsev, S. Perelevskiy
Asymptotically e�cient estimation of a drift coe�cient in di�usion processes235

A. Medvedev
On controlled processes of multidimensional discrete-continuous systems 243

6



Applied Methods of Statistical Analysis

A. Medvedev
On levels of a priori information in the of identi�cation and control problems251

V. Branishti
Applying the method of moments to build the orthogonal series density esti-
mator 257

O. Cherepanov
Robust correlation coe�cients based on weighted maximum likelihood method263

S. Andoni, V. Andoni, A. Shishkina, D. Yareschenko
About non-parametric algorithms identi�cation of inertialess systems 271

E. Mangalova, O. Chubarova, D. Melekh, A.Stroev
Acute pancreatitis severity classi�cation: accuracy, robustness, visualization 278

E. Mihov, M. Kornet
Non-parametric control algorithms for multidimensional H-processes 286

A. Medvedev, D. Melekh, N. Sergeeva, O. Chubarova
Adaptive algorithm of classi�cation on the missing data 292

A. Tereshina, M. Denisov
Adaptive models for discrete-continuous process 299

A. Raskina, E. Chzhan, V. Kukartsev, A. Karavanov, A. Lonina
Nonparametric dual control algorithm for discrete linear dynamic systems 306

M. Akenteva, N. Kargapolova, V. Ogorodnikov
Numerical study of the bioclimatic index of severity of climatic regime based
on a stochastic model of the joint meteorological time series 311

A. Medvyatskaya, V. Ogorodnikov
Approximate numerical stochastic spectral model of a periodically correlated
process 320

O. Soboleva
Modeling of dispersion in a fractal porous medium 327

T. Averina, K. Rybakov
Maximum cross section method in estimation of jump-di�usion random pro-
cesses 335

T. Averina, I. Kosachev, K. Chugai
A stochastic model of an unmanned aerial vehicle control system 342

7



Novosibirsk, 18-20 September, 2019

M. Shakra, Yu. Shmidt, I. Almosabbeh
Evaluating the impact of tourism on economic growth in Tunisia 349

E. Gribanova
Algorithm for regression equation parameters estimation using inverse calcu-
lations 357

L. Shiryaeva
On rotated versions of one parameter Grubbs's copula 365

A. Timofeeva, A. Borisova
Logistic regression model of student retention based on analysis of the Bolasso
regularization path 371

V. Timofeev, A. Veselova, K. Teselkina
Analysis of the methods of the Kriging family and GWR for transport speeds
prediction models development 379

N. Oleinik, V. Shchekoldin
Study of the properties of geometric ABOD-approach modi�cations for outlier
detection by statistical simulation 389

Yu. Mezentsev, O. Razumnikova, I. Tarasova, O. Trubnikova
On the clustering task of Big Data in medicine and neurophysiology 396

T. Sumskaya
Problems of Sub-Federal budget policy in Russian Federation (The case of
municipalities of the Novosibirsk Oblast) 404

A. Feldman, N. Molokova, D. Rusin, N. Nikolaeva
Data analysis in studying the geological section 413

M. Karaseva
Computer-aided approach to synthesis the specialized frequency dictionaries 421

K. Pakhomova, P. Peresunko, S. Videnin, E. Soroka
The income prediction module of the retail store's network 428

V. Stasyshin
Research of educational business processes in the decision making support
system of University 436

N. Antropov, E. Agafonov
Adaptive kernel identi�cation of nonlinear stochastic dynamical systems 445

A. Popov, V. Volkova
An optimal design of the experiment in the active identi�cation of locally

8



Applied Methods of Statistical Analysis

adaptive linear regression models 453

A. Imomov, E. Tukhtaev, N. Nuraliyeva
On invariant properties of critical Galton-Watson branching processes with
in�nite variance 461

M. Krnjaji¢, R. Maslovskis
On some practical approaches of data science applied in forecasting and per-
sonalization 468

A. Vostretsov, V. Vasyukov
E�ect of sampling jitter in devices for discrete signal processing 482

N. Zakrevskaya, A. Kovalevskii
An omega-square statistics for analysis of correspondence of small texts to the
Zipf�Mandelbrot law 488

A. Tyrsin, Ye. Chistova, A. Antonov
A scalar measure of interdependence between random vectors in problems for
researching of multidimensional stochastic systems 495

G. Agarkov, A. Sudakova, A. Tarasyev
Data Mining application features for scienti�c migration 502

A. Sherstobitova, T. Emelyanova
On segmentation approach for time series of Arbitrary Nature 510

D. Rusin, N. Molokova, A. Feldman, N. Nikolaeva
Computer analysis and interpretation of geophysical data 515

T. Patrusheva, E. Patrushev
Statistical approach to detection of periodic signals under the background
noise using the chaotic oscillator Murali-Lakshmanan-Chua 523

M. Kovalenko, N. Sergeeva
Real-time multiple object tracking algorithm for adaptive tra�c control sys-
tems 530

V. Glinskiy, L. Serga, Yu. Ismaiylova, M. Alekseev
Disproportion of Russian Regions development in the sphere of population
provision with food of own production 537

B. Dobronets, O. Popova
A nonparametric approach for estimating the set of solutions of random linear
programming 545

9



Novosibirsk, 18-20 September, 2019

K. Chirikhin, B. Ryabko
Application of arti�cial intelligence and data compression methods to time
series forecasting 553

N. Galanova
Approaches to customers lifetime value prediction 561

N. Kononova, D. Zhalnin, O. Chubarova
About the task of leveling the �false� operations of the heat load regulator 566

10



Applied Methods of Statistical Analysis

Actuarial risk theory: becoming in Russia,

main problems, and development of concepts

Yu. D. Grigoriev

Saint Petersburg Electrotechnical University (LETI), Saint Petersburg, Russia
e-mail: yuri_grigoriev@mail.ru

Abstract

The subject of actuarial mathematics and its formation in Russia are con-
sidered. The de�nition of risk is given and the nature of risk functionals is
discussed. A di�erentiation between decisive functionals and risk measures is
indicated. Examples of order relations between risks, problems of risk manage-
ment in reinsurance, are provided.

The areas adjacent with the modern risk theory including experimental de-
sign, navigating problems of vessel's place de�nition and problems of the relia-
bility theory are listed. Examples of speci�c risk measures including measures
of expected utility, measures of disturbed probability and quantile risk mea-
sures are given.

Keywords: actuarial mathematics, risk measure, coherent and comono-
tonic risks, expected utility, disturbed and quantile measures.

Introduction

The actuarial risk theory takes up an intermediate position between economics which
dictates it the purposes and problems, and applied mathematics from which it draws
methods of their decision. The problems and methods applied in the insurance com-
panies for practical calculations are concerned with contemporary risk theory, which
also includes theoretical designs, which allow to sound the actuarial methods from
omnibus approach, for example, in utility theory, or ordering risk theory.

Nowadays many university courses of actuarial mathematics includes some results
on net premium principles calculation, reinsurance models, properties of underlying
functionals, etc. In the report the brief information on history of actuarial mathe-
matics in Russia is presented and some speci�c examples of actuarial problems are
provided.

1 Becoming of Actuarial Mathematics in Russia

The actuarial mathematics and actuarial education have a long history. Su�ce it to
mention names of E. Halley (1656-1742) and A. de Moivre (1667-1754), which in the
modern terminology were the �rst actuaries, the foundation in 19th century the Insti-
tute of Actuaries (United Kingdom, Oxford, 1848) and Faculty of Actuaries (Glasgow,
1856), the subsequent including of actuarial calculations and methods in the higher
education system, the carrying out of the International Actuarial Congresses on the
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regular basis as from 1895, on which the basic directions of development actuarial
science and education all over the world are de�ned.

In particular one of eminent actuary was famous Swedish mathematician and
statistician H. Cramér, since 1918 he had been worked for insurance company. He was
the founder of the �rst-ever chair of actuarial mathematics at Stockholm University
(1929).

In our country the actuarial science also had its own traditions (Grigoriev [18]).
Su�ce it to mention a name of Russian mathematician S. E. Savich (1864-1946),
who was a vice-president of four earliest Actuarial Congresses (1895, Brussels; 1898,
London; 1900, Paris; 1903, New York), an initiator of VIII Actuarial Congress in
Saint Petersburg (1915), canceled due to World War I, Professor and Head of higher
mathematics chair of Saint Petersburg Electrotechnical Institute (nowadays Saint
Petersburg State Electrotechnical University (�LETI�)).

His contribution to development of actuarial sciences was so considerable, and
it is con�rmed by republishing in 2003 his book �The Elementary Theory of Life
Insurance and Work Capacity� (1900) (Publishing house �Janus-K�, Moscow), which
is still topical up to now.

Insurance as one of institution of �nance management was missing in Soviet Union.
Actuarial profession, which subject is studying of economy of the �nance, the theory
of life insurance and the risk theory, as providing it, did not exist too. It is signi�cant
that inevitable mentions of the risk theory in foreign literature in translations (Prabhu
[40, p. 215, section 5.5], [41]), as a rule, stayed out of reader's sight as it was hidden in
notions of problems inventory systems and the queues theory. For instance a subtitle
of the book by Prabhu [41] �Queues, risk insurance, dams� was not entered in a cover
and was not included in the book.

The beginning of the refoundation of the actuarial direction in education and
the appearance of a new type of insurance business in our country starts with the
Diploma-Courses (Grigoriev [16]), organized by the initiative of Institute of Actuaries
(United Kingdom) in 1994-1998 in di�erent cities of Russia (Kemerovo, Novosibirsk,
Moscow, St. Petersburg, Ufa) and in some former USSR republics (Belarus, Latvia).
The author of this report was directly involved in organizing and conducting these
courses in Novosibirsk (1996/97).

The questions of mathematical insurance theory in many domestic scienti�c edi-
tions are considered now. Russian actuarial science gradually gains in strength. An
accruing growth both journal and book publications tells about it, the appearance
of actuarial and the �nancial mathematics chairs at various universities, the organi-
sation and holding of conferences on actuarial mathematics and adjacent questions,
defences of master's theses (Esin[12]; Kovaleva [28], etc.), of PhD's thesis (Le Din
Shon [29]; Martynova [36]) and DSci's thesis (Malinovsky [34]; Shorgin [45]). There
were monographs and training manuals (Alexeev, Egorov, Ivanitsky [1]; Bojkov [6];
Bulinskaya [8]; Falin [13]; Glukhova, Zmeev, Livshits [14]; Golubin [15]; Grigoriev
[18]; Kan [24]; Korolev [26]; Korolev, Bening, Shorgin [27]; Medvedev [37]; Novoselov
[39]; Semenov [44]; Urazaeva [46]; Vinogradov [47]), some books have been translated
(Kaas, etc. [23]; Lemaire [30], [31]; Mack [33]).
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In Moscow in 1997 the International conference �Actuarial science: theory, ed-
ucation and applications�, and in Krasnoyarsk I and II All-Russian conferences on
�nancial and actuarial mathematics in 2002 and 2003 have been hold. In the period
from 2004 to 2019 sixteen FAMEMS conferences on �nancial and actuarial mathe-
matics were held, which have become International since 2009.

In St. Petersburg with support of the Russian Foundation of Fundamental Re-
searches Annual International Science School on theme �Simulation and Analysis
of Safety and Risk at Complex Systems� (MABR) by Institute of Machine Science
Problem of the Russian Academy of Sciences are being held since 2001. Within the
framework of this schools two sections �Technologies and reliability models in the
technical Systems� and �Technologies and models of risk management in business
and the �nance� are hold. Numerous network conferences are also hold.

At the moment the actuarial education in Russia has not yet received organiza-
tionally complete form. Such educational programs in various institutes of higher
education, including universities, are realized. It has the di�erent levels and various
forms.

Therefore it is of interest to dwell on some fundamental directions of actuarial
science development from the point of view of relevant specialists' training in the
system of higher education.

2 Risk and Associated Problems

Let us de�ne a subtle distinction in risk measures and decisive functionals based on
an informal notion of risk. We will consider some speci�c examples of risk measures
and decisive functionals based on the introduced class of coherent risk measures.

2.1 Basic concepts

The basic concepts of the risk theory include the risk, the order relations between
risks, the risk measures and their classi�cation. On the basis of these concepts vari-
ous problems of risk management are formulated.

Risk. Speaking of risk when choosing one or another decision-making strategy,
in some cases risk means the probability of damage (loss) occurrence, in others cases
it means the extent of damage. (Grigoriev [18, p. 141]). Depending on a situation
(they are for examples, actuarial risk theory, decision-making theory, reliability theory
and etc.) the risk means a random variable X, describing the extent of damage or,
equivalently, its distribution function F (x) = P{X ≤ x}. Sometimes instead of X
one could speak about a probability measure P, that generates corresponding random
variable X.

If we assume that a loss is positive, when random variable X is considered as
positive, and its distribution will be concentrated in positive semiaxis R+. Between
risks Y , Z the various partial order relations may be established.
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Risk measures and decisive functionals. Not all quality functionals studying
in various theories may be considered as risk measures. For example, coherent �risk
measure� in practice is �decisive functional�, instead of a risk measure in its pure
form, as, for example, a variation. From the �nancial point of view one could say
that decisive functional takes into account not only the risk (a probability of its
occurrence), but also its extent (an income or a loss), and its optimization allows to
make risk-weighted decisions.

Expected utility is a decisive functional, but not a coherent. Contrarily the mean
E[X] is nominally a coherent risk measure though it fail takes risk into account as
the probability of its occurrence. This measure re�ects only the extent of damage,
but it doesn't re�ect a probability of its appearance.

Risk insurance. To make a long story short the main tasks of actuarial risk
theory lie in the �eld of risks arising in coinsurance, namely when they are distributed
between the insured and the insurer in issue of policy, in using a franchise, or in
executing of various reinsurance contracts.

As a result of these actions there are various variants of risk management, because
corresponding functions of a risk division are characterized by certain parameters,
and decision-makers connected with corresponding utility functions on the basis of
which many constructions of actuarial mathematics (inequalities of an insured and
an insurer, principles of premiums awarding, risk measures, etc.) are forming.

2.2 Stochastic orders

Stochastic orders are partial orders for probability distributions. Let us consider some
stochastic orders, most often used in the risk theory. Put down that 0 < E[Y ] <∞.
One could say that

1. Two non-negative risks Y and Z are said to be in the risk aversion order, written
Y �A Z, if and only if

FZ(x) = I(x− r), r > 0, E[Y ] = r. (1)

Here I is a Heaviside step function, namely I(x) = 0 if x < 0, and I(x) = 1 if
x ≥ 0.

2. Two non-negative risks Y and Z are said to be in the stochastic domination
order, written Y �ST Z, if and only if

FZ(x) ≤ FY (x); (2)

3. Two non-negative risks Y and Z are said to be in the danger order, that is the
risk Y is less dangerous than the risk Z, written Y �D Z, if E[Y ] < E[Z], and
also there is a point c ∈ [0,∞) such that

FY (x) ≤ FZ(x) at x < c, FY (x) ≥ FZ(x) at x > c. (3)
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4. Two non-negative risks Y and Z are said to be in the stop-loss order, written
Y �ST Z, if

∀x ∈ [0,∞) :

∫ ∞
x

[1− FY (t)]dt ≤
∫ ∞
x

[1− FZ(t)]dt. (4)

There are various relationships in entered order relations. In particular, relation-
ship between orders �ST , �D and �SL establishes by following

Theorem 1. (Novoselov [39, p. 24]). If risks Y and Z have �nite means then

Y �ST Z ⇒ Y �D Z ⇒ Y �SL Z. � (5)

2.3 Coherent measures of risk

Various functionals one or another useful properties with could be implemented for
the risk measurement. An interesting class of risk measures is formed with so-called
coherent measures. They have been entered axiomatically in (Artzner [4]) and since
then they are objects of intensive research from both the point of view of studying of
their properties, and from their possible generalizations (Esin [10]; Martynova [36]).

Let X be a set of all risks on measurable space (Ω,A), X, Y ∈ X . A coherent
measure of risk is a functional f : X → R with the properties of monotony, superad-
ditivity (subadditivity), positive uniformity, and invariance on shift transformation:

X ≤ Y ⇒ f(x) ≤ f(Y ) (f(x) ≥ f(Y )), (6)

f(X + Y ) ≥ f(X) + f(Y ), (f(X + Y ) ≤ f(X) + f(Y )), (7)

f(λX) = λf(x), (8)

f(X + a) ≥ f(X) + a. (9)

Let us notice that from (8) it follows f(0) = 0 that together with (6) gives
f(X) ≥ 0 for X ≥ 0. The opposite inequalities in round brackets in (6) and (7) give
an opportunity to consider the risk with an opposite sign.

Example 1. Let f(X) = E[X]. In this case properties (6) � (9), obviously, are carried

out. Hence, E[X] is a coherent measure of risk. Let us consider a variance D[X]. It is easy

to see that properties of uniformity (8) and invariance on shift transformation (9) are not

hold. Hence a variance is not a coherent measure of risk.

Other examples of coherent measures are the functional of so-called disturbed probability

and a risk measure CV aR (Hürliman [22]) as its special case. �

2.4 Relationships with other areas

Problems similar to division of risks (though their names were di�erent) appear in
many closely related theories which have arisen long before the risk theory that has
emerged clearly in the last 30-40 years.
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Let us note that the actuarial science itself, as an integral part of the insurance
institution, was founded much earlier, in the 18th century (E. Halley, A. de Moivre).

Closely related with the risk theory applied areas. Here we are going to list
the areas of applied mathematics where the actuarial risk theory ideas are discussed:

� Financial Tools (options, futures and other derivatives). This is an immense
research area, the list of references is unbounded.

� Probability Theory and Stochastic Processes (Vinogradov [47]): There are dif-
ferent problems: a problem about the ruining of the player (Huygens, 1657) as
a problem of the risk theory. A problem of the attainment of level in classical
model of collective risk. The relationship with the problems on random walk,
balloting and branching processes theory.

� Reliability Theory and Queuing Theory (Arfvedson [2], [3]; Prabhu, 1969 [40];
1984 [41]; Vinogradov [47]): it is a problem on ruining in the collective risk
model in its connection with the queuing theory (systemM/G/1, single-channel
queueing system with Poisson input �ow and arbitrary service time). The
system G/M/1 is dual to system M/G/1 and consequently it is connected also
with collective risk model. Notice that in Russian translation of the book title
of Prabhu [41] its subtitle �Queues, Insurance Risk and Dams� was omitted.
Obviously it shows an applicability of the inventory theory to called areas.

The other case is the comparison of tail heaviness for various reliability functions
(Proshan [5, p. 324]) and it's relationship to the problems of the risk ordering
in actuarial risk theories (Kaas, etc. [23, p. 278]).

� Systems of Maintenance Service with Periodic Inspection (Livshits, Golichenko
[32]): the problem of determination of service optimum interval T at two types
of costs.

� Inventory Systems (Hadley, Whitin [21, p. 360]): problems of the newspapers
seller (1888) and the problem about Christmas tree.

� Experimental Design (Grigoriev [20]): A-optimality criterion.

� Navigation (Kondrashikhin [25]): a problem of determining the vessel's location.

� Control Theory (Grigoriev, Le Din Shon [19]): Ruin probability in the collective
risk model of Cramér and Lundberg at excess reinsurance. The equation of
Jacobi�Hamilton�Bellman.

Let's give an example from experimental design for characterizing the similarity
of statements of problems in this area with risk theory problems.

Regression experimental design. The fundamental property of every optimal-
ity criterion of experimental design ξ is the ordering, that is induced on the closed
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coneM of nonnegative de�nite information matrixes M ∈ M ⊂ Rm×m, where m is
a number of estimated parameters.

Let us consider a partial order relation ≥ onM, de�ned by next condition:

A ≥ B ⇔ A−B ≥ 0⇔ A−B ∈M.

Such partial order relation is called Loewner ordering (Grigoriev [20, p. 95]).
The functional ϕ : M → R1 is called isotonic if it keeps a Loewner ordering,

namely If A ≥ B ⇒ ϕ(A) ≥ ϕ(B), and it is called antiisotonic otherwise. The
functional is called monotonic, if it is isotonic or antiisotonic.

One could consider such matrix functions as optimality criteria in experimental
design, they are equipped with a partial order in their de�nition domain. Let us
formulate some usual conditions imposed on such functions (Grigoriev [20, p. 95];
Pukelsheim [43]):

1◦. We will say that information matrix C is not worse than matrix D relative to
the criterion ϕ, if ϕ(C) ≥ ϕ(D). On that understanding of information matrixes it
is reasonable to consider that the chosen criterion should be isotonic relative to the
Loewner ordering:

∀C,D ∈M : C ≥ D ⇒ ϕ(C) ≥ ϕ(D).

2◦. The second property usually imposed on reasonable criterion, is concavity
(convexity),

ϕ[(1− α)C + αD] ≥ (1− α)ϕ(C) + αϕ(D), α ∈ (0, 1), C,D ≥ 0.

In other words, information cannot be increased by interpolation, otherwise the sit-
uation

ϕ((1− α)C + αD) < (1− α)ϕ(C) + αϕ(D),

will occur. Rather than carrying out the experiment belonging to (1 − α)C + αD,
we achieve more information through interpolation of the two experiments associated
with C and D. This is absurd. It is possible to show that concavity (convexity) and
superadditivity (subadditivity) are equivalent (Pukelsheim [43, p. 115]).

3◦. The third desirable property of criterion is positive uniformity :

ϕ(λC) = λϕ(C), λ > 0, C ≥ 0.

A function ϕ : M→ R1 is called information, if it isotonic, concave (convex) and
positively homogeneous. Comparing (6) � (8) from 1◦ � 3◦, one could conclude that
coherent measures of risk form a subset of information functions set. In particular, D-,
A- and E-optimality criteria are the most-used information functions in experimental
design.

Let us deal on A-criterion ϕ : trD(ξ)→ min. Such functional is monotonic (anti-
isotonic) (Grigoriev [20, p. 27, the theorem 1.14]) and convex on a set of information
matrixes (Grigoriev [20, p. 95]):

tr[M−1(ξ)] ≤ (1− α)tr[M−1(ξ1)] + αtr[M−1(ξ2)], 0 < α < 1,
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where M(ξ) = (1 − α)M(ξ1) + αM(ξ2), namely this functional is subadditive. It is
easy show that m−1tr[λD(ξ)] = (λ/m)tr[D(ξ)]. Thus, the criterion of A-optimality
is positively homogeneous. Moreover such criterion also has another property:

4◦. A-optimality criterion is invariant relative to the shift a:

m−1tr[D(ξ) + aI] = m−1tr[D(ξ)] + a.

So when comparing 1◦ � 4◦ and (6) � (9), we can conclude that A-optimality criterion
is a coherent measure of risk.

Property of 4◦ is speci�c to the problems connected with �nancial and insurance
risks. The last requirement is not compulsory in a lot of technical applications, for
instance, in experimental design, reliability theory, navigation and so on.

2.5 Comonotonic risks

Comonotonic risks play an important role in reinsurance problems in which a risk X
is split on insurer risk Y = g(X) and reinsurer risk Z = X − g(X).

Let us consider as an example the stop-loss reinsurance with two retention lev-
els. To do this we will formulate next theorem as a corollary of crossing condition
belonging to Karlin, Noviko�, Stoyan, Taylor (KNST-condition):

Theorem 2. (Grigoriev [18, p. 145]; Hürliman [22]). (two-level stop-loss contract). Let the
following conditions are take place:

1) splitting X = Y + Z of risk X is carried out according to Fig. 1 and Fig. 2:

Figure 1: Insurer risk Y = g(X). Figure 2: Reinsurer risk Z = h(X).

2) stop-loss transformations

πY (x) =

∫ ∞
x

[1− FY (t)]dt, πZ(x) =

∫ ∞
x

[1− FZ(t)]dt (10)

satisfy the inequality

πZ(M) ≤ πY (M).
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Then Z �SL Y .

As it follows from the Theorem 2 (see Fig. 3 and Fig. 4) at Q < M for all
x ∈ [0,∞) an inequality FY (x) ≤ FZ(x) is hold, namely the relation Z �ST Y takes
place.

Figure 3: Two-level stop-loss contract:
distribution function FY of an insurer.

Figure 4: Two-level stop-loss contract:
distribution function FZ of a reinsurer.

This statement and Theorem 1 follow us to Z �SL Y . Thus the most interesting
case is when Q > M , because not for any positive di�erence Q − M the relation
Z �ST Y is realized.

3 Some speci�c measures of risk

Let's consider three speci�c risk measures as an example. First of them is not coher-
ent measure of expected utility, and two others are coherent measures of disturbed
probability. In summary we present a little quantile risk measures, among which the
most important is the coherent measure CVaR.

3.1 Expected utility measure

The de�nition of utility function u(x) which is a core of Neumann-Morgenstern eco-
nomic theory, is given in many guides. This utility theory investigates preferences
on a set of lotteries. Its basic properties are positive semide�nity of limiting utility
u′ ≥ 0, and belonging of u(x) to one of two classes u′′ ≥ 0 or u′′ ≤ 0.

Model of expected utility. The model of such type could explain the ex-
istence of insurance institute. In this model the insurer is the person, who is not
inclined to risk and making reasonable decisions. By Jensen's inequality he is ready
to pay for own �nancial safety more than expected value of its losses. The mecha-
nism of decision-making under conditions of uncertainty consists not in comparison
of expected payments realized as result of decisions, but in comparison to expected
utilities these payments.
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Theorem 3. (Jensen's inequality). If v(x) is a convex function and Y is a random variable,

then

E[v(Y )] ≥ v([E(Y )]). (11)

The equality in (11) is holds if and only if v is linear on a set of concentration of a random

variable Y or when D[Y ] = 0. �

Let w be a capital of a decision-making person (DMP). From Jensen's inequality
(3) it follows that for concave utility function we could obtain

E[u(w −X)] ≤ u(E[w −X]) = u(w − E[X]). (12)

Therefore decision-makers with decreasing function u′′(x) fairly are called as not
inclined to risk : they prefer determined (not random) E[X], but not random payment.

Let us brie�y consider a de�nition, properties and an example of usage of expected
utility measures in a problem of comparison of two risks as two lotteries (Urazaeva
[46]). As it was mentioned before, the expected utility measure is a decisive func-
tional, instead of a risk measure in its pure form.

Risk aversion ratio. The dependence of utility function curvature from �risk
aversion force� allowed proposing a relative indicator risk aversion ratio. If the �rst
and second derivatives of utility function are known we could get answers to following
questions:

� What class does decision-maker belong to? Is he a riskophobe (he is not inclined
to risk), a riskophile (he is inclined to risk), or a neutral person (he is indi�erent
to risk)?

� How much strong he does (or does not) accept the risk?

Based on this general knowledge about the utility function, one can get to the
following de�nition of the risk aversion ratio. It is called Arrow-Pratt ratio and is
de�ned by the formula (Malykhin [35, p. 15]; Pratt [42]):

rAP (x) = −u
′′(x)

u′(x)
, (13)

where x is the size of decision-maker capital. If at a given level of capital x one has
rAP (x) > 0, then a case of risk aversion is taking place. Otherwise, if rAP (x) < 0, we
have a case of an inclination of decision-maker to risk.

Let X is a risk with distribution function F (x), u(x) is the utility function of
some person. The measure of expected utility is de�ned as

µu(X) := E[u(X)] =

∫ ∞
0

u(x)dF (x). (14)

It is said that a risk X ′′ is preferable to a risk X ′ (X ′′ � X ′), if µu(X ′′) > µu(X
′).
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Risk as a lottery. Let us consider two risks (Urazaeva [46]):

X ′ =

 x1 = x0 + a, x2 = x0 − b

p =
b

a+ b
, 1− p =

a

a+ b

 , X ′′ =

 x1 = x0 − a, x2 = x0 + b

p =
b

a+ b
, 1− p =

a

a+ b

 .

(15)

It is easy to verify that the following equalities are hold:

E[X ′] = E[X ′′] = x0, D[X ′] = D[X ′′] = ab.

Therefore it is not evident which lottery will be preferred by a person. To make it
clear some additional preferences are necessary.

Example 2. (Urazaeva [46]). Let be x0 = 100, a = 1, b = 99, p = 0.99. Thus,

P{X ′ = 101} = 0.99, P{X ′ = 1} = 0.01, P{X ′′ = 99} = 0.99, P{X ′′ = 199} = 0.01.

Obviously despite the equalities of means and variances a signi�cant number of indi-

viduals from two lotteries will prefer the X prime prime lottery, considering it more useful,
namely X ′′ � X ′. But how to formalize this preference? �

One way to develop preferences in an alternative situation is using of a discrimi-
nating function. Let's put

Φα(X ′, X ′′) = µu(X
′)− µu(X ′′).

If for the given utility function u(x) appeared that Φα(X ′, X ′′) < 0 then one could
put down X ′′ � X ′ and on the contrary.

Theorem 4. (Urazaeva [46]). Let the following conditions are satis�ed:
1. X ′, X ′′ are risks with the initial data presented by Example 2;
2. u(x) = xα, x, α ≥ 0 is utility function of the individual.

Then the following statements take place:

1. if α ∈ (0, 1) then a person is not inclined to risk and prefers a lottery X ′′;
2. if α ∈ (1, 2), a person inclined to risk and prefers a lottery X ′;
3. if α ∈ (2,∞), a person is not inclined to risk and prefers a lottery X ′′.
These preferences are re�ected in the discriminating function Φµ(X ′, X ′′) behavior as it

is depicted in Fig. 5 and Fig. 6. The minimum and maximum values of Φµ(X ′, X ′′) are

reached at points α1 = 0.7668 and α2 = 1.8350 accordingly. �

One can �nd an example in (Urazaeva cite Urazaeva2013) when for a person who
is not inclined to risk the choice of risk can also be ambiguous, namely: in a case of
utility function of a certain type he may prefer X ′.

3.2 Disturbed probability measure

The disturbed probability measure is a generalization of the mean which is used in
the most simple cases as a risk measure. It is e�ectively calculated in a case of dis-
crete risk and it is investigated in details by Esin [10] � [12] and Martynova [36].
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Figure 5: Measure of expected utility.
(Urazaeva [46]): discriminating
function Φα(X ′, X ′′), α < 2

Figure 6: Measure of expected utility
(Urazaeva [46]): discriminating
function Φµ(X ′, X ′′), α ≥ 2

De�nition and calculation in a discrete case. One of the main goals of
the risk theory is to construct a risk measure, which is monotonous in regard with
preferences on a set of probabilistic distributions (Novoselov [38]). In (Wang [48],
Young [50]) the class of risk measures named as measures of disturbed probability has
been introduced, and some properties of elements of this class are investigated. The
measure of disturbed probability was originally intended for calculating the insurance
premium, but it can also be used in a wider class of problems, including portfolio
analysis.

Let's denote X as a set of all real random variables and X+ as a set of non-negative
random variables:

X+ = {X ∈ X : P{X ≥ 0} = 1}.

And also we introduce some special notations for sets of random variables with a �nite
means:

X̃ = {X ∈ X : E|X| <∞}, X̃+ = {X ∈ X+ : E|X| <∞}.

Let further F (x) = P{X ≤ x}, x ∈ R is a distribution function of random variable
X, and S(x) = 1−F (x) is its additional distribution function (reliability function in
reliability theory, survival function in life insurance).

Let g : [0, 1] → [0, 1] is not decreasing function, and g(0) = 0, g(1) = 1. We will
denote a class of all such functions as G. It is easy to notice that for every g ∈ G
corresponds to the dual function g̃ ∈ G, de�ned by equality (Novoselov [38]):

g̃ = 1− g(1− x), x ∈ [0, 1]. (16)

It is also evident that ˜̃g = g.
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In (Wong [48]) the risk measure

πg(X) =

∫ ∞
0

g(S(t))dt, X ∈ X+, (17)

is introduced and in (Young [50]) its modi�cation (17) for distribution of X on all
real axis R is suggested in the form:

πg(X) =

∫ 0

−∞
g(S(t)− 1)dt+

∫ ∞
0

g(S(t))dt, X ∈ X . (18)

Risk measures (17) and (18) depend only on distribution S(x) of risk X. Because it
is usually X ≥ 0, then the expression (17) is more often used as disturbed probability
measure.

For discrete risk X = {(xi, pi)ni−1} the measure (17) is of the form (Novoselov [39,
p. 43]):

πg(F ) =
n∑
s=1

g
( n∑
k=s

pk

)
(xs − xs+1), x0 = 0. (19)

Example 3. Disturbed probability measures. Let's consider the same problem, as in an

Example 2. Then using the same risks X ′ and X ′′, disturbing function g(x) = xα, x ∈ [0, 1],
α ≥ 0, discriminating function Φg(X

′, X ′′), in according to (19) we obtain:

πg(X
′) = (x0 + a)− g(1− p)(a+ b), πg(X

′′) = (x0 − a) + (a+ b)g(1− p).

From here it follows that

1

2
Φg(X

′, X ′′) = a− (a+ b)(1− p)α, p = b/(a+ b).

This result is shown in Fig. 7 and one could conclude that at α ∈ [0, 1] a person prefers

a risk X ′′, and at α > 1 he prefers a risk X ′. If now we turn attention to dual function

g̃ = 1− (1− x)α then we obtain

1

2
Φg̃(X

′, X ′′) = a− (a+ b)(1− pα), p = b/(a+ b).

The result is shown in Fig. 8, and it follows that now the preferences of a person have been

reversed. �

Properties of a disturbed probability measure. The disturbed probability
measure plays an important role in the risk theory since with an appropriate choice
of function g leads to some interesting functionals from the points of view of risk
theory and applications.

Let's consider some properties of functional πg(F ).

Theorem 5. (Grigoriev [18, p. 156], Novoselov [39, p. 34-41]). Next most important

statements concerning a risk measure π take place:
1. π is a coherent measure of risk;
2. π is an increasing functional concerning an order relation �A i� g(x) ≤ x, x ∈ [0, 1];
3. π is an increasing functional concerning an order relation �ST ;
4. π is an increasing functional concerning an order relations �D and �SL i� function

g is concave;
5. π is a convex functional on value i� the function g is concave. �
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Figure 7: Measure of disturbed
probability, g(x) = xα, x ∈ [0, 1]:
discriminating function Φg(X

′, X ′′)

Figure 8: Measure of disturbed
probability, g̃(x) = 1− (1− x)α,
x ∈ [0, 1]: discriminating function

Φg̃(X
′, X ′′)

3.3 Quantile risk measures

The most in demand of �nancial applications is a measure CVaR. In practice simpler,
but less reliable, measure VaR is used along with it.

Let's note another two measures connected with them, CTER and ESF.

Measure VaR. As one of the quantile risk measures in �nancial and actuarial
mathematics, there is a functional VaR (Value-at-Risk), which, due to the simplicity
of de�nition, and also due to various regularity properties, is one of the most popular
measures for �nanciers, despite the existence many other quantile risk measures.

Let FX(x) be distribution function of risk X. The value of

V aRp(X) = inf
x∈R1
{FX(x) > p}, p ∈ (0, 1). (20)

is called as a risk measure VaR of the level p of risk X. Risk measure VaR is often
denoted by F−1

X (p). It is not decreasing and continuous at the left function of p.

Measure CVaR. Only one quantile risk measure with a predetermined level of
p does not provide all the information regarding the thickness of the upper tail of
the risk distribution function X. If policyholders want to assess risks in detail, they
should also be interested in how bad it is. Therefore , along with VaR, they often
use other risk measure named CVaR (conditional VaR) of level p. Let's give an exact
de�nition of this measure.
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The value CVaR is called a measure of risk X of level p if

CV aRp(X) =
1

1− p

∫ 1

p

V aRq(X)dq, p ∈ (0, 1). (21)

The following elementary result holds regarding the risk measure (21): if FX is
distribution function of risk X with a �nite mean, E[X] <∞, then

lim
p→0

CV aRp(X) = E[X].

Measure ESF . Expected Shortfall measure ESF of level p for risk X is called
functional

ESFp(X) =

∫ ∞
V aRp(X)

[1− FX(x)]dx, p ∈ (0, 1). (22)

There is an equality connecting measures VaR, CVaR and ESF (Grigoriev [18,
p. 161]; Dhaene, et al. [9]):

CV aRp(X) = V aRp(X) +
1

1− p
ESFp(X), p ∈ (0, 1). (23)

As a rule, its use leads to simpler calculations of CVaR compared to (21).

Measure CTE . The Conditional Tail Expectation risk measure CTE of level p
on condition that losses exceed VaR is a functional

CTEp(X) = E[X/X > V aRp(X)]

= V aRp(X) +
1

1− p

∫ ∞
0

[1− FX(x+ V aRp(X))]dx. (24)

The measure CTE is not quite independent because for continuous distributions
FX it coincides with CVaR, and also it admits another de�nition:

CTEp(X) = CV aRFX(V aRp(X))(X). (25)

However in a discrete case these measures are di�erent.

Example 4. Let's consider an exponential risk X. In this case FX(x) = 1 − e−λx, x ≥ 0.
Then according to equations (20)� (22) one could obtain:

V aRp(X) = −λ−1 log(1− p), CV aRp(X) = λ−1 + V aRp(X), ESFp(X) =
1− p
λ

.

Now it is easy to check the validity of equalities (23) and (25). �

In conclusion we formulate the theorem, in which relations of stop-loss order �ST
and stochastic domination �SL between risks X and Y in terms of quantile risk
measures VaR and CVaR are characterized.
Theorem 6. (Grigoriev [18]; Dhaene, etc. [9]). For any pair of risks the following state-
ments are fair:

1. X �ST Y ⇔ V aRp(X) ≤ V aRp(Y ) for all p ∈ (0, 1).
2. X �SL Y ⇔ CV aRp(X) ≤ CV aRp(Y ) for all p ∈ (0, 1). �
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Conclusions

The considered issues of the development of the actuarial risk theories in Russia
re�ect the high interest to this area of researches from professional mathematicians,
including the high school, where future experts are trained for the insurance sector
of the Russian economy. It is essentially important that one of the national projects
accepted by the government of the Russian Federation to realization in the coming
years is the digital economy. One of its pivotal elements de�nitely is the development
of the actuarial sphere in the �eld of economics and bank risk management.
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Abstract

The paper deals with the estimation problem of the actuarial present values
of the continuous individual net premiums and connected with these character-
istics life annuities. We considered the following actuarial models: the whole life
insurance, n-year term life insurance, q-year deferred life insurance, and n-year
endowment life insurance. We synthesize nonparametric estimators of net pre-
miums and life annuities for these statuses. The main parts of the asymptotic
mean square errors of the estimators and their limit distributions are found.
The simulations show that the empirical mean square errors of estimators de-
crease when the sample size increases. Also, when the model distribution is
changed, the nonparametric estimators are more adaptable in comparison with
parametric estimators, oriented on the best results only for the given distribu-
tions.

Keywords: nonparametric estimation; life insurance; net premium; life
annuity; asymptotic normality; bias; mean squared error.

Introduction

One of the main issues addressed in actuarial mathematics is to �nd the "right"
ratio between premiums and bene�ts, aided calculation of net premiums intended to
cover damages and giving zero average income of the insurance company. Section
devoted to this area in the monograph "Actuarial Mathematics" [8], in which the
calculation of net premiums was based on the use of mortality tables. Interesting
results based on this approach have been prepared in papers [5, 10, 13, 16, 34, 39, 42].
Modern development of theory of insurance is strongly required the use of complex
mathematical models phenomena and processes taking place in this area. Note the
results obtained in this direction in the papers [1, 4, 6, 18, 19, 22, 37]. Alternative
solution is to build estimators of net premium functionals on the base of information
containing in a sample of individuals' lifetimes. Here we develop this idea embedded
in the articles [20], [25]-[33]. The second part of the paper deals with the study of
life annuities estimators.
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1 Individual Whole Life Insurance: Net Premiums

and Life Annuities

In long-term insurance the calculations of tari� rates take into account change of
money value because the sum of S dollars after t years turns to the sum S eδt dollars,
where δ is instantaneous interest rate. The whole life insurance is example of long-
term insurance; in this situation the person pays p dollars to the insurance company,
and the company pays b dollars to successors of the insured after his death. Though
the premium p is less, than b, the company will receive the necessary sum b, since the
premium is paid at the moment of the conclusion of the contract, and the payment
is done great later. We will use designations of actuarial mathematics later on. Let
random variable X denote the future lifetime, x be the age of the insured at the
moment of policy issue, T (x) = X − x denote the residual time of life. In time T (x)
premium, p, will turn in the sum, p eδT (x), and in this case the income of the company
will be equal to

p eδT (x) − b.

To have the required sum b dollars at the moment of client death, the insurance
company must receive b e−δT (x) dollars at the time of policy issue. In economic terms,
the sum b e−δT (x) expresses discounted value of the future insurance payment. As
the above mentioned this sum is a random variable, so it is natural to take as net
premium its average the symbol of the expectation. In actuarial science the bene�t b
is accepted as a unit payment, that is, b = 1, and the net premium of the whole life
insurance Ax is equal to E{e−δT (x)} :

Ax = E{e−δT (x)} = −
∫ ∞

0

e−δt dP{T (x) > t|T (x) > 0} =

=

−
∫ ∞

0

e−δt dP{T (x) > t ∩ T (x) > 0}

P{T (x) > 0}
=

=

∫ ∞
0

e−δt IT (x)(t > 0)dFT (x)(t)

ST (x)(0)
=

Φ(x, δ)

ST (x)(0)
, (1)

where FT (x)(t) = P(T (x) ≤ t) is the distribution function of the random variable
T (x), ST (x)(t) = 1 − F (t) = P(T (x) > t) is the survival function, IT (x)(t > 0) =
I(T (x) > 0), I(A) is the indicator of set A.

It is known that life annuities are closely related to the corresponding net premi-
ums (see [4]). The idea of life annuity in accordance with ([4], p. 170) is this: from the
moment t = 0 an individual once a year begins to get a certain money, which we take
as the unit of money, and payments are made only for the lifetime of an individual.
As the calculation of the characteristics of life annuity is based on the characteristics
of the respective type of insurance, the average total cost of the present continuous
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annuity is de�ned by the following formula (see [4], p. 184):

ax(δ) =
1− Ax
δ

, (2)

where Ax is a net premium (the average of the present value of a single sum of money
in the insurance lifetime at the age x. Let us introduce the random variable

z(x) =
1− e−δT (x)

δ
, T (x) > 0. (3)

Then, by averaging the random variable z(x) (3), we get the formula of the whole
life annuity (see [8, 21, 30]):

ax(δ) = Ez(x) =
1

δ

(
1− Φ(x, δ)

ST (x)(0)

)
. (4)

2 Collective Life Insurance

A useful abstraction in the collective life insurance is that of "status for which there
are de�nitions of survival and failure" [8]. Consider m members of ages (x1, . . . , xm)
who desire to buy an insurance policy. Denote the future lifetime of the k-th individ-
ual by T (xk) = Xk − xk. Let us put in a correspondence a status U with its future
lifetime T (U) and with a set of numbers T (x1), . . . , T (xm) [20].

In the papers [25]-[33] were considered cases of a joint-life status and a last-
survivor status.

The joint-life status is denoted by U := x1 : . . . : xm and is considered as failed
upon the �rst death, i.e.,

T (U) = min (T (x1), . . . , T (xm)) .

It is evident that the probability

P{T (U) > t} = P{min(T (x1), . . . , T (xm)) > t} = P{T (x1) > t, . . . , T (xm) > t},

so, when the deaths are independent, we have P{T (U) > t} =
m∏
i=1

P{T (xi) > t}.

The last-survivor status is denoted by U := x1 : . . . : xm and fails upon the last
death, and exists as long as at least one member of a group is alive, i.e.,

T (U) = max(T (x1), . . . , T (xm)).

Similarly,

P{T (U) ≤ t} = P{max(T (x1), . . . , T (xm)) ≤ t} = P{T (x1) ≤ t, . . . , T (xm) ≤ t},

and in the case of independent deaths, we have P{T (U) ≤ t} =
m∏
i=1

P{T (xi) ≤ t}.
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We give other statuses used in practice. Consider the general k-survivor status,
which is denoted

U :=
k

x1 : . . . : xm

and exists as long as at least alive k among m individuals (x1), . . . , (xm), i.e., it is
considered destroyed upon the occurrence of the (m−k+ 1) deaths. It is understood
that the joint-life status (k = m) and last-survivor status (k = 1) are the special cases
of the k-survivor status. Also, separately consider the [k]-deferred survivor status

U :=
[k]

x1 : . . . : xm

and there, if alive exactly k of m individuals (x1), . . . , (xm), i.e., it starts at the
(m− k)-th death and lasts until the (m− k+ 1)-th death. This status is widely used
in the calculation sequences payments of limited duration [20]. Note that the new
statuses can be de�ned by compounding. A compound status is said to exist if the
status is a a combination of statuses, and at least one of them is itself a status with
more than one individual. Consider, for example, some compound statuses.

� The status ((x1 : x2 : x3 : x4)

This status persists if alive at least one of (x1) and (x2) and at least one of (x3)
and (x4). The time-until-failure of the status (x1 : x2 : x3 : x4) is

T (U) = min{max{T (x1), T (x2)},max{T (x3), T (x4)}}.

� The status
(
x1 : x2 : (x3 : x4)

)
Such condition persists, if alive at least two of four, namely, (x3) and (x4), or
when only one alive, and that either (x1), or (x2). The time-until-failure of the

status
(
x1 : x2 : (x3 : x4)

)
is

T (U) = max{max{T (x1), T (x2)},min{T (x3), T (x4)}}.

� The status (x1 : x2 : x3 : x4)

The condition persists, if alive (x1), (x2) and when one is alive, and it is either
(x3), or (x4). The time-until-failure of the status (x1 : x2 : x3 : x4) is

T (U) = min{T (x1), T (x2),max{T (x3), T (x4)}}.

Similarly, the fracture point may be found for the combination any statuses.
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3 Functionals of the Net Premiums in Collective Life

Insurance

Reasoning as in the derivation of formula (1)), in the case of the m insureds, the
functionals of the net premiums in collective life insurance can be written as

Ax1:...:xm =

∫ ∞
0

e−δt Ix1:...:xm(t > 0)dFx1:...:xm(t)

Sx1:...:xm(0)
, (5)

Ax1:...:xm =

∫ ∞
0

e−δt Ix1:...:xm(t > 0)dFx1:...:xm(t)

Sx1:...:xm(0)
,

where
Fx1:...:xm(t) = P(min (T (x1), . . . , T (xm)) ≤ t)

and
Fx1:...:xm(t) = P(max (T (x1), . . . , T (xm)) ≤ t)

are the distribution functions of the random variables min (T (x1), . . . , T (xm)) and
max (T (x1), . . . , T (xm)),

Sx1:...:xm(t) = 1− Fx1:...:xm(t) = P(min (T (x1), . . . , T (xm) > t))

and
Sx1:...:xm(t) = 1− Fx1:...:xm(t) = P(max (T (x1), . . . , T (xm) > t))

are the corresponding survival functions.
Consider the random variables Zi = Xi−xi, i = 1,m.We order them in ascending

and obtain the order statistics Z(i), i = 1,m. Note that the survival function

Sx1:...:xm(0) = P(min (T (x1), . . . , T (xm) > 0)) = P(T (x1) > 0, . . . , T (xm) > 0) =

= P(X1 > x1, . . . , Xm > xm) = S(x1, . . . , xm).

Then

Ax1:...:xm =

−
∫ ∞

0

e−δ tI(Z(1) > 0)d[1−P{Z(1) > t}]

P{Z(1) > 0}
=

=

−
∫ ∞

0

e−δ tI(min (T (x1), . . . , T (xm)) > 0)d[1−P{min (T (x1), . . . , T (xm)) > t}]

P{min (T (x1), . . . , T (xm)) > 0}
=

=

−
∫ ∞

0

e−δ t
m∏
j=1

I(T (xj) > 0)d[1−P{(T (x1) > t, . . . , T (xm) > t)}]

P{T (x1) > 0, . . . , T (xm) > 0}
=
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=
Φ(x1 : . . . : xm, δ)

S(x1, . . . , xm)
(6)

and

Ax1:...:xm =

∫ ∞
0

e−δ tI(Z(m) > 0)dP{Z(m) ≤ t}

P{Z(m) > 0}
.

By analogy with formula (1), we have

A k
x1:...:xm

=

∫ ∞
0

e−δ tIZ(m−k+1)
(t > 0)dP{Z(m−k+1) ≤ t}

P{Z(m−k+1) > 0}
, (7)

where IZ(m−k+1)
(t > 0) = I(Z(m−k+1) > 0).

In the case of the [k]-deferred survivor status

P
{
Z(m−k) < t < Z(m−k+1)

}
= P

{
t < Z(m−k+1)

}
−P

{
t < Z(m−k)

}
=

= 1−P
{
Z(m−k+1) ≤ t

}
−1+P

{
Z(m−k) ≤ t

}
= P

{
Z(m−k) ≤ t

}
−P

{
Z(m−k+1) ≤ t

}
,

and the net premium is given by the formula

A [k]
x1:...:xm

=

∫ ∞
0

e−δ tI(Z(m−k) > 0)dP{Z(m−k) ≤ t}

P{Z(m−k) > 0}
−

−

∫ ∞
0

e−δ tI(Z(m−k+1) > 0)dP{Z(m−k+1) ≤ t}

P{Z(m−k+1) > 0}
= A k−1

x1:...:xm

− A k
x1:...:xm

.

The functionals of net premiums for compound statuses can be written in the
same way.

4 Estimators of the Net Premiums in Collective Life

Insurance

Let (Z11, . . . , Zm1), . . . , (Z1n, . . . , Zmn) be an m-dimensional random sample and
(Z(1)1, . . . , Z(m)1), . . . , (Z(1)n, . . . , Z(m)n) be corresponding ordered set.

According to (6) as the estimator of the survival function P
{
Z(1) > t

}
, we take

1

n

n∑
i=1

m∏
j=1

I (Zji > t). Let δ(t) be the Dirac function. Then, the nonparametric esti-

mator of net premium (6) is given by

Âx1:...:xm =

−
∫ ∞

0

e−δ t
m∏
j=1

IZj(t > 0)d[1−Pn{Z1 > t, . . . , Zm > t}]

Pn{Z1 > 0, . . . , Zm > 0}
=
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=

∫ ∞
0

e−δ t
m∏
j=1

IZj(t > 0)

(
1

n

n∑
i=1

m∏
j=1

I(Zji > t)

)′
dt

1

n

n∑
i=1

m∏
j=1

I (Zji > 0)

=

=
1

1

n

n∑
i=1

m∏
j=1

I (Zji > 0)

1

n

n∑
i=1

∫ ∞
0

e−δ t
m∏
j=1

IZj(t > 0)δ(t−
m∏
j=1

Zji) dt =

=

1

n

n∑
i=1

e−δ
∏m
j=1 Zji

m∏
j=1

I(Zji > 0)

1

n

n∑
i=1

m∏
j=1

I (Zji > 0)

. (8)

As estimators of the distribution function P
{
Z(m−k+1) ≤ t

}
and the survival func-

tion P
{
Z(m−k+1) > 0

}
, we take

1

n

n∑
i=1

I
(
Z(m−k+1)i < t

)
and

1

n

n∑
i=1

I
(
Z(m−k+1)i > 0

)
,

respectively. So, the nonparametric estimator of (4) has the form

Â k
x1:...:xm

=

∫ ∞
0

e−δ t IZ(m−k+1)
(t > 0)

(
1

n

n∑
i=1

I(Z(m−k+1)i ≤ t)

)′
dt

Pn{Z(m−k+1) > 0}
=

=
1

Pn{Z(m−k+1) > 0}
1

n

n∑
i=1

∫ ∞
0

e−δ t IZ(m−k+1)
(t > 0)δ(t− Z(m−k+1)i) dt =

=

1

n

n∑
i=1

e−δ (Z(m−k+1)i)I(Z(m−k+1)i > 0)

1

n

n∑
i=1

I
(
Z(m−k+1)i > 0

)
)

. (9)

In the case of the [k]-deferred survivor status the nonparametric plug-in estimator
of the net premium can be de�ned in the following way:

Â [k]
x1:...:xm

= Â k−1
x1:...:xm

− Â k
x1:...:xm

.

5 Asymptotics of the Functions of Statistics

Introduce the notation according to [12, 6]: the function H(t) : Rs → R1, where

t = t(x) = (t1(x), . . . , ts(x)) is s-dimensional bounded function; Hj(t) =
∂H(t)

∂tj
,
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j = 1, s, ∇H(t) = (H1(t), . . . , Hs(t)); the symbol T denotes the transpose; tn =
(t1n, . . . , tsn) is s-dimensional statistic, tjn = tjn(x) = tjn(x,X1, . . . , Xn), j = 1, s;

‖tn‖ =
√
t21n + . . .+ t2sn is the Euclidean norm of tn; =⇒ Ns {µ, σ} is the symbol

of weak convergence of sequence of random variables to the s-dimensional normal
random variable with mean µ = (µ1, . . . , µs) and symmetric covariance matrix σ =
||σij||, 0 < σjj = σjj(x) <∞, j = 1, s; < is the set of integers.

D e f i n i t i o n. The function H(t) : Rs → R1 and the sequence {H(tn)} are
said to belong to the class Nν,s(t; γ), provided that

1) there exists an ε-neighborhood {z : |zi − ti| < ε; i = 1, s}, in which the

function H(z) and all its partial derivatives
∂H(z)

∂zj
up to the order ν are continuous

and bounded;
2) for any values of variables X1, ..., Xn the sequence {H(tn)} is dominated by a

numerical sequence C0d
γ
n, such that dn ↑ ∞, as n→∞, and 0 ≤ γ <∞.

Theorem 1 [6]. Let the conditions
1) H(z), {H(tn)} ∈ N2,s(t, γ),
2) E||tn − t||i = O

(
d−i/2n

)
hold for all i ∈ <. Then, for every k ∈ <∣∣∣E [H(tn)−H(t)]k − E

[
∇H(t)(tn − t)T

]k∣∣∣ = O
(
d−(k+1)/2
n

)
. (10)

If in formula (10) k = 1, we obtain the principal term E
[
∇H(t)(tn − t)T

]
of

the bias E [H(tn)−H(t)] for H(tn), and at k = 2, we have the principal term
E
[
∇H(t)(tn − t)T

]2
of the mean squared error (MSE) E [H(tn)−H(t)]2.

Theorem 2 (The usual central limit theorem) [1]. If ξ1, ..., ξn, ... is a sequence of
independent and identically distributed s-dimensional vectors,

Eξk = 0, σ(x) = E{ξTk ξk}, tn =
1

n

n∑
k=1

ξk,

then, as n→∞, √
ntn =⇒ Ns{0, σ(x)}.

Theorem 3 [6]. If qn(tn − t) =⇒ Ns{µ, σ} for some number sequence qn ↑ ∞,
the function H(z) is di�erentiable at the point µ, ∇H(µ) 6= 0, then

qn (H(tn)−H(µ)) =⇒ N1{∇H(µ)µT , ∇H(µ)σ∇HT (µ)}.

6 Bias and MSE of Estimator Âx1:...:xm

Here, we will obtain the principal term of the asymptotic MSE and the bias conver-
gence rate of estimator (3).

Theorem 4. If the survival function S(x1, . . . , xm) > 0 and S(t1, . . . , tm) is
continuous at a point (x1, . . . , xm), then
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1) for the bias b
(
Âx1:...:xm

)
of estimator (3) we have∣∣∣b(Âx1:...:xm

)∣∣∣ =
∣∣∣EÂx1:...:xm − Ax1:...:xm

∣∣∣ = O
(
n−1
)

;

2) the MSE u2
(
Âx1:...:xm

)
is given by the formula

u2(Âx1:...:xm) = E
(
Âx1:...:xm − Ax1:...:xm

)2

=

=
Φ(x1, . . . , xm, 2δ)S(x1, . . . , xm)− Φ2(x1, . . . , xm, δ)

nS3(x1, . . . , xm)
+O

(
1

n3/2

)
.

Proof. For estimator Âx1:...:xm (3) in the notation of Theorem 1 we have:

s = 2, tn = (t1n, t2n) = (Φn(x1, . . . , xm, δ), Sn(x1, . . . , xm)),

dn = n, H(tn) =
Φn(x1, . . . , xm, δ)

Sn(x1, . . . , xm)
= Âx1:...:xm ,

t = (t1, t2) = (Φ(x1, . . . , xm, δ), S(x1, . . . , xm)) , H(t) =
t1
t2

= Ax1:...:xm ,

H1(t) =
1

S(x1, . . . , xm)
, H2(t) = −Φ(x1, . . . , xm, δ)

S2(x1, . . . , xm)
, ∇H(t) = (H1(t), H2(t)) 6= 0.

.
The sequence {H(tn)} satis�es the condition 1) of Theorem 1 with C0 = 1 and

γ = 0. Indeed, according to (3)

H(tn) =
Φn(x1, . . . , xm, δ)

Sn(x1, . . . , xm)
=

1

n

n∑
i=1

e−δ
∏m
j=1 Zji

m∏
j=1

I(Zji > 0)

1

n

n∑
i=1

m∏
j=1

I (Zji > 0)

≤ 1. (11)

Further, in view of t2 = S(x1, . . . , xm) > 0 the function H(t) satis�es the condition 1)
of Theorem 1 . Also, this function satis�es the condition 2) of Theorem 1 due to
Lemma 3.1 [5], as for all i ∈ < such inequalities hold:

E
m∏
j=1

I i (Zj > 0) = S(x1, . . . , xm) ≤ 1,

Ee−iδ
∏m
j=1 Zj

m∏
j=1

I i(Zj > 0) ≤ S(x1, . . . , xm) ≤ 1.

Therefore,
E|Φn(x1, . . . , xm, δ)− Φ(x1, . . . , xm, δ)|i = O

(
n−

i
2

)
,
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E|Sn(x1, . . . , xm)− Sn(x1, . . . , xm)|i = O
(
n−

i
2

)
.

Taking k = 1 in formula (10), we get

E{Âx1:...:xm} = Ax1:...:xm +
1

t2
E{t1n − t1} −

t1
t22

E{t2n − t2}+O

(
1

n

)
.

Since functions t1 = t1(x1, . . . , xm), t2 = t2(x1, . . . , xm) are continuous, we have

E{t1n} = t1, E{t2n} = t2, and E{Âx1:...:xm} = Ax1:...:xm +O

(
1

n

)
, i.e., Âx1:...:xm is the

asymptotically unbiased estimator.
Now, putting k = 2 in (10) and taking into account unbiasedness of t1n, t2n, we

�nd the formulas for the variances and covariance:

u2(Âx1:...:xm) =
1

t22
D{t1n}+

t21
t42

D{t2n} − 2
t1
t32
cov{t1n, t2n}+O

(
1

n3/2

)
. (12)

Denote

φi(x1, . . . , xm, δ) = e−δ
∏m
j=1 Zji

m∏
j=1

I(Zji > 0),

si(x1, . . . , xm) =
m∏
j=1

I (Zji > 0). In view of the randomness of the sample

(Z11, . . . , Zm1), . . . , (Z1n, . . . , Zmn), we have

D{t1n} = D

{
1

n

n∑
i=1

φi(x1, . . . , xm, δ)

}
=

1

n
D {φ1(x1, . . . , xm, δ)} =

=
1

n

(
E {φ1(x1, . . . , xm, 2δ)} − E2 {φ1(x1, . . . , xm, δ)}

)
=

=
1

n

(
Φ(x1, . . . , xm, 2δ)− Φ2(x1, . . . , xm, δ)

)
,

D{t2n} = D

{
1

n

n∑
i=1

si(x1, . . . , xm)

}
=

1

n
S(x1, . . . , xm) (1− S(x1, . . . , xm)) ,

cov{t1n, t2n} =
1

n
cov {φ1(x1, . . . , xm, δ), s1(x1, . . . , xm))} =

=
1

n
Φ(x1, . . . , xm, δ) (1− S(x1, x2, . . . , xm)) .

Now, we substitute the found expressions in (11) and the second assertion of the
Theorem 4 has been proved.
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7 Asymptotic Normality of Estimator Âx1:...:xm

Theorem 5. Under the conditions of Theorem 4
√
n[Âx1:...:xm − Ax1:...:xm ] =⇒

=⇒ N1

{
0,

Φ(x1, . . . , xm, 2δ)S(x1, . . . , xm)− Φ2(x1, . . . , xm, δ)

S3(x1, . . . , xm)

}
.

Proof. In the notation of Theorem 2 and Theorem 3, we have: qn =
√
n. Since

S(x1, . . . , xm) > 0, function H(t) ∈ N1,2(t). Taking into account unbiasedness of
Sn(x1, . . . , xm) and Φn(x1, . . . , xm, δ), we have µT = 0.

According to Section 6, the elements of the covariance matrix σ are de�ned by
the formulas:

σ11 = Φ(x1, . . . , xm, 2δ)− Φ2(x1, . . . , xm, δ),

σ12 = σ21 = Φ(x1, . . . , xm, δ)(1− S(x1, . . . , xm)),

σ22 = S(x1, . . . , xm)(1− S(x1, . . . , xm)). That is why ∇H(t)µT = 0,

∇H(t)σ∇H(t)T =
Φ(x1, . . . , xm, 2δ)S(x1, . . . , xm)− Φ2(x1, . . . , xm, δ)

S3(x1, . . . , xm)
.

Theorem 5 is proved.

8 Synthesis of Nonparametric Estimators of the Net

Premiums in Collective Life Insurance for Other

Forms of Insurance

The above considered estimators of the net premiums were constructed for whole
insurance; now we will consider other forms of insurances.

� The p-years term life insurance

In this case the bene�t to pay if the insured will die during of the contract
validity. The company does not pay the bene�t if the insured has lived p years.
Then

Â [k]
x1:...:xm

:pe =

1

n

n∑
i=1

e−δ Z(m−k+1)iI(0 < Z(m−k+1)i ≤ p)

1

n

n∑
i=1

I(Z(m−k+1)i > 0)

.

� The p-years endowment life insurance

Such form of insurance provides for a payment either following the death of the
insured or upon his survival to the end of the p-years term. The given form of
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insurance accumulates the client's capital. Then, the nonparametric estimator
of the net premium is

Â
s

[k]
x1:...:xm

:pe =
Sn(x1, . . . , xm)− Sn(x1 + p, . . . , xm + p)

Sn(x1, . . . , xm)
×

×Â [k]
x1:...:xm

:pe +
Sn(x1 + p, . . . , xm + p)

Sn(x1, . . . , xm)
e−δ p.

� The r-years deferred life insurance

This form of insurance provides for a bene�t following the death of the insured
when he dies at least r years following policy issue. Here the net premium is
expressed in the form

r|Â [k]
x1:...:xm

=

1

n

n∑
i=1

e−δ Z(m−k+1)iI(r < Z(m−k+1)i)

1

n

n∑
i=1

I(Z(m−k+1)i > 0)

.

9 Estimation of Joint-Life Annuity

As in the case of individual insurance [4, 30], we determine the joint-life annuity by
making use of the corresponding net premium (see formulas (2)�(4), (6)):

ax1:...:xm(δ) =
1

δ

(
1− Ax1:...:xm

)
=

1

δ

(
1− Φ(x1 : . . . : xm, δ)

S(x1, . . . , xm)

)
. (13)

So, in accordance with (3), we obtain the following estimator of the joint-life annuity:

âx1:...:xm(δ) =
1

δ

(
1− Φn(x1 : . . . : xm, δ)

Sn(x1, . . . , xm)

)
=

=
1

δ

1−

n∑
i=1

e−δ
∏m
j=1 Zji

m∏
j=1

I(Zji > 0)

n∑
i=1

m∏
j=1

I (Zji > 0)

 . (14)

Find the principal term of the asymptotic MSE and the bias convergence rate of
estimator (13).

Theorem 6. If the survival function S(x1, . . . , xm) > 0 and S(t1, . . . , tm) is
continuous at a point (x1, . . . , xm), then

1) for the bias b
(
âx1:...:xm(δ)

)
of estimator (13) we have∣∣b (âx1:...:xm(δ)

)∣∣ =
∣∣Eâx1:...:xm(δ)− ax1:...:xm(δ)

∣∣ = O
(
n−1
)

;
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2) the MSE u2
(
âx1:...:xm(δ)

)
is given by the formula

u2(âx1:...:xm(δ)) = E
(
âx1:...:xm(δ)− ax1:...:xm(δ)

)2
=

=
Φ(x1, . . . , xm, 2δ)S(x1, . . . , xm)− Φ2(x1, . . . , xm, δ)

n δ2 S3(x1, . . . , xm)
+O

(
1

n3/2

)
.

Proof. For estimator âx1:...:xm(δ) (13) in the notation of Theorem 1 we have:

s = 2, dn = n, tn = (t1n, t2n) = (Φn(x1, . . . , xm, δ), Sn(x1, . . . , xm)),

H(tn) =
1

δ

(
1− Φn(x1, . . . , xm, δ)

Sn(x1, . . . , xm)

)
= âx1:...:xm(δ),

t = (t1, t2) = (Φ(x1, . . . , xm, δ), S(x1, . . . , xm)) , H(t) =
1

δ

(
1− t1

t2

)
= ax1:...:xm(δ),

H1(t) =
1

δS(x1, . . . , xm)
, H2(t) = −Φ(x1, . . . , xm, δ)

δS2(x1, . . . , xm)
, ∇H(t) = (H1(t), H2(t)) 6= 0.

The sequence {H(tn)} satis�es the condition 1) of Theorem 1 with C0 =
1

δ
and

γ = 0. Taking into account (13) and the inequalities 0 ≤ Φn(x1, . . . , xm, δ)

Sn(x1, . . . , xm)
≤ 1 (see

(11)), we have

H(tn) =
1

δ

(
1− Φn(x1, . . . , xm, δ)

Sn(x1, . . . , xm)

)
≤ 1

δ
.

Further, the proof is carried out similarly to the proof of Theorem 4 and therefore
is not given.

Theorem 7. Under the conditions of Theorem 4

√
n[âx1:...:xm(δ)− ax1:...:xm(δ)] =⇒

=⇒ N1

{
0,

Φ(x1, . . . , xm, 2δ)S(x1, . . . , xm)− Φ2(x1, . . . , xm, δ)

δ2S3(x1, . . . , xm)

}
.

Conclusions

The paper deals with the estimation problem of the current values of net premiums
and life annuities. The asymptotic properties of the estimators are proved: unbiased-
ness, consistency and normality. The principal terms of the asymptotic MSEs of the
proposed estimators are found. Statistical modeling within the framework of the de
Moivre model shows that the quality of estimation according to empirical criterion
improves with the growth of the sample size. Note that the improved estimators of
net premiums and life annuities can be obtained by substituting of empirical survival
functions by the smooth empirical survival functions (cf. [2, 3, 9, 11, 15, 17, 24],
[27]�[29], [8, 36, 38, 40, 41, 43, 44]).
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Abstract

The paper presents an improved version of the method of evaluation the
multiparameter measurement uncertainties stated in the Supplement 2 to GUM
guide. This was done on the example of two-parameter jointed measurements.
It consists the correlation of individual components of the type A and/or type B
uncertainty of measurands. The general formulas for the covariance matrix, �-
nal uncertainties and correlation coe�cient were determined as well as formulas
for several speci�c cases, presented in Table 1. The graphs show the correlation
coe�cients of the output quantities as a function of the type B contribution
in the uncertainty of the input quantities. Also, there are provided examples
of estimation of the uncertainty and correlation coe�cients for the sum and
di�erence on the example of two temperatures. It has been demonstrated that
the inclusion of correlations of uncertainty components makes the uncertainty
evaluations more reliable and accurate.

Keywords: multivariate measurements, correlations of the type A and type
B uncertainty components, vector propagation of variance, resultant correlation
coe�cient.

Introduction

In the GUM guide, a concept called �measurement uncertainty� (MU) was intro-
duced to estimate the accuracy of measurements. It is the width of the interval, and
for multi-parameter measurements - a description of the boundaries of the so-called
coverage area [3], [11], in which the estimator of the value of measurand, obtained
after processing of the measurement results, can occur with a certain probability.
The measurement uncertainty assessment is based on the determination of its type
A and type B components, designated as uA and uB, respectively [1]. They are de-
�ned as standard deviations of the resultant distribution with a probability density
function p(x) constituting a convolution of two statistically independent density dis-
tributions p(xA) and p(xB). The �rst one describes a random spread of the values of
experimental observations obtained experimentally. The second one is a hypothetical
distribution randomizing the assumed changes in the value of many systematic errors
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of di�erent origin, unknown in value during the measurement experiment. These er-
rors may occur randomly in the long-term use of the measuring object, of instrument
or measuring system and in various permissible ambient conditions other than during
provided control measurements. The standard deviation of the p(x) distribution, i.e.
its uncertainty u, is the geometric sum of component uncertainties uA and uB, i.e.:

u =
√
u2
A + u2

B. (1)

The uncertainty of any single quantity described by (1) has the same form as for the
uncertainty of the sum of two uncorrelated variables, when values of one of them have
only type A, and the other - type B uncertainty.

If a function describing the density distribution of p(x) is known, e.g. the Gaussian
function for a normal distribution, the expanded uncertainty U with the required
coverage probability, e.g. 95 % or 99 %, is determined analytically basing on standard
deviation u and the expansion coe�cient. For other randomized distributions in
experiments, the expanded uncertainty U is also determined by the numerical Monte
Carlo method according to Supplement 1 [2] to the GUM guide.

Standard uncertainty uA of component type A depends on the distribution of
the measurement observations and it is determined statistically. On the other hand,
due to uB uncertainty, the possible impacts of many values a�ecting measurement
results of unknown values, irremovable from the sample observation, are randomized,
as there are no data to calculate the corrections for them. Therefore, uB values
can only be estimated heuristically based on knowledge about predicted ranges and
distributions of values of in�uencing quantities and their interaction functions. In
the known operating conditions with a limited range of changes, the uncertainty
component uB may be signi�cantly smaller than that assumed during the calibration
of the device for the full permissible conditions of its application [8], [9].

Measurement uncertainty (MU) is applicated as a basic element of conformity
assessment of products with requirements [4-6]. It allows to compare the results
of various tests, check the exceeding of limits or meet the tolerance requirements
of products. Thanks to the possibility of comparing the calibration results with
the requirements, it is also the basis for metrological acceptance of the measuring
equipment. Laboratories accredited according to ISO / IEC 17025 [6] must calculate
the MU for each test method used in the granted accreditation scope. There is,
however, a certain discrepancy between the description of measurement accuracy
through uncertainty with a certain probability and description of the accuracy of
measuring devices and devices by the permissible maximum errors, i.e. border errors.

The metrological properties of the measuring equipment and the parameters of
many devices and processes that ful�ll the responsible functions, besides careful cal-
ibration, also require periodic inspection during the period of their operation [5, 16].
For this purpose, measurement experiments are carried out, including the study of
these parameters as single and multiparameter combined monolayers. They are rarely
performed by one, and usually by many instruments, under the same or di�erent en-
vironmental conditions and at the spread of the values of repeated measurement
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observations caused by common or di�erent causes. This practical multi-variant situ-
ation creates di�erent relationships between individual type A and type B component
uncertainties of measured quantities. Many such situations do not include recom-
mendations for estimating uncertainty of measurements, given in GUM [1] and all its
Supplements [2-4] and in other international regulations, e.g. [5], [6]. Zakharow in [7]
considered the non-heuristic estimates of the correlation of the quantities in�uencing
the uncertainty of single parameter measurements, called �logical ". In the literature
on multiparameter measurements, we have not found an analysis of impact of the
correlation of uncertainty components type A and/or type B of the input quantities.

The purpose of this publication is to develop a method for determining the rela-
tionship between the uncertainty of the measurement results of several output values,
when the individual type A and B type uncertainties of few input quantities are cor-
related. This is a proposal to extend the scope of the GUM guide and its Supplement
2 applications.In this work the impact of various cases of correlations of uncertainty
components of directly measured quantities on the resultant uncertainty of the quan-
tities indirectly determined from measurement data will be analyzed. This will be
illustrated by the examples of two-parameter measurements described by a linear
function and several simple non-linear functions. Appropriate formulas that take
into account the correlation of uncertainty components will be determined. This is
particularly important when the results of multi-parameter measurements are used
later together in various applications.

1 Uncertainty of 2D function of measurand with

correlated uncertainty components

The mathematical model of the propagation of uncertainties given in Supplement
2 [3] to the GUM guide [1] is used to determine the uncertainty of components for
multidimensional indirect measurements. In such measurements, the m-dimensional
output measurand Y depends on data of measured directly n-dimensional measurand
X by general equation

Y = F (X). (2)

where: Y andX - vectors with elements that are values of output and input variables.
Propagation of the uncertainty of these measurements is described as a matrix

relation between the covariance matrices of inputX and outputY variables. It occurs
in the linearization of the functional F in the formula (2) through derivatives and
has the form [3]:

UY = S ·UX · ST (3)

where: S - the sensitivity matrix); ; UX , UY - covariance matrix of input X and
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output Y vectors escribed as follows

S=

 ∂y1

∂x1
. . . ∂y1

∂xn

. . . . . . . . .
∂ym
∂x1

. . . ∂ym
∂xn

 , UX=

 u2
x1 . . . ρx1nux1uxn
. . . . . . . . .

ρxn1uxnux1 . . . u2
xn

 , (3a, b)

UY =

 u2
y1 . . . ρy1muy1uym
. . . . . . . . .

ρy1muymuy1 . . . u2
ym

 (3c)

If the Y vector will be further processed by any other function:

Z = G(Y ). (4)

then for the indirectly determined values of the multivariable Z = [z1, . . . , zm]T with
the uncertainties uz1, . . . , uzm, we get then extmatrix equation similar as (3) describ-
ing the propagation of uncertainties

UZ = SG ·UY · SGT (5)

There are many possibilities to correlate each of the two component uncertainties
with their equivalents of other input quantities measured in a joint experiment. The
results of both directly measured values of X , as well as indirectly measured values
of Y and Z , are determined from the collections of repeated observations obtained
in randomly variable ambient conditions. If some of these conditions are constant
or variable deterministically during measurements in a known manner, only then the
corrections can be made to eliminate the resulting known systematic errors. Di�erent
values of the examined quantities are measured with di�erent meters, or even the
same quantity on di�erent ranges of one meter. There are various permissible errors
of these instruments, and therefore di�erent values of the uncertainty component
type B [8-12]. In addition, the dispersion of observation values depends not only
on parameters describing changes of the measurement system and the test object
from ambient conditions, but also on the random and aging changes of their internal
parameters. Measurement samples from the same physical object under test (e.g. in
chemical analysis) in di�erent experiments carried out under the same conditions, i.e.
with the same uB uncertainty, may have di�erent values of uncertainty uA.

2 Uncertainty of the di�erent correlation cases of

two quantities

In multi-parameter measurements, for measured values of elements of the input vari-
able X di�erent types of correlation of components of each uncertainty type A and
type B may occur. This in�uences on the accuracy of the results of the output quan-
tities Y . Measurements of only the components of the vector X should be treated
as a special case of multiparameter measurements related to each other only in a
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measurement object, i.e. when Y = X . Below, some examples of determining the
uncertainty of vector Y components with two values y1, y2 obtained from measure-
ments of two values y1, y2 (or one quantity in two di�erent experiments and under
di�erent in�uencing conditions) will be considered. Both input and output measur-
ands are two-parameter (2D).For 2D measurement of input variableX = [x1, x2], i.e.,
when Y = X, i.e.: y1 = x1, y2 = x2, two equations (7a, b) and the output covariance
matrix UY ≡ Ux1,2 will be obtained

Ux1,2 =

[
u2

1A + u2
1B ρAu1Au2A + ρBu1Bu2B

ρAu1Au2A + ρBu1Bu2B u2
2A + u2

2B

]
(6)

In the covariance matrix Ux1,2 there are uncertainties according to the rule of to-
talizing variance, i.e. as sum of squares of uncertainty type A and type B in both
measurements:

u2
x1 = u2

1A + u2
1B, u2

x2 = u2
2A + u2

2B (7a, b)

The correlation coe�cient between variablesx1 and x2 is:

ρx1,2 =
ρAu1Au2A + ρBu1Bu2B√
u2

1A + u2
1B

√
u2

2A + u2
2B

(8)

Relations between the uncertainty components of type A and of type B are illustrated
in Figure 1.

Figure 1: The relations between uncertainties of Type A and/or Type B for the 2D
correlated measurand

For the uncertainty ratios of components and standard uncertainties we put given
below designations: k1B ≡ u1B

ux1
≤ 1, 0 ≤ k2B ≡ u2B

ux2
≤ 1. From that

u1A

ux1
≡
√

1− k2
1B,

u2A

ux2
≡
√

1− k2
2B, and a simpler form of the pattern (8) is obtained

ρx1,2 = ρA

√
1− k2

1B

√
1− k2

2B+ρBk1B k2B (9)
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For both quantities measured in this experiment, the coe�cient ρy1,2 in (9) depends

only on the uncertainty ratio kiB, because for each of them there is
(
uiB
uxi

)2

+
(
uiA
uxi

)2

=

k2
iB + (1− k2

iB) = 1.
The linear condition uiB

uxi
+ uiA

uxi
= kiB +

√
1− k2

iB = 1 is satis�ed only for kiB = 0 or
kiB = 1, i =1, 2.

Some speci�c cases of the correlation coe�cient ρy1,2 for the results of two measure-
ment experiments with di�erent uncertainty of components u1A, u2A and u1B, u2B

and their correlation coe�cients ρA and ρB are given in Table 1. It also contains
extreme cases for a combination of values ρA = (0, 1) ; ρB = (0, 1).In a special case,
when ρA = 0, ρB = 1 and k2

1B ≈ k2
1B ≈ 0.5 , we get: ux1 = ux2 =

√
2uB and

ρy1,2 = 0.5.

Table 1. Correlation coe�cient ρx1,2 of the measurement results of two variable
measurand for di�erent relations of its uncertainty components uA and uB
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3 Graphs of the resultant correlation coe�cient ρx1,2

The form of the function (9) is invariant to the changes of values u1A to u1B, u2A to u2B

and ρA to ρB. Then it su�ces to analyze dependencies for one type of uncertainty A or
B, because for the set of variables of the second type, there will be similar relationships
due to the symmetry of this pattern. The general function of the formula (9) will be
used to present diagrams of the correlation coe�cient. Figure 2 shows 3D graphs of
the resultant values of correlation coe�cient ρy1,2 = f (k2

1B, k
2
2B) of the two-element

(2D) output measurand Y=X for three pairs of correlation coe�cients ρA, ρB
of type A or/and type B uncertainties of elements x1, x2 of the 2D input measurand
X .Graphs have the form of curvilinear planes. The cross-sections are marked on them
for k2

2B = (0.25, 0.5, 0.81) equal to k2B = ( 0.5, 0.71, 0.9) are given on Fig.3a-c as

2D diagrams of coe�cient ρy1,2 in the function of k2
1B =

(
u1B

uy1

)2

described by the

formula (10)

ρx1,2 = f(k2
1B) (10)

or as ρx1,2 =f ( k1B), if lower non-linear scale at the bottom of each of these drawings
is used.

Figure 2: Relations of correlation coe�cient ρy1,2 =f ( k1B, k1B) of measurand
X as 3D charts for three pairs of correlation coe�cients of its uncertainty type A or
B components: ρA = 0, ρB = 1; ρA = 1, ρB = 1; ρA = 1, ρB = 0.
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Figure 3: Correlation coe�cient ρy1,2 between output variables as function of
k2

1Bor k1B=u1B

uy1
for de�ned values of correlation coe�cients of input uncertainty com-

ponents type A or/and B: ρA= 0 or 1 and ρB= 0 or 1, and values of parameters:
k2B=u2B

uy2
and k2

2B given above on a, b, c, d [17].

The detailed conclusions resulting from the analysis of the diagrams in Figure 3
a-d are as follows:

1. the largest correlation coe�cient in the entire range k1B has the curve for
ρA=1,ρB = 1, when k1B = k2B;

2. for the value k2
1B < 1 − k2

2B the curve for ρA=1, ρB = 0 dominates over the
curve ρA= 0, ρB = 1 and approaches the curve ρA= 1, ρB = 1 for the smallest
values of k2

2B;

3. for larger values of k2
1B > 1 − k2

2B the curve ρA=1, ρB = 0 is below the curve
ρA=0, ρB = 1;

4. at point k2
1B = 1 − k2

2B curves for ρA=1, ρB = 0 and ρA=0, ρB = 1 intersect.
The correlation coe�cient is ρy1,2 = k1B

√
1− k2

1B and reaches the maximum
value ρy1,2 = 0.5 for k2

1B = 0.5 ;

5. for the value of the correlation coe�cient ρA < 0 (Figure 3d [17]) there a neg-
ative correlation coe�cient ρy1,2,for the fragment of variation range of k1B is
obtained.For example, for ρA= −1, ρB = 1 and k2

1B < 1 − k2
2B a negative
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correlation coe�cient is obtained, and for k2
1B > 1− k2

2B the correlation coe�-
cient is positive. The largest range of variation k1B with a negative correlation
coe�cient occurs for small values of k2B.

On this basis, some conclusions about the uncertainty of measurements can be for-
mulated.The correlation between the values of results of two di�erent measurement
experiments associated with each other, e.g. measurements of the same value of
measurand with two di�erent meters or on two di�erent ranges of the same meter
of di�erent uB values, depends on theratio of the uncertainties type B and if the
higher the measurement uncertainty is in relation to type A in one or both measured
experiments.

The maximum correlation coe�cient ρy1,2 = 1 is achieved for the quantities of fully
correlated components of type A and type B, ρA=1, ρB = 1, i.e. when k1B = k2B.
This leads to the condition u1B

u1A
= u2B

u2A
.

The correlation coe�cient increases to 1 for k1B < k2B, but decreases for k1B >
k2B. For the values of k2

1B < 1− k2
2B we observe a strong negative correlation for the

curves ρA= (-1, -0.5), ρB = 1

4 Relative uncertainties

The formulas for relative uncertainties are obtained by substituting ui = xiuri, uAi =
xiurAi, uBi = xiurBi, for i= 1,2. From the formula (8) for the correlation coe�cient,
we obtain:

ρx1,2 =
ρAurA1urA2 + ρBurB1urB2√
u2
rA1 + u2

rB1

√
u2
rA2 + u2

rB2

(11)

Formulas of relative variances of quantities x1, x2 have been determined in a similar
way:

u2
r(x1) ≡ u2

rx1 =
u2

A1 + u2
B1

x2
1

= u2
rA1 + u2

rB1 (12a)

u2
r(x2) ≡ u2

rx2 =
u2A2 + u2

B2

x2
2

= u2
rA2 + u2

rB2 (12b)

Relative uncertainties urx1, urx2 as functions of relative uncertainties urA1, urA2,
urB1, urB2 are expressed as

urx1 =
√
u2
rA1 + u2

rB1 urx2 =
√
u2
rA1 + u2

rB1 (13a, b)

Then their correlation coe�cient ρx1,2 is

ρx1,2 =
ρAurA1urA1 + ρBurB1urB1

urx1urx2

(13)
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In general case for types A and B of relative uncertainties urA and urB, in a similar
way as before for uA and uB, a matrix UrX for components of relative uncertainties
can be created. If the relative uncertainties of the input quantities are known, e.g.
the same for the entire range, you can directly use their matrix propagation equation
with a similar structure as for absolute uncertainties, i.e.:

UrY = Sr ·UrX · ST
r (14)

where: UrX , UrY ,Sr = xi
yj

∂yj
∂xi

- covariance matrices for relative uncertainties and the
sensitivity matrix with elements marked with indices i = 1, 2 for lines and
j = 1, 2. for columns.

5 The components of the uncertainty of the output

quantities

When instruments and measuring systems in various environmental conditions are
used and measurement observations are di�erent randomly distributed, it may also
be necessary to �nd the type A and B uncertainties of elements of the output Y
measurand and correlations between the pair of their values. We analyze this on the
example of 2D measurand based on (7a) and (7b) equations. The covariance matrix
of measurand X = [x1, x2]T is

UX =

⌊
u2
x1 u2

x12

u2
x12 u2

x2

⌋
=

[
u2

1A + u2
1B ρAu1Au2A + ρBu1Bu2B

ρAu1Au2A + ρBu1Bu2B u2
2A + u2

2B

]
(15)

It can be presented as the sum of two matrices for uncertainty of type A and Type
B components, ie.

UX = UXA +UXB (16)

in which: UXA =

[
u2

1A ρAu1Au2A

ρAu1Au2A u2
2A

]
, UXB =

[
u2

1B ρBu1Bu2B

ρBu1Bu2B u2
2B

]
The transformation of the covariance matrices UXA and UXB of the uncertainties
of measurand X is performed after the linearization of the functional Y = F (X)
according to formula (2) as follows

UY A = S ·UXA · ST and UY B = S ·UXB · ST (17)

The output covariance matrix UY can be determined in two ways:

1. estimate the matrix UX = UA + UB and determine from it directly UY as
follows

UY = S ·UX ·ST = S · (UXA +UXB) ·ST (18)
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2. or from the matrix UXA and UXB �nd the matrices UY A and UY B of both
components of the uncertainties uyi of output quantities and then UY . It is
received

UY = UY A +UY B = S ·UXA · ST + S ·UXB · ST (19)

If UY is only designated, then both methods are equivalent. This was checked
for both two-dimensional (2D) measurands X and Y . On the other hand, matrices
UY A and UY B for the uncertainties of type A and B components of the output Y
measurand and the correlation coe�cients of their each type can be determined from
the formula (19) not found in the literature.

6 Uncertainty of sum and di�erence of output quan-

tities

If Z = G(Y ) = [y1 + y2, y1 − y2]T,then absolute uncertainties are equal:

u2
z1 = u2

1A + u2
1B + u2

2A + u2
2B + 2(ρAu1Au2A + ρBu1Bu2B), (20a)

u2
z2 = u2

1A + u2
1B + u2

2A + u2
2B − 2(ρAu1Au2A + ρBu1Bu2B) (20b)

Let use designation u2
0 ≡ u2

1A + u2
1B + u2

2A + u2
2B for the output variance of the sum

and the di�erence of values in the absence of correlation.Then

uy1+y2 =
√
u2

0 + 2(ρAu1Au2A + ρBu1Bu2B) (21a)

uy1−y2 =
√
u2

0 − 2(ρAu1Au2A + ρBu1Bu2B) (21b)

It is obtained that the uncertainty increases for the sum and decreases for the dif-
ference in relation to the model with zero input correlation. The values y1 + y2 and
y1 − y2 are correlated with a coe�cient equal to:

ρy1+y2,y1−y2 =
u2
y1 − u2

y2

uy1+y2uy1−y2

(22)

If there is no correlation between type B components, i.e. for ρB = 0, uncertainty
values are determined by

uy1+y2 =
√
u2

0 + 2ρAu1Au2A and uy1−y2 =
√
u2

0 − 2ρAu1Au2A (23a, b)

In this case, we obtain a reduction in the uncertainty for the sum of the input quan-
tities and an increase in the uncertainty for the di�erence of this quantities. The
numeric values is demonstrated in the example of the uncertainty of measurements
of the mean value and the di�erence of two temperatures given in [13] and [16].
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Summary

This paper analyzes the uncertainty model of two-parameter measurements, which is
a development of the internationally used model according to the guide for evaluation
of uncertainty in measurements under acronym GUM [1]. It was assumed that in
the general case the uncertainty components of each type A and B for quantities
jointly measured in the input of measurement system can be correlated with each
other. The general dependences of the correlation coe�cient and the di�erent mutual
relations between input uncertainties were determined, with full correlation and no
correlation between type B uncertainties. The uncertainties of the output quantities
and the correlation coe�cient for the linear function processing the input quantities
and for the quadratic-linear and quadratic functions were determined. quotient. The
dependence of the correlation coe�cient of output values on the values of input
parameters was investigated. The content of the work contains the courses of the
dependencies studied and several detailed conclusions.

In cases when both input values are measured in equal or similar in�uencing condi-
tions, their B-type uncertainties may be correlated. This should be considered in the
estimation of the uncertainty of the output quantities. For example, for the sum of
the output quantities and the positive correlation coe�cient, the result of uncertainty
will be greater than the result from the geometric summation of both uncertainties
type A and type B according to GUM, and for the di�erence - smaller. Considera-
tions and conclusions can be generalized to measurements of many multiparameter
measurands.
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Abstract

This paper discusses two methods for estimating the uncertainty of values of
the function which describes a characteristic of the property of tested devices,
substances or engineering process. This estimation is based on measurements
at two control points. The method I estimates uncertainty of these function
points using a linear approximation created on the basis of maximum permis-
sible values of measurement error at control points. The method II relies on
the statistical estimation of values, their uncertainties and correlation for the
points of a tested function as a linear combination of measurement results in
two control points. Matrix approach to the propagation of uncertainties in in-
direct multivariate measurements was used. Method I is the boundary case of
method II when the correlation coe�cient is equal to 1. Using the method II,
the absolute and relative uncertainties of interpolated values of characteristic
curve and their linear or nonlinear functions can be properly estimated. Both
methods can be useful in all areas of metrology applications. It is an extension
of the method described in the GUM Guide Supplement 2.

Keywords: maximum permissible error, uncertainty type A and type B,
correlation coe�cient, two-parameter measurand, control points, statistical es-
timation, multivariate measurements, vector propagation of uncertainty.

Introduction

To assess the accuracy of measurements, the concept of uncertainty was introduced
in the 1990s and the principles of its application were published in the form of the
Guide to the Expression of the Uncertainty in Measurement (GUM) [1] and its Sup-
plements. The scope of application of these international recommendations has been
still expanding in numerous publications, including a monograph [2]. In addition to
the widespread use of the concept �uncertainty� to evaluate the accuracy of mea-
surements, new applications for the assessment of product quality, statistical quality
control of production processes and laboratory accreditation have emerged and spread
in experimental research [2-11].
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In experimental studies, there are usually several limitations concerning density
of measurement points, time taken and duration of the experiment, availability of
a tested object, samples and automated equipment, and cost of performance. In
laboratory tests and in only a few routine tests, these are usually not critical require-
ments. In most utility studies there are such limitations and they are important. It
is necessary to minimize the number of controlled points and to select the appropri-
ate distribution, time and volume of the information obtained. It also depends on
the type of tests and the range of values of the examined quantities, on the possi-
bility of obtaining the uncertainty of measurements required in these tests and on
the accuracy of the measuring equipment used. There may be a requirement that
control points should be unevenly distributed even for a linear function for reasons
other than measurement accuracy, e.g. consumption of test substances and reagents,
volume, dimensional and �ow restrictions, power and energy limitations, etc.

The paper considers the cases when estimating values and uncertainties for se-
lected points of the curve modeled with the known function y = f (x ), which are not
measured directly. It is also necessary to determine the gradients of uncertainty in
the analyzed range of this function and the interval x of a given uncertainty. The pos-
sibilities of estimation based on control measurements in two points were analyzed.
The estimated uncertainties depend on the number and location of these points along
the scope of the function being tested. Discussions on this issue could not be found
in the literature.

This issue is discussed on the example analysis which aim is to determine uncer-
tainty of the known measurement function. This was the method proposed by the �rst
author, which is based on measuring two values x1, x2 only with uncertainties ux1 , ux2

and their correlation estimated from measurement data and experiment conditions.
To evaluate the accuracy of measurement results, recommendations included in the
GUM Guide [1] were applied. The basis of this assessment is the estimation of stan-
dard uncertainty as a geometric sum of component uncertainties i.e. u =

√
u2
A + u2

B.
The component uA, which is called as the type A uncertainty, is determined by
the scattering of the speci�ed number n of repeated measurements of the measured
quantity in circumstances considered as random ones. The uB component, i.e. the
type B uncertainty, represents the randomized cumulative impact of the predicted
various impacts on test object, measurement system and instrument readings when
using them under the speci�ed permissible conditions and in the nominal lifetime
[1,10,11]. Interferences that occur during measurements can cause systematic errors
of unknown values. Basing on the knowledge about predicted ranges and probability
distributions of di�erent interferences, heuristically their contributions in uB uncer-
tainty are estimated and statistically for the long time this uncertainty component
type B is determined [5,6].

Based on the measured control values x1, x2 and their standard uncertainties u1, u2

the value of xci and its uncertainties uci ≡ σci were estimated. The dependencies for
indirect estimation of the absolute standard deviation σxi) and the relative deviation
δi ≡ σxi ·xi were determined. These estimates make possible to determine the ranges
of x with given end-of-range values as well as uncertainties of quantities depending
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on x with the known function.
Two methods of estimating values and uncertainties for any number of function

points describing the tested characteristic curve will be applied. Method I is based
on the determination of standard uncertainty from the permissible maximum error
of the instrument, known from reliable calibration results or from data given by the
manufacturer. Method II, statistical, is based directly on the results of measurements
at control points and on the knowledge about measuring devices and experiment
conditions.

1 Method I

In method I, for the measured values of the function of tested object, the type B
uncertainty is estimated mainly from accuracy data of measuring instruments [2-
6]. The permissible maximal error of instrument |∆x|max is usually speci�ed by
manufacturers as the line dependence of the absolute error module on the value x
of measured quantity in the form of sum of components, additive and multiplicative
or after their relation to the measuring range as a maximum relative error. This is
described in the formulas (1) and (1a)

|∆x| ≤ |∆x|max=|∆x0|max+(x− x0) · |εS|max (1)

|∆x|
xmax − x0

≤ |∆x0|max
xmax − x0

+
x− x0

xmax − x0

· |εS|max (1a)

where: in (1): |∆x| , |∆x|max, |∆x0|max- the absolute errors: real of the measured value
x and maximum permissible for x and for the beginning of range x0, e.g. x0 = 0 and
|εS|max ≡ ∆x−x0/(x−x0) - maximum permissible relative error of the di�erence x−x0.
Equation (1a) gives their values related to the range and is simpli�ed for x0 = 0. With
the method I, from two maximum values of this error |∆x1|max, |∆x2|max , which
are known from technical data or from measurements under given conditions, for
the x value in the tested range one can determine the linear characteristic curve of
absolute uncertainty σx or its normalized value (the relative uncertainty). Within the
ranges ±|∆x1|max ±|∆x2|max, the dispersion of the x-value with a uniform probability
distribution is usually assumed. Standard deviations σx1, σx2 of estimators of the
values x1, x2, e.g. mean values of measurement observations, are treated as absolute
type A uncertainties. In the �eld of uncertainty, the formula (1) corresponds to
relationship given below

σx ≤ σx|max = σx0|max + (x− x0) · δx|max (2)

where: δx|max is maximum relative uncertainty of the di�erence (x− x0).
The maximum permissible absolute error |∆x|max from equation (1) and the corre-
sponding absolute uncertainty σx|max from equation (2) are proportional to each other
(1/
√

3). With appropriately selected scales on the y-axis, they run in the function of
the measured quantity x identically linear, as shown in Figure 1.
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Method I is very simple. It can be used to the approximate estimation of uncer-
tainty in the full range or only in those parts of it, i.e. outside the interval (x1, x2),
where it can be assumed the linear dependence of the maximum permissible error on
x. For example, for many digital devices, the maximum permissible absolute error
increases from z x2 ≥ x1, i.e. |∆x2|max ≥ |∆x1|max. If the relative error |δ|x is con-
stant, then this increase in type B uncertainty is proportional to the increment of x.

Figure 1: Linear characteristic curve of maximum permissible absolute error
|∆x|max given in formula (1) and corresponding absolute uncertainty σx|max in the√

3 larger scales on the y-axis

However, when using the method I to estimate uncertainty, for individual xc values
one cannot take into account the statistical nature of the uncertainty of controlled
values x1, x2, including the correlation of type B uncertainty components of the
measuring instruments. These components are estimated considering the maximum
permissible errors of instruments, and the correlation coe�cient between the obtained
uncertainties for any values within the measuring range is equal to 1. The correlation
coe�cients between estimated uncertainties for xc1,xc2 cannot be determined and the
correlation coe�cient of 1 is assumed for them. When determining the uncertainty
of sum and di�erence of two values x with the correlation coe�cient equal to ± 1,
the component uncertainties should be added algebraically. For the sum, they are
larger, and for the di�erence - smaller than for the geometric summation.

Therefore, the application of method I is limited for determining uncertainty of
indirect multivariate measurements. It is only suitable for these cases, when the
individual xc values of the characteristic curve with estimated uncertainties will be
used later only individually.
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2 Method II - statistical

Method II relies on a statistical description of accuracy using uncertainty. It is based
on the vector method for determining uncertainty of multivariate indirect measure-
ments, which is presented in Supplement 2 to the GUM Guide [1]. The output Y
multi-measurand parameters are determined indirectly from the X multi-measurand
input measurements. The general function is

Y = F (X). (3)

Their uncertainties and correlation coe�cients are related to the Law of Propagation
of Variances as a relation of the covariance matrices UY and UX ,i.e.:

UY = S · UX · ST (4)

If the relative uncertainties do not exceed several percent, then from the equation
(4) it is determined the uncertainty for processing functionY =F (X), both linear and
nonlinear, for which the sensitivity matrix S = ∂Y

∂X
is Jacobian matrix. For nonlinear

functions, the dimension m of the vector Y may be larger than the dimension n of
the vector X, equal to the number of independent equations connecting elements of
both vectors.

The issues discussed should be general and useful for any type of F () function.
Therefore, the uncertainty evaluation of the elements Y is divided into two stages.
In the �rst of them, based on measurement results of two values x1, x2, a linear
scale of values Xc = Fc(X) is created for the full range of xmax − x0 considered
and estimates their uncertainties. In the second stage, from the selected elements
xc of the vector Xc, the values and uncertainties of the elements of the vector Y are
determined according to the individual linear or non-linear function Y = Fy(Xc).
The �rst stage will be discussed wider. The uncertainty of any xc value results from
the control measurements x1, x2, their uncertainty and the correlation coe�cient. It
is their linear combination described by formula (5)

xc = x1 + k (x2 − x1) = (1− k)x1 + kx2 (5)

where k means relative location of the point xc in the interval x1, x2.

k = (xc− x1)/(x2− x1) (5a)

Inside the interval x1 ≤ xc ≤ x2 and k is 0 ≤ k ≤ 1.
The values obtained in control measurements x1, x2, estimated values of xc and

uncertainties σx1, σx2, σc are modeled with random variables. The uncertainties σc
are evaluated indirectly from uncertainties σx1, σx2 and their correlation coe�cient
ρx1,2.

As an example, the measurand Xc of two values xc1, xc2 will be computed . Their
uncertainties σc1, σc2 and correlation coe�cient ρc1;;2 will be evaluated. When esti-
mating these parameters of the Xc its covariance matrix Uc for absolute uncertainties
is as follows

Uc = Sc · UX · ScT (6)
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where: sensitivity matrix Sc and covariance matrices UX and Uc of vectors
X = [x1, x2]T and Xc = [xc1, xc2]T are described by equations (6a, b, c) given below

Sc =

[ ∂xc1
∂x1

∂xc1
∂x2

∂xc2
∂x1

∂xc2
∂x2

]
, UX =

[
σ2
x1 ρx1,2σx1σx2

ρx1,2σx1σx2 σ2
x2

]
(6a, b)

Uc =

[
σ2
c1 ρc1,2σc1σc2

ρc1,2σc1σc2 σ2
c2

]
(6c)

where: σx1, σx2, σc1,σc2 are absolute uncertainties and ρx1,2, ρc1,2 correlation coef-
�cients.

If two calculated values xc1, xc2 are linear with the measured values x1, x2 , then
they are represented by linear combinations and de�ned by equations

xc1 = (1− k1)x1 +k1x2 (7a)

xc2 = (1− k2)x1 +k2x2 (7b)

In the general case, the results of control measurements x1, x2 are correlated, i.e.
ρx1,2 6= 0. The initial covariance matrix Uc is derived from (6) and (7a,b) and it is

Uc =

[
1−k1 k1

1−k2 k2

]
· UX ·

[
1−k1 1−k2

k1 k2

]
(8)

The main diagonal of the matrix Uc consists of the elements which are the variances
of values xc1 and xc2, i.e. the squares of uncertainties σxc1, σxc2 given by equations

σ2
c1 = (1− k1)2σ2

x1 + k1
2σ2

x2 + 2ρx1,2(1− k1)k1σx1σx2 (8a)

σ2
c2 = (1− k2)2σ2

x1 + k2
2σ2

x2 + 2ρx1,2(1− k2)k2σx1σx2 (8b)

Their normalization to uncertainty σx2 of control point x2 is given by the formula (9)
where:i=1, 2, and ε = σx1

σx2
is the ratio of uncertainties for x1 and x2.

σnci =
σci
σx2

=
√
ε2(1− ki)2 + ki

2 + 2ρx1,2ε(1− ki)ki (9)

Correlation coe�cient ρc1,2 of the estimated quantities xc1, xc2 is given by the formula

ρc1,2 =
ε2(1− k1)(1− k2) + k2k1 + (k1 + k2 − 2k1k2)ερx1,2

σnc1σnc2
(10)

From (10), for special cases: of uncorrelated x1 and x2, (ρx1,2 = 0) and x1 and x2

perfectly correlated (ρx1,2 = 1) derived are formulas (11) and (12):

ρc1,2 =
ε2(1− k1)(1− k2) + k1k2

σnc1σnc2
(11)

ρc1,2 = 1 (12)
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The dependence of uncertainty σc on k of point xc is described by the formula (13)
and its special cases - formulas (14) and (15)

σc =

√
(1− k)2σ2

x1 + k2σ2
x2 + 2k(1− k)ρx1,2σx1σx2 (13)

If is no correlation ρx1,2 = 0, or perfect correlation ρx1,2 = 1 (13) is simpli�ed as
follows

σc|ρx1,2=0 =

√
(1− k)2σ2

x1 + k2σ2
x2 (14)

σc|ρx1,2=1 = (1− k)σx1 + kσx2 (15)

The formula (15) becomes linear.The correlation coe�cient ρc1,2 is the function of
relative locations k1, k2 of the estimated values xc1, xc2, for the ratio of uncertainties
ε = 1/2 of control points x1, x2 and their correlation coe�cient ρx1,2 = (0; 0.5; 1) is
presented in Fig. 2.

Figure 2: Correlations coe�cient ρc1;2 as a function of the relative locations k1, k2 of
values xc1, xc2 for their correlation coe�cients ρx1,2 = (0; 0.5; 1) and the ratio of

uncertainties ε = 1/2

Figure 2 shows that 2D surfaces of the correlation coe�cient ρc1,2 = f(k1, k2) for
ρx1,2 < 1 on the input reach a maximum of 1 for k1 = k2. The coe�cient ρc1,2 = 1
creates a plane in the entire area of variability k1, k2. With decreasing ρx1,2, the
symmetric surfaces ρx1,2 against the line k1 = k2 decrease and reach the minimum in
symmetrically located points k1 = 1, k2 = 0 and k1 = 0, k2 = 1

After normalizing σc and σx1 to σx2i.e. for ε = σx1

σx2
equation(16)-(18) are derived

σc
σx2

=

√
ε2(1− k)2 + k2 + 2ρx1,2ε(1− k)k (16)
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for ρx1,2 = 0 σc
σx2

=
√
ε2(1− k)2 + k2 (17)

for ρx1,2 = 1 σc
σx2

=
√

(ε− kε+ k)2 = ε+ k(1− ε) (18)

From (10) and (16) the correlation coe�cient of xc1 = x1 and xc2 = xc (i.e.k1 = 0
and k2 = k) is

ρx1,c =
ε2(1− k)√

ε2(1− k)2 + k2

(19)

Resulting from (19) �gure 3 gives the dependence of the correlation coe�cient
ρx1,c=f (k) for uncertainty ratios ε=(0.5; 2/3; 1) of control points for the input corre-
lation coe�cient ρx1,2 = 0. With the increase of k to 1, all curves reach 0, for lower
ε strongly.

Figure 3: Correlation coe�cient ρx1c as a function of the relative location k of point
xc inside of the interval x1, x2 for few ratios ε=(1/2; 2/3; 1) of uncertainties for its

ends

The values xc1 and xc2 can also be used to model the multivariate measurand Y

determined by the vector function Y = Fy(Xc).This function can be both linear and
non-linear. For example, for both two-element vectors Y = [y1, y2]T , Xc= [xc1, xc2]T

their covariance matrices UY i Uc are related according to the Law of Propagation of
variances (4), (20)

UY = SY · UX · SY T (20)

where SY =

[
∂y1

∂xc1

∂y1

∂xc2
∂y2

∂xc1

∂y2

∂xc2

]
Uncertainties and the correlation coe�cient of output

quantities y1, y2 are determined here from UY matrix. At �rst, the input values
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xc1 and xc2 and their covariance matrix Uc are obtained. Next, formulas for elements
of the covariance matrix UY are used. The value of xc, the uncertainty of which is
estimated in the linear case, is related to t values x1, x2 by the same formula (3) as
for the interpolation using method I. The linear dependence (3) also applies outside
the endpoints of extrapolation interval xc, i.e. if k ≤ 0 and k ≥1. Generally, for
correlated x1, x2 it results from (9a, b) a square of normalized uncertainty which is
extrapolated in the full range of k. It is described by the formula (21)

σ2
nc =

σ2
c

σ2
x2

= ε2 (1− k)
2

+ k2 + 2 (1− k) kρx1,2 (21)

The dependence of the normalized uncertainty σnc = f(k, ρx1,2) of the point xc from
its relative location k and the correlation coe�cient ρx1,2 for three uncertainty ratios
ε of points x1, x2 are plotted on the 3D graph in Fig. 4.

Figure 4: The normalized uncertainty of value xc as a function of its relative
location k and correlation coe�cient ρx1,2 for three ratios of uncertainty of input

quantities ε = σx1

σx2
= 0.5; 2/3; 4/5

The examples of normalized uncertainty graphing σnc according to method I and
formula (2) � the straight line (ρx1,2 = 1) and according to method II - surface cross-
sections in Fig. 4 for ρx1,2 = 0 and two uncertainty ratios ε are presented in Fig. 5.
and σnx=σnc for ρx1,2 = 1.

The uncertainty σnc rises with k and ρx1,2. From di�erentiation of the function (21)
with respect to k it results that inside the interval < x1, x2 > for the value kmin given
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Figure 5: Normalized to σx2 absolute uncertainties of value xc as a function of its
related location k for ratios of uncertainties ε = (2/3; 1) ρx1,2 = (1; 0); (methods I

and II)

in the formula (22) the uncertainty σnc reaches the minimum

kmin (σnc = min) =
ε(ε− ρx1,2)

1 + ε2 − 2ερx1,2

(22)

From (22) it results that relative location kmin of point with minimum of the un-
certainty σnc in the control interval x1, x2 it does not depend on its width x2 − x1,
but on the relationship of ratio of uncertainties ε and ρx1,2. The absolute location of
minimum is de�ned as

xc|σnc=min = x1 + kmin(x2 − x1) (23)

The condition x1 < xc|σnc=min < x2 is also ful�lled. If there is no uncertainty of one
of the endpoints of interval < x1, x2 >, e.g .σx2 → 0, then minimum decreases to
zero (kmin → 0). The location of the control interval in the range of measurements
xmax− x0 does not matter. Fig. 6 shows the dependences of the relative location of
kmin(ε) for three values of the correlation coe�cient ρx1,2 = −0.9; 0; +0.9. They were
obtained from (22).

The minimum value of uncertainty is

σn min = ε

√
1− ρ2

x1,2

ε2 + 1− 2ρx1,2ε
(24)
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Figure 6: The location kmin of minimum uncertainty (method II) as functions of ε

The function σn min = f(ε) are presented in Fig. 7.

And it shows that uncertainty estimated using method II σn min in the interval x1, x2

is lower about 30% from the uncertainty at the starting point x1 for ε = 1. For ε = 0.6
this reduction does not exceed 30%, and for ε ≈ 0.8 the uncertainty is lower from
σx1 about 10% When there is no correlation between the control values x1, x2, i.e.
for ρx1,2 = 0, equation (24) is simpli�ed to the form (24a) and minimum uncertainty
depends only on the ratio of uncertainties ε of the control points.

σn min =
ε√

1 + ε2
(24a)

The equation (21) was also used for extrapolating uncertainty of points outside the
interval x1, x2 i.e. for k < 0 and k > 1. The di�erence of squares of uncertainty
interpolated by both methods at the point k = 1

2
is

(σ2
nx − σ2

nc)|max =
ε

2
(1− ρx1,2) (25)

Dependence of uncertainty on the relative position k for method II is parabolic. When
extrapolating by using formula (21) the square of uncertainty for ρx1,2 = 0 increases
by ε

2
at the points k1,2 equally distant from the vertex of a parabola with a coordinate

k=1/2 as

k1,2 =
1

2
±
√

2

2
(26)

The uncertainty estimated by the second method (method II) is greater at these
points than by the �rst method (method I).
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Figure 7: The normalized minimum absolute uncertainty in the interpolation
interval as a function of ratio of control point x1, x2 for di�erent correlation

coe�cient ρx1,2 = (−0.99; 0.00; 0.99)

Summary and Conclusions

Presented method is proposed by the �rst author. It is based only on the results of
measurements in two points with the required accuracy and it is a complementary
to the regression methods. The uncertainties of these points were estimated on the
example of a linear function. Correlation coe�cients estimated with uncertainties
were also determined. This is a quite frequent case, as it concerns measuring devices
and systems with direct reading of the measured quantity and multiplier range change.
Their resultant function - the output is a straight line with an inclination of 1. The
uncertainty for nonlinear functions can be obtained after another transformation by
the corresponding linear relationship between the covariance matrices.

The content of this work was connected with several previous publications given
in bibliography of [11], in which the authors discussed various examples of estimat-
ing the uncertainty of functions in the indirect multivariate measurement electrical
circuits.They concerned measurements of associated temperatures, magnetic �eld in-
duction, systems with several resistances (star circuit, bridge circuit) of direct current
(DC) and measurements of impedance components at alternating current (AC). This
paper considers two methods for estimating the uncertainty of the function values,
deterministic and statistical, designated as method I and method II. In method I, a
linear relationship was established between the absolute uncertainty and the value
of the measured quantity obtained from the limiting error given for the measuring
device. It is a method of accuracy evaluation used by device manufacturers. In this
method, a correlation coe�cient equal to 1 should be assumed for values in the full
measuring range. In method II, a statistical model was adopted for estimated and
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controlled values. The values at the points of the examined function were interpo-
lated as a linear superposition of the values measured at the control points. From
the uncertainty and the correlation coe�cient for these points, absolute and rela-
tive uncertainties were estimated at any points of the analyzed function. Parabolic
trajectories of uncertainty with the occurrence of its minimum within the interval
between control points and a signi�cant increase of uncertainty beyond its extremes
were obtained. The relative minimum location in the control interval depends on the
ratio of uncertainty and the correlation coe�cient of its bounds. It does not depend
on the location of this interval in the range.

The parameters of control points were normalized, and the results obtained with
both methods and their applicability were compared. If the uncertainties of neighbor-
ing measurement points di�er at least in the same way as the values of the examined
quantity, e.g. for the ratio of these uncertainties ε = 0.8, the di�erence in uncertainty
normalized to the interval bound is 0.1, and for ε = 0.9 it is around 0.01. Estimation
of the uncertainty of non-linear processing of the tested function can be determined
by the same vector method.

Method I is the special case of method II, when the values at the control points
have a correlation coe�cient equal to 1. The authors were able to use method II to
estimate uncertainty for nonlinear functions in paper [10]. The minimum number of
measurement points n> 2 for the scope of the function being tested depends not only
on itself, but also on its uncertainty, usually drawn as a uniform or linear bar in the
distance from this function. It also depends on the obtained statistical parameters
of the control measurement results. Based on gained knowledge or after obtaining
it in other studies of similar objects the predicted or required simpli�ed function
describing uncertainty should be assumed.

For the wide range of non-linear characteristic curve, in practice, it may be useful
to divide the entire range of the tested functions into adjacent subranges. If their
uncertainty does not increase more than three times (ε = 0.7, 0.8) then the relative
interpolation di�erences of both methods will not exceed 0.2 and 0.12 [12].

As an example of applying the general formulas, the uncertainty of sum and
di�erence of two arbitrary values of the studied function, which are estimated from
measurements at the control points, can be determined using the statistical method II.
As the example are uncertainties of average and di�erence of temperatures obtained
from measurements by two Pt temperature sensors [9]. If such measurements are
made by the same sensor and measuring system and in the same environments and if
uncertainty type B is dominated (correlation coe�cient is nearly 1), then uncertainties
from both measurements must be calculated algebraically but not geometrically as it
is without correlation.
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Abstract

We consider nonparametric estimation algorithms for current status right-
censored data model. In the model right-censored event times are not observed
exactly, but at some inspection times. The model covers right-censored data,
current status data and life table survival data with a single inspection time.
We consider the nonparametric estimation algorithms to obtain three nonpara-
metric estimators for the survival function of failure time: maximum likelihood,
pseudo maximum likelihood and the naïve estimator. We discuss large sample
properties of the estimators. Using the standard R packages we perform simu-
lations, which compare the estimators under small and moderate sample sizes.

Keywords: survival data, right censoring, interval censoring, current status
data, nonparametric estimation.

Introduction

Right-censored survival data model is widely applicable in practice in spite of in
many cases the event times (failure or censoring) are not observed exactly, and the
investigator observes time interval containing a failure time for each of not missed
at follow up individuals having symptoms of disease at the endpoint. In the current
status right-censored data model the event is observed in a random inspection time
if it occurs before the inspection time or not observed otherwise.

Let T and U be the independent failure and censoring times respectively. Right-
censored observation consists of the event time X = T ∧ U and the indicator δ =
1I{T≤U}. The current status right-censored observation is given as (W,κ, κδ), where
κ = 1I{X≤W} and W is a random inspection time, which is independent of (T, U).
The observed data is a sample from the distribution (W,κ, κδ) and the main target
of statistical analysis is the distribution function F of failure time T .

The right-censored survival data model is well developed. The Kaplan�Meier
[19] estimator is widely applicable to estimate the survival function of failure time
from right-censored data. Consistency and asymptotic normality of the Kaplan�
Meier estimator are obtained �rst in [5]. The point process technique allows to get
functional convergence results for the Kaplan�Meier estimator ([1, 9, 10]; see also
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[7, 2]). Note that, the Kaplan�Meier estimator requires the exact event time to
be observed, which may fail in practice. In the interval censored data model [27]
the event times are not observed exactly. The nonparametric maximum likelihood
estimator (NPMLE) for the current status data model can be obtained as a solution
of the isotonic regression model [3] using Convex Minorant Algorithm or by using
the EM-algorithm [26, 27]. Asymptotic behavior of the NPMLE at any �xed point
studied in [11, 16]. Groeneboom & Wellner [16] discussed wide range of asymptotic
results on the NPMLE.

The current status right-censored data model discussed in this paper is highly
related to the particular case of the current status data with competing risks. The
NPMLE and the nonparametric pseudo maximum likelihood estimator (NPPMLE) of
parameters from the current status data with competing risks, and the EM-algorithms
to get the estimators are given in [17]. Another naïve (ad-hoc) estimator is considered
in [18], along with the NPMLE. Consistency and rate of convergence results for
the NPMLE are obtained in [14], and weak convergence results are given in [15].
Consistency of the estimators in the current status right-censored data model and
the rate of convergence results are obtained in [22].

The current status data and the life table data with a single observation time are
particular cases of the model we discuss in this paper. The life table survival data
model was widely used at the beginning of survival analysis [4, 6, 8]. The standard
life table (actuarial) estimator is generally used to estimate the parameter F (w0).
Breslow & Crowley [5] show that there is no consistent nonparametric estimator of
completely unknown distribution function F at the observation time w0 in the life
table survival data model. Nevertheless, in many real cases the asymptotic bias of the
standard life table estimator is relatively small [20]. The extended life table estimator
that is inconsistent too was investigated in [24].

This work focuses on estimation in current status right-censored data model and
investigates properties of nonparametric estimators under small and moderate sample
sizes. We consider the NPMLE, the NPPMLE and the naïve estimator, which are
obtaining from the corresponding estimators of the baseline current status data model
with two competing risks. The maximum likelihood approach and some asymptotic
properties of the estimators are discussed in Section 1. The estimation algorithms
are displayed in Section 2. Some properties of the estimators obtained by simulations
are reported in Section 3, and supplementary tables are postponed to Section 4.

1 The maximum likelihood approach

In this section we display the likelihood function for the interval right-censored data
and discuss the nonparametric estimators.

Assume that the failure time T , the censoring time U and the observation time
W are independent with the distribution functions F , G and J respectively;
γT = sup{x :F (x)< 1} and γG = sup{x :G(x)< 1}. Let (Ti, Ui,Wi) be a sample from
the distribution (T, U,W ), and (Wi, κi, κiδi) be the observed current status right-
censored data, where Xi = Ti ∧ Ui, δi = 1I{Ti≤Ui} and κi = 1I{Xi≤Wi}, i = 1, . . . , n.
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We slightly abuse the notations denoting F,G, J and H for both the distribution
functions and the corresponding measures.

The maximum likelihood estimate. Let Q be the set of nondecreasing nonnegative
cadlag functions Q : R→ [0, 1], such that limx→−∞Q(x) = 0;

Q = {(Q,Q∗) : Q,Q∗ ∈ Q and Q(x)+Q∗(x)≤1, x∈R}

be the set of parameters of the model. The log-likelihood function for the interval
right-censored data is de�ned for (Q,Q∗) ∈ Q as follows:

LL(Q,Q∗) =
∑n

i=1
κiδi logQ(Wi)

+ κi(1−δi) logQ∗(Wi)+(1−κi) log(1−Q(Wi)−Q∗(Wi)),
(1)

whereQ(x) =
∫ x

0
(1−G−)dF =

∫ x
0

(1−H−)dΛ, Q∗ ≡ H−Q andH ≡ 1−(1−F )(1−G)
is the distribution function of the event time X, Λ is the cumulative hazard function
corresponding to F restricted to DH = {x : H(x) < 1}. A parameter (Q̂n, Q̂

∗
n), which

maximizes (1) over (Q,Q∗) ∈ Q is the NPMLE.
The pseudo maximum likelihood estimate. Let

QH = {(Q,Q∗) ∈ Q : Q+Q∗ ≡ H}.

The likelihood function (1) can be rewritten as the sum of two terms
LL(W,κ, κδ;F,G) = LLm(W,κ;H) + LLr(W,κ, κδ;R) with

LLm(W,κ;H) =
∑n

i=1

(
κi log(H(Wi)) + (1− κi) log(1−H(Wi))

)
and

LLr(W,κ, κδ;R) =
∑n

i=1

(
κiδi logR(Wi) + κi(1− δi) log(1−R(Wi))

)
,

where R(w) = Q(w)/H(w) = P (δ = 1|X ≤ w) =
∫ w

0
(1 − H−)dΛ/H(w). The

functions Q and Q∗ can be written as follows:

Q(x) =

∫ x

0

pdH and Q∗(x) =

∫ x

0

(1− p)dH, (2)

where p = dΛ
dΛH

is the Radon�Nikodym derivative of the measure Λ with respect to
ΛH . Moreover, any measurable function p : R → [0, 1] de�nes the distributions of T
and U (possibly improper) under any �xed distribution function H [22]. Let H̃n be
the sub distribution function, which maximizes LLm and R̃n ≡ Q̃n/H̃n maximizes
LLr under H ≡ H̃n, and Q̃(x) =

∫ x
0
pdH̃n. Then (Q̃, Q̃∗) such that Q̃∗ ≡ H̃ − Q̃ is

the NPPMLE for the parameter (Q,Q∗).
The naïve (ad hoc) approach is based on the separate estimation of the parameters

Q and Q∗ from the observations with T < U and T ≥ U respectively. The naïve
estimator ̂̂Qn for the parameter Q is obtaining by maximizing

Ψ(W,κδ,Q) =
∑n

i=1
(κiδi logQ(Wi) + (1− κiδi) log(1−Q(Wi))
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on Q having atoms at the observation points Wi with κiδi = 1, and the naïve esti-
mator ̂̂Q∗n for the parameter Q∗ is obtaining by maximizing Ψ(W,κ(1− δ), Q∗) on Q∗
having atoms at the observation pointsWi with κi(1−δi), i = 1, . . . , n. The naïve esti-
mator can be obtained by the regular convex minorant algorithm from right-censored
data analysis. The true disadvantage of the naïve estimator is that the constraint̂̂Qn + ̂̂Qn ≤ 1 may fail in the general case.

Recovering the distributions of failure and censoring times. In order to recover
the distribution of T from Q and Q∗ we use that Λ(x) =

∫ x
0

(1 − Q− − Q∗−)−1dQ.
Hence,

S(t) =πx≤t

(
1− dQ(x)

1−Q(x−)−Q∗(x−)

)
, (3)

where S ≡ 1 − F . The distribution of censoring time U is determined by
the cumulative hazard function ΛG(x) =

∫ x
0

1−F−
(1−F )(1−H−)

dQ∗ and, therefore,

G(t) = 1−πx≤t(1− dΛG(x)
)
. Alternatively, G(t) =

∫ t
0
(1− F )−1dQ∗, t ∈ DH .

Large sample properties of the estimators. The large sample properties of the
nonparametric estimator Sn (Sn = Ŝn, S̃n,

̂̂Sn) for the distribution of failure time are
determined by the large sample properties of the corresponding estimator (Qn, Q

∗
n)

for the parameter (Q,Q∗) that is the particular case of the estimator for the current
status data with two competing risks model. The uniform consistency and the rate of
convergence results for all the estimators Sn were obtained in [22]. In the absolutely
continuous case it was proved that under the condition H << J , for any τ < γF ∧ γG

supx≤τ |Fn(x)− F (x)| → 0,

as n→∞ almost sure. The uniform consistency result under the assumption H << J
remains correct in general case. The conditionH << J is important, otherwise there is
no consistent estimator for the parameter S (see [23, 24]). The rate of convergence in
the absolutely continuous case is obtained, under H << J and the bounded property
M−1 ≤ dH

dJ
≤M for some M > 1, in the L1(J) norm restricted to the interval [0, τ ],

‖Fn − F‖1,J([0,τ ]) = OP (n−1/3 log1/3 n). (4)

Remark 1. (i). The rate of convergence in (4) is obtained from the re�ned rate of
uniform convergence results for the corresponding estimators Hn of the event time
distribution function H.
(ii). We may expect the rate of convergence OP (n−1/3) in (4) taking into account the
rate of convergence OP (n−1/3) of the estimators Qn and Q∗n to the parameters Q and
Q∗ in L1(J) (and even in L2(J) norm), but the Lp rate of convergence of the esti-
mators Qn and Q∗n is not implies the same rate of convergence for the corresponding
estimator Sn.

(iii). Local weak convergence theorems for the estimators (Q̂n, Q̂
∗
n) and ( ̂̂Qn, ̂̂Q∗n) are

given in [15], but there is no way to use these results in order to obtain weak conver-
gence theorem for the corresponding estimators Sn.
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2 Estimation algorithms

In this section we discuss algorithms for the NPMLE and the NPPMLE introduced
in Section 1. Let W(1), . . . ,W(r) be the set of observation times in ascending order
without replications. The likelihood function (1) can be rewritten in terms of param-
eters (θ,θ∗) with θ = (θ1, . . . , θr): θi=Q(W(i)) and θ

∗ = (θ∗1, . . . , θ
∗
r): θ

∗
i =Q∗(W(i)),

i = 1, . . . , r, as follows:

ψ(θ,θ∗) =
∑r

i=1
κδ(i) log θi + κδ̄(i) log θ∗i + κ̄(i) log(1− θi − θ∗i ),

where κ̄(i) (κδ(i), κδ̄(i)) is the total number of observationsWj = W(i) such that κj = 0
(κj = 1 and δj = 1, κj = 1 and δj = 0, respectively). The optimization problem is to
maximize ψ(θ,θ∗) on (θ,θ∗) ∈ S, where

S = {(θ,θ∗) : 0 ≤ θ1 ≤ . . . ≤ θr, 0 ≤ θ∗1 ≤ . . . ≤ θ∗r , θr + θ∗r ≤ 1},

Let
S = {(θ,θ∗) ∈ S : θi = θi−1 if κδ(i) + κ̄(i) = 0 and

θ∗i = θ∗i−1 if κδ̄(i) + κ̄(i) = 0, i = 1, . . . , r}

with the notations θ0 = θ∗0 = 0. The NPMLE (θ̂, θ̂
∗
), which maximizes ψ over

(θ,θ∗) ∈ S, is maximizes ψ over (θ,θ∗) ∈ S. Moreover, (θ̂, θ̂
∗
) is uniquely de�ned,

and θ̂r + θ̂∗r = 1 i� κ̄(r) = 0 [14].

The maximum likelihood estimation requires �rst to get the NPMLE (Q̂, Q̂∗) of
the parameter (Q,Q∗) and then recovering the survival function Ŝn of failure time
by formula (3). The �rst step reduced to the maximum likelihood estimation in the
current status data with two competing risks model. The EM-algorithm due to [17]
to get the NPMLE for the parameter (Q,Q∗) is working too slow, and one can use the
iterated convex minorant (ICM) algorithm (see [12]) based on the characterization of
the NPMLE from current status data with competing risk in [14]. Alternatively, the
NPMLE for the parameter (Q,Q∗) can be obtained by using the support reduction
algorithm [13], which is realized in the R-package MLEcens [21].

The pseudo likelihood estimation consists of three steps. At the �rst step we
get the NPMLE H̃n of the parameter H from the interval censored data (Xi,Wi),
i = 1, . . . , n. The convex minorant algorithm is a common way to get the maximum
likelihood estimator H̃n [16]. At the second step we get the estimator (Q̃n, Q̃

∗
n),

which maximizes LLr under Q̃∗n = H̃n − Q̃n. We study an algorithm to obtain
R̃n ≡ Q̃n/H̃n under known H ≡ H̃n from the observed data. Let W ∗∗

(1), . . . ,W
∗∗
(m) be

the set of admissible step points of the estimator R̃n in ascending order, including the
observation timesWi with κi=1; h1 =H(W ∗∗

(1))>0 and hi = H(W ∗∗
(i))−H(W ∗∗

(i−1)) > 0

for all i = 2, . . . ,m; δ∗∗(i) =
∑

j:Wj=W ∗∗(i)
δj be the number of observed failures at W ∗∗

(i) ,

i = 1, . . . ,m. It follows from (2) that R̂(W ∗∗
(s)) =

∑s
i=1 hiζi/

∑s
i=1 hi. Then the pseudo-
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likelihood function Lr can be rewritten in the following way:

Lr(ζ) = exp(LLr(F,G)) =
m∏
s=1

( s∑
i=1

hiζi/

s∑
i=1

hi

)δ∗∗
(s)
( s∑
i=1

hi(1− ζi)/
s∑
i=1

hi

)νs−δ∗∗(s)
∼=

m∏
s=1

( s∑
i=1

hiζi

)δ∗∗
(s)
( s∑
i=1

hi(1− ζi)
)νs−δ∗∗(s)

,

where ζ = (ζ1, . . . , ζm): ζi = p(W ∗∗
(i)) ∈ [0, 1], νi is the total number of observed events

at W ∗∗
(i) , i = 1, . . . ,m. The estimation problem reduces to maximizing the expression

φ(ζ) =
∑m

s=1

(
δ∗∗(s) log

(∑s

i=1
hiζi

)
+ (νs − δ∗∗(s)) log

(∑s

i=1
hi(1− ζi)

))
(5)

over the set of ζ ∈ [0, 1]m. Finally, at the third step one use the reconstruction
formula (3) to obtain the NPPMLE S̃n for S.

3 Simulations

In this section we consider speci�c designs (DS) to evaluate �nite-sample perfor-
mance of the NPMLE, NPPMLE and the naïve estimator from simulated data. We
perform simulations of the current status right-censored data with di�erent rates of
observations with known status (failure or censoring) pκ = P (X ≤ W ), which are
applicable for estimation of the parameter Q, and di�erent rates of observed failures
pδ = P (δ = 1|κ = 1), under the three sample sizes of 200, 500 and 1000. We denote
Γ(a, b) is the gamma distribution and W(a, b) is the Weibull distribution with the
shape parameter a > 0 and scale parameter b > 0; E(1/b) = Γ(1, b) is the exponential
distribution; LN(m, b) and FN(m, b) is the lognormal and the folded-normal distri-
bution with parameters m ∈ R and b > 0 respectively. The following table 1 collects
main features of the experimental designs used for the simulations.

Table 1. Main features of the experimental designs

DS T U W pκ pδ DS T U W pκ pδ

A Γ(1/2, 1) Γ(2, 1) LN(0,1) 0.83 0.91 D Γ(2, 1) E(1) FN(0,1) 0.54 0.19

B Γ(1/2, 1) E(1) FN(0,1) 0.80 0.73 E 1
3Γ(2, 1

5)+2
3Γ(10, 1

5) E(1/2) E(1) 0.50 0.49

C Γ(3, 1) E(1) E(1) 0.52 0.07 F 1
2W(1

2 ,1)+1
2W(5,1) E(1) E(3/2) 0.48 0.47

The same experimental designs were used in [22] to perform large sample properties
of the NPMLE, NPPMLE and its bootstrapped version by simulations.

In order to perform simulations we use R statistical software [25]. The function
computeMLE() of MLEcens package is used to create the MLE (Q̂n, Q̂

∗
n) for the

parameter (Q,Q). We use the the convex minorant algorithm realization gcmlcm()

of package pdrtool to get the estimator H̃ for the distribution of the event time
H, and the function lbfgsb3() of the same name package to solve the optimization
problem in (5) under H ≡ H̃ and obtain the estimator Q̃n. Finally, we obtain the
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estimators Ŝn, S̃n and ˜̃Sn for the survival function S of failure time from (Q̂n, Q̂
∗
n),

(Q̃n, Q̃
∗
n) by the reconstruction formula (3).

For the NPMLE, NPPMLE and naïve estimators we display the estimation bias
(Section 4, Table I) and the mean absolute estimation error (Section 4, Table II) at
the quartiles (Q25,MED,Q75) and 95%-quantile Q95 of the failure time distribution,
as well as the supremum supx∈[0,Q] |Sn(x) − S(x)| (Section 4, Table III) and the L1

norm adjusted to the interval length ‖Sn − S‖1,[0,Q]/J((0, Q]) (Section 4, Table IV)
restricted to the interval [0, Q] for Q =Q25,MED,Q75,Q95. The results are obtained
separately by using 104 replications.

First, we note that the �nite sample performance of the estimators is highly
related to the experimental design features. The designs A and B display very good
approximation quality for MED−Q95 quantiles, but there is an obvious problems
in the estimation of the survival distribution of failure time at �rst quartile Q25,
especially under the experimental design A because of dQ

dJ
(w) → ∞ as w → 0+.

On the other hand, the number of observations is insu�cient to get good enough
nonparametric estimates under the designs C and D having a very small rate of
observed failures. All the estimators display good enough �nite sample performance
under the designs E and F with the bimodal distributions of failure time. The L1(J)
divergence display quite small estimation error for all the designs except the design
A, and the uniform norm divergence is too high under these sample sizes. Moreover,
both the L1(J) and the uniform estimation errors are not highly dependent of the
population sizes from 200 to 1000.

Roughly, the nonparametric estimators show very similar �nite sample perfor-
mance for each of the designs. More careful look at the results allows us to give some
preference to the NPMLE, which displays a little bit smaller divergence in almost all
the cases. In most of cases the NPPMLE performs a little bit better results then the
naïve estimator, but it displays a huge bias (overestimation of the survival function)
at Q75 and Q95 quantile points that should be explained by accumulation of the
bias and the estimation error appears under estimation of the event time distribution
H and the competing risks components (Q,Q∗) under �xed H ≡ H̃ in the adverse
experimental conditions.
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4 Supplementary tables

Table I. The estimation bias
NPMLE NPPMLE Naïve

DS N Q25 MED Q75 Q95 Q25 MED Q75 Q95 Q25 MED Q75 Q95
A 200 0.2314 0.0309 6.9E-4 -0.009 0.2314 0.0282 0.0013 -0.0138 0.2337 0.0885 0.0947 0.137

500 0.2088 0.0141 9.4E-5 -0.0128 0.2086 0.012 0.0012 -0.007 0.2141 0.0768 0.1002 0.1505
1000 0.1804 0.0085 1.5E-4 -0.0101 0.1803 0.0066 7.9E-4 -1.1E-4 0.1899 0.0735 0.1029 0.1565

B 200 0.0716 0.0177 -0.0045 -0.0029 0.0602 0.0171 0.0150 0.0132 0.1048 0.1112 0.1711 0.1664
500 0.0314 0.0087 -0.0012 -0.0139 0.0242 0.0099 0.0112 0.0022 0.073 0.105 0.1721 0.2128
1000 0.0192 0.0052 -0.0010 -0.0184 0.0151 0.0074 0.0085 -0.0025 0.0624 0.1019 0.171 0.2353

C 200 -0.0439 -0.0914 0.0561 0.2349 0.0112 0.1732 0.4094 0.6086 0.0475 0.0558 0.0447 0.1064
500 -0.0277 -0.1052 0.0146 0.1959 0.0018 0.0932 0.3181 0.5163 0.0735 0.1515 0.1711 0.0989
1000 -0.0173 -0.0926 -0.0097 0.173 0.0052 0.0429 0.2500 0.4471 0.0781 0.1853 0.2528 0.1257

D 200 -0.0081 -0.0932 -0.0318 0.1589 0.0106 0.0238 0.1893 0.3865 0.0554 0.073 -0.0657 0.0987
500 -0.0051 -0.0605 -0.0669 0.1193 0.0084 0.0027 0.1278 0.3222 0.0616 0.1278 0.0042 0.0882
1000 -0.0045 -0.0337 -0.0858 0.0945 0.0062 0.0015 0.0852 0.2776 0.0627 0.1492 0.0865 0.0802

E 200 0.0146 -0.0392 -0.0700 -0.0097 0.0176 -0.0045 0.0594 0.1742 0.0608 0.1036 0.2079 0.2467
500 0.0084 -0.0183 -0.0510 -0.022 0.0106 -0.0010 0.0383 0.1169 0.059 0.1200 0.2311 0.3046
1000 0.0057 -0.0102 -0.0290 -0.0248 0.0086 -3.1E-4 0.0237 0.0796 0.0584 0.1265 0.2359 0.3278

F 200 -0.0075 -0.0382 -0.0378 0.053 -0.0067 0.0057 0.0851 0.1612 0.0449 0.1289 0.2572 0.0964
500 -0.0047 -0.021 -0.0269 0.043 -0.0039 7.5E-4 0.0491 0.0852 0.0486 0.135 0.2653 0.0951
1000 -0.0032 -0.0121 -0.0166 0.0347 -0.0020 0.0018 0.0306 0.0526 0.0508 0.1377 0.265 0.0946

Table II. The absolute error
NPMLE NPPMLE Naïve

DS N Q25 MED Q75 Q95 Q25 MED Q75 Q95 Q25 MED Q75 Q95
A 200 0.2413 0.0946 0.0560 0.0355 0.2412 0.0945 0.0583 0.0537 0.2404 0.1161 0.1096 0.1446

500 0.2257 0.0637 0.0402 0.0288 0.2256 0.0643 0.0425 0.0424 0.2244 0.0934 0.1059 0.1519
1000 0.2024 0.0485 0.032 0.0236 0.2019 0.0492 0.034 0.0328 0.2016 0.083 0.1055 0.1569

B 200 0.1251 0.0774 0.0649 0.0487 0.1215 0.0796 0.074 0.0804 0.1278 0.1214 0.1749 0.1887
500 0.0770 0.0561 0.0451 0.0372 0.0761 0.0591 0.0521 0.0645 0.0882 0.1099 0.173 0.2198
1000 0.0571 0.0442 0.0350 0.0327 0.0573 0.0475 0.0416 0.0540 0.0726 0.1041 0.1713 0.2375

C 200 0.1534 0.2540 0.2696 0.2803 0.1341 0.2809 0.4635 0.6194 0.1424 0.2826 0.3063 0.1780
500 0.1009 0.2052 0.2188 0.2390 0.1023 0.2165 0.3763 0.5278 0.1065 0.2352 0.3216 0.1689
1000 0.0741 0.1687 0.1889 0.2143 0.0804 0.1747 0.3103 0.4584 0.0969 0.2214 0.3367 0.1899

D 200 0.0784 0.1706 0.1811 0.2009 0.0801 0.179 0.3076 0.4101 0.0894 0.1893 0.2463 0.1647
500 0.0561 0.1205 0.1520 0.1619 0.0601 0.1317 0.2474 0.3459 0.0770 0.1694 0.2437 0.1544
1000 0.0442 0.0855 0.1406 0.1384 0.0485 0.1045 0.2086 0.3014 0.0719 0.1671 0.2432 0.1467

E 200 0.0574 0.1186 0.1606 0.0643 0.0590 0.1116 0.1979 0.2216 0.0730 0.1327 0.2306 0.2634
500 0.0404 0.0830 0.1172 0.0522 0.0425 0.0830 0.1334 0.1636 0.0639 0.1297 0.236 0.3083
1000 0.0321 0.0653 0.0867 0.0464 0.034 0.0678 0.0979 0.1229 0.0609 0.1302 0.2376 0.3287

F 200 0.0558 0.1321 0.1258 0.0919 0.0559 0.1256 0.1851 0.2089 0.0638 0.1509 0.2662 0.1498
500 0.0395 0.0935 0.0898 0.0719 0.0412 0.0940 0.1186 0.1336 0.0567 0.1434 0.2672 0.1481
1000 0.0312 0.0715 0.0693 0.0608 0.0328 0.0763 0.0871 0.0997 0.0547 0.1417 0.2654 0.1472
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Table III. The supremum norm divergence

NPMLE NPPMLE Naïve
DS N Q25 MED Q75 Q95 Q25 MED Q75 Q95 Q25 MED Q75 Q95
A 200 0.2490 0.3506 0.3512 0.3512 0.2490 0.3505 0.351 0.3511 0.2487 0.3515 0.3537 0.3564

500 0.2466 0.3059 0.3060 0.3060 0.2466 0.3058 0.3059 0.3059 0.2462 0.3069 0.3084 0.3131
1000 0.2423 0.2767 0.2767 0.2767 0.2424 0.2767 0.2767 0.2767 0.2420 0.2779 0.2795 0.2869

B 200 0.2036 0.2327 0.2381 0.2393 0.2025 0.2305 0.2373 0.2438 0.1998 0.2429 0.2752 0.3167
500 0.1661 0.1805 0.1836 0.1841 0.1645 0.1801 0.1846 0.1888 0.1650 0.1988 0.2380 0.2940
1000 0.1379 0.1480 0.1499 0.1502 0.137 0.1486 0.1520 0.1549 0.1401 0.1734 0.2182 0.2849

C 200 0.2126 0.3879 0.4621 0.5364 0.1836 0.3432 0.5240 0.6872 0.183 0.3607 0.4755 0.5256
500 0.1524 0.323 0.3913 0.457 0.1475 0.2897 0.4451 0.5963 0.1394 0.2901 0.4287 0.4942
1000 0.1205 0.2683 0.3449 0.4044 0.1230 0.2504 0.3845 0.5249 0.1252 0.2655 0.4136 0.4951

D 200 0.1323 0.2673 0.3465 0.3960 0.1297 0.2530 0.3916 0.5178 0.1306 0.2573 0.3777 0.4199
500 0.1014 0.1957 0.2978 0.3351 0.1038 0.1995 0.3258 0.4421 0.1101 0.2207 0.3453 0.3898
1000 0.0837 0.1513 0.2663 0.2972 0.0877 0.1662 0.2832 0.3909 0.0998 0.2084 0.3335 0.3794

E 200 0.1189 0.1953 0.2862 0.3005 0.1171 0.1856 0.2860 0.3637 0.1227 0.1908 0.3013 0.3913
500 0.0909 0.1447 0.2193 0.2340 0.0919 0.1447 0.2189 0.2800 0.1021 0.1732 0.2893 0.3871
1000 0.0748 0.1184 0.1751 0.1905 0.0768 0.1217 0.1803 0.2255 0.0913 0.1663 0.2819 0.383

F 200 0.1146 0.2122 0.2812 0.2905 0.1132 0.2002 0.2895 0.3578 0.1161 0.2022 0.3288 0.4004
500 0.0878 0.1623 0.2149 0.2208 0.0880 0.1616 0.2223 0.2632 0.0964 0.1859 0.3120 0.3855
1000 0.072 0.1324 0.1730 0.1776 0.0726 0.1365 0.1852 0.2120 0.0859 0.1787 0.3019 0.3768

Table IV. The L1 norm divergence

NPMLE NPPMLE Naïve
DS N Q25 MED Q75 Q95 Q25 MED Q75 Q95 Q25 MED Q75 Q95
A 200 0.2159 0.1525 0.0854 0.0653 0.2159 0.1541 0.0876 0.0709 0.2154 0.1643 0.1188 0.1224

500 0.2096 0.1001 0.0590 0.0459 0.2095 0.1015 0.0610 0.0493 0.2085 0.1195 0.1018 0.1152
1000 0.1980 0.0735 0.0452 0.0353 0.1979 0.0747 0.0469 0.0379 0.1971 0.0972 0.0944 0.1130

B 200 0.1207 0.0979 0.0803 0.0717 0.1194 0.0979 0.0831 0.0849 0.1184 0.1174 0.1366 0.1675
500 0.0876 0.0688 0.0568 0.0510 0.0864 0.0699 0.0604 0.0607 0.0894 0.0951 0.1246 0.1653
1000 0.0663 0.0528 0.0441 0.0395 0.0656 0.0544 0.0478 0.0476 0.0718 0.0845 0.119 0.1642

C 200 0.0337 0.0541 0.0645 0.0683 0.0307 0.0496 0.0651 0.0734 0.031 0.0512 0.0642 0.0677
500 0.0231 0.0381 0.0469 0.0501 0.0226 0.0375 0.0498 0.0568 0.0231 0.0392 0.0515 0.0556
1000 0.0177 0.0290 0.0367 0.0396 0.0181 0.0302 0.0401 0.0461 0.0199 0.0348 0.0470 0.0518

D 200 0.0391 0.0596 0.0704 0.0712 0.0377 0.0592 0.0741 0.0759 0.0400 0.0643 0.0787 0.0797
500 0.0281 0.0414 0.0508 0.0515 0.0283 0.0438 0.0552 0.0567 0.0318 0.0541 0.0673 0.0684
1000 0.0220 0.0318 0.0396 0.0403 0.0227 0.0349 0.0442 0.0455 0.0277 0.0500 0.0633 0.0644

E 200 0.0437 0.0572 0.0667 0.0703 0.0426 0.0566 0.0665 0.0771 0.0468 0.0659 0.0778 0.0905
500 0.0313 0.0405 0.0470 0.0504 0.0314 0.0413 0.0480 0.0556 0.0375 0.058 0.0707 0.0854
1000 0.0246 0.0317 0.0365 0.0394 0.0250 0.0329 0.0381 0.0434 0.0326 0.0547 0.0678 0.0833

F 200 0.0499 0.0610 0.0697 0.0741 0.0491 0.0597 0.0699 0.0946 0.0562 0.0677 0.0826 0.1133
500 0.0348 0.0432 0.0493 0.0524 0.0350 0.0439 0.0506 0.0652 0.046 0.0585 0.0739 0.1096
1000 0.0270 0.0338 0.0383 0.0408 0.0275 0.0349 0.0401 0.0500 0.0414 0.0549 0.0704 0.1089
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Abstract

The aim of paper is considering the problem of estimation of conditional
survival function in the case of right random censoring with presence of covari-
ate. For proposed estimator we prove an almost sure representation result with
rate and weak convergence results to the Gaussian processes.

Keywords: Survival function, random censoring, covariate, Gaussian pro-
cesses.

Introduction

The aim of paper is considering the problem of estimation of conditional survival
function in the case of right random censoring with presence of covariate. Let's con-
sider the case when the support of covariate C is the interval [0, 1] and we describe
our results on �xed design points 0 ≤ x1 ≤ x2 ≤ ... ≤ xn ≤ 1 at which we con-
sider responses (survival or failure times) X1, ..., Xn and censoring times Y1, ..., Yn
of identical objects, which are under study. These responses are independent and
nonnegative random variables (r.v.-s) with conditional distribution function (d.f.) at
xi,Fxi(t) = P (Xi ≤ t/Ci = xi). They are subjected to random right censoring, that is
forXi there is a censoring variable Yi with conditional d.f. Gxi(t) = P (Yi ≤ t/Ci = xi)
and at n−th stage of experiment the observed data is

S(n) = {(Zi, δi, Ci), 1 ≤ i ≤ n},

where Zi = min(Xi, Yi), δi = I(Xi ≤ Yi) with I(A) denoting the indicator of event
A. Note that in sample Sn r.v. Xi is observed only when δi = 1. Commonly, in
survival analysis to assume independence between the r.v.-s Xi and Yi conditional
on the covariate Ci. But, in some practical situations, this assumption does not
hold. Therefore, in this article we consider a dependence model in which dependence
structure is described through copula function.

1 Estimation of survival function

Let

Sx(t1, t2) = P (Xx > t1, Yx > t2), t1, t2 ≥ 0,
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the joint survival function of the response Xx and the censoring variable Yx at x.
Then the marginal survival functions are SxX(t) = 1−Fx(t) = Sx(t, 0) and SxY (t) =
1 − Gx(t) = Sx(0, t), t ≤ 0. We suppose that the marginal d.f.-s Fx and Gx are
continuous. Then according to the Theorem of Sclar (see, [1]), the joint survival
function Sx(t1, t2) can be expressed as

Sx(t1, t2) = Cx(S
X
x (t1), SYx (t2)) , t1, t2 ≥ 0, (1)

where Cx(u, v) is a known copula function depending on x, SXx and SYx in a general
way. We consider estimator of d.f. Fx which is equivalent to the relative-risk power
estimator [2,3] under independent censoring case.

Assume that at the �xed design value x ∈ (0, 1), Cx in (1) is Archimedean copula,
i.e.

Sx(t1, t2) = ϕ[−1]
x (ϕx(S

X
x (t1)) + ϕx(S

Y
x (t2))), t1, t2 ≥ 0, (2)

where, for each x, ϕx : [0, 1] → [0,+∞] is a known continuous, convex, strictly
decreasing function with ϕx = 0. We assume that copula generator function ϕx is
strict, i.e. ϕx(0) =∞ and ϕ−1

x is a inverse of ϕx. From (2), it follows that

P (Zx > t) = 1−Hx(t) = Hx(t) = Sx
Z(t) = Sx(t, t) =

= ϕ−1
x (ϕx(S

X
x (t)) + ϕx(S

Y
x (t))), t ≥ 0, (3)

Let H(1)
x (t) = P (Zx ≤ t, δx = 1) be a subdistribution function and Λx(t) is crude

hazard function of r.v. Xx subjecting to censoring by Yx,

Λx(dt) =
P (Xx ∈ dt,Xx ≤ Yx)

P (Xx ≥ t, Yx ≥ t)
=
H

(1)
x (dt)

SZx (t−)
. (4)

From (4) one can obtain following expression of survival function SXx :

SXx (t) = ϕ−1
x [−

t∫
0

ϕ
′

x(S
Z
x (u))dH(1)

x (u)], t ≥ 0. (5)

In order to constructing the estimator of SXx according to representation (5), we
introduce smoothed estimators of SZx , H

(1)
x and regularity conditions for them. We

We use the Gasser-Müller weights

wni(x, hn) =
1

qn(x, hn)

∫ xi

xi−1

1

hn
π(
x− z
hn

)dz, i = 1, ..., n, (6)

with

qn(x, hn) =

∫ xn

0

1

hn
π(
x− z
hn

)dz,
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where x0 = 0, π is a known probability density function (kernel) and {hn, n ≥ 1} is a
sequence of positive constants, tending to zero as n→∞, called bandwidth sequence.
Let's introduce the weighted estimators of Hx, S

Z
x and H(1)

x respectively as

Hxh(t) =
n∑
i=1

wni(x, hn)I(Zi ≤ t), SZxh(t) = 1−Hxh(t), H
(1)
xh (t) =

=
n∑
i=1

wni(x, hn)I(Zi ≤ t, δi = 1). (7)

Then pluggin in (5) estimators (6) and (7) we obtained the following intermediate
estimator of SXx :

SXxh(t) = 1− Fxh(t) = ϕ−1
x [−

t∫
0

ϕ
′

x(S
Z
x (u))dH(1)

x (u)], t ≥ 0.

In this work we propose the next extended analogue of estimator introduced in
[2,3]:

ŜXxh(t) = ϕ−1
x [ϕ(SZxh(t)) · µxh(t)] = 1− F̂xh(t), (8)

where µxh(t) = ϕ(SXxh(t))/ϕ(S̃Zxh(t)), ϕ(SXxh(t)) = −
t∫

0

ϕ
′
x(S

Z
xh(u))dH

(1)
xh (u),

ϕ(S̃Zxh(t)) = −
t∫

0

ϕ
′
x(S

Z
xh(u))dHxh(u). In order to investigate the estimate (8) we in-

troduce some conditions. For the design points x1, ..., xn, denote ∆n = min
1≤i≤n

(xi −

xi−1), ∆n = max
1≤i≤n

(xi − xi−1).

For the kernel π, let ‖π‖2
2 =

∫∞
−∞ π

2(u)du, mν(π) =
∫∞
−∞ u

νπ(u)du, ν = 1, 2.
Moreover, we use next assumptions on the design and on the kernel function:

(A1) As n→∞, xn → 1,∆n = O( 1
n
),∆n −∆n = o( 1

n
).

(A2) π is a probability density function with compact support [−M,M ] for some
M > 0, with m1(π) = 0 and |π(u) − π(u

′
)| ≤ C(π)|u − u

′|, where C(π) is some
constant.

Let THx = inf{t ≥ 0 : Hx(t) = 1}. Then THx = min(TFx , TGx). For our results
we need some smoothnees conditions on functions Hx(t) and H

(1)
x (t). We formulate

them for a general (sub)distribution function Nx(t), 0 ≤ x ≤ 1, t ∈ R and for a �xed
T > 0.
(A3) ∂2

∂x2Nx(t) =
··
Nx(t) exists and is continuous in (x, t) ∈ [0, 1]× [0, T ].

(A4) ∂2

∂t2
Nx(t) = N

′′
x (t) exists and is continuous in (x, t) ∈ [0, 1]× [0, T ].

(A5) ∂2

∂x∂t
Nx(t) =

·
N
′
x(t) exists and is continuous in (x, t) ∈ [0, 1]× [0, T ].

(A6) ∂ϕx(u)
∂u

= ϕ
′
x(u) and ∂2ϕx(u)

∂u2 = ϕ
′′
x(u) are Lipschitz in the x−direction with a
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bounded Lipschitz constant and ∂3ϕx(u)
∂u3 = ϕ

′′′
x (u) exists and is continuous in (x, u) ∈

[0, 1]× (0, 1].

2 Asymptotic properties of estimators

We derive an almost sure representation result with rate.
Theorem 1. Assume (A1), (A2), Hx(t) and H(1)

x (t) satisfy (A3)-(A5) in [0, T ]

with T < THx , ϕx satis�es (A6) and hn → 0, logn
nhn
→ 0, nh

5
n

logn
= O(1). Then, as n→∞,

F̂xh(t)− Fx(t) =
n∑
i=1

wni(x, hn)Ψtx(Zi, δi) + rn(t),

where

Ψtx(Zi, δi) =
−1

ϕ′x(S
X
x (t))

[

∫ t

0

ϕ
′′

x(S
Z
x (u))(I(Zi ≤ u)−Hx(u))dH(1)

x (u)−

−ϕ′x(SZx (t))(I(Zi ≤ t, δi = 1)−H(1)
x (t))−

−
∫ t

0

ϕ
′′

x(S
Z
x (u))(I(Zi ≤ u, δi = 1)−H(1)

x (u))dHx(u)],

and

sup
0≤t≤T

|rn(t)| a.s.= O((
log n

nhn
)
3/4

) .

The weak convergence of the empirical process (nhn)1/2{F̂xh(·) − Fx(·)} in the
space l∞[0, T ] of uniformly bounded functions on [0, T ], endowed with the uniform
topology is the contents of the next theorem.

Theorem 2. Assume (A1), (A2), Hx(t) and H(1)
x (t) satisfy (A3)-(A5) in [0, T ]

with T < THx , and that ϕx satis�es (A6).
(I) If nh5

n → 0 and (logn)3

nhn
→ 0, then, as n→∞,

(nhn)1/2{F̂xh(·)− Fx(·)} ⇒Wx(·) in l∞[0, T ].

(II)If hn = Cn−1/5 for some C > 0, then, as n→∞,

(nhn)1/2{F̂xh(·)− Fx(·)} ⇒W*

x(·) in l∞[0, T ],

where Wx(·) and W*

x(·) are Gaussian processes with means

EWx(t) = 0, EW*

x(t) = ax(t),
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and same covariance

Cov(Wx(t),W
(
xs)) = Cov(W*

x(t),W
*

x(s)) = Γx(t, s),

with

ax(t) =
−C5/2m2(π)

2ϕ′x(S
X
x (t))

∫ t

0

[ϕ
′′

x(S
Z
x (u))

··
H x(u)dH(1)

x (u)− ϕ′x(SZx (u))d
··

H(1)
x (u) ],

and

Γx(t, s) =
‖π‖2

2

ϕ′x(S
X
x (t))ϕ′x(S

X
x (s))

{
∫ min(t,s)

0

(ϕ
′

x(S
Z
x (z)))

2
dH(1)

x (z)+

+

∫ min(t,s)

0

[ϕ
′′

x(S
Z
x (w))SZx (w) + ϕ

′

x(S
Z
x (w))]

∫ w

0

ϕ
′′

x(S
Z
x (y))dH(1)

x (y)dH(1)
x (w)+

+

∫ min(t,s)

0

ϕ
′′

x(S
Z
x (w))

∫ max(t,s)

w

(ϕ
′′

x(S
Z
x (y))SZx (y) + ϕ

′

x(S
Z
x (y)))dH(1)

x (y)dH(1)
x (w)−

−
∫ t

0

[ϕ
′′

x(S
Z
x (y))SZx (y) + ϕ

′

x(S
Z
x (y))]dH(1)

x (y)·

·
∫ s

0

[ϕ
′′

x(S
Z
x (w))SZx (w) + ϕ

′

x(S
Z
x (w))]dH(1)

x (w)}.
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Abstract

We consider research two statistics for testing the composite hypotheses in
a model of random censorship from both sides, which have in limit a chi-square
distribution with appropriate degrees of freedom. First one is the generalized
chi-square statistics, for the construction of which we use the power estimate
distributions of function. The second statistics is twice the logarithm of the
likelihood ratio statistics of model of random censorship from both sides. Both
of these statistics can be used to construct an asymptotic tests of chi-square
type for the composite hypotheses.

Keywords: Chi-square statistics, likelihood ratio statistics ,maximum like-
lihood estimate, random censoring.

Introduction

Chi-square statistics occupies an important place in hypothesis testing theory. Having
more than a century of history, Chi-square statistics to date has various modi�ca-
tions and generalizations. Among the vast amount of literature should be allocated
monograph authors [5], which describes the theories, methods and applications of
various statistics such as chi-square to build the criteria of consent. It is known that
these statistics use jumps of the empirical distribution function in their structure,
i.e. relative frequencies as an estimate for the probability of observations falling into
the grouping intervals. In the case of incomplete observations, the empirical distri-
bution function is an untenable estimate for the unknown distribution function (d.f)
and therefore, instead of the empirical distribution function, di�erent estimates have
to be used for the d.f. whose structures depend on the models under consideration
(see [1] for details). Thus, in the work [3] with random censorship on the right,
the Chi-square statistics of the consent criterion is constructed and studied using a
nonparametric Kaplan-Meier estimate [4] for the d.f.. In [2] established properties
of locally asymptotically normality for likelihood ratio statistics (LRS) in competing
risks model under random censoring. In this paper, in a general model of incomplete
data constructed and investigated chi-square type statistics. Proved a result that
can be used to construct the chi-square test based on the asymptotics of the doubled
logarithm of the LRS.

Let {(Xi, Y1i, Y2i), i ≥ 1} sequence of independent and identically distributed
(i.i.d) random vectors with mutually independent components and marginal d.f.-
s F and Gk for random variables (r.v.) Xi and Yki, k = 1, 2; i ≥ 1, respec-
tively. Consider the case, when r.v. Xi subject to random censoring from both
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sides by variables Yki . On n- th stage of the experiment we observe the sam-
ple of size n: S(n) = {(Zi, δ0i, δ1i, δ2i), 1 ≤ i ≤ n}, where Zi = Y1i ∨ (Xi ∧ Y2i)
δ0i = I(Xi ∧ Y2i < Y1i), δ1i = I(Y1i ≤ Xi ≤ Y2i), δ2i = I(Y1i ≤ Y2i < Xi).
Here for numbers a and b: a ∧ b = min(a, b), a ∨ b = max(a, b). In a sample
S(n) r.v. Xi observed only whenδ1i = 1. In this model of random censorship from
the both sides of the problem consists in estimating of conditional survival function
1−Fτ (x) = P (Xi ≥ x/Xi ≥ τ), x ≥ τ, from sample S(n) under nuisance pair(G1, G2)
for speci�c number τ . In this article, we consider the problem of testing the composite
hypothesis H0 : F ∈ F , where F = {F (·; θ), θ ∈ Θ}- family of distribution depends
on unknown parameter θ = (θ1, ..., θs) ∈ Θ and Θ- an open set in Rs. Consider two
statistical tests for verify H0 with a limit of chi-square distribution.

1 Generalized chi-square statistics

For build statistics of chi-square test we consider the nonparametric estimates of
1− Fτ (x) from [1]:

1− Fτn(x) =

[
qn(x)

qn(τ)

]Rn(x;τ)

, x ≥ τ,

where

Rn(x; τ) = Λn(x; τ)(Ln(x; τ))−1,Λn(x; τ) = −
∫

[τ ;x]

(qn(u))−1dH(1)
n (u),

Ln(x; τ) = −
∫

[τ ;x]

(qn(u))−1dqn(u), qn(x) = G1n(x)−Hn(x) +
1

n
,

Hn(x) =
1

n

n∑
i=1

I(Zi < x) = H(0)
n (x) +H(1)

n (x) +H(2)
n (x),

H(m)
n (x) =

1

n

n∑
i=1

δmiI(Zi < x), m = 0, 1, 2,

G1n(x) = exp

{
−
∫

[x;∞)

(
Hn(u) +

1

n

)−1

dH(0)
n (u)

}
, x ≥ τ.

In order to construct test statistics we introduce the conditions
(C1) Let d.f.-s F and G1 continuous and the numbers τ, T such that, τ < T and

inf
τ≤x≤T

P (Y1i ≤ x ≤ Xi ∧ Y2i) > 0;

(C2) Support NF = {x : 0 < F (x; θ) < 1} independent on θ;
(C3) There is a density f(x; θ) with d.f.F (x; θ), it has continuous derivatives:

∂2f(x;θ)
∂θi∂θj

, i, j = 1, s and
∫ +∞
−∞

∣∣∣∂2f(x;θ)
∂θi∂θj

∣∣∣ dx <∞; i, j = 1, s;

(C4) Information matrix of Fisher I(θ) = ‖Iij‖i,j=1,s is positive de�nite and
continuous by θ, where
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Iij(θ) = −
∫ ∞
−∞

∂2 log f(x; θ)

∂θi∂θj
(G1(x)−G2(x))dF (x; θ)−

∫ ∞
−∞

∂2 logF (x; θ)

∂θi∂θj
F (x; θ)dG1(x)−

−
∫ ∞
−∞

∂2 log(1− F (x; θ))

∂θi∂θj
(1− F (x; θ))dG2(x);

(C5) There is a maximum likelihood estimate (MLE) θ̂n = (θ̂1n, ..., θ̂sn), for
parameterθ = (θ1, ..., θs), obtained by solving the system of equations

∂ log pn(θ)

∂θi
= 0, i = 1, ..., s,

where pn(θ) =
∏n

i=1(F (Zi; θ))
δ0i(f(Zi; θ))

δ1i(1−F (Zi; θ))
δ2i - the truncated likelihood

function of the model. Moreover, the MLE θ̂n can be represented by n→∞

n1/2(θ̂n − θ) = I−1(θ)An(θ) + op(1),

where An(θ) = n−1/2 ∂ log pn(θ)
∂θ

is normalized contribution function.
We present the asymptotic properties of estimates Fτn from [1]. We de�ne a

sequence of processes
{
Vn(x) = n1/2(Fτn(x)− Fτ (x)), x ≥ τ, n ≥ 1

}
. For these pro-

cesses the sequence of approximating processes is {Mn(x) = (1− Fτ (x))Nn(x)}, where

Nn(x) =

∫ x

τ

(Bn(u)− β∗n(u))dH(1)(u)

(G1(u)−H(u−))2
+

B
(1)
n (x)

G1(x)−H(x−)
−

− B
(1)
n (τ)

G1(τ)−N(τ−)
−
∫ x

τ

B
(1)
n (u)d(G1(u)−H(u−))

(G1(u)−H(u−))2
,

β∗n(x) = −G1(x)

(∫ +∞

τ

Bn(u)dH(0)(u)

H2(u)
+
B

(0)
n (x)

H(x)
−
∫ +∞

τ

B
(0)
n (u)dH(u)

H2(u)

)
.

Here, for each n: H(x) = Pθ0 (Z1 < x) = EHn(x), H(m)(x) = Pθ0 (Z1 < x, δm1 = 1) =

EH
(m)
n (x); Bn(u)

D
=B(H(u)), B(m)

n (u)
D
=B(H(m)(u)),m = 0, 1, 2 and {B(y), 0 ≤ y ≤ 1}

is process of a Brownian bridge. Note, that the processes Mn(x) are linear functional
of the Brownian bridge, and thus are Gaussian processes with zero mean. We present
the following theorem from [ 1 , Theorem 2.1.2].

Theorem A. [1]. Under condition (C1) we have an approximation

P

(
sup

τ≤x≤T
|Vn(x)−Mn(x)| > Rn−1/2 log n

)
≤ Qn−ε,

where ε, R = R(ε) and Q (absolute) positive constants.
Remark 1. In conditions of Theorem A for ε > 1 by lemma of Borel-Cantelli we

have the strong approximation

sup
τ≤x≤T

|Vn(x)−Mn(x)| a.s.=O
(
n−1/2 log n

)
.
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From here we have the weak convergence

Vn(x)
D⇒M(x) in D[τ ;T ], (1)

where Mn(·)D=M(·) for each n and Gaussian process M(x) obtained from Mn(x) by
replacement of Bn(u) and B(m)

n (u), m = 0, 1, 2 by the appropriate Brownian bridges
with arguments H(u) and H(m)(u),m = 0, 1, 2 respectively.

We introduce the random processes ϕn(x; θ) = n1/2(Fτn(x)− Fτ (x; θ)), ϕ̂n(x) =

ϕn(x; θ̂n). Let τ = xo < x1 < ... < xr−1 < xr < T < ∞ possible random partition
for a given probability pi, satisfying the equality F (ti; θ̂n) = pi. Consider a random
vector Φ̂n = (ϕ̂n(x1), ..., ϕ̂n(xr))

T . The next result generalizes (1).
Theorem 1. Let for all θ ∈ Θ the conditions (C1)-(C5) hold. Then the random

process {ϕ̂n(x), τ ≤ x ≤ T} converges weakly to the Gaussian process ϕ̂n(x) with zero
mean and covariance withτ < x ≤ y < T :

Covθ (ϕ̂(x), ϕ̂(y)) = Covθ (M(x),M(y))−
(
∂F (x; θ)

∂θ

)T
I−1(θ)

∂F (y; θ)

∂θ
,

where∂F (x;θ)
∂θ

=
(
∂F (x;θ)
∂θ1

, ..., ∂F (x;θ)
∂θs

)s
.

Let M̂ and Σ̂0 estimates of the matrices M and Σ0, obtained by replacing θ on
MLE θ̂n. The functionsG1, H

(m) andH replaced by their nonparametric estimatesG1n,
H

(m)
n andHn,m = 0, 1, 2. Following the general principles of construction of chi-

square statistics (see [5]), we consider the statistics

Ωn

(
θ̂n

)
= Φ̂T

n Σ̂0Φ̂n,

where Φ̂n = (ϕ̂n(x1), ..., ϕ̂n(xr))
T . Then we have

Theorem 2. Let the conditions (C1)-(C5) hold and rang
(

Σ̂0

)
= r. Then

L
(

Ωn

(
θ̂n

)
/H0

)
→
n→∞

Kr,

where Kr is chi-square distribution with degrees of freedom r.

2 Chi-square test based on the likelihood ratio statis-

tics

First, θ is scalar parameter. Consider a simple hypothesis H0 : θ = θ0 against the
composite alternativeH1 : θ ∈ Θ1, whereΘ = {θ0} ∪ Θ1. Let θ̂n is MLE, satisfying
the condition (C5) and consider LRS

Ln =
pn

(
θ̂n

)
pn (θ0)

.

We also consider the condition
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(C6) There is a third derivative on θ of density f(x; θ), exists the independent of
θ function hn such that ∣∣∣∣d3 log pn(θ)

dθ3

∣∣∣∣ ≤ hn;Mθhn <∞.

From the general theory of MLE (see [7]) follows that under conditions (C2) - (C4),
(C6), there exists a unique consistent MLE θ̂n and at n→∞

L
(
n1/2

(
θ̂n − θ0

)
/H0

)
→ N

(
0, I−1(θ0)

)
.

Then by Taylor's formula

logLn = log pn(θn)− log pn(θ0) =
∂ log pn(θ0)

∂θ

(
θ̂n − θ0

)
+

+
1

2

∂2 log pn(θ0)

∂θ2

(
θ̂n − θ0

)2

+
1

3!

∂3 log pn(θ∗)

∂θ3

(
θ̂n − θ0

)3

(2)

and

∂ log pn(θ̂n)

∂θ
− ∂ log pn(θ0)

∂θ
=
∂2 log pn(θ∗∗)

∂θ2

(
θ̂n − θ0

)
+

1

2

∂3 log pn(θ0)

∂θ3

(
θ̂n − θ0

)2
, (3)

where |θ∗ − θ0| ∨ |θ∗∗ − θ0| ≤
∣∣∣θ̂n − θ0

∣∣∣. Since, ∂ log pn(θ0)
∂θ

= 0, then substituting the

expression for ∂ log pn(θ̂n)
∂θ

from (3) into (2) we have

logLn = −1

2

∂2 log pn(θ0)

∂θ2

(
θ̂n − θ0

)2

+ qn,

where qn = op(1) at n → ∞. Now, using the low of large numbers and central limit
theorem, we �nd that under hypothesis H0 at n→∞ statistics

− 1

n
I−1(θ0)

∂2 log pn(θ0)

∂θ2
(nI(θ0))

(
θ̂n − θ0

)2

have a chi-square distribution K1 with one degree of freedom, i.e.

L (2 logLn/H0)→ K1. (4)

Thus we have proved
Theorem 3. Under conditions (C2) - (C6) and the hypothesis H0

2 logLn
D⇒χ2

1. (5)

Theorems 2 and 3 can be used to construct an asymptotic chi-square tests for the
hypotheses H0.
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Abstract

We consider the convergence of empirical processesof independence of ran-
dom elements and events indexed by functions that depend on an estimated
parameter and show that it can be replased by its natural limit.

Keywords: empirical process, independence, metric entropy, Glivenko-
Cantelly and Donsker theorems.

Introduction

Folowing [1-2] consider a sequence of experiments in which observed data consist of
pairs {(Xk, Ak) , k ≥ 1}, where Xk be independent and identically distributed random
elements in a measurable space (X,B) with probability law P and Ak are events with
common probability p = P(Ak) ∈ (0, 1). Let δk = I (Ak) be an indicator of the event
Ak. At the n− th stage of experiments observed data is S(n) = {(Xk, δk) , 1 ≤ k ≤ n}.
Each pair (Xk, δk) induced a statistical model with sample space X ⊗ {0, 1} with
σ-algebra G of sets B ×D and distribution Q∗(·) on (X⊗ {0, 1} ,G):

Q∗ (B ×D) = P (Xk ∈ B, δk ∈ D) , B ∈ B, D ⊂ {0, 1} .

Our interests are focused on submeasures Qm (B) = Q∗ (B × {m}), m = 0, 1 and
Q (B) = Q0 (B) +Q1 (B) = Q∗ (B × {0, 1}), B ∈ B. From practical point of view, it
is important to know the occurrence of hypothesis H about independence of random
elements Xk and event Ak for each k ≥ 1. In order to verify this we use the signed
measure Λ (B) = Q1 (B) − pQ (B) , B ∈ B, where p = Q1 (X). Then validity of H
is equivalent to the equality Λ (B) = 0 for any B ∈ B. For constructing the test
statistics for testing the hypothesis H we introduce the empirical analogue of measure
Λ (B) for any B ∈ B as Λn(B) = Q1n(B)− pnQn(B), where

pn = Q1n(X),Qn (B) = Q0n (B) + Q1n (B) ,

Q0n (B) =
1

n

n∑
k=1

(1− δk)I (Xk ∈ B) ,Q1n (B) =
1

n

n∑
k=1

δkI (Xk ∈ B) (1)

- empirical counterparts of p, Q(B) and Qm(B),m = 0, 1, respectively. According to

the strong law of large numbers (SLLN) for each B ∈ B at n→∞, Λn (B)
a.s.→ Λ (B)

and consequently under validity of H, Λn (B)
a.s.→ 0. Then naturally becomes investi-

gation of limit behaviors of normalized signed empirical process {χn = an(Λn (B) −
Λ (B)), B ∈ J }, indexed by certain class J of sets from B, where {an, n ≥ 1} is
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a (possible random) sequence of positive numbers. In the previous works [1,2] we
investigated the specially normalized empirical process of independence indexed by
the class F of measurable functions f on X, which coincides with χn when f = I(·)
is an indicator function.

1 Empirical Process of Independence Indexed by

Class of Measurable Functions

For a signed measure G and class F of Borel measurable functions f : X → R
introduce the integral

Gf =

∫
X

fdG, f ∈ F .

Let's introduce the following F -indexed extensions of empiricals (1) for f ∈ F :

Q0nf =
1

n

n∑
k=1

(1− δk) f (Xk), Q1nf =
1

n

n∑
k=1

δkf (Xk),

Qnf = Q0nf + Q1nf =
1

n

n∑
k=1

f (Xk), (2)

and Λnf = Q1nf − pnQnf, where pn = Q1n1 = Q1n (X) = 1
n

n∑
k=1

δk. Observe that

formulas (1) are special cases of (2) when F = {I (B) , B ∈ J }. We de�ne F -indexed
empirical process Gn : F → R as

f 7→ Gnf =
√
n (Qn −Q) f = n−1/2

n∑
k=1

(f (Xk)−Qf), f ∈ F . (3)

Here Gnf = G0nf +G1nf with subempirical processes

Gjnf =
√
n (Qjn −Qj) f, j = 0, 1, f ∈ F . (4)

For a given f by SLLN and central limit theorem (CLT)

(a) Qnf
a.s.−−−→
n→∞

Qf as Q |f | <∞; (5)

(b) Gnf ⇒ Gf
d
=N

(
0, σ2

Q (f)
)
, n→∞ as Qf 2 <∞, (6)

where σ2
Q (f) = Q(f −Qf)2.

Note that the uniformly variants for special classes F of measurable functions
of statements (5) and (6) have a very solid theory (see, for example, [3,10]). There
are di�erent extensions of classical theorems of Glivenko-Cantelli and Donsker for
F -indexed empirical processes (3) under certain conditions on the set F of mea-
surable functions. These conditions ensure the convergence of n−1/2‖Gnf‖F =
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sup
{
n−1/2 |Gnf | , f ∈ F

}
either in probability or almost surely to zero. These classes

F are called the weak or strong Glivenko-Cantelli classes respectively. Donsker-type
theorems provide a general conditions on F in order to get a weak convergence

Gnf ⇒ Gf in l∞ (F) , (7)

where l∞ (F) is a space of all bounded functions f : X → R equipped with the
supremum-norm ‖.‖F (see, [8], p.81). Class F for which holds the convergence (7) is
called a Donsker class. The limiting �eld {Gf, f ∈ F} in (7) is called a Q-Brownian
bridge. It is a tight Borel measurable element of l∞ (F) and is a Gaussian �eld with
zero mean and covariance function

cov (Gf,Gg) = Qfg −QfQg, f, g ∈ F . (8)

Remind that Q-Brownian bridge {Gf, f ∈ F} can be represented in distribution
though Q-Brownian sheet {W (f) , f ∈ F} with zero mean and covariance

cov (W (f) ,W (g)) = Qfg, f, g ∈ F , (9)

by distributional equality

Gf
d
=W (f)−W (1)Qf, f ∈ F . (10)

By SLLN under conditions Qj |f | <∞, j = 0, 1 for given f :

Λnf
a.s.→
n→∞

Λf
under H

= 0. (11)

Moreover, for a given f variable
√
n (Λn − Λ) f being a linear functional of subem-

pirical processes (4) under conditions Qjf
2 < ∞, j = 0, 1, have a limiting normal

distribution N
(
0, σ2

Q (f)
)
. In [1] the authors have proved uniform SLLN and CLT

for a specially normalized empirical F -indexed process{
∆nf =

(
n

pn (1− pn)

)1/2

(Λn − Λ) f, f ∈ F

}
, (12)

and showed that the limiting distribution is Q-Brownian bridge {Gf, f ∈ F} with
covariance (8).

2 Asymptotical results

Let Lq(Q) - the space of functions f : X→ R with the norm

‖f‖Q,q = (Q|f |q)
1/q =


∫
X

|f |qdQ


1/q

.
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To prove the F - uniform variants of theorems of Glivenko-Cantelli and Donsker we
de�ne the complexity or entropy of class F . To determine the entropy it is necessary
to de�ne a concept of ε− brackets. ε− bracket in Lq(Q) is a pairs of functions ϕ, ψ ∈
Lq(Q) such that Q (ϕ(X) ≤ ψ(X)) = 1 and ‖ψ − ϕ‖Q,q ≤ ε, i.e. Q(ψ − ϕ)q ≤ εq.
Function f ∈ F is in the (or covered by) bracket [ϕ, ψ], ifQ (ϕ(X) ≤ f(X) ≤ ψ(X)) =
1. Note that the functions ϕ and ψ may not belong to the class F , but they must
have �nite norms. Bracketing (or covering) number N[ ] (ε,F ,Lq (Q)) is the minimum
number of ε− brackets in Lq(Q) needed to cover F (see [8,9]):

N[ ] (ε,F ,Lq (Q)) = min

{
k : for some f1, ..., fk ∈ Lq (Q) ,
F ⊂ ∪

i,j
[fi, fj] : ‖fj − fi‖Q,q ≤ ε.

NumberHq (ε) = logN[ ] (ε,F ,Lq (Q)) is called the metric entropy with bracketing
of the class F in Lq(Q). Number Hjq (ε) = logN[ ] (ε,F ,Lq (Qj)) , j = 0, 1 denotes
the metric entropy of a class F in Lq(Qj), j = 0, 1, respectively. To prove the weak
convergence of F− indexed empirical processes (12) we introduce the integral of the
metric entropy with bracketing as

J
(q)
j[ ] (δ) = Jj[ ] (δ;F ;Lq (Qj)) =

δ∫
0

(Hjq (ε))1/2dε, j = 0, 1, for 0 < δ < 1.

Recall that numbers N[ ] (·) converge to +∞ at ε ↓ 0. However, it necessary for
Donsker's theorem that they converge not very fast to +∞. This speed is measured
by the integrals J (q)

j[ ] (δ) (see [8,9]).
The following theorem shows validity of Glivenko-Cantelli type theorem for the

process {∆nf, f ∈ F}. Here ∗ - means a.s. convergence by outer probability.

Theorem 1. [1] Let the class F such that

N[ ] (ε,F ,L1 (Qj)) <∞, j = 0, 1. (13)

Then under validity of the hypothesis H and at n→∞∥∥n−1/2∆nf
∥∥∗
F
a.s.→ 0. (14)

To prove the weak convergence of the process (12) to a Gaussian process, we �rst
investigate the limiting properties of two-dimensional empirical �eld
{(Anf,A1ng) , f, g ∈ F}, where Anf = = n

1/2 (Qn −Q) f and
A1ng = n

1/2 (Q1n −Q1) g.

Theorem 2. [1] Let the class F such that

F ⊂ L2(Qj) and J (2)
j[ ]

(1) <∞, j = 0, 1. (15)

Then for n→∞ sequence {(Anf,A1ng) , f, g ∈ F} of F → R2 maps weak converge
in l∞ (F)× l∞ (F) to the two-dimensional Gaussian �eld {(Af,A1g) , f, g ∈ F} with
zero mean and covariance structure for f, g ∈ F :

E (Af · Ag) = Qf g −QfQg,
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E (A1f · A1g) = Q1f g −Q1fQ1g, (16)

E (Af · A1g) = Q1f g −QfQ1g.

Remark. In the last formula of covariance in (16), in particular at g ≡ 1 we have
Q11 = p and

E (Af · A11) = Q1f − pQf, f ∈ F . (17)

Hence, when hypothesis H is valid, then the covariance (17) is equal to zero for all
f ∈ F . Thus, under the hypothesis H, the Brownian bridge {A f, f ∈ F} and r.v.
µ0 = A11 with a normal distribution N (0, p (1− p)) are independent.

In study of process (12) basic property of weak convergence to a Q− Brownian
bridge is contained in the following statement.

Theorem 3. [1] Under the conditions of Theorem 3.2 for n→∞

∆nf ⇒ ∆f in l∞(F), (18)

where {∆f, f ∈ F} is a Gaussian �eld with zero mean and under validity of the
hypothesis H, it coincides in distribution with Q− Brownian bridge.

Now we consider the convergence of empirical process of independence (12) when
the class F of measurable functions fθ,η : X → R indexed by sets Θ and K: F =
{fθ,η : θ ∈ Θ, η ∈ K}, where η is an estimated parameter. Let ηn be an estimator
of η is a random element with values in K de�ned on the same probability space as
X1, ..., Xn and η0 ∈ K is a �xed element, which is limit in probability of the sequence
ηn. In several applications it is interesting to prove that, as n→∞,

sup
θ∈Θ
|∆n(fθ,ηn − fθ,η0)| p−→ 0. (19)

We say that ηn is consistent for η0, if

sup
θ∈Θ

∣∣∆n(fθ,ηn − fθ,η0)2
∣∣ p−−−→
n→∞

0. (20)

Theorem 4. If conditions (15) and (20) holds, then (19) is valid.

The result (19) can be applicated to the estimaton of the functional θ 7→ ∆fθ,η.
When the parameter η is unknown, we can replace it by an estimator ηn an use the
estimator ∆nfθ,ηn . This result helps to derive the limiting behaviour of this estimator
by using the decomposition

(∆nfθ,ηn−∆fθ,η0) = ∆n(fθ,ηn − fθ,η0) + ∆nfθ,η0+

√
n

pn(1− pn)
∆n(fθ,ηn − fθ,η0). (21)

In right side of decomposition (21) the �rst term converges to zero by (19), the
second term will converge to a Gaussian process by theorem 3 and the third term
converges to zero by (20).
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Abstract

In right random censoring model using limit behaviors of empirical likelihood
function we propose Will-type asymptotic con�dence intervals for truncated
integrals.

Keywords: random censoring, relative-risk power estimator, truncated in-
tegral, con�dence interval.

Let X1, X2, ... ( survival times) and Y1, Y2, ... (censoring times) be two independent
sequences of random variables (r.v.-s) on the real line with marginal distribution func-
tion (d.f.-s) F and G respectively. Under the right random censoring model, instead
of observing Xi, we observe the pairs (Zi, δi), i = 1, 2, ..., n where Zi = min(Xi, Yi)
and δi = I(Xi ≤ Yi) with I(·) the indicator function. Let H denote d.f. of Zi. Then
H(t) = 1− (1− F (t))(1− G(t)). Let F and G are continuous. We are interested in
constructing a nonparametric con�dence interval for a integral functional of the form

θ = θ (F ) =

∫
ϕ(t)dF (t)

where ϕ is some given Borel measurable function. Let Fn denote the Relative Risk
Power estimator of F proposed [1] as

Fn(t) = 1− [1−Hn(t)]Rn(t), t ∈ R, (1)

where Hn(t) = 1
n

n∑
i=1

I(Zi ≤ t) be empirical estimator of H(t) and

Rn(t) =
n∑
i=1

δi(Zi ≤ t)

[
1−Hn(Zi) +

1

n

]−1
{

n∑
i=1

I(Zi ≤ t)

[
1−Hn(Zi) +

1

n

]−1
}−1

is the relative-risk function estimator. Note that estimator (1) is a correct estimator
of d.f. F (t) than the Product-Limit estimator of Kaplan-Meier and Exponential-
Hazard estimator of Altschuler-Breslow (see[2]). Since estimator (1) have same good
properties such that representation as sum of independent and identically distributed
(i.i.d) r.v.-s up to point T < TH = inf {t : H(t) = 1}, then instead of θ(F ) we consider
θT (F ) =

∫
ϕ∗(t)dF (t) where ϕ∗(t) = ϕ(t)I (t ≤ T ). We prove for plug-in estimator

of θT (F ) the asymptotic representation

θT (Fn) =

∫
ϕ∗(t)dFn(t) =

1

n

n∑
i=1

Ui +Op

(
n−

1
2

)
(2)
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where Ui = Ui(F,G) are i.i.d. r.v.-s. with EUi = θT (F ). Following Owen's [3] idea
we propose empirical likelihood con�dence interval for truncated integral functional
θT (F ).

Let Vi = ϕ ∗ (Zi)4 Fn(Zi), where 4Fn(Zi) = Fn(Zi) − Fn(Zi−) is the jump of
estimator (1) at point Zi. We introduce estimated likelihood ratio function of θT by

Rn(θT ) = max{
n∏
i=1

npi}

subject to restrictions

n

n∑
i=1

pi(Vi − θT ) = 0,
n∑
i=1

pi = 1.

Following by the method of Lagrange-multipliers, write

Lm =
n∑
i=1

log(hpi)− nλ
n∑
i=1

pi(Vi − θT ) + µ(
n∑
i=1

pi − 1)

where λ and µ are Lagrange multipliers. Now setting to zero the partial derivative
with respect to pi, we have

∂Lm
∂pi

=
1

pi
− nλ(Vi − θT ) + µ, i = 1, ..., n.

From here, we obtain µ = −n and

pi = [n(1 + λn(Vi − θT ))]−1, i = 1, ..., n,

where λn is the solution of the equation
n∑
i=1

Vi − θT
1 + λ(Vi − θT )

= 0. (3)

Let

σ2
U = lim

n→∞
V ar(n−1/2

n∑
i=1

Ui) <∞

and we de�ne the log-likelihood function

Ln(θ) = −2logRn(θ) = 2
n∑
i=1

log(1 + λn(Vi − θT )).

Then under validity of representation (2), as n→∞

σ−2
U V ar(V1)Ln(θT )

d→χ2
1, (4)

where χ2
1 is the chi-square r.v. with the degree of freedom one. Now using convergence

(4) we can constructing the Wild-type asymptotical con�dence intervals for truncated
integral θT (for detals, see [3]).
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Abstract

There are considered the questions of the application of mathematical mod-
els of metal cutting processes in the problem of optimizing machining modes.
The class of models of resistance is determined and the algorithm for �nding
the optimal modes is formulated. For speci�c models, a practical solution is
given.

Keywords: fuzzy regression model, cutting tool life, durability model of
drilling.

Introduction

Determining the optimal modes is one of the main problem in the theory of metal
cutting. To �nd the modes, it is necessary to use models that describe tool life. The
method of �nding the optimal modes depends on the type of model. The article
describes an algorithm for constructing a basic model of cutting tool durability using
a non-clear regression analysis apparatus using the example of a drilling operation.

1 Problem Statement

The strength of the drill is characterized by the total length of the holes [1, 2, 3, 4],
drilled by the tool before blunting - L, mm; or the operating time of the tool before
regrinding - T , min. Tool durability depends on two factors - feed rate per revolution
S, mm/rev (or minute feed speed Sm, mm/min) and rotational speed n, rpm (or
rotational speed V , m/min).

These values are related by the following ratios:

L = SmT , (1)

Sm = Sn, (2)

V =
πdn

1000
, (3)

where d is the diameter of the hole, mm.
Thus, a general view of the resistance model:

L = f(S, n) or T = f(S, n). (4)
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The parameters of the model (4) are estimated from the data of the persistence
experiment. Next, the resulting model is used to �nd the optimal cutting conditions.
For example, the criterion of optimality can be selected criterion of minimum costs
[2, 3, 4, 5, 6, 7]

Q(n, S) =
C

L(n, S)
+

D

Sn
+ E, (5)

where C,D,E � some economic parameters. These criteria include the criterion
of minimum costs, minimum cost (single unit of production, production line, factory,
industry, etc., which is determined by the composition of the parameters C,D,E).

2 Fuzzy regression models

y = fT (x)θ + e =
m∑
l

fl(x)θl + e, (6)

where y is the resulting attribute (response variable, random dependent variable);
fT (x) = (f1(x), f2(x), ..., fm(x)) a given vector function of an independent variable
x = (x1, ..., xk)

T , which may vary in the region X̃; θ = (θ1, ..., θm)T - unknown pa-
rameters that need to be determined from the results of experiments (measurements);
e is an observation error. Due to the complexity of the modeled object and the in-
�uence of unaccounted factors, it is not always possible to unambiguously determine
the structure of the vector f(x). It can often be observed that in di�erent parts
of the regressors de�nition domain di�erent models can be more adequate. One of
the most e�ective modeling methods in this case is the concept of fuzzy systems
[8, 9, 10, 11, 12, 13].

Fuzzy regression models will be speci�ed by means of a regression tree. Let
x1, x2, ..., xk be linguistic variables. Their values are determined by fuzzy sets
A,B, ...,Γ, and the degree of intensity of the manifestation of the value will be set as
the value of the functions of belonging. The branches of the decision tree have the
form [14].

Πij..l : If (x1 is Ai)∧ (x2 is Bj)∧ ...∧ (xk is Γl) then y′ij..l = η+αi + βj + ...+ γl. (7)

The truth of statements (x1 is Ai), (x2 is Bj), ..., (xk is Γl) is determined by the
values of the corresponding membership functions µAi ∈ [0, 1], µBj ∈ [0, 1], ..., µΓl ∈
[0, 1]. The degree of truth of a statement

∏
ij...l will be denoted as µ(y′ij..l) and calcu-

lated as µ(y′ij..l) = µAiµBj ..µΓl . Regarding the assignment of values µAi , µBj , ..., µΓl ,
we introduce the requirement that for each observation the following conditions are
met:

I∑
i=1

µAi = 1,
J∑
j=1

µBj = 1, ...,
L∑
l=1

µΓl = 1;
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µAi ∈ [0, 1], i = 1, I, µBj ∈ [0, 1], j = 1, J, ..., µΓl ∈ [0, 1], l = 1, L. (8)

The procedure of dephasing is carried out according to the scheme:

yij..l =

∑
µ(y′ij..l)y

′
ij..l∑

µ(y′ij..l)
. (9)

Taking into account (8), the decision tree (7) can be represented as an observation
model

yij..l = η +
I∑
i=1

µAiαi +
J∑
j=1

µBjβj + ...+
L∑
l=1

µΓlγl + eij..l. (10)

After �nding the estimate θ̂T = (η̂, α̂1, ..., α̂I , β̂1, ..., β̂J , γ̂1, ..., γ̂L, ) for the param-
eter vector of parameters θ, the decision tree can be �xed as

Π̂ij..l : If (x1 is Ai)∧ (x2 is Bj)∧ ...∧ (xk is Γl) then ŷ′ij..l = η̂+ α̂i+ β̂j + ...+ γ̂l. (11)

It can also be represented as a convolution.

ŷ = η̂ +
I∑
i=1

µAiα̂i +
J∑
j=1

µBj β̂j +
L∑
l=1

µΓl γ̂l. (12)

The considered techniques for representing decision trees in the form of statements
(11) and (12) can be extended to the case of using explanatory variables, measured on
a quantitative scale. To simplify the presentation, we consider a particular case when
the number of input factors is two. We break up the scope of the quantitive variables
x1, x2 into fuzzy partitions, which, as before, for the �rst factor we will denote as
A1, A2, ..., AI with the corresponding membership functions µ1i ∈ [0, 1], i = 1, I.
Similarly, for the factor x2, these will be partitions B1, B2, ..., BJ with accessory
functions µ2j ∈ [0, 1], j = 1, J . We will proceed from the fact that at individual
su�ciently wide intervals of the action of quantitative factors, the behavior of the
system response can be described by a linear dependence. In this case, the complexity
of the tree can be reduced by trying to replace the representation of the response in
the leaves of the tree, for example, by its linear dependence on input factors. The
decision tree from two factors in this case will consist of branches of the form

Πij : If (x1 is Ai) ∧ (x2 is Bj) then

y′ij = θ0 + θ01i + θ02j + (θ1 + θ11i + θ12j)x1 + (θ2 + θ21i + θ22j)x2. (13)

Here, a part of the terms, namely θ0 + θ1x1 + θ2x2, is included in each branch
of the tree and determines the overall linear dependence of the response on input
factors throughout the entire domain of their de�nition without taking it into account
for splitting it into partitions. Taking into account (8), decision tree (13) can be
represented as an observation model
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yijl = θ0 +
I∑
i=1

µ1iθ01i +
J∑
j=1

µ2jθ02j + (θ1 +
I∑
i=1

µ1iθ11i +
J∑
j=1

µ2jθ12j)x1+

+(θ2 +
I∑
i=1

µ1iθ21i +
J∑
j=1

µ2jθ22j)x2 + ejil. (14)

After estimating the parameters θ, the decision tree in the form of convolution
takes the form

ŷ = θ̂0 +
I∑
i=1

µ1iθ̂01i +
J∑
j=1

µ2j θ̂02j + (θ̂1 +
I∑
i=1

µ1iθ̂11i +
J∑
j=1

µ2j θ̂12j)x1+

+(θ̂2 +
I∑
i=1

µ1iθ̂21i +
J∑
j=1

µ2j θ̂22j)x2. (15)

To ensure the identi�ability of model (14), we will carry out its reduction by
removing a series of regressors from it. For example, you can remove regressors
µ1I , µ2J from the model, as well as µ1Ix1, µ1Ix2, µ2Jx1, µ2Jx2. The rationale for this
method of identifying the model can be found in [15, 16, 17, 18].

When using fuzzy regression models, it is necessary to make assumptions about
the number, form and location of fuzzy partitions for each factor. In this paper, we
restrict ourselves to the consideration of linear and quadratic local models. At the
same time, the possibility of using local models of increased complexity is limited
primarily by the implemented experiment plan. In the problem considered in the
work, the implemented plan is a complete factorial experiment at 5 levels for two
factors � a total of 25 di�erent points, not counting repeated observations. This
allows to use a quadratic polynomial of two factors as a local model when dividing the
domain of de�nition of the factors into two partitions. As for the form of the function
of belonging, for the considered problems we will use trapezoidal ones. To the category
�form of partitions� also should be referred the coordinates of the intersection points of
the neighboring fuzzy partitions and the width of their intersection. By virtue of the
symmetry of the domain of de�nition of factors with respect to zero, fuzzy partitions
can also be placed symmetrically with respect to a zero value. The coordinate of the
point of intersection of the partitions will be denoted as xµ. We denote the half width
of the intersection as ∆µ. The width of the partition cross section directly a�ects
the smoothness of the transition of the regression dependence from one local model
to another. When solving a speci�c task of restoring dependency, the parameters xµ
and ∆µ can be customized.

3 Solution of the practical task

The proposed method of calculation was used to determine the optimal modes (n∗, S∗)
of drilling IXI8H9T stainless steel with a drill of ∅4.2 mm using coolant.
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For the experiment, was developed and upgraded the bench drilling machine for
smooth regulation in a wide range of n and S.

In tab. 1 presents the data of the durability experiment [3, 4]. The experiments
were carried out according to the plan of a full factorial experiment of type 52.

Table 1: Data of the stability experiment L, mm (drill ∅4.2, drilling depth 2d, drill
reach 10d)

S, mm/rev n, rpm
750 1098 1447 1795 2145

0.0280 570 1430 3600 1400 430
390 1370 1800 1200 250

0.0450 5560 8300 4700 4000 700
8500 6300 5700 3000 1100

0.0621 4040 5800 6130 3330 590
5640 7800 4230 4070 810

0.0790 3150 3420 2760 1350 470
3850 4180 3800 1650 690

0.0962 1910 130 100 30 9
3170 150 140 50 11

Previously in [4, 5, 7], the logarithmic quadratic model was used as the base model
describing the data of the stochastic experiments (see tab. 1), where the response
values L were subjected to logarithms. In this case, logarithm was used to reduce
the spread of response. When using nonlinear transformation of the response, the
requirement for accuracy of approximation of such a response by one or another
regression model signi�cantly increases. The scatter of the response scale (see tab.
1) also indicates that the experiment was conducted on fairly wide ranges of factors.
On the wide ranges of input factors, it is often possible to observe the model drift,
when in di�erent parts of the factor de�nition area the nature of the dependence of
the response changes.

An important point in building a workable model of the process being studied
is to decide on the choice of the optimal complexity model, which would not have
the e�ect of retraining. It is called the e�ect of retraining if a model is tuned to the
description of the training data and has poor predictive properties. When choosing
a model, one should be guided by the external quality criteria [16]. Going over
models of varying complexity, we choose in this case a model for which the external
criterion is minimal. We will rely in this paper on two such criteria. Suppose that
the sample of observations is divided into two parts A and B. In the methods of
structural optimization, the following external criteria for model selection are widely
used [21-23]:

regularity criterion:
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∆2(B) = ∆2(B/A) = ||yB −XB θ̂A||2, (16)

where XB is the matrix of observations on the part B; θA � estimates of the model
parameters obtained by the sample A.

External criteria also includes the criterion of "sliding control" (CV - cross vali-
dation):

∆2
ck =

∑
i

(yi − fT (xi)θ̂(i))
2, (17)

where θ(i) is the parameter estimate for the full sample with excluded i observation.
Consider several classes of models and criteria values that are achieved on them.

The results are shown in tab. 2, where the residual sum of squares for the given
models is denoted by ε2. Structures of optimal models in their class of models were
selected by a minimum ∆2(B) of the regularity criterion, two other criteria ∆2

ck and
ε2 were additionally �xed.

An analysis of table 2 shows that the use of ordinary polynomials of the second
and third degree does not signi�cantly improve the quality of the approximation of
experimental data.

Table 2: Indicators of quality models of optimal complexity

Model Number of parameters, s ∆2(B) ∆2
ck ε2

Linear 3 47 2.07 89.4
Linear with interactions 3 47 2.07 89.4
Quadratic 4 16.3 0.78 31.3
Cubic 10 6.43 0.304 9.07
Fuzzy linear, 9 15.3 0.79 25.8
xµ = 0, ∆µ = 0.5
Fuzzy linear with interactions, 10 10.9 0.53 17.4
xµ = 0, ∆µ = 0.5
Fuzzy quadratic, 12 5.45 0.229 7.15
xµ = 0, ∆µ = 0.5
Fuzzy quadratic with 2 batches 10 5.34 0.242 7.05
on S, xµ = 0, ∆µ = 0.5

For the models presented in tab. 2, it is possible to test the hypothesis of their
adequacy by calculating the statistics F = σ̂2

LF/σ̂
2
e , where σ̂

2
LF = ε2/(N − s) is the

estimate of the variance of observations obtained from the model; σ̂2
e � estimation of

variance by repeated observations. In our case σ̂2
e = 0.0612. Characteristically that

none of the models presented in tab. 2 according to the criterion F is recognized
as adequate. In order for this to happen, it is necessary to ensure the accuracy of
the approximation with the estimated variance of the model σ̂2

LF ' 0.1. This can be
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done if the tuning functions of the membership in the parameters xµ and ∆µ. The
results presented in tab. 2 suggest that the optimal complexity of the model may
be in the range of 10�12 parameters. The result was a fuzzy quadratic model with
xµ = −0.22, ∆µ = 0.73. Its optimal structure has 12 parameters and provides the
following quality indicators: ∆2(B) = 3.66, ∆2

ck = 0.1427, ε2 = 3.94. The di�erences
in the behavior of the restored dependencies by quadratic and fuzzy quadratic models
can be traced in Figures 1 and 2, where the label "y" denotes the observed response
values.

The feed rate S varies in the range [�1, +1] in normalized units, which corresponds
to the range [0.0280; 0.0962].

Figure 1: Sections for a fuzzy quadratic and quadratic model, n=750.

Figure 2: Sections for a fuzzy quadratic and quadratic model, n=1098.
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Conclusion

A comparative analysis of several types of resistance drilling models has been carried
out. Fuzzy quadratic model is proposed as an adequate model proposed for practical
use.
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Abstract

In this paper, we consider the application of the Wiener degradation model
in the analysis of the laser module ILPN-134 degradation data. The Wiener
degradation model is based on the assumption that degradation increments are
independent normally distributed random variables. It has been shown that
an appropriate model for the considered data is the Wiener degradation model
with random e�ects, which takes into account the unit-to-unit variability. The
constructed model can be used for estimation of the reliability indicators, such
as the probability of the non-failure operation during some period of time.

Keywords: degradation process, Wiener degradation model, random e�ect,
maximum likelihood estimation, reliability.

Introduction

The reliability analysis is an important stage for the quality assessment of techni-
cal systems and devices. The mathematical apparatus of reliability analysis includes
methods for the construction of a statistical model describing the lifetime distribu-
tion. There are two approaches to construction of statistical reliability models: the
�rst one uses only the information about observed failures, but the second approach
considers all values of some indicator (index) characterizing the degradation process.
In that way, statistical degradation models use more information about tested items
to estimate the reliability than the models based on the samples of failure time data.
So, if there is the possibility to observe the degradation paths until failure instead of
only the time to failure, it will allow to obtain more accurate estimates of probability
of the non-failure operation during some period of time.

The most popular statistical degradation models for the analysis of real data is
the gamma and Wiener degradation models. For example, in [6], the gamma model
is considered to analyze the wear of car tires depending on various stress factors, and
in [3] and [8], the authors use the gamma degradation model to describe the aging of
automobile brake pads. However, the gamma model cannot be applied in the cases,
when values of degradation increments are not positive. In such cases, it is necessary
to construct the Wiener degradation model.

If unit-to-unit variability is observed in investigated data, a �random-e�ect� degra-
dation model should be considered. For such models, the distribution of random

1This work is supported by the Russian Ministry of Education and Science (project
1.1009.2017/4.6)

114



Applied Methods of Statistical Analysis

parameter is taken into account. For example, in [7], the �random-e�ect� Wiener
degradation model with random scale parameter from the gamma distribution is of-
fered. In this case, the number of unknown parameters of the �random-e�ect� model
is larger than for the ��xed-e�ect� model, and as a result, the accuracy of parameter
estimation for the �random-e�ect� model may decrease. On the other hand, if the
unit-to-unit variability is rather large, then the ��xed-e�ect� model is not appropriate
[1].

In this paper, we construct the �random-e�ect� Wiener degradation model for the
reliability analysis of the semiconducting laser module ILNP-134 [9].

1 The problem formulation for the reliability analy-

sis of the laser module ILPN-134

The reliability analysis of the semiconducting laser module ILPN-134 was described
in [9]. 15 lasers were divided into three groups of 5 items and tested under the
temperature of 70◦C, 80◦C and 90◦C in each group, respectively. It was necessary to
maintain a consumption current corresponding to a radiation power of 3 mW during
the 8500 hours of accelerated tests. During the experiment, two items were excluded
from the consideration because of the insu�cient adjustment on maximum of the
output optical power.

The value of the current (degradation index) was measured every 100 ± 20 h. An
item fails when the current value is 20% higher than the initial value.

The degradation paths for di�erent groups of the experiment are shown on Figures
1�3.

Figure 1: Observed degradation paths
under 70◦C

Figure 2: Observed degradation paths
under 80◦C

As can be seen from the �gures, the typical degradation process is observed for
the �rst two tested groups which relates to the aging of the laser diodes. However,
the other nature of the degradation with the premature failures is detected for two
lasers tested under the stress of 90◦C. The detailed research of these devices showed

115



Novosibirsk, 18-20 September, 2019

Figure 3: Observed degradation paths
under 90◦C

that the reason for this behavior is connected to the optical �ber o�set relative to
the laser diode.

In [9], the authors carried out the reliability analysis basing only on the failure
time values which were obtained by the approximation of degradation paths with the
exponential function for each tested laser. In this paper, we construct a statistical
model using all the values of the degradation index. Obtained increments of the
degradation index are positive and negative, so it is reasonable to use the Wiener
degradation model for the further analysis.

2 The Wiener degradation models

Let us assume that the observed stochastic process Z(t) is a stochastic process with
independent increments, and Z(0) = 0. For the Wiener degradation model, incre-
ments ∆Z(t) = Z(t + ∆t) − Z(t) have the normal distribution with the probability
density function

fNorm(u; θ1, θ2) =
1√

2πθ2

e
− (u−θ1)2

2θ22 , (1)

where θ1 = µ (ν (t+ ∆t)− ν (t)) is the shift parameter and θ2 = σ is the scale
parameter, ν(t) is a positive increasing function.

Let the degradation process Z(t) is observed under a constant in time stress (co-
variate) x , the range of values of which is de�ned by the conditions of the experiment.
There are various ways to parameterize the dependence of the degradation path on
covariates. Here, we assume that the covariate x in�uences the degradation paths as
in the accelerated failure time model [5]:

Zx(t) = Z

(
t

r(x; β)

)
, (2)
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where r(x; β) is the positive covariate function, β is the vector or scalar regression
parameter.

Denote the mathematical expectation of degradation process Zx(t) by

M (Zx(t)) = mx(t) = µνx(t) = µν

(
t

r(x; β)
; γ

)
, (3)

where mx(t) is the trend function of the degradation process, γ is the vector or scalar
trend parameter.

The time to failure, which depends on covariate x , is de�ned as:

Tx = sup{t : Zx(t) < z0}, (4)

where z0 is the critical value of the degradation index. Then, the reliability function
for the Wiener degradation model can be written as:

Sx (t) = P {Tx > t} = P {Zx (t) < z0} = Φ

(
z0 −mx (t)

σ

)
, (5)

where Φ(·) is the standard normal distribution function.
To take into account unit-to-unit variability, the random e�ect can be included

into the model by considering the parameter µ as a random variable from truncated
normal distribution with the density function [1]

ftrunc(t; δ, α) =
fNorm(t; δ, α)

1− FNorm(0; δ, α)
, (6)

where δ is the shift parameter and α is the scale parameter.
Then, the marginal density function for Zx(t) in the case of Wiener degradation

model with random e�ects is equal to [2]:

fZx(t) (u; νx(t), σ, δ, α) =

∞∫
0

fNorm (u;ωνx(t), σ) ftrunc (ω; δ, α) dω (7)

In this case, the reliability function can be written as

Sx(t) = P{Tx > t} = P{Zx(t) < z0} =

z0∫
0

fZx(t) (u; νx(t), σ, δ, α) du (8)

Let the realization of stochastic process Z(t) for the i-th item under the value of
covariate x = xi is denoted as

Zi =
{

(0, Zi
0 = 0), (ti1, Z

i
1), ..., (tiki , Z

i
ki

)
}
, i = 1, n, (9)

where ki is the number of time moments, in which the degradation index was mea-
sured. Then, the sample of independent degradation index increments with covariates
can be written as:

Xn =
{(
X i
j = Zi

j − Zi
j−1, x

i
)
, i = 1, n, j = 1, ki

}
(10)
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Maximum likelihood estimates of parameters σ, γ and β of the ��xed-e�ect�
Wiener degradation model are calculated by maximization of the likelihood func-
tion:

L(Xn) =
n∏
i=1

ki∏
j=1

fNorm
(
X i
j;µνxi(t; γ, β), σ

)
. (11)

If Zi(t), i = 1, n are the Wiener degradation processes with random e�ects, then
the likelihood function can be written as the multiplication of the joint density func-
tions of increments X i

j on the common random e�ect:

L (Xn) =
n∏
i=1

f
(
X i

1, X
i
2, ..., X

i
ki

)
=

=
n∏
i=1

∞∫
0

[
ki∏
j=1

fNorm
(
X i
j;ωνxi(t; γ, β), σ

)]
ftrunc (ω; δ, α) dω (12)

3 The analysis of the ILPN-134 lasers degradation

data

We have considered the construction of the Wiener degradation model for estimating
the reliability of the semiconducting laser module ILNP-134. The experiment data
were presented by Zhuravleva, Ivanov and others in [9] and were described in Section 1
of the current paper. The detailed data analysis showed that two types of failure were
observed during the accelerated test: the �rst type is related to the aging of the laser
diode (LD) and the second one is related to the misalignment of the optical system
(OS). Concerning to this, we decided to use the covariate function with the regression
parameter β dependent on the covariate values.

At �rst, we have selected the most appropriate trend and covariate functions for
the lasers data using the "�xed-e�ect" Wiener degradation model. Two types of
the loglinear covariate functions depending on the β de�nition were chosen for the
investigation:

r1 (x; β) =

{
eβ

1
1+β2

1000
x+273.2 , x ≤ 85;

eβ
2
1+β2

1000
x+273.2 , x > 85.

(13)

r2 (x; β) =

{
eβ1+β1

2
1000

x+273.2 , x ≤ 85;

eβ1+β2
2

1000
x+273.2 , x > 85.

(14)

Additionally, the exponential and power trend functions were considered:

ν1 (t; γ) = γ0 + γ1e
t/r(x;β); (15)

ν2 (t; γ) = γ0 + γ
γ2t/r(x;β)
1 . (16)

The parameters estimates, AIC and BIC values obtained for the "�xed-e�ect"
Wiener degradation model with the di�erent combinations of the considered trend
and covariate functions are presented in the Table 1.
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Table 1: The parameter estimates of the "�xed-e�ect" Wiener degradation models,
AIC and BIC values

Trend
function

Covariate
function

σ γ1 γ2 β1 β2 AIC BIC

(15) (13) 1.70 1.97 -
β1

1 : 3.71
β2

1 : 2.54
-0.42 -597.85 -573.35

(15) (14) 1.69 2.16 - 3.15
β1

2 : 0.33
β2

2 : 0.63
-597.83 -573.33

(16) (13) 1.70 0.07 1.75
β1

1 : 0.93
β2

1 : -0.33
-0.22 -595.91 -566.52

(16) (14) 1.69 0.15 1.81 0.81
β1

2 : 0.05
β2

2 : 0.45
-595.91 -566.52

As can be seen from Table 1, the AIC and BIC values are smaller for the cases
with the exponential trend function (15). As to the covariate functions, the values of
information criteria are very close to each other, however the model with covariate
function (13) describes the data more accurately. So, we choose these functions for
the model construction.

As the unit-to-unit variability can be observed in the investigated data, we have
considered the Wiener degradation model with random e�ects, where the random
parameter µ has the left truncated normal distribution with the shift parameter δ
equal to 0. The estimation results are presented in Table 2, the parameter estimates
of the corresponding "�xed-e�ect" model are given for the comparison.

Table 2: The parameter estimates of the "�xed-e�ect" and "random-e�ect" Wiener
degradation models, AIC and BIC values

Wiener degradation model σ α β1 β2 AIC BIC
"Fixed-e�ect" model 1.70 - 3.71 2.54 -0.42 -597.85 -573.35

"Random-e�ect" model 2.09 3.89e-03 2.03 1.57 -0.16 -707.54 -687.95

Basing on the AIC and BIC values presented in Table 2, it can be concluded that
the "random-e�ect" Wiener degradation model is more appropriate model for the
reliabiity analysis of the laser module ILPN-134 data.

The trend functions corresponding to the constructed "random-e�ect" Wiener
degradation model are demonstrated on Figures 4-6.

Conclusions

In this paper, we have considered the problems of constructing the Wiener degrada-
tion model for the analysis of the ILPN-134 lasers data. An interesting feature of
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Figure 4: The trend function and
observed degradation paths under 70◦C

Figure 5: The trend function and
observed degradation paths under 80◦C

Figure 6: The trend function and
observed degradation paths under 90◦C

these data is that there are two types of failure, one of which arises only under high
values of temperature. By this reason, we have taken the covariate function with the
regression parameter dependent on the value of covarite (temperature). The expo-
nential trend function was selected as the most appropriate one. Moreover, there is
a signi�cant unit-to-unit variability in data, and the Wiener degradation model with
random e�ects turned out to be more appropriate than the corresponding "�xed-
e�ect" model. The constructed model can be used for estimation of the reliability
indicators, such as the probability of the non-failure operation during some period of
time.
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Abstract

The methods of construction of estimates are considered in the analysis of
Big Data. The in�uence on the results of conclusions according to the Pearson
Chi-squared test of choosing the number of intervals and grouping method is
demonstrated. It is shows how the limited accuracy of data in large samples
e�ects on the distribution of statistics of non-parametric tests. Recommenda-
tions on the application of tests under large samples analysis are given. It is
shown that the distribution of statistics of tests for testing laws homogeneity,
as well as the tests of homogeneity of the means and tests of homogeneity of the
variances, is a�ected by the non-equilibrium character of the data presented in
the compared samples.

Keywords: Big Data; parameter estimation; testing hypotheses; goodness-
of-�t tests; homogeneity tests; statistical simulation

Introduction

The questions of application of statistical methods to the analysis of large data ar-
rays (Big Data) are of great interest in recent years. In connection with the rapid
accumulation of gigantic volumes of information, there is a need for research the ac-
cumulated data, for �nding, extracting and using the laws hidden in data, including
probabilistic ones. Naturally, one can try to apply methods and tests from the vast
arsenal of classical mathematical statistics for the analysis of big data, using popular
software systems for statistical analysis. However, application of the classical appara-
tus of applied mathematical statistics for the analysis of big data, as a rule, leads to
speci�c problems that limit the possibilities of correct application of this apparatus.

In this paper, we will discuss only the methods and tests associated with the
analysis of one-dimensional random variables, the real problems of which are most
familiar to us. At least three situations can be considered where increasing sample
size causes problems in application of methods or tests.

Firstly, due to the �curse of dimension�, well-proven methods and algorithms be-
come ine�ective. In particular, problems arise under the calculation of estimates of
parameters. When using estimation methods that operate on non-grouped data, the
computational costs increase cardinally with increasing size of samples analyzed. The
convergence of iterative algorithms used in estimation worsens. A signi�cant factor is
no robustness of certain types of estimation. The natural way to resolve this situation
is the use of estimation methods that involve grouping data [1]. But in this case, the
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question arises: how the estimates obtained for grouped data will a�ect the proper-
ties of hypotheses tests in which estimates will be used. For example, how will this
a�ect the statistics distributions of non-parametric goodness-of-�t tests when testing
composite hypotheses? In this case, the statistic distributions signi�cantly depend
on the method of parameter estimation [2, 3, 4, 5].

Secondly, a lot of popular statistical tests are not adapted even for samples of
about thousand observations, since the information on the distributions of statistics
of these tests is presented only by brief tables of critical values for some sample sizes
n. By rough estimate, the count of such tests is more than 80% of all tests count. It
should be noted that the possibility of application such tests with �reasonable� values
of sample size is easily resolved by statistical simulation of distributions of statistics
for given sample size and validity of the tested hypothesis H0. This simulation can be
carried out interactively during statistical analysis [6, 7]. The empirical distribution
GN(Sn |H0 ) of statistic S of test constructed as a result of simulation with size N
can then be used to estimate the achieved signi�cance level pvalue by the value of the
statistics S∗ calculated from the analyzed sample.

Thirdly, the application of tests, for which the limiting (asymptotic) distributions
of statistics are known, always leads to rejection of even true tested hypothesis with
increasing sample sizes. This is typical, for example, for goodness-of-�t tests, for a lot
of special tests for testing hypotheses of normal distribution, uniform distribution or
exponential distribution, etc. In [8], it has been shown that this problem is associated
not only and not so much with the increasing computational costs, as with the lim-
ited accuracy of the analyzed data (with limited measurement accuracy). A similar
problem hinders the correctness of application of homogeneity tests (homogeneity of
laws, homogeneity of variance, to a lesser degree of homogeneity of means) under
large samples. As will be shown, in the case of homogeneity tests, the reason lies in
the unevenness of measurements in the analyzed samples.

1 Estimation of the parameters of distribution

Estimates of the parameters of distributions can be obtained by various methods. The
maximum likelihood estimates (MLE) characterized by the best asymptotic properties
and calculated by maximizing the likelihood function

θ̂ = argmax
θ

n∏
j=1

f(xj, θ), (1)

or by maximizing the logarithm of this function, where θ is unknown parameter
(generally vector), f(x, θ) is the density function of the distribution law, x1, x2, ..., xn
are sample observation. For some laws, the distribution of MLE of parameters is
obtained as statistics simply computed from the observations of the samples, but in
most cases MLE are the result of using some iterative method.

When calculating MD-estimates (estimates of the minimum distance), some mea-
sure of proximity (distance) ρ(F (x, θ), Fn(x)) between the theoretical F (x, θ) and
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empirical Fn(x) distributions is minimized. MD-estimates can be obtain as a result
of solving following task

θ̂ = arg min
θ
ρ(F (x, θ), Fn(x)). (2)

For example, the statistics of nonparametric goodness-of-�t tests (Kolmogorov, Cramer-
von Mises-Smirnov, Anderson-Darling, Kuiper, Watson, and others [9]) can be used
as measures of proximity.

With relatively small sample sizes, L-estimates of parameters can be used. These
estimates are some linear combinations of order statistics (elements of variational
series X(1) < X(2) < ... < X(n) constructed from original sample x1, x2, ..., xn).

MLE of parameters of distribution, as a rule, are not robust. The presence of
anomalies of sample observations or the inaccuracy of the assumption about the
form of distribution leads to the construction of models with distribution functions
that are unacceptably deviating from empirical distributions. MD-estimations have
greater stability.

Obviously, the calculation of estimates (1) and (2) is associated with serious com-
putational di�culties for very large samples. In the case of grouped sample, the
sample observations are associated with a set of non-intersecting intervals, which di-
vide the domain of de�nition of a random variable into k non-intersecting intervals
by boundary points

x(0) < x(1) < . . . < x(k−1) < x(k),

where x(0) is the lower bound of the domain of de�nition of random variable X; x(k)

is the upper bound of the domain of de�nition of random variable X.
MLE by grouped sample [1] are calculated by maximizing the likelihood function

θ̂ = argmax
θ

k∏
i=1

P ni(θ), (3)

(3) where Pi(θ) =
x(i)∫

x(i−1)

f(x, θ)dx is the probability of the observation entering in the

i-th interval of values, ni is the number of observations that fell into the i-th interval,
k∑
i=1

ni = n. Estimates by grouped samples can be obtained by minimizing statistics

χ2

θ̂ = argmin
θ

n

k∑
i=1

(ni/n− Pi(θ))2

Pi(θ)
, (4)

as well as other statistics. In [10], it was shown that all of estimation method for
grouped data considered give consistent and asymptotically e�ective estimates under
appropriate regularity conditions. However, the most preferred estimates are MLE.
An important advantage of estimates based on grouped data is robustness [11].

In the case of presence of non-grouped data, estimates for grouped data are rarely
applied. This is due to the greater computational costs and necessity to numerical
integration in the computation Pi(θ), that requires appropriate software support.
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In the case of large sample sizes, the situation changes. Computational costs do
not change as computations grow with a �xed number of grouping intervals, but
increase only with an increase in the number of intervals k. This means that it is
advisable to use MLE by grouped samples in the conditions of Big Data. These are
robust and asymptotically e�cient estimates. The quality of estimates for small k
can be improved using asymptotically optimal grouping (AOG) [1, 12, 13], in which
the losses in Fisher information associated with grouping are minimized.

2 Application of χ2-test under large samples

The statistic of Pearson χ2 goodness-of-�t test has the following form

X2
n = n

k∑
i=1

(ni/n− Pi(θ))2

Pi(θ)
. (5)

In the case of testing simple hypothesis, this statistic obeys χ2
r-distribution with

r = k − 1 degrees of freedom if n→∞ and the null hypothesis is true.
In the case of testing composite hypothesis and estimating m parameters of dis-

tribution by sample statistic (4) obeys χ2
r-distribution with r = k − m − 1 degrees

of freedom, if the estimates are obtained by minimizing (4) these statistics, or using
MLE (3) (or other asymptotically e�ective estimates for grouped data).

The distribution of statistic (5) does not agree with χ2
k−m−1�distribution when

parameter estimations are obtained by non-grouped data. It is recommended to apply
the Nikulin-Rao-Robson test when MLE were obtained according to ungrouped data
[14, 15].

There are not principal problems that prevent application of Pearson χ2-test under
Big Data. Only computational di�culties are possible.

Let us illustrate the results of application Pearson χ2-test on the example of
testing hypothesis of normal distribution with density

f(x, θ) =
1

θ1

√
2π

exp

{
−(x− θ0)2

2θ2
1

}
.

by su�ciently large sample. The sample of n = 107 observations was modeled ac-
cording to the standard normal law N(0, 1) (θ0 = 0, θ1 = 1).

In Table 1, there are the results of testing simple hypotheses about standard
normal law N(0, 1) with various numbers of intervals in the case of equal-frequency
grouping (EFG) and k = 15 in the case of asymptotically optimal grouping (AOG).

In the case of AOG, the power of Pearson χ2-test maximizes for close competing
laws [16, 17, 18]. The table shows the values X2∗

n of statistics (5), which calculated by
the sample, and the corresponding values pvalue = P{X2

n ≥ X2∗
n |H0} of the achieved

signi�cance level. As you can see, the results depend on both the splitting method
and the number of intervals. The power of test also depends on these factors [19].

125



Novosibirsk, 18-20 September, 2019

Table 1: Results of testing simple hypothesis about N(0, 1)

AOG EFG

k 15 15 50 75 100 500 1000 2000

X2∗
n 7.75162 9.18380 56.8942 79.4904 96.5701 493.995 1044.57 2099.91

pvalue 0.90186 0.81910 0.20475 0.31026 0.55038 0.55482 0.15403 0.05702

Table 2 shows the results of testing composite hypotheses. MLE θ̂0 and θ̂1 obtained
for grouped data with the corresponding number of intervals k, statistics values X2∗

n

and pvalue are presented.
MLE of parameters by complete ungrouped sample are θ̂0 = 0.000274 and θ̂1 =

1.000177. In [20, 21], models of distributions of statistic (5) were constructed for the
case of testing composite hypothesis of normal law using MLE by ungrouped data
and AOG. The value of statistic calculated by the sample is X2∗

n = 6.600521 for
k = 15, the estimate of p-value obtained in accordance with the limit distribution
model given in [20, 21] is pvalue = 0.886707. These values indicate a good agreement
between the complete sample and the normal law N(0.000274, 1.000177).

Table 2: Results of testing composite hypothesis

AOG EFG
k 15 15 50 75 100 500 1000 2000

θ̂0 0.00028 0.00030 0.000244 0.00027 0.00027 0.00028 0.00027 0.00027

θ̂1 1.00715 1.00263 1.00173 1.00134 1.00112 1.00039 1.00031 1.00024
X2∗
n 927.920 99.9963 101.767 104.511 112.151 493.716 1043.47 2098.61

pvalue 0.0 5.58e-16 6.50e-06 0.00739 0.13938 0.53317 0.14922 0.05572

It should be noted that the MLE by grouped sample for k = 2000 and the MLE
by ungrouped sample are very close. At the same time, p-value for k = 2000 is much
lower than 0.886707.

Thus, the result of testing composite hypotheses using Pearson χ2-test signi�-
cantly depends on the number of intervals k.

3 Nonparametric goodness-of-�t tests under big sam-

ples

If one can omit the growth of computational di�culties, the main reason for possible
non-correctness of conclusions by big data using non-parametric goodness-of-�t tests
is the limited accuracy of the data in large sample.

As a rule, volumes of samples in Big Data (belonging to some continuous distri-
bution law) are practically unlimited, but the observations itself are presented with
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limited accuracy (rounded with some ∆). In essence, there is �violation of assump-
tion� that a continuous random variable is observed.

Suppose, the goodness-of-�t test with statistic S is used to test a simple hypothesis
H0 : Fn(x) = F (x), where Fn(x) is empirical distribution constructed from sample

x1, x2, ..., xn

of n observations. Suppose, there is limit distribution of statistic G(S |H0 ) for this
goodness-of-�t test. In the case of trueness of H0, the empirical distribution Fn(x)
corresponding to sample of continuous random variables (without rounding) converges
to the distribution function of this random variable F (x) for n→∞. The empirical
distribution of statistics GN(Sn |H0) based on samples of continuous random variable
for n → ∞ (and the number of simulation experiments N → ∞) converges to the
limit distribution G(S |H0 ) of this statistics.

However, the measurement results are rounded o� (�xed) with some ∆. Therefore,
max |Fn(x)− F (x)| will cease to decrease starting with certain n, depending on F (x),
domain of de�nition of the random variable and ∆. The distribution GN(Sn |H0) will
deviate from the limiting distribution G(S |H0 ) with increasing n (the more ∆, that
the less n).

The results of studies for demonstrating the e�ect of accuracy of data on the
distribution of statistics will be shown on 3 classical goodness-of-�t tests.

The Kolmogorov test statistics is used with the Bolshev correction[9]

SK =
√
nDn +

1

6
√
n

=
6nDn + 1

6
√
n

, (6)

where Dn = max (D+
n , D

−
n ), D+

n = max
1≤i≤n

{
i
n
− F (xi, θ)

}
,

D−n = max
1≤i≤n

{
F (xi, θ)− i−1

n

}
; n is the number of observations; x1, x2, . . . , xn are

sample values ordered ascending; F (x, θ) is distribution function of law tested. The
distribution of SK under simple hypothesis in the limit obeys the Kolmogorov law
with the distribution function K(S) [9].

The Cramer-von Mises-Smirnov test statistic is

Sω =
1

12n
+

n∑
i=1

{
F (xi, θ)−

2i− 1

2n

}2

(7)

and under testing simple hypothesis this statistic allows to law with distribution
function a1(s) [9]. The Anderson-Darling test statistic has the following form [22]

SΩ = −n− 2
n∑
i=1

{
2i− 1

2n
lnF (xi, θ) +

(
1− 2i− 1

2n

)
ln(1− F (xi, θ))

}
. (8)

In the case of testing simple hypothesis this statistic allows to law with distribution
function a2(s) [9].

In [8], the distributions of statistics (6)-(8) of nonparametric goodness-of-�t tests
were studied depending on the accuracy of recording the observed values of random
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variables. The number of signi�cant decimal places, to which the observed values
were rounded, was set. This determined the number of unique values that could be
in the generated samples. As a rule, the number of simulation experiments carried
out to simulate the empirical distributions of statistics was N = 106.

The deviation of real (empirical) distribution of statistics from the limit distri-
bution was studied by evaluating median S̃n of empirical distribution of statistics
obtained as a result of modeling. If real distribution of statistics with sample sizes n
does not deviate from the limit distribution, then the probability P

{
S > S̃n

}
calcu-

lated from the corresponding limit distribution is 0.5. If real distribution of statistics
shifts to large area of values (to the right of the limit distribution), the estimates

p̂v = P
{
S > S̃n

}
are decrease. One can judge the correctness of achieved signi�-

cance level pvalue calculated from the limit distribution of statistics (in the case of
testing simple hypotheses, respectively, by K(S), a1(S) and a2(S)) by the value of
deviation of estimates p̂v from 0.5.

When rounding to within 1 in samples belonging to N(0, 1), 9 unique values may
appear, when rounding to within ∆ = 0.1 about 86 unique values, with accuracy
∆ = 0.01 � about 956, to within ∆ = 0.001 � about 9830.

As the simulation results showed [8], when rounding up observations to integer
values, the use of limit distributions of test statistics is absolutely excluded.

The distributions of statistic of Kolmogorov test G(Sn |H0) is essentially discrete
under ∆ = 0.1. The deviationG(Sn |H0) from the limit distributionK(S) for ∆ = 0.1
should be taken into account already for n > 20, ∆ = 0.01 � for n > 250, and
if ∆ = 0.001 the value nmax shifts to value about 104. In the case of Cramer-von
Mises-Smirnov and Anderson-Darling tests, the deviation G(Sn |H0) from the limit
a1(S) and a2(S) for ∆ = 0.1 should be taken into account for n > 30, ∆ = 0.01 � for
n > 1000, and if ∆ = 0.001 � the value nmax shifts to 5× 105.

Figure 1 shows the dependence of distributions of statistics (7) of Cramer-von
Mises-Smirnov test on the degree of rounding ∆ at sample size n = 1000 for the case
of testing simple hypothesis about standard normal law. The limit distribution a1(S),
that occurs in the case without rounding, as well as real distributions of statistics
G(S1000 |H0) at degree of rounding ∆ = 0.01, 0.05, 0.1, 0.2, 0.3. As you can see if
∆ = 0.01 distribution G(S1000 |H0) does not practically di�er from a1(S), but with
increasing ∆ deviation G(S1000 |H0) from a1(S) rapidly increases.

Consequently, in order to analyze large samples using the appropriate nonpara-
metric goodness-of-�t tests with corresponding limit distributions, statistics should
be calculated not over the sample, but according to samples extracted by uniform
law from general population (original sample analyzed). The size of extracted sam-
ple should take into account the accuracy of the data (the number of possible unique
values in the sample) and not exceed certain value nmax at which (for given accuracy)
the distribution of test statistics G(Snmax |H0 ) does not really di�er from the limit
distribution G(S |H0 ).

In the case of testing composite hypotheses, the tested hypothesis has the form
H0 : F (x) ∈ {F (x, θ), θ ∈ Θ} , where Θ is domain of parameter θ de�nition. If
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Figure 1: Statistic distributions G(Sn |H0) of Cramer-von Mises-Smirnov test
depending on ∆ for n = 1000

the estimate θ̂ of scalar or vector parameter of law is based on the same sample
that the hypothesis is tested on, then the distribution of statistics G(S |H0 ) for any
nonparametric goodness-of-�t test di�ers signi�cantly from the limit distribution for
testing simple hypothesis [23]. If estimates of parameters obtain by the same sample
that hypothesis tested, the following factors in�uence the distribution of statistics
G(S |H0 ) [24]: distribution law F (x, θ) corresponding to the true hypothesisH0; type
of estimated parameter and the number of estimated parameters; in some situations,
speci�c values of parameter (for example, in the case of gamma distribution, etc.);
used parameter estimation method.

Obviously, in the case of testing composite hypotheses, we encounter the same
problems and must extract sample of size n < nmax from �general population� in order
to use when analyzing Big Data with limited accuracy of �xed data. For example,
it should be do for application of models of limit distributions of test statistics when
testing composite hypotheses [2, 3, 4, 5, 24].

It should be noted, if the estimation θ̂ of parameter is found by one of the above
methods by the entire big data array, and then the test is applied to the sample
of size n < nmax extracted from the same array, then when testing hypothesis H0 :
F (x) = F (x, θ̂), where θ̂ is previously obtained estimate, the distribution of statistics
G(S |H0 ) will as in the case of testing simple hypothesis.

All of the above fully applies to application of nonparametric Kuiper [25] and
Watson [26, 27] goodness-of-�t tests by big samples. The distributions of statistics of
third Zhang goodness-of-�t tests [28], which are based on Kolmogorov, Cramer-von
Mises-Smirnov and Anderson-Darling tests, depend on sample sizes n. Therefore,
there can be no talk about application of limit distributions of statistics. However,
distribution of statistics G(Sn |H0) in the same way depends on degree of rounding ∆.
Consequently, the critical values of statistics obtained for continuous random variables
and n cannot be used with the same n, but with signi�cant degree of rounding ∆. The
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problem can be resolved by statistical modeling (including, in the interactive mode
[6, 7]) of statistical distributions for given n and ∆ with the trueness of the tested
hypothesisH0. The empirical distribution ofGN(Sn |H0 ) statistics S of corresponding
test constructed as a result of N simulation experiments under these conditions can
be used to estimate the achieved signi�cance level pvalue. That is how this problem
is solved in the ISW software system being developed [29].

4 Other goodness-of-�t tests under big samples

It should be noted that the degree of rounding of recorded data a�ects properties of
other tests in similar way. In particular, special tests aimed for testing the hypothesis
about normal law, uniform law, or exponential law, etc.

It should be noted that in the conditions of large samples (in the presence of
repeated observations), a lot of good tests turn out to be inoperable. This is due to
the fact that the type of statistics of these tests excludes the presence of repeated
observations (or the number of repeated values greater than the size of the �m win-
dow� used in statistics). This note concerns tests using entropy estimates (Vacicek
[30] and Alizadeh Noughabi [31] normality tests, Dudewics-van der Meulen [32] and
Zamanzade [33] uniformity tests), as well as new goodness-of-�t tests using estimates
of Kullback-Leibler information [34].

5 Homogeneity tests under big samples

In the case of multi-sample tests, which include homogeneity tests, 2 or more samples
are compared. The distributions of statistics of multi-sample tests are in�uenced by
non-uniformity of data presented in the analyzed samples. The two-sample Lehmann-
Rosenblatt homogeneity test was proposed in [35] and studied in [36]. Statistic based
on two samples x11, x12, ..., x1,n1 and x21, x22, ..., x2,n2 :

SLR =
1

n1n2(n1 + n2)

[
n1

n1∑
i=1

(ri − i)2 + n2

n2∑
j=1

(sj − j)2

]
− 4n1n2 − 1

6(n1 + n2)
, (9)

where ri is serial number (rank) of x1i; sj is serial number (rank) of x2j in the united
variation range.

The limit distribution of statistic (9) under true tested hypothesis H0 : F1(x) =
F2(x) is the same distribution a1(s) [36], which is limit for statistic of Cramer-von
Mises-Smirnov goodness-of-�t test.

Let us consider how degree of rounding a�ects distribution of statistic of homo-
geneity tests in the case of true H0 and belonging of analyzed sample observations to
the standard normal law.

Figure 2 demonstrates the dependence of distribution of statistic G(SLR |H0) of
Lehmann-Rosenblatt homogeneity test on degree of rounding ∆2 of observations in
the second sample when rounding in the �rst sample ∆1 = 0.01. The sample sizes
are ni = 1000.
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The deviation G(SLR |H0) from a1(S) turns out to be signi�cant already for ∆2 =
0.05. The deviation G(SLR |H0) from a1(S) rapidly increases with increasing sample
sizes for �xed ∆2. The deviation increases with ∆2 growth for �xed sample size.
The distributions of statistic G(SLR |H0) of Lehmann-Rosenblatt homogeneity test
depend on the di�erence between ∆1 and ∆2.

Figure 2: Statistic distributions of Lehmann-Rosenblatt homogeneity test
depending on ∆2 for ∆1 = 0.01 and ni = 1000

Similarly, the distributions of other two-sample homogeneity tests (Smirnov, Anderson-
Darling-Pettitt) depend on the di�erence between ∆1 and ∆2. It is natural that the
distributions of statistics of all multi-sample tests of homogeneity (set of which is con-
sidered in [37]) depend on the non-equivalence of data presentation in the analyzed
samples.

The distributions of statistic of parametric tests of homogeneity of means do
not su�er from such dependence on degree of rounding of measurements as tests of
homogeneity of laws considered above. At the same time, it should be noted that the
power of tests decreases with decrease of accuracy of data recorded.

The distributions of statistic of parametric tests of homogeneity of variances,
unlike tests of homogeneity of means, are more dependent on degree of rounding.
In some ways, this is due to the greater sensitivity of the variance estimates to the
accuracy of measurement results.

Parametric tests of Cochran, Bartlett, Fisher, Hartley, Neumann-Pearson and
Overall-Woodward Z-test are the most preferable in terms of power among the set
of parametric and non-parametric tests of homogeneity of variances. These tests
are equivalent in power in the case of two sample and ful�lling the assumption that
analyzed samples are normal. But in the case of k sample, the power advantage turns
out to be Cochran test has power advantage [38, 39, 40, 41]. Statistic of Cochran
test [42] can be written as

Q =
S2

max

S2
1 + S2

2 + · · ·+ S2
k

,
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where S2
max = max (S2

1 , S
2
2 , ... , S

2
k); k is the number of samples; S2

i , i = 1, k, are
the estimates of variances obtained by samples. Tested hypothesis H0 : σ2

1 = σ2
2 =

... = σ2
k deviates for large values of statistic. The distributions of statistic G(Qn |H0)

of Cochran test depend on the number of compared samples k and the sizes of these
samples ni.

Figure 3 illustrates the dependence of the distribution of statistics G(Qn |H0) of
Cochran test on degree of rounding of observations in the second sample ∆2 without
rounding in the �rst sample (∆1 = 0). Sample sizes are ni = 1000 and k=2. As can
be seen, the dependence of the distribution G(Qn |H0) on large (di�erent) degrees of
rounding ∆1 and ∆2 is very signi�cant.

Figure 3: Statistic distributions G(Qn |H0) of Cochran homogeneity test depending
on ∆2 for ∆1 = 0 and ni = 1000

The limited accuracy of measurements always leads to decrease of the power of
homogeneity tests. The drop in the power of Cochran test with increasing degree of
rounding (with equal ∆i , equal sample sizes n1 = n2 = 100, and k=2) is shown in
Table 3. The competing hypothesis has the form H1 : σ2 = 1.2σ1. Also this table
shows power of Klotz nonparametric test [43]. It is interesting that with increasing
∆i the power of nonparametric test decreases faster than power of parametric one.

Let us emphasize that, similarly, the value of rounding ∆i a�ects the distributions
of statistics and the power of other tests of homogeneity of variances.

So, the distributions of statistics G(S |H0) of parametric tests of homogeneity of
variances with the same degree of rounding ∆i of measurement in the analyzed sam-
ples do not di�er from corresponding distributions without rounding (∆i = 0, i =
1, k). However, the same distributions with di�erent ∆i di�er signi�cantly from dis-
tributions without rounding.

In the case of trueness of competing hypotheses, degree of rounding ∆i (measure-
ment registration accuracy) has signi�cant impact on the distributions of statistics
and on the power relative to these competing hypotheses (including under equal ∆i
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Table 3: Estimates of power of Cochran and Klotz tests under H1

Cochran test
α Without rounding ∆1 = ∆2 = 0.1 ∆1 = ∆2 = 0.2 ∆1 = ∆2 = 0.5
0.1 0.564 0.562 0.560 0.550
0.05 0.438 0.435 0.434 0.424

Klotz test
α Without rounding ∆1 = ∆2 = 0.1 ∆1 = ∆2 = 0.2 ∆1 = ∆2 = 0.5
0.1 0.540 0.539 0.535 0.504
0.05 0.413 0.412 0.407 0.378

in samples). Similar conclusions hold for the entire set of parametric tests of homo-
geneity of variances considered in [37].

Conclusions

It is advisable to use parameter estimation methods involving the grouping of data
for constructing probabilistic models by big samples. Such estimates are robust,
and computational costs do not depend on sample sizes in contrast to estimates by
ungrouped data.

There are no serious objections to application of Pearson χ2-test for analysis of
big samples. This test retains both its positive qualities and its inherent �aws.

The main problem preventing the correct application of nonparametric goodness-
of-�t tests for analysis of big samples is limited accuracy of data representation. Due
to limited accuracy with increasing sample volumes, the real distributions of statis-
tics deviate from the limit ones that occur under the assumption of continuity of
observed random variables. Therefore, the application of classical results for corre-
sponding tests may lead to incorrect conclusions. On the one hand, it is possible to
recommend application of these tests to samples extracted from Big data, the size
of these samples is limited by accuracy of presenting data analyzed (the number of
possible unique values in the sample). On the other hand, it is possible to propose
the use of statistical modeling methods to estimate real distributions of test statistics
GN(Sn |H0 ) (corresponding to degree of rounding ∆ of data in sample analyzed) and
then use GN(Sn |H0 ) to estimate achieved signi�cance level pvalue.

The reason for possible incorrectness of conclusions when using classical results
concerning the distributions of statistics of corresponding homogeneity tests may be
the non-equilibrium measurement in the compared samples. Statistical modeling can
be proposed to simulate actual distribution of statistics GN(Sn |H0 ) of test applied
(with appropriate degrees of rounding ∆i and sizes ni of compared samples). The
distribution GN(Sn |H0 ) obtained can then be used to estimate achieved signi�cance
level pvalue.
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Similar methodology of analysis of big samples is implemented in ISW software
system [29].
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Abstract

New k-samples homogeneity tests based on the Smirnov, Lehmann-Rosenblatt
and Anderson-Darling two-sample tests have been proposed. The maximum
value of the statistics of the 2-sample test obtained during the analysis of com-
binations of pairs of samples is considered as a statistic of k-sample test. The
constructed models for limit distributions of statistics of the proposed tests for
k = 3, · · · , 11 are given. Comparative analysis of the power of the set of k-
samples tests, including the Zhang test, has been carried out. Power estimates
of the studied tests are presented in relation to some competing hypotheses,
which allows to order k-sample tests by preference with respect to di�erent
alternatives.

Keywords: k-samples tests, homogeneity tests, test statistic, distribution
of statistics, power of test.

Introduction

The necessity of solving the task of checking the hypotheses of two (or more) samples
of random values belonging to the same universe estimates (the homogeneity test)
may arise in di�erent areas. For example, this task may arise naturally when checking
the measurement means and trying to be certain that the random measurement errors
distribution law has not undergone any serious changes within some time period.

The task of testing the homogeneity of k-samples can be stated as follows. We have
xij, where j is the observation in the set of order statistics of i-sample j = 1, ni,i =
1, k. Let us assume that the i-sample correlates with the continuous distribution
function of Fi(x). It is required to test the hypothesis of H0 : F1(x) = F2(x) = · · · =
Fk(x) type without de�ning the common distribution law.

The general approach to the construction of k-sample homogeneity tests which
are the counterparts of the two-sample Kolmogorov-Smirnov and Cramer-von Mises
(Lehmann-Rosenblatt) tests, was considered in [1]. Under this approach, the statis-
tics of the criterion is a measure of deviation of empirical distributions corresponding
to speci�c samples from the empirical distribution based on the totality of the ana-
lyzed samples. The k-selective variant of the Kolmogorov�Smirnov test based on this
principle is mentioned in [2, 3]. The k-selective version of the Anderson-Darling test
is proposed in [4]. The homogeneity tests constructed by Zhang in [5, 6, 7] are the
development of the homogeneity tests by Smirnov [8], Lehmann-Rosenblatt [9, 10]
and Anderson�Darling [11] and allow us to analyze samples.

The application of k-samples tests in practice is constrained by the fact that, at
best, only critical values of statistics for the relevant ones are known, as in the case of
the Anderson-Darling test [4] or Kolmogorov-Smirnov tests [2, 12], and the possibility
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of using Zhang's criteria rests on the need to look for the distribution of test statistics
(or estimation of the achieved signi�cance level pvalue) using statistical modeling in
order to form a conclusion about the results of the hypothesis test.

The only exception is the homogeneity test χ2 for which the asymptotic distribu-
tions of statistics are known with the truth of H0.

In the present work we illustrate the dependence of the distributions of statistics
of the k-sample tests on the sample sizes and the number of k compared samples.
For the k-sample Anderson�Darling test [4] we give models of limit distributions of
statistics constructed by us [13, 14, 15]. Suggested variants of k-sample tests based on
the use of 2-sample Smirnov test [8], Lehmann-Rosenblatt test [9, 10] and Anderson-
Darling test [11], and present the constructed model for the limit distributions of the
statistics of the proposed test for various k. The constructed models make it possible
to carry out correct and informative conclusions with the calculation of pvalue with the
usage of the corresponding criteria. In addition, we present estimates of the power of
the test considered with respect to some competing hypotheses, which allows us to
organize the k-sample tests by preference with respect to various alternatives.

The studies were based on the intensive use of the Monte Carlo method in the
simulation of distributions of tests statistics.

1 k-samples homogeneity tests

1.1 Anderson-Darling test

The Anderson-Darling k-sample test is proposed in [4]. Let us denote the empirical
distribution function corresponding to the ith sample Fini(x), and the empirical dis-

tribution function corresponding to the combined sample volume n =
k∑
i=1

ni as Hn(x).

Statistics of the Anderson-Darling sample test (AD) is de�ned by the expression

A2
kn =

k∑
i=1

ni
∫
Bn

[Fini (x)−Hn(x)]2

(1−Hn(x))Hn(x)
dHn(x),

where Bn = x ∈ R : Hn(x) < 1. Under the assumption of continuity of Fi(x) on the
ordered combined sample X1 ≤ X2 · · · = Xn in [4] this simple expression for the
calculation of statistics is obtained:

A2
kn = 1

n

k∑
i=1

1
ni

n−1∑
j=1

(nMij−jni)2

j(n−j) ,

where Mij is number of elements in ith sample which are not larger than Xj. The
hypothesis H0 being tested is rejected for large values of statistics.

The statistics acquires the following �nal form in [4]:

Tkn =
A2
kn − (k − 1)√
D[A2

kn]
. (1)

where the dispersion is determined by the following expression [4]
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D[A2
kn] = an3+bn2+cn+d

(n−1)(n−2)(n−3)

with

a = (4g − 6)(k − 1) + (10− 6g)H,
b = (2g − 4)k2 + 8hk + (2g − 14h− 4)H − 8h+ 4g − 6,
c = (6h+ 2g − 2)k2 + (4h− 4g + 6)k + (2h− 6)H + 4h,

d = (2h+ 6)k2 − 4hk,

where

H =
k∑
i=1

1
ni
, h =

n−1∑
i=1

1
i
, g =

n−2∑
i=1

n−1∑
j=i+1

1
(n−i)j .

Asymptotic (limiting) distributions of statistics (1) depend on the k-number of
samples compared and do not depend on ni. With the growth of k the distribution
of statistics (1) slowly converges to the standard normal law.

In [4] for statistics (1) the table of critical values has been constructed for a number
of k. Based on the results of statistical modeling, we built models of limiting distri-
butions of statistics (1) for [13, 14, 15]. The laws of the family of beta-distributions
of the III type with density turned out to be good models when having the density
of

f(x) =
θθ02

θ3B(θ0, θ1)

[
x− θ4

θ3

]θ0−1[
1− x− θ4

θ3

]θ1−1

/

[
1 + (θ2 − 1)

x− θ4

θ3

]θ0+θ1

, (2)

as shown in Table 1 as BIII(θ0, θ1, θ2, θ3, θ4) having exact values for this law's param-
eters. These models are based on simulated samples of statistics with the number of
simulation experiments N = 106 and ni = 103.

1.2 Zhang test

The Zhang tests [5, 6, 7] allow comparing k ≥ 2 samples.
Let xi1, xi2, · · · , xini be ordered samples of continuous random variables with dis-

tribution functions Fi(x), (i = 1, k) and, as previously, X1 < X2 < · · · < Xn, where

n =
k∑
i=1

ni, is the uni�ed ordered sample. Let us de�ne the Rij rank of the jth ordered

observation xij of the ith sample in the uni�ed sample. Let X0 = −∞, Xn+1 = +∞,
and the ranks Ri,0 = 1, Ri,ni+1 = n+ 1.

In the tests a modi�cation of the empirical distribution function F̂ (t) is used,
having the values of F̂ (Xm) = (m− 0.5)/n at break points Xm,m = 1, n [5].

The ZK statistic of the Zhang homogeneity test is of the following form [5]:

ZK = max
1≤m≤n

{ k∑
i=1

ni

[
Fi,m ln

Fi,m
Fm

+ (1− Fi,m) ln
1− Fi,m
1− Fm

]}
, (3)
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Table 1: Models of the limiting distributions of statistics (1)

k Model
2 BIII(3.1575, 2.8730, 18.1238, 15.0000, -1.1600)
3 BIII(3.5907, 4.5984, 7.8040, 14.1310, -1.5000)
4 BIII(4.2657, 5.7035, 5.3533, 12.8243, -1.7500)
5 BIII(6.2992, 6.5558, 5.6833, 13.010, -2.0640)
6 BIII(6.7446, 7.1047, 5.0450, 12.8562, -2.2000)
7 BIII(6.7615, 7.4823, 4.0083, 11.800, -2.3150)
8 BIII(5.8057, 7.8755, 2.9244, 10.900, -2.3100)
9 BIII(9.0736, 7.4112, 4.1072, 10.800, -2.6310)
10 BIII(10.2571, 7.9758, 4.1383, 11.186, -2.7988)
11 BIII(10.6848, 7.5950, 4.2041, 10.734, -2.8400)
∞ N(0.0,1.0)

where Fm = F̂ (Xm), so that Fm = (m− 0.5)/n, and the calculation Fi,m = F̂i(Xm) is
done as follows. At the initial moment ji = 0, i = 1, k. If Ri,ji+1 = m, then ji := ji+1
and Fi,m = (ji − 0.5)/ni, otherwise, with Ri,ji < m < Ri,ji+1, Fi,m = ji/ni.

This is a right-hand test: the hypothesis H0 being tested is rejected at high
statistical values (3).

Statistic ZA of the homogeneity test of k samples is de�ned by the following
expression [5]:

ZA = −
n∑

m=1

k∑
i=1

ni
Fi,m lnFi,m + (1− Fi,m) ln(1− Fi,m)

(m− 0.5)(n−m+ 0.5)
, (4)

where Fm and Fi,m are calculated as shown above.
This is a left-side test: the hypothesis H0 being tested is rejected for small values

of statistics (4).
Distributions of the statistic (4) depend on the sample volume and the number of

samples compared as well.
Statistic ZC of the homogeneity test of k samples is de�ned by the following

expression [5]:

ZC =
1

n

k∑
i=1

ni∑
j=1

ln

(
ni

j − 0.5
− 1

)
ln

(
n

Ri,j − 0.5
− 1

)
. (5)

This is also a left-hand test: the tested hypothesis H0 is rejected at small values of
the statistic (5). The distributions G(ZC | H0) of the statistic depend on the sample
volume and the number of samples under analysis in the similar way.

The dependence of the distributions of statistics (3) - (5) of the volume of the
samples complicates the use of the Zhang test since there are problems with the
calculation of the evaluation of pvalue.
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At the same time, the lack of information on the laws of distribution of statistics
and tables of critical values in modern conditions is not a serious disadvantage of the
tests as it is easy to calculate the achieved levels of signi�cance of pvalue with the
software that supports the application of the tests, merely using statistic simulating
methods.

1.3 k-samples Tests Based on 2-sample Ones

In order to analyze the k-samples it is possible to apply a two-sample test with the
S statistic to each pair (totaling (k − 1)k/2 pairs), and the decision on accepting or
rejecting the H0 hypothesis will be made on the strength of all results. The following
statistic can be taken as a statistic of this k-sample tests (when having a right-hand
two-sample criterion):

Smax = max
1≤i≤k
i<j≤k

{Sij}, (6)

where Sij are the values of the statistics of the used two-sample criterion as calculated
in the course of analysis of the ith and the jth samples.

The hypothesis H0 to be tested will be rejected at large values of statistics Smax.
The advantage of this kind of test is that as a result a pair of samples will be deter-
mined, the di�erence between them being the most signi�cant from the standpoint
of the two-sample test used.

Statistics of the two-sample Smirnov, Lehmann-Rosenblatt and Anderson-Darling
tests can be used as Sij. In this case the distributions of the relevant statistics Smax
converge to some limiting ones, models of which can be found on the results of
statistical modeling.

1.3.1 Smirnov Maximum Test

The Dn2,n1 statistic used in the Smirnov test is calculated according to the following
formulae [8]:

D+
n2,n1

= max
1≤r≤n2

[ r
n2
− F1,n1(x2r)] = max

1≤s≤n1

[F2,n2(x2s)− s−1
n1

],

D−n2,n1
= max

1≤r≤n2

[F1,n1(x2r)− r−1
n2

] = max
1≤s≤n1

[ s
n1
− F2,n2(x1s)],

Dn2,n1 = max(D+
n2,n1

, D−n2,n1
).

With the H0 hypothesis being true and with unlimited increase of the number of
samples the statistic

SC =

√
n1n2

n1 + n2

Dn2,n1 (7)

will in the limit fall with the Kolmogorov arrangement of K(S) [8].
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In case of using the k-samples variant of the Smirnov test as Sij in (6) it seems
more preferable to use a modi�cation of the Smirnov statistic

Smod =

√
n1n2

n1 + n2

(
Dn2,n1 +

n1 + n2

4.6n1n2

)
, (8)

its distribution being always closer to the limiting distribution of Kolmogorov K(S)
[16]. Statistic Smax will be de�ned as SSmmax in this case.

With equal volumes of samples under comparison the statistic distributions SSmmax
will be of substantial discreteness (similar to the two-sample case, see Fig. 1) and
be di�erent from the asymptotic (limiting) distributions (see Fig. 2). If possible, it
is preferable to use co-primes as ni, then the distributions G(S | H0) of the SSmmax
statistic will not be actually di�erent from the asymptotic ones.

Figure 1: Statistic distributions with ni = 1000, i = 1, k

Models of asymptotic SSmmax statistic distributions with k = 3 ÷ 11 in the form
of beta distributions of the III type (2) BIII(θ0, θ1, θ2, θ3, θ4) having exact values of
parameters and constructed in this paper based on the results of statistic modeling
are shown in Table 2.

1.3.2 Lehman-Rosenblatt Maximum Test

Statistic of the two-sample Lehmann-Rosenblatt test as introduced in [9] is used in
the following form [8]:

T =
1

n1n2(n1 + n2)

(
n2

n2∑
i=1

(ri − i)2 + n1

n1∑
j=1

(sj − j)2

)
− 4n1n2 − 1

6(n1 + n2)
, (9)

where ri is the numerical order (rank) of x2i; sj is the numerical order (rank) of x1i

in the uni�ed ordered series. In [10] it was shown that the statistic (9) at the limit is
distributed as a1(t) [8].
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Figure 2: Asymptotic statistic distributions SSmmax

Table 2: Models of the limiting distributions of statistics SSmmax

k Model
2 K(S)
3 BIII(6.3274, 6.6162, 2.8238, 2.4073, 0.4100)
4 BIII(7.2729, 7.2061, 2.6170, 2.3775, 0.4740)
5 BIII(7.1318, 7.3365, 2.4813, 2.3353, 0.5630)
6 BIII(7.0755, 8.0449, 2.3163, 2.3818, 0.6320)
7 BIII(7.7347, 8.6845, 2.3492, 2.4479, 0.6675)
8 BIII(7.8162, 8.9073, 2.2688, 2.4161, 0.7120)
9 BIII(7.8436, 8.8805, 2.1696, 2.3309, 0.7500)
10 BIII(7.8756, 8.9051, 2.1977, 2.3280, 0.7900)
11 BIII(7.9122, 9.0411, 2.1173, 2.2860, 0.8200)

In the case of using the k-samples variant of the Lehman-Rosenblatt test as Sij
in the statistic SLRmax of form (6) statistic (9) is used. Dependence of distributions of
statistic SLRmax on the number of samples with H0 being true is illustrated in Fig. 3.

The constructed models of asymptotic (limiting) distributions of statistic SLRmax
with the number of compared samples k = 3÷ 11 are shown in Table 3. In this case
the Sb-Johnson distributions proved to be the best with the density of

f(x) = θ1θ2√
2π(x−θ3)(θ2+θ3−x)

exp

{
−1

2

[
θ0 − θ1 ln x−θ3

θ2+θ3−x

]2}
with exact values of this law's parameters, the law being shown in Table 3 as Sb(θ0, θ1,
θ2, θ3). These represented models allow �nding the estimates of pvalue by the values
of statistic SLRmax with corresponding k number of samples under comparison.
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Figure 3: Distributions of statistic SLRmax

Table 3: Models of the limiting distributions of statistics SLRmax

k Model
2 a1(t)
3 Sb(3.2854, 1.2036, 3.0000, 0.0215)
4 Sb(2.5801, 1.2167, 2.2367, 0.0356)
5 Sb(3.1719, 1.4134, 3.1500, 0.0320)
6 Sb(2.9979, 1.4768, 2.9850, 0.0380)
7 Sb(3.2030, 1.5526, 3.4050, 0.0450)
8 Sb(3.2671, 1.6302, 3.5522, 0.0470)
9 Sb(3.4548, 1.7127, 3.8800, 0.0490)
10 Sb(3.4887, 1.7729, 3.9680, 0.0510)
11 Sb(3.4627, 1.8168, 3.9680, 0.0544)

1.3.3 Anderson-Darling Maximum Test

The Anderson-Darling two-sample test was dealt with in [11]. This test's statistic is
de�ned by the following expression:

A2 =
1

n1n2

n1+n2−1∑
i=1

(Mi(n1 + n2)− n1i)
2

i(n1 + n2 − i)
, (10)

where Mi is the number of elements of the �rst sample, smaller or equal to the ith

element of the variation set of the uni�ed sample. Distribution a2(t) will be the
limiting distribution (10) with the tested hypothesis H0 being true [8].

In the case of using the k-samples variant of the Anderson-Darling test as Sij
in the SADmax statistic (6) statistic (10) will be used. Dependence of distributions of

145



Novosibirsk, 18-20 September, 2019

statistic SADmax on the number of samples with H0 being true is shown in Fig. 4.

Figure 4: Distributions of statistic SADmax

Models of asymptotic (limiting) distributions of statistic SADmax for the k number
of samples under comparison k = 3 ÷ 11 have been constructed for distributions
G(SADmax | H0) and shown in Table 4. In this case the beta distributions of the III
type proved to be the best (2) as shown as BIII(θ0, θ1, θ2, θ3, θ4) with exact values
of parameters shown in Table 4; these can be used for estimating pvalue with the k
number of compared samples.

Table 4: Models of the limiting distributions of statistics SADmax

k Model
2 a2(t)
3 BIII(4.4325, 2.7425, 12.1134, 8.500, 0.1850)
4 BIII(5.2036, 3.2160, 10.7792, 10.000, 0.2320)
5 BIII(5.7527, 3.3017, 9.7365, 10.000, 0.3000)
6 BIII(5.5739, 3.4939, 7.7710, 10.000, 0.3750)
7 BIII(6.4892, 3.6656, 8.0529, 10.500, 0.3920)
8 BIII(6.3877, 3.8143, 7.3602, 10.800, 0.4800)
9 BIII(6.7910, 3.9858, 7.1280, 11.100, 0.5150)
10 BIII(6.7533, 4.2779, 6.6457, 11.700, 0.5800)
11 BIII(7.1745, 4.3469, 6.6161, 11.800, 0.6100)

1.4 Homogeneity Test χ2

The homogeneity test χ2 can successfully be used to analyze k ≥ 2 samples. In this
case the common area of the samples is split into r intervals (groups). Let ηij be the
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number of elements of the ith sample of the jth interval, then ni =
r∑
j=1

ηij.

The χ2 homogeneity test statistic will be of the following form:

χ2 = n
k∑
i=1

r∑
j=1

(ηij − νjni/n)2

νjni
= n

( k∑
i=1

r∑
j=1

η2
ij

νjni
− 1

)
, (11)

where νj =
k∑
l=1

ηlj is the total number of elements of all samples falling into the jth

interval. The χ2-distribution with the number of degrees of freedom (k − 1)(r − 1)
shall be the asymptotic distribution of statistic [17].

2 Comparative analysis of powers

One of the main characteristics of the statistical test is its power relative to a given
competing hypothesis H1. The power is the remainder of 1 − β, where β is the
possibility of type II error (accept hypothesis H0 with H1 being true) at speci�ed
probability α of type I error (reject H0 when true).

The power of k-samples tests was investigated for various k and situations when
the tested hypothesis H0 was whether all samples belonged to the standard normal
law, the competing hypothesis H1 being if all samples but the last one belonged to the
standard normal law and the last sample belonged to the normal law with the shift
parameter θ0 = 0.1 and the scale parameter θ1 = 1; hypothesis H2 being that the
last sample belonged to the normal law with the shift parameter θ0 = 0 and the scale
parameter θ1 = 1.1, the competing hypothesis H3 being the last sample belonged to
the logistic law with the density of

f(x) = 1
θ1
√

3
exp{−π(x−θ0)

θ1
√

3
}/[1 + exp{−π(x−θ0)

θ1
√

3
}]2

and parameters θ0 = 0 and θ1 = 1.
The power was evaluated on the results of modeling statistic distributions with

the tested G(S | H0) being true, and competing hypotheses G(S | H1), G(S | H2) and
G(S | H3) having equal volumes of ni compared samples. As an example, Tables 5
and 6 show evaluation of the power of tests with α = 0.1 for k = 3 and k = 4
correspondingly. In the case of the homogeneity test χ2 the uni�ed sample was split
into r = 10 equifrequent intervals.

Thus-conducted power analysis of k-samples tests allows making some conclusions.
The tests can be organized power-wise with respect to changes in the shift pa-

rameter in the following way:

SADmax � AD � SLRmax � SSmmax � ZC � ZA � ZK � χ2.

With respect to changes in the scale parameter:

ZC � ZA � ZK � AD � χ2 � SADmax � SSmmax � SLRmax.
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Table 5: Assessment of the power of test against alternatives H1, H2 and H3, k = 3,
ni = n

Test ni = 20 ni = 50 ni = 100 ni = 300 ni = 500 ni = 103

Against alternative hypothesis H1

SADmax 0.113 0.134 0.171 0.314 0.450 0.712
AD 0.113 0.134 0.171 0.313 0.449 0.711
SLRmax 0.114 0.134 0.168 0.306 0.437 0.694
SSmmax 0.110 0.128 0.155 0.272 0.383 0.622
ZC 0.113 0.131 0.160 0.273 0.380 0.612
ZA 0.112 0.130 0.158 0.268 0.371 0.599
ZK 0.110 0.125 0.144 0.231 0.321 0.525
χ2 0.100 0.108 0.120 0.173 0.226 0.385

Against alternative hypothesis H2

ZC 0.107 0.125 0.160 0.319 0.475 0.771
ZA 0.107 0.126 0.162 0.319 0.470 0.767
ZK 0.107 0.123 0.147 0.263 0.376 0.621
AD 0.104 0.111 0.124 0.191 0.273 0.509
χ2 0.105 0.114 0.129 0.202 0.277 0.495
SADmax 0.102 0.107 0.114 0.165 0.231 0.446
SSmmax 0.103 0.104 0.114 0.136 0.164 0.253
SLRmax 0.103 0.104 0.108 0.127 0.152 0.241

Against alternative hypothesis H3

ZA 0.103 0.108 0.116 0.181 0.279 0.580
ZC 0.103 0.108 0.116 0.176 0.270 0.568
ZK 0.104 0.110 0.117 0.170 0.233 0.423
χ2 0.100 0.113 0.121 0.173 0.226 0.382
AD 0.103 0.107 0.114 0.148 0.189 0.315
SSmmax 0.102 0.105 0.111 0.148 0.183 0.288
SADmax 0.102 0.104 0.110 0.134 0.166 0.272
SLRmax 0.103 0.104 0.107 0.124 0.145 0.218

At that, the Zhang tests of ZA and ZC statistics are almost equivalent power-wise,
and the Anderson-Darling test is noticeably inferior to the Zhang tests.

The tests can be organized power-wise with respect to situations when all but one
sample belongs to the normal law and the last one belongs to the logistic law, in the
following way:

ZA � ZC � ZK � χ2 � AD � SSmmax � SADmax � SLRmax.

It can be noted that with the increase in the number of compared samples of
the same volumes the power of the criterion relative to similar competing hypotheses
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decreases as a rule, which is absolutely natural. It is more di�cult to single out a
situation and to give preference to a competing hypothesis, when only one of the
analyzed samples belongs to some other law. We can't but mention that the Zhang
tests with statistics of ZK , ZA, ZC possess quite substantial advantage in power with
respect to some alternatives.

Table 6: Assessment of the power of test against alternatives H1, H2 and H3, k = 4,
ni = n

Test ni = 20 ni = 50 ni = 100 ni = 300 ni = 500 ni = 103

Against alternative hypothesis H1

SADmax 0.112 0.131 0.165 0.302 0.438 0.706
AD 0.112 0.131 0.164 0.301 0.433 0.701
SLRmax 0.113 0.130 0.162 0.293 0.425 0.686
SSmmax 0.111 0.125 0.151 0.261 0.366 0.605
ZC 0.111 0.126 0.155 0.260 0.368 0.595
ZA 0.111 0.127 0.153 0.255 0.360 0.579
ZK 0.109 0.121 0.141 0.219 0.300 0.502
χ2 0.102 0.109 0.118 0.167 0.221 0.358

Against alternative hypothesis H2

ZC 0.106 0.122 0.158 0.306 0.468 0.761
ZA 0.107 0.124 0.158 0.305 0.463 0.745
ZK 0.106 0.120 0.145 0.249 0.367 0.606
AD 0.104 0.110 0.123 0.180 0.254 0.474
χ2 0.107 0.113 0.127 0.189 0.271 0.458
SADmax 0.101 0.104 0.111 0.145 0.195 0.381
SSmmax 0.102 0.105 0.108 0.128 0.153 0.221
SLRmax 0.102 0.103 0.105 0.118 0.135 0.197

Against alternative hypothesis H3

ZA 0.103 0.107 0.116 0.179 0.274 0.566
ZC 0.103 0.107 0.115 0.173 0.257 0.555
ZK 0.103 0.107 0.114 0.161 0.222 0.410
χ2 0.102 0.110 0.116 0.164 0.218 0.357
AD 0.102 0.106 0.113 0.143 0.179 0.291
SSmmax 0.103 0.104 0.112 0.138 0.166 0.257
SADmax 0.101 0.103 0.107 0.124 0.147 0.229
SLRmax 0.102 0.102 0.105 0.116 0.130 0.183
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Conclusions

The constructed models of statistic limiting distributions for k-samples homogeneity
tests (the Anderson-Darling ones and those proposed in this paper) allows obtaining
correct and informational conclusions on and calculating the tests signi�cance pvalue.
Software can is available for this purpose [18].
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Abstract

In this paper, it is shown that the �kernel� algorithm for approximation of
probability densities, which includes the considerations of numerical mesh ap-
proximation of functions, is nearly equal to the randomized projection-mesh
functional numerical algorithm of the multi-dimensional analogue of the poly-
gon of frequencies method for approximation of solution of integral Fredholm
equation of the second kind. It means that the considerations of the condi-
tional optimization theory of the multi-dimensional analogue of the polygon of
frequencies method can be used for the �kernel� algorithm for approximation of
probability densities.

Keywords: the randomized projection-mesh functional numerical algo-
rithms, the multi-dimensional analogue of the polygon of frequencies method,
the �kernel� estimators for approximation of probability densities, numerical
mesh approximation of functions

1. The multi-dimensional analogue of the polygon

of frequencies method

In recent years, the theory of randomized functional algorithms is developed (espe-
cially in Novosibirsk scienti�c school of Monte Carlo methods); see, in particular,
[1�4]. The most informative examples of these algorithms are related to approxima-
tion of the unknown solution ϕ(x), x ∈ Rd of the integral Fredholm equation of the
second kind

ϕ(x) =

∫
k(x′,x)ϕ(x′) dx′ + f(x) or ϕ = Kϕ+ f, (1.1)

in a bounded domain X ⊂ Rd; here k(x′,x) (the kernel of the integral operator K)
and f(x) (the free term of the equation) are given functions.

For approximation of the function ϕ(x) we use the representations of classical
theory of numerical function approximation (see, for example, [5]), which have the
common form

ϕ(x) ≈ L(M)ϕ(x) =
M∑
i=1

w(i)χ(i)(x) (1.2)
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for some specially selected set of basic functions

Ξ(M) =
{
χ(1)(x), ..., χ(M)(x)

}
, (1.3)

(the form of these functions de�nes the type of the approximation (1.2)) and coe�-
cients

W(M) =
{
w(1), ..., w(M)

}
, (1.4)

which are de�ned as functionals of the unknown approximated function ϕ(x).
For the randomized functional algorithms, the coe�cients (1.4) are calculated ap-

proximately using the Monte Carlo method with the test numbers ni: w(i) ≈ w̃(i)(ni)
(in this paper we investigate the case n1 = ... = nM ≡ n), and the approximation

ϕ(x) ≈ L(M)ϕ̃(x) =
M∑
i=1

w̃(i)(n)χ(i)(x) (1.5)

is considered.
In the recent papers [6, 7] we have proposed the new (to compare with the works

[1�4]) classi�cation of the randomized functional algorithms for approximation of the
solution ϕ(x) of the equation (1.1). We have distinguished the mesh, the projection
and the projection-mesh algorithms (the type of a method is de�ned by the choice
of the basic functions (1.3) and the coe�cients (1.4)). In these papers, we also have
presented the considerations why the mesh and the projection randomized functional
algorithms can be non-e�ective (and even unrealizable) for solution of practically
important problems related to solutions of integral equations of the form (1.1). In
particular, for the theoretically attractive mesh dependent test method, the smooth-
ness of the kernel k(x′,x) of the integral operator K is needed. But most part of
kernels in applied problems has the integrable singularities (up to delta-functions)
and even can not be calculated explicitly. The mesh adjoint random walk method is
too numerical laborious because of necessity for numerical simulating of individual
set of trajectories of the corresponding applied Markov chains for every node xi of
the introduced mesh

X(M) = {x1, ...,xM} (1.6)

in the domain X. The projection methods have fairly obvious numerical instability.
The projection-mesh randomized functional algorithms have no such �ows. For

these methods the basic functions (1.3) and the coe�cients
w(i) = w(i)

(
ϕ(M)

)
; ϕ(M) = {ϕ(x1), ..., ϕ(xM)} from (1.4) are tied with the mesh

(1.6) such that they provide a small margin of the deterministic component of error

δ
(B(X))
det = ‖ϕ− L(M)ϕ‖B(X)

for the used normalized functional space B(X), together with stability of the approx-
imation (1.5), which is de�ned by the relative smallness (proximity to unit) of the
Lebesgue constant L̃ = supx∈X

∑M
i=1

∣∣χ(i)(x)
∣∣ from the ratio

δ
(C(X))
stoch = ‖L(M)ϕ− L(M)ϕ̃‖C(X) ≤ L̃ max

i=1,...,M

∣∣w(i)
(
ϕ(M)

)
− w(i)

(
ϕ̃(M)(n)

)∣∣
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(see, for example, [2]); here ϕ̃(M)(n) =
(
ϕ̃(x1)(n), ..., ϕ̃(xM )(n)

)
and ϕ̃(xi)(n) is the

Monte Carlo approximation of the value ϕ(xi); i = 1, ...,M .
In this case the approximations of the Monte Carlo method

W̃(M) =
{
w̃(1)(n), ..., w̃(M)(n)

}
of the coe�cients (1.4) from the ratio (1.5) have the form

w̃(i)(n) = w(i)
(
ϕ̃(M)(n)

)
, more often w(i)

(
ϕ̃(M)(n)

)
= ϕ̃(xi)(n).

In turn, to obtain values ϕ̃(M)(n) for randomized functional projection-mesh al-
gorithms the following special technology (which de�nes the di�erence from mesh
functional algorithms) is used. Choose the �nite, having the same shape for all
{x1, ...,xM} functions (versions of �kernel� function κ(x)(y) for various values of the
parameter x � see the Section 2 of this paper)

K(M) =
{
κ(x1)(y), ..., κ(xM )(y)

}
, (1.7)

related (as the basic functions (1.3)) to the mesh (1.6) such that∫
ϕ(y)κ(xi)(y) dy ≈ ϕ(xi); i = 1, ...,M. (1.8)

Further we recall the classical (see, for example, Chapter 4 of the textbook [3])
considerations that for approximate calculation of linear functionals of the form

Ih =

∫
ϕ(y)h(y) dy (1.9)

on the solution ϕ(x) of the equation (1.1) it is expedient to use the main estimator
(or unbiased Monte Carlo collision estimate):

Ih = Eζ; ζ =
N∑
m=0

Q(m)h
(
ξ(m)

)
, (1.10)

where
ξ(0), ξ(1), ..., ξ(N) (1.11)

is the applied Markov chain (or homogeneous Markov chain terminated with unit
probability) with the initial density π(x) and the transition function p(x′,x) =
r(x′,x) ×

[
1− p(a)(x′)

]
(here r(x′,x) is the probability transition density and

0 ≤ p(a)(x′) ≤ 1 de�nes the probability of a trajectory break; correspondingly, N
is a random number of the break state). The random weights {Q(m)} from (1.10) are
de�ned by the following recurrent ratios:

Q(0) =
f
(
ξ(0)
)

π
(
ξ(0)
) ; Q(m) = Q(m−1) ×

k
(
ξ(m−1), ξ(m)

)
p
(
ξ(m−1), ξ(m)

) ; m = 1, ..., N. (1.12)
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Taking into account that the ratios (1.8) have the form (1.9), we get the following
randomized projection-mesh functional algorithm.

ALGORITHM 1. Simulate n trajectories

ξ
(0)
j , ξ

(1)
j , ..., ξ

(Nj)
j ; j = 1, ..., n (1.13)

of the applied Markov chain (1.11) and get the values

ϕ̃(xi)(n) =
1

n

n∑
j=1

Nj∑
m=0

Q
(m)
j κ(xi)

(
ξ

(m)
j

)
; i = 1, ...,M ;

here the wights
{
Q

(m)
j

}
are calculated with respect to the formulas of the form (1.12):

Q
(0)
j =

f
(
ξ

(0)
j

)
π
(
ξ

(0)
j

) ; Q
(m)
j = Q

(m−1)
j ×

k
(
ξ

(m−1)
j , ξ

(m)
j

)
p
(
ξ

(m−1)
j , ξ

(m)
j

) ; j = 1, ..., n; m = 1, ..., Nj.

Then approximate the function ϕ(x) with respect to the formula of the form (1.5):

ϕ(x) ≈ L(M)ϕ̃(x) =
M∑
i=1

w(i)
(
ϕ̃(x1)(n), ..., ϕ̃(xM )(n)

)
χ(i)(x). (1.14)

In the works [2�4], the considerations of the theory of conditional optimization
are presented. In particular, the expediency of using the �absolutely stable� �nite
functions of the multi-linear approximation (or Strang � Fix approximation [8] with
the basis producing function β(1)(u), which is equal to the B-spline of the �rst order)
on a regular mesh with the step h with respect to every coordinate

χ(i)(x) = β(1)

(
x(1)

h
− j(1)

i

)
× ...× β(1)

(
x(d)

h
− j(d)

i

)
; (1.15)

β(1)(u) =


u+ 1 for − 1 ≤ u ≤ 0;
−u+ 1 for 0 ≤ u ≤ 1;
0 otherwise;

x =
(
x(1), ..., x(d)

)
xi =

(
j

(1)
i h, ..., j

(d)
i h
)
; j

(k)
i are integer numbers; i = 1, ...,M

(1.16)
as basic functions (1.3) is proved; here the domain X, on which the solution ϕ(x) of
the equation (1.1) is approximated, is equal to cuboid. Moreover, it was proposed to
use the �kernel� function from the ratios (1.7), (1.8) in the form

κ(x)(y) =

{
1
hd

for y ∈ ∆(x),
0 otherwise,

(1.17)

where ∆(x) =
{
y =

(
y(1), ..., y(d)

)
: x(s) − h/2 ≤ y(s) ≤ x(s) + h/2; s = 1, ..., d;

x =
(
x(1), ..., x(d)

) }
.
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For this case, the approximations of the coe�cients (1.4) have the simplest form

w(i)
(
ϕ̃(x1)(n), ..., ϕ̃(xM )(n)

)
= ϕ̃(xi)(n). (1.18)

The Algorithm 1 with functions (1.15), (1.17) and approximation coe�cients
(1.18) is called in [2�4] as the multi-dimensional analogue of the polygon of

frequencies method.
In the Section 2 of this paper, we show that the described approach to construction

of the projective-mesh Algorithm 1 is to a certain extent similar to construction of
the �kernel� estimators of probability densities (see, for example, [9]). It is especially
noted that in the the theory of �kernel� estimators (including [9]) the authors, who
reason about density approximation, unduly not include the elements of the theory of
numerical function approximation (see, for example, [5]). When adding this missing
item, the corresponding �kernel� approximation of a probability density is essentially
the same as the Algorithm 1.

2. Numerical approximation of probability densities

using the �kernel� estimators

In the classical paper [9], the nonparametric estimator of a probability distribution
density fˆξ

(x), x ∈ Rd of the form

fˆξ
(x) ≈ Zn(x) =

1

n

n∑
j=1

κ(x)
(
ξ̂j

)
, (2.1)

using the sample values
{
ξ̂1, ..., ξ̂n

}
⊂ Rd from this distribution is considered. Here

κ(x)(y) is some �nite parametric, having the same shape for all values of the parameter
x �kernel� function. The approximation (2.1) is called the �kernel� estimator of the
density fˆξ

(x). By the way, in the paper [9] the term �kernel� is used without quotes.

In this paper we use quotes in order to distinguish the names of the functions k(x′,x)
(this is the kernel of the integral equation (1.1)) and κ(x)(y).

For investigation of properties of the approximation (2.1), the following conse-
quence of the large numbers law

Zn(x) =
1

n

n∑
j=1

κ(x)
(
ξ̂j

)
≈ Eκ(x)

(
ξ̂
)

=

∫
κ(x)(y)fˆξ

(y) dy (2.2)

is used.
The evident constructive drawback of the �kernel� estimators theory (see, for

example [9]) is related to absence of considerations on the algorithm for practical
(�rstly, numerical, computer) global approximation of the function fˆξ

(x) based on

the theory of mesh function approximation (see, for example, [5]). Such an algorithm
could look as follows.
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Suppose that the random variable ξ̂ is distributed in the bounded domain X ⊂ Rd

and consider the mesh (1.6) in this domain and also the approximation of the form
(1.2) for the function fˆξ

(x):

fˆξ
(x) ≈ L(M)fˆξ

(x) =
M∑
i=1

w(i)
(
fˆξ

(x1), ..., fˆξ
(xM)

)
χ(i)(x).

ALGORITHM 2. Calculate the values f̃ (xi)
ˆξ

(n) = Zn(xi); i = 1, ...,M with respect

to the formulas of the form (2.1) and approximate the function fˆξ
(x) with respect to

the formula of the form (1.14):

fˆξ
(x) ≈ L(M)f̃ˆξ

(x) =
M∑
i=1

w(i)

(
f̃

(x1)
ˆξ

(n), ..., f̃
(xM )
ˆξ

(n)

)
χ(i)(x). (2.3)

The Algorithm 2 is based on the analogs of the ratios (1.8):∫
fˆξ

(y)κ(xi)(y) dy ≈ fˆξ
(xi); i = 1, ...,M, (2.4)

which are in turn based on the ratios (2.1), (2.2).
Compare the Algorithms 1 and 2 and get the main conclusion of this paper.
REMARK 1. The �kernel� Algorithm 2 for approximation of a probability den-

sity fˆξ
(x), based on approaches of the theory of mesh function approximation, is

constructively equal to the randomized projection-mesh functional Algorithm 1 for
approximation of the solution ϕ(x) of Fredholm integral equation of the second kind
(1.1). Thus, it is expedient to use the new name the randomized �kernel� func-

tional algorithm for the Algorithm 1.
The only di�erence between the Algorithm 1 and 2 is de�ned by the distinction of

forms of Monte Carlo estimators for approximate calculation of functionals (1.8) and
(2.2) (which is related to the certain di�erence between functions ϕ(x) and fˆξ

(x)).

The di�erence is also related to the fact that for the problem of approximation of
the density fˆξ

(x), the sample
{
ξ̂1, ..., ξ̂n

}
is considered to be given (and the number

n of sample values is �xed and cannot be increased), but for the function ϕ(x) the
number n of the simulated trajectories (1.13) of the applied Markov chain (1.11) may
vary.

In connection with the main conclusion of the Remark 1, we can formulate the
following considerations.

REMARK 2. For the �kernel� Algorithm 2 for approximation of a probability
density fˆξ

(x) we can use considerations of the theory of conditional optimization of

the randomized projection-mesh functional Algorithm 1 from the works [2�4].
By analogy of the works [2�4] we can recommend to use functions (1.15), (1.17),

the mesh (1.16) and approximation coe�cients of the form (1.18), i. e.

w(i)

(
f̃

(x1)
ˆξ

(n), ..., f̃
(xM )
ˆξ

(n)

)
= f̃

(xi)
ˆξ

(n), (2.5)
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in the Algorithm 2. In particular, it allows to get the following ratios for conditionally
optimal parameters of the Algorithm 2:

Mopt =

[
Ĥ1[(2ν + 1)d+ 4]

(2ν + 1)d

]d/2
γ−d/2, (2.6)

nopt =
Ĥ2

2Ĥ
d/2
1 [(2ν + 1)d+ 4]2+d/2

16[(2ν + 1)d]d/2
× (2 lnMopt − ln lnMopt + Ĥ3)× γ−2−d/2 (2.7)

for the �xed error level γ > 0 and the specially selected positive constants Ĥ1, Ĥ2, Ĥ3

and ν.
Taking into account the fact that the basis (1.15) is �modelled�, it is possible

to recommend to use the normalized function L(M)f̃ˆξ
(x) from the ratio (2.3) (with

functions (1.15), (1.17) and coe�cients (2.5)) as a density for numerical simulation

of additional sample values
{
ξj
}
, close in distribution to the values

{
ξ̂j

}
from the

ratio (2.1), using the corresponding version of the discrete superposition method (see
Sections 17, 18 of the book [10]).

REMARK 3. For development of the theory of construction and conditional op-
timization of the randomized projection-mesh functional Algorithm 1 it is possible to
use the considerations of the theory of �kernel� estimators of probability densities from
the paper [9].

Conclusion

In this paper, it is shown that if include the theory of numerical function approxi-
mation, then it is possible to get the �constructive� (practical) version of the �ker-
nel� estimator for approximation of an unknown probability density fˆξ

(x) using the

given sample values (Algorithm 2). This construction is analogous to the random-
ized projection-mesh functional algorithm for approximation of the solution ϕ(x) of
Fredholm integral equation of the second kind (1.1) (i. e. to the Algorithm 1). If
additionally choose the approximation basis (1.15), the uniform mesh (1.16) in the
cuboid X, the �kernel� function (1.17) and the coe�cients (2.5) (i. e. to consider the
version of the Algorithm 2, which corresponds to the multi-dimensional analogue of
the polygon of frequencies method) and use the technique presented in the works
[2�4], then we can get the ratios (2.6), (2.7) for conditionally optimal parameters of
the Algorithm 2.
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Abstract

In this paper, the second kind errors, which arise in the problem of testing the
hypothesis about the form of the sample density, are considered. The class of
the errors associated with the use in the test statistic the piecewise constant
approximation instead of the original density, was investigated in detail. The
results of the theoretical analysis and computer experiments are presented and
discussed.
Keywords: Chi-squared test, testing of hypothesis, L1 distance,errors of the
second kind

Introduction

The chi-squared statistic is frequently used for testing the hypothesis about the form
of the sample probability distribution density function(p.d.d.f.). The null hypothesis
is simple. It states: the sample p.d.d.f ps(x) = p(x). The alternative hypothesis
is complex. It states: ps 6= p(x). The test has the four results: two correct and
two incorrect. The incorrect results are: the null hypothesis H0 is true, but it is
rejected, the H0 is false, but it is adopted.The value of the error of the I kind is
de�ned by the researcher( the con�dence level α). The value of the error of the II
kind can be estimated only for a concrete probability density using the statistical
simulation method. In this paper, the alternative approach is investigated. It uses
the L1 -distance between the tested p.d.d.f.1 p(x) and the alternative densities palt.

1 The structure of the chi-squared test

Let us suppose(for simplicity), that a tested p.d.d.f. p(x) is de�ned on (0, 1). The
interval (0, 1) can be represented as an union of m subintervals ∆i = {x : xi−1 < x <
xi}mi=1, where xi are the knots of the grid Xm = {x0 = 0 < x1 < . . . < xm = 1}. The
piecewise constant function(hi = xi − xi−1)

pPC(x) =
m∑
i=1

Pi
hi
χ(x|∆i) =

m∑
i=1

ciχ(x|∆i) (1)

1probability distribution density function(s)
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is the Galerkin approximation of p.d.d.f. p(x). Here the functions χ(x|∆i) = 1, if
x ∈ ∆i, and = 0 otherwise, Pi =

∫ 1

0
p(x)χ(x|∆i)dx.

A sample SN = {η1, . . . , ηN} de�nes the random piecewise density

p̄PC(x) =
m∑
i=1

mi

Nhi
χ(x|∆i) =

m∑
i=1

Bi

hi
χ(x|∆i) =

m∑
i=1

c̄iχ(x|∆i), (2)

where mi =
∑N

j=1 χ(ηj|∆i). According to the theory, statistics

χ2 =
m∑
i=1

(N · Pi −mi)
2

N · Pi
= N

m∑
i=1

(Pi −Bi)
2

Pi
= N

m∑
i=1

hi
(ci − c̄i)2

ci
(3)

asymptotically has the chi-squared distribution with m− 1 degrees of freedom, The
hypothesis H0 : psample(x) = p(x) is adopted if χ2 < χ2

m−1,α, χ2
m−1,α is the upper

critical value for con�dence level α ( P (χ2
m−1 > χ2

m−1,α) = α).

2 Error of approximation

The chi-squared statistics (3) includes the piecewise constant approximation pPC(x)
instead of the test density p(x). The natural measure of the distance between any
two p.d.d.f. p(x), g(x), de�ned on X = (0, 1), is the L1-norm of their di�erence

L(p, g) = ||p(x)− g(x)|| =
∫
X

|p(x)− g(x)|dx.

According to the Sche�e theorem [1],

L = 2 sup
B
|
∫
B

p(x)dx−
∫
B

g(x)dx| = 2 sup
B
|P (B)−G(B)|,

where {B} are the Borel sets of X.
The value of L(p, pPC) de�nes the error of approximation of p.d.d.f. p(x) by the

piecewise p.d.d.f. pPC(x). For the calculation, it can be represented in the form

L(p, pPC) = ht

m∑
i=1

hi

MG∑
j=1

∫ 1

0

f(xi−1 + hiht(j − 1 + t))dt,

where ht = 1/MG. f(x) = |p(x)−pPC(x)|. The integrals over t can be approximated
by the Gauss quadrature with two knots. Successively increasing MG, it is possible
to obtain the integral estimation with the desirable number of the correct digits.
Example 1: the probability density

p(x) =


27
2
x2, 0 ≤ x ≤ 1

3
,

27
2

[x2 − 3(x− 1
3
)2], 1

3
≤ x ≤ 2

3
,

27
2

(1− x)2, 2
3
≤ x ≤ 1

(4)

was approximated on the non-uniform grid with m intervals. The knots of the grid
were calculated by the formula: x0 = 0, x1 = 2/(m+2), xi = x1 +(i−1)/(m+2), i =
2..m − 1, xm = 1. The calculated values of distances equal L(m=10)=1.105e-1,
L(m=20)=5.399e-2.
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3 The arti�cial test densities

Formula (3) shows, that the chi-squared statistic contains the piecewise approxima-
tions of the p.d.d.f. p(x). The natural question can be formulated as follows: "Are
there the probability densities with the same values of {ci} as the test p.d.d.f. p(x)?".
The p.d.d.f. f(x) gives the answer to the formulated question. It has the form

f(x) =
m∑
i=1

cigi(ti(x))χ(x|∆i) =
m∑
i=1

ci(1 + φ(ti(x))χ(x|∆i),

where ti(x) = (x − xi−1)/hi, g(t) is an arbitrary p.d.d.f. on (0,1), φ(t) = g(t) − 1.
The distance L(f, pPC) =

∫ 1

0
|φ(t)|dt. The formula for p.d.d.f. f(x) shows that

there are uncountable many probability densities with the same piecewise constant
approximation as the tested p.d.d.f. p(x).
The next two examples show the two classes of the alternative densities for which we
obtain the same value of χ2 as for p(x).
Example 2: g(t)(t) = 2sin2(πt), L = 2/π = 0.636. For this g(t) p.d.d.f. f(x) is
continuous with the �rst derivative.
Example 3: the interval (0, 1) is divided into n equal parts. In (n− 1) subintervals
g(t) = 1 − r, 0 < r < 1, in the last one g(t) = 1 + (n − 1)r. L = 2r − 2r/n. For
r − 0.5, n = 5 L is equal to 0.8. Fig. 1 shows the p.d.d.f. f(x) for Example 2.

Fig. 1. The probability density f(x) with g(t) = 2 sin2(πt).

Adopting for the use the test density p(x) instead the f(x) from the example 2 causes
su�ciently large di�erences in the probability of events: ∆Pmax = 0.318. However
adopting the principle of non-complexity to the practical distributions removes these
arti�cial densities. As the measure of complexity of the p.d.d.f. its full variation
can be used. For the p.d.d.f. in Fig. 1

∨
(f(x)) = 38.22, the paternal density has∨

(p(x)) = 4.5.

162



Applied Methods of Statistical Analysis

4 The piecewise constant alternative densities

The chi-squared statistics χ2 can be represented as the function of two probability
distributions P = {Pi} and B = {Bi = mi/N}:

χ2(P,B) = N

m∑
i=1

(Pi −Bi)
2/Pi.

For �nding the probability distribution Y , the most deviating from P , the following
conditional maximum problem must be solved:

Ψ(Y, P ) =
m∑
i=1

|Pi − Yi| → max
Y
,

Yi ≥ 0,
m∑
i=1

Yi = 1,

χ2(Y,B) = N

m∑
i=1

(Yi −Bi)
2

Yi
≤ χ̄2.

Example 4: p.d.d.f. (4) was used for calculations. It was approximated on the
grid X10 = {xi = i/10}10

i=0. The theoretical probability distribution P is presented
in the �rst column of the Table 1. Its sample estimation B with N = 100 equals
0, 0.05, 0.08, 0.1, 0.22, 0.22, 0.21, 0.09, 0.033, 0. The chi-squared statistic χ2(P,B) =
5.86, Upper critical value is equal to χ2

7,0.05 = 16.9. The results of optimization is
presented in Table 1. The theoretical distribution P was used as the initial state
vector for the optimization procedure.

Tab. 1. Optimal vectors Y for two values of χ̄2.
i Pi Yi(χ̄

2 = 4) Yi(χ̄
2 = 5.86)

1 4.50e-3 4.89e-4 2.29e-4
2 3.15e-2 6.67e-2 6.66e-2
3 8.55e-2 6.67e-2 1.20e-1
4 1.63e-1 9.04e-2 8.08e-2
5 2.16e-1 2.82e-1 1.68e-1
6 2.16e-1 1.88e-1 2.52e-1
7 1.63e-1 2.14e-1 2.27e-1
8 8.55e-2 7.43e-2 6.64e-2
9 3.15e-2 1.75e-2 1.91e-2
10 4.50e-3 3.91e-4 2.29e-4

Ψ = 0.30 Ψ = 0.34

For Yi(χ̄2 = 10) the value Ψ = 0.35 was obtained.
The Fig. 2 shows the piecewise constant densities for the probability distribution P
and for the optimal probability distribution Y .
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Fig. 2. The piecewise probability densities: 1 - for tested distribution P , 2 - for the
optimal distribution Y(χ̄

2 = 4).

Summary

In this paper, the computer procedures were used for the calculations the errors,
associated with the use in the chi-squared test the piecewise constant approximations
instead of the real densities. Examples 2,3 show that there exist the uncountable
many arti�cial densities which have the same piecewise constant approximation as the
paternal density. However adopting the principle of non -complexity of the practical
densities avoids these cases. This principle demands that the practical densities were
not very complex. As the measure of complexity, the full variation of the density can
be used.
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Abstract

In feature selection process it is important to estimate generalized error of
selected model. There are a lot of methods based on resampling procedure.
All this methods have their features, and this work have a large study. Each
of selected method was run for 7200 times to �nd any pattern according to
samples and feature count of dataset. This research shows accuracy of each
method for Lasso regression in case of linear function.

Keywords: Generalization Error Estimation, Cross-Validation, Monte Carlo
Cross Validation, Cross-validation and cross-testing, Nested Cross Validation,
Lasso

Introduction

The goal of prediction regression analysis is to �nd a model that describes dependen-
cies in an accurate way. That model should have the small expected generalization
error. It was proven that the expected generalization error of the model decomposes
to an irreducible error, a bias and a variance [1]. The model may have hyperpa-
rameters, which control the learning process. Hyperparameters tuning may increase
the bias and decrease the variance, and vice versa. Hyperparameters' values can be
selected via a grid search [2]. For example, in [3] a penalty term λ was selected by the
grid search for Lasso regression. Model's coe�cients of Lasso regression depend on
the value of the penalty term λ and each unique value of λ may create a new model.
The desired model may be selected with model selection procedures. There are sev-
eral alternatives in the literature about the estimation of the expected generalized
error of the selected model.

For example, available samples may be divided into two parts: train and test
[4]. To measure generalized error, the model is �tted on train samples and makes a
prediction for unseen test samples. Then error on test samples is computed. RMSE
is one of the examples of error's measure. Generalization error of the model may
be estimated with this approach if the model has no hyperparameters. If the model
has hyperparameters and they are chosen as based on minimization of test error,
test error will be biased and underestimate true generalization error. To overcome
it, all available samples are split into three parts: train, validation and test [5].
The model is �tted on train samples. Models are selected on the validation part.
With grid search, sets of hyperparameters are created. Error on validation samples
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are evaluated for each set of hyperparameters and hyperparameters' values with the
smallest error are selected. The model with selected hyperparameters is re�tted on
train and validation samples, and then test error is evaluated on test samples. This
test error approximates the generalization error.

Train and test split works well with a large number of samples. If the size of the
dataset is small, test error will depend on how exactly the dataset was split. Monte
Carlo cross validation may be used to reduce dependency on how the dataset was
split into train and test sets [13]. In this approach, all available samples split at
random on train and test samples N times. For each of N splits model is �tted on
train samples and error is evaluated on test samples. After that, generalization error
is estimated by the average of N test errors. It has been proven that this method is
asymptotically consistent [7].

If the model has hyperparameters, all available samples should be separated into
train, validation and test samples. In Monte Carlo cross test validation approach, this
random separation on three parts should be repeated N times. The model is �tted
on train samples; model's hyperparameters are tuning to have the smallest error on
validation samples. Then test error is evaluated on test samples for each separation.
Average of N test errors is the estimation of generalization error. Another solution to
the lack of samples is ?ross Validation (CV). In cross validation, all available samples
are split into k blocks. One of the blocks is used as a test set and other blocks are
used as a training set. Each of k blocks is selected as left out samples and the test
error is evaluated on each selected blocks in the loop. The average of test errors can
be considered as an estimate of the true generalization error. It was shown that the
CV error is an almost unbiased estimate of generalization error [8].

The problem of CV is the separation step. CV split samples into train and test
samples, so it works well if the model does not have hyperparameters. If the model
has hyperparameters and they are selected based on CV error, the CV error may be
biased and CV will underestimate the true generalization error. In that case, Nested
CV can be used [8]. As in CV, in Nested CV all samples split into k blocks. On the
next step, one block is used as a test set. The rest of k − 1 training blocks are used
in a CV to get a model's hyperparameters with the loser CV error. Then the model
is re�tted on k − 1 training blocks with selected hyperparameters, and error on the
test set is evaluated. Then next block is used as a test, and the rest of the blocks as
a training set and so on. In the results, k errors are evaluated. The average of these
errors is the estimation of the generalization error.

While Nested CV error has high accuracy, it has some disadvantages. Firstly, it
does not show which exactly hyperparameters are better on unseen data [9]. Secondly,
di�erent models are selected on each of k blocks, and it does not allow to investigate
the �nal model. To overcome these drawbacks Cross validation and cross-testing
method was introduced [9]. In this approach, all available samples are divided into
train and test samples. Model's hyperparameters with smallest cross validation error
on train data are chosen. Then test samples are divided into m parts. One of the m
test parts is selected and added to train dataset. Other parts are used to evaluate test
error. On the next iteration, another part from m test parts are selected and added
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to original train dataset, and the test error is evaluated on the remaining part. This
process continues until each of m test blocks was added to train samples at least once.
The average test error is the estimation of the true generalization error. It has been
shown [9] that sometimes CV and cross testing outperform nested cross validation.

1 Experiment

Methods of generalization error estimation are compared on real datasets in some
researches [10],[11]. The problem of these experiments is an unknown irreducible
error in data and real generalization error of the model. For this reason, simulation
data was created to test the generalization error estimate.

The main goal in each experiment is built Lasso regression and estimate its gen-
eralization error. There are two reasons to use. Firstly, it builds a linear model with
hyperparameters value, so methods of hyperparameters selection can be used in these
settings. Secondly, it is fast to �t this model.

Assume that the model has an input vector XT = (X1, X2, ..., Xm) and wants to
predict real valued Y . Suppose that true dthe ata generating process comes from
linear equitation

where ε is random error, βj is slope coe�cients, Xj is random variable. Mean
value of ε is 0, standard deviation of ε equal to σ and generated from a Gaussian
distribution, i.e. ε N(0, σ2

ε). Random error ε is independent of X.

Suppose that each of random variables Xj comes from Gaussian distribution with
mean is 0 and standard equitation is 1, i.e. Xj N(0, 1). With those assumptions,
there is no reason to center and scale random values, or model's input vector.

The �rst half of the coe�cients βj is equal to 0, so they are not signi�cant. Count
of sithe gni�cant coe�cient is m∗ = [m/2]. With these settings, Lasso should remove
input variables with the coe�cients equal to 0.

For each signi�cant variables, the value of its coe�cient βj is given by

βj =

√
j√

m∗∑
k=1

k

Through this approach, all signi�cant coe�cients form an arithmetic progression
and variance of Y do not depend on the count of random variables. Calculate the
variance of Y to prove it.
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V ar(Y ) = V ar(
m∑
j=1

Xjβi + ε) =
m∑
j=1

β2
jV ar(Xj) + V ar(ε) =

=
m∗∑
j=1

β2
jσ

2
x +

m∑
j=m∗+1

0 ∗ σ2
x + σ2

ε = σ2
x

m∗∑
j=1

√
j

2

(

√
m∗∑
k=1

k)2

+ σ2
ε =

= σ2
x

m∗∑
j=1

j

m∗∑
j=1

k

+ σ2
ε = σ2

x + σ2
ε

Therefore, the variance of Y depends on the variance of a random variable and
the variance of random error. On the �rst step of the proof, the variance of two
independent random variables is equals to the sum of the variance of each variable.
On the second step, the random variable scaled by a constant, and the variance is
scaled by the square of that constant.

Calculate the irreducible error of linear regression for this task. Assume that the
coe�cient of linear regression is equivalent to the real coe�cient of random variables,
i.e. β̂j = βj, j = 1, 2, ...,m. In that case, irrean an ducible error can be derived by

E{(E(Y |X1, X2, ..., Xm)− y)2} = E{(
m∑
j=1

Xjβj + ε−
m∑
j=1

Xjβ̂j)
2} = E{(ε)2} =

= E{(0− ε)2} = E{(M{ε} − ε)2} = V ar{ε} = σ2
ε

Experiment's parameters It is shown that the irreducible error in this task equals
the variance of random error. To test the estimation of generalizing error by di�erent
methods in di�erent situations, count of samples n and count of random variables m
should vary from experiment to experiment. Assume that values of n are generated
by this rule:

N = {x|x ∈ [1/42i+1 + 2i+ 1], i = 2, 17}

where [.] is the operation of rounding argument to the nearest whole number.
With this rule, set values of n is N ∼ {8, 11, 15, 19, 25, 32, 40, 52, 68, 90, 120, 163,

221, 304, 421, 586}. It makes sense to use exponential low, as qthe uality of error
estimation grows with ca ount of samples. We can use inverse transformation to get
transformed back values of sample sizes, N

′ {3, ..., 20}. It can be used in futhe ture
to plot the results of methods.

Suppose that values of m are generated by this rule:

M = {x|x ∈ [1/36i+1 + 0.13], i = 0, 14}
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where [.] is the operation of rounding argument to the nearest whole number.
With this rule, set values of m is

M ∼ {1, 2, 3, 4, 5, 6, 9, 12, 16, 22, 30, 40, 55, 74, 101}. Model's input count often is less
than count of samples.

Model building and error estimation are made for each combination of n and m
values in this experiment. For each combination of samples' count and input's count,
error estimation depends on which exactly samples are generated. To reduce this
dependency, error estimation was made for 30 times for each combination of n and
m. Di�erent methods of error estimation were performed on the same set of samples
to hold them under the same conditions.

For each set of n and m test samples was created too. Count of test samples is
100000. With this count, test samples are a good estimation of the true generalization
error of the model by the law of large numbers. Test error is the average of an error
on each test sample, so it will almost surely converge to mean error.

True mean µ is linear combination of inputs and hence it is under Gaussian
distribution. It was shown that µ = E(Y |X1, X2, ?, Xm) have variance σ2

X . If σ
2
X = 1,

then µ if lied from -2 to 2 with probability 95.44% by three-sigma rule. Then set
σε = 0.4 to random error lies from -0.8 to 0.8 with probability of 95.44%.

For CV of count blocks k = 10 [12]. For Monte Carlo Cross Validation 70 %
and 80% samples were selected as train samples [13]. Count of splitting was 10. In
another research, this count should be greater, but experiments will take too a lot of
time to run. For Monte Carlo Cross test validation, validation's part is 20% and the
test part is 30%. In another experiment, validation's part is 15%, the test is 20%.

2 The results of Experiment

Table with error estimation was created as the results of this experiment. For each
combination of n, m and method of error estimation 30 error estimations for di�erent
datasets are created. Also for all rows, the absolute di�erence between the estimation
of the generalization error and true error is evaluated. This value is the error of the
error estimation method. This table has 57600 rows. Mood's median test [14] was
performed to check if all methods have the same error. As a result, the p− value is
lower than 0.05, and to check which one methods di�er, the post-hoc test is used. For
all pairs of methods Mood's median test was conducted. Adjustments to the p-values
were made to avoid in�ating the possibility of making a type-1 error. Benjamini and
Yekutieli correction was used [15]. Table 1 gives the results of these tests. Methods
with the same latter have an insigni�cant di�erence in median's value. The threshold
for p− value is 0.05.

Methods with a lower median of error are a CV, MCCV, and Nested CV, their
median does not di�er signi�cantly.

For all combinations of samples count n and feature count m di�erences in errors'
median are not signi�cant. But it is important to �nd out the best method for
di�erent m and n. Figure 3 contour plot of the median absolute di�erence between
true errors and estimated by MCCV errors are shows 3. If the count of samples is
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Table 1: Pairwise median's test results

? Method Parameters Latter Error's median
1 CV k = 10 A 0.035
2 Nested CV k = 10 A 0.036
3 CVCT 70% B 0.059
4 CVCT 80% C 0.066
5 MCCV 70% D 0.04
6 MCCV 80% A 0.035
7 MCCTV 20% and 30% E 0.043
8 MCCTV 15% and 20% DE 0.042

greater than the features' count, a median of error is small and not di�er a lot. In
another case the di�erence of errors are big. In that area all methods underestimate
true error, so makes sense to divide these areas and work on each of them separately.

a) Contour plot of median error b) Contour plot of median absolute error

Figure 1: The dependence between methods

Figure 2 for each n and m number of best method with minimal error is shown.
In a situation, where samples' size is lower than features count, 35 times out of 48
MCCV has the smallest error. It means that in most cases MCCV is the best method
for error estimating if the count of samples is lower than the count of features. If
n > m, Cross validation 86 times out of 181 times has the smallest absolute error,
Nested Cross Validation 62 times out of 181 has the smallest absolute error. But
there is no pattern of how to choose the method as they are scattered uniformly.

3 Discussion

A di�erent method of true error estimation is considered in this work. It is shown
that in the case of linear model best methods are a CV, Nested CV, and MCCV.
If the count of samples is lower then count of features, it ought to use MCCV. In
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Figure 2: Number of the method with minimum absolute error

another case, CV or Nested CV can be used. It is ought to note that Nested CV
works k − 1 times longer more than a CV. For Monte Carlo, Cross Validation count
of repition should be greater, so maybe it's quality will be better.

It is important to remember that in these experiments linear dipendency was
used. The Lasso have linear structure too, so it can approximate the true functioan
connection. Usually, the researcher does not know real structre of the model.

Lasso model is not �exible, so maybe that is the reason why CV and MCCV work
better than a nested CV. In the next researchers, another dataset and more �exible
models are planned to be used.
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Abstract

In our earlier papers, the MIN3 nonparametric two-sample test has been
proposed. The statistic of the MIN3 test is a minimum of three depen-
dent random variables. These random variables are p-values of the weighted
Kaplan-Meier test, Bagdonavičus-Nikulin test based on the MCE model and
Bagdonavičus-Nikulin test based on the SCE model.

The asymptotical distribution of the MIN3 two-sample test statistic is un-
known. However using Monte-Carlo simulation, we found that the distribution
of theMIN3 test statistic can be approximated by the Beta distribution of the
third kind.

In the paper, we study the distribution of the MIN3 test statistic by the
Monte-Carlo simulation. Estimated parameters and lower percentage points of
the MIN3 test statistic distribution are represented in the paper.

Keywords: survival analysis, randomly right-censored observations, hy-
pothesis testing, two-sample problem, Monte-Carlo simulation, MIN3 test,
Bagdonavičus-Nikulin SCE test, Bagdonavičus-Nikulin MCE test, Weighted
Kaplan-Meier test.

Introduction

One of the steps of hypothesis testing [1] consists in a comparison of the value of a
test statistic with some critical value that depends on the corresponding distribution
of the test statistics. It is known that the distribution of the test statistic under
limited samples size may di�er from the corresponding limit distribution [2]. In tasks
with randomly right-censored observations, the distribution of censored time FC(t)
and censoring rate r can a�ect the distribution of the test statistic.

In our earlier papers, we propose the MIN3 test [3] for two-sample problem.
The asymptotical distribution of the MIN3 test statistic is unknown. This makes it
di�cult to apply the MIN3 test in practice because every time it is required to use
special methods for the simulation of the test statistic distribution. For example, this
problem can be solved by the Monte-Carlo method [4]. In this paper, we study the
distribution of the MIN3 test statistic varying samples size, distribution of censored
time, and censoring rate by the Monte-Carlo simulation. According to the results
of the simulation, we estimate the parameters of the distribution of the MIN3 test
statistic using the Beta distribution of the third kind.

This research has been supported by the Russian Ministry of Education and Science as a part
of the state task (application number 1.1009.2017/4.6).
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In Section 1, we consider the problem statement and describe the model of ran-
domly right-censored observations. In section 2, we present the statistics of the
MIN3 test. In Section 3, we study the distribution of the MIN3 test statistic and
present the results of a Monte Carlo simulation.

1 Problem Statement

Suppose that we have two samples of continues variables ξ1 and ξ2 respectively,
X1 = {t11, t12, ..., t1n1} and X2 = {t21, t22, ..., t2n2} of two survival distributions S1(t)
and S2(t). The samples size are n1, n2 (if n1 = n2, then may be denoted as n).
The observation tij = min (Tij, Cij) , where Tij and Cij are the failure and censoring
times for the j-th object of the i-th group. Tij and Cij are i.i.d. with a cumulative
distribution function (CDF) Fi(t) and FC

i (t) respectively. Survival curve means the
probability of survival in the time interval (0, t)

Si(t) = P {ξi > t} = 1− Fi(t).

Then the null hypothesis is
H0 : S1(t) = S2(t)

against alternative hypothesis

H1 : S1(t) 6= S2(t).

Let an indicator of censoring cij be equal 0 if tij is a failure time and be equal 1
if tij is a censored time.

Further, we consider a test statistic of the MIN3 test.

2 MIN3 Two-sample Test

A test statistic of the MIN3 test [3] is

SMIN3 = min {pWKM , pBN2, pBN3} ,

where
pWKM = 2 ·min

{
FN(0,1) (SWKM) , 1− FN(0,1) (SWKM)

}
,

pBN2 = 1− Fχ2(3) (SBN2) , pBN3 = 1− Fχ2(2) (SBN3) ,

SWKM is a test statistic of the Weighted Kaplan-Meier test (the test statistic rep-
resented in [5]), SBN2 is a test statistic of the Bagdonavičus-Nikulin test based on
the MCE model (the test statistic represented in [6]), SBN3 is a test statistic of the
Bagdonavičus-Nikulin test based on the SCE model (the test statistic represented
in [7]), FN(0,1) (t) is a CDF of the standard normal distribution at time t and Fχ2(k) (t)
is a CDF of the chi-square distribution with k degrees of freedom at time t.

The MIN3 test has a left-side critical area.
The asymptotical distribution of the MIN3 test statistic is unknown. However,

its distribution can be approximated by the Beta distribution of the third kind dis-
tribution that is represented in next section.
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3 Distribution of the MIN3 Test Statistic Under

Null Hypothesis

Because the p-value of any test is distributed asymptotically uniformly on the in-
terval [0, 1] under the null hypothesis H0, we can suppose that the distribution
Gn(SMIN3|H0) of the test statistic SMIN3 that is a minimum of three dependent
random variables (p-values of the WKM, BN2 and BN3 tests) converges to the limit
distribution G(SMIN3|H0) asymptotically.

3.1 Simulation of the Distribution of the MIN3 Test Statistic

The distributions of the MIN3 test statistic were simulated by the Monte Carlo
method with N = 2 700 000 replications. It makes possible to conclude that the
di�erence [8] DN = sup

t

∣∣∣F̂N(t)− FSMIN3
(t)
∣∣∣ between empirical CDF F̂N(t) and CDF

of the MIN3 test statistic is not greater than 0.001 with a con�dence probability
0.99. In Figures 1 and 2, the distributions of the MIN3 test statistic G(Sn|H0)
are shown in the uncensored and censored cases. On the graphics, we can see that
the CDF of the MIN3 test statistic tends to the limit distribution with growing n,
however this limit distribution is unknown now. If the sample includes the censored
observations, then the distribution of the MIN3 test statistic is slightly changed.

Figure 1: CDF Gn(S|H0) of the MIN3 test statistic SMIN3 for various samples size
n1 = n2 = n in the uncensored case
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Figure 2: CDF Gn(S|H0) of the MIN3 test statistic SMIN3 for sample size
n1 = n2 = 100 in the censored case

3.2 Approximation of the Distribution of theMIN3 Test Statis-
tic

The approximation of the test statistic distribution is a possible way to the more
correct application of the statistical test [9]. To approximate the distribution of the
MIN3 test statistic, we are looking for a distribution from the class of the Beta-
Generated distributions that can be de�ned as

F (x;α, β) =
B(G(x), α, β)

B(α, β)
,

where B(α, β) =
1∫
0

yα−1(1−y)β−1dy and B(x, α, β) =
x∫
0

yα−1(1−y)β−1dy are complete

and incomplete beta functions, α and β are parameters, and G(x) is a generating CDF
of some random variable that can also have own parameters. Using the di�erent
generating functions G(x) we can obtain a lot of �exible distributions, for example,

� Beta distribution of the �rst kind, G(x) = x, 0 ≤ x ≤ 1;

� Beta distribution of the second kind, G(x) = x
1+x

, 0 ≤ x < +∞;

� Beta distribution of the third kind [10], G(x, δ) = δx
1+(δ−1)x

, 0 ≤ x < 1;

� Generalized Beta distribution [11], G(x, δ, γ) = xγ

1+δxγ
, 0 ≤ xγ ≤ 1

(1−δ) ;

� Pareto's distribution, G(x) = x−1
x
, 1 ≤ x <∞, α = 1;
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� Exponential generalized beta distribution of the second type, G(x) = ex

1+ex
,

−∞ < x < +∞.

Since theMIN3 test statistic is de�ned in the interval [0, 1] the Beta distribution
of the �rst and the third kind are the most suitable. However, the Beta distribution
of the �rst kind has only two parameters, while the Beta distribution of the third kind
has three parameters and is better suited for the approximation. The distribution of
the MIN3 test statistic can be good approximated by the Beta distribution of the
third kind with a probability density function (PDF) [10]

fBetaIII
(x; a, b, c) =

ca

B (a, b)
xa−1(1− x)b−1(1 + (c− 1)x)−a−b, x ∈ (0, 1) , a, b, c > 0.

The estimated parameters â,b̂ and ĉ of the Beta distribution of the third kind
and Kolmogorov's distance [8] Dn,N = sup

t

∣∣∣F̂n,N(t)− FBetaIII(t; a, b, c)
∣∣∣ between the

empirical CDF F̂n,N(t) of the MIN3 test statistic and their approximations
FBetaIII(t; a, b, c) for di�erent n are shown in Table 1. The estimations were found by
the software system "ISW" [12]. As long as the sample size n1 = n2 = n increases,
the distance Dn,N is reduced and stabilized close to the simulation error 0.001. Using
the approximation, we can draw a PDF of the MIN3 test statistic that is shown in
Figure 3.

Table 1: Approximation of the MIN3 test statistic distribution using the Beta
distribution of the third kind

n â b̂ ĉ Dn,N

10 0.8603 2.8066 0.5579 0.0204
20 0.8308 2.2859 0.6813 0.0071
50 0.8576 2.0410 0.7957 0.0023
100 0.8769 1.9175 0.8583 0.0017
200 0.8859 1.8397 0.8908 0.0008
500 0.9020 1.7946 0.9172 0.0007
1000 0.9086 1.8007 0.9031 0.0008

3.3 Lower Percentage Points of the MIN3 Test Statistic Dis-

tribution

In Table 2, the lower percentage points of the distribution Gn(SMIN3|H0) for samples
size n = n1 = n2 in the range from 10 to 1000 observations without censoring are
shown. In Table 3, the distributions of the MIN3 test statistic Gn(SMIN3|H0) for
samples size n1 = n2 = 100 and censoring rates in the range from 0% to 50%. Thus,
if a researcher has two samples with corresponding sizes n = n1 = n2, then the lower
percentage points in Tables 2 and 3 can be used for rejecting of the null hypothesis.
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Figure 3: PDF gn(S|H0) of the MIN3 test statistic SMIN3 for sample size
n1 = n2 = n without censoring

In the general case, the p-value can be calculated using the simulation procedure by
the Monte Carlo method.

Conclusion

Using the Monte-Carlo simulation, it is possible to estimate the limit distribution
of the MIN3 test statistic. Special software ISW allows us to establish the closest
family of distributions describing the distribution of the MIN3 test statistic, as
well as to estimate the parameters of this family. In the paper, the parameters of the
distribution ofMIN3 test statistic are represented both for a non-censoring case (r =
r(X1) = r(X2), r = 0%) and for a censoring case (r = r(X1) = r(X2), 10% ≤ r ≤
50%).

The Kolmogorov's distance between the empirical CDF of theMIN3 test statistic
and their approximations FBetaIII(t; a, b, c) for di�erent n are shown in the paper.

The analytic form of the asymptotic distribution of the MIN3 test statistic is a
next step of this test research. Nonetheless the approximation of the distribution of
the MIN3 test statistic and the tables of the percentage points can be used right
now.

The results obtained in the paper can be used as recommendations for using of
the MIN3 test in practice.
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Table 2: Lower percentage points of the MIN3 test statistic distribution under H0

without censoring

α
G−1
SMIN3

|H0
(α)

n = 10 n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000
0.001 0.0003 0.0002 0.0002 0.0002 0.0002 0.0003 0.0003
0.005 0.0017 0.0013 0.0013 0.0015 0.0016 0.0018 0.0019
0.010 0.0038 0.0029 0.0029 0.0032 0.0034 0.0038 0.0040
0.020 0.0077 0.0066 0.0066 0.0070 0.0074 0.0080 0.0085
0.030 0.0119 0.0104 0.0105 0.0111 0.0117 0.0126 0.0131
0.040 0.0162 0.0146 0.0146 0.0154 0.0162 0.0172 0.0179
0.050 0.0200 0.0185 0.0188 0.0198 0.0208 0.0220 0.0229
0.060 0.0245 0.0230 0.0232 0.0244 0.0255 0.0269 0.0280
0.070 0.0299 0.0273 0.0278 0.0290 0.0303 0.0319 0.0331
0.080 0.0344 0.0321 0.0323 0.0337 0.0351 0.0369 0.0383
0.090 0.0379 0.0367 0.0371 0.0386 0.0402 0.0420 0.0436
0.100 0.0438 0.0412 0.0419 0.0435 0.0454 0.0473 0.0489

References

[1] S. Postovalov, P. Philonenko (2013). A Comparison of Homogeneity Tests for
Di�erent Alternative Hypotheses, Statistical Models and Methods for Reliability
and Survival Analysis : monograph. - London : Wiley-ISTE. - Chap. 12. - P.
177�194. - (Mathematics and Statistics series).

[2] Petr Philonenko, Sergey Postovalov (2017). The Convergence Rate Research of
Two-Sample Test Statistic Distribution to the Limit Distribution under Right-
Censored Data / Obrabotka informacii i matematicheskoe modelirovanie [Infor-
mation processing and mathematical simulation], (April, 25�26, 2017, Novisi-
birsk). - Novosibirsk : SibGUTI, 2017. - pp. 187�193. - ISBN 978-5-31434-038-1.
(In Russian).

[3] Petr Philonenko and Sergey Postovalov (2019). The new robust two-sample test
for randomly right-censored data, Journal of Statistical Computation and Sim-
ulation, DOI: 10.1080/00949655.2019.1578769.

[4] Metropolis, N.; Ulam, S. (1949). "The Monte Carlo Method". Journal of the
American Statistical Association. 44 (247): 335�341. doi:10.2307/2280232. JS-
TOR 2280232. PMID 18139350.

[5] Pepe M.S. and Fleming T.R., Weighted Kaplan-Meier statistics: a class of dis-
tance tests for censored survival data. Biometrics. 1989; 45 : 497�507.
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Abstract

In the paper, we present the results of the computer simulation for the
convergence rate of two-sample test statistic distributions in the lifetime data
case. Various distributions of failure times and various distributions of censored
times are considered. In the result the dependence on the Kolmogorov's distance
between a distribution of the two-sample test statistic and its limit distribution
is shown.

Keywords: Monte-Carlo method, survival analysis, hypothesis testing,
randomly right-censored observations, convergence rate, Gehan's Generalized
Wilcoxon Test, Peto and Peto's Generalized Wilcoxon Test, log-rank test, Cox-
Mantel test, Bagdonavičius-Nikulin tests, weighted log-rank tests, Kolmogorov's
distance.

Introduction

When conducting a procedure for hypothesis testing, for example, the hypothesis of
homogeneity [1], it is necessary to compare the computed value of the test statistic
with a certain critical value. Such critical value represents a certain quantile of the
distribution of the test statistic. However under small sample size, the distribution
of test statistic can di�er signi�cantly from the limit distribution [2] which can lead
to wrong decision. Therefore, the goal of our work is to study distributions of test
statistic for various sample sizes and de�ne the di�erence (in the sense of the Kol-
mogorov's metric [3]) to the corresponding limit distribution using the Monte-Carlo
simulation.

In Section 2, we present the statement of the two-sample problem and considered
two-sample tests under randomly right-censored observations. Also in Section 2, we
give a methodology for studying the rate of convergence of the test statistic distribu-
tion to the corresponding limit distribution. In Section 3, we present the results of
computer simulation of the convergence rate study.

1 Problem Statement

Suppose that we have two samples of continues variables ξ1 and ξ2 respectively,
X1 = {t11, t12, ..., t1n1} and X2 = {t21, t22, ..., t2n2} of two survival distributions S1(t)

This research has been supported by the Russian Ministry of Education and Science as a part
of the state task (application number 1.1009.2017/4.6).
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and S2(t). The samples size are n1, n2 (if n1 = n2, then may be denoted as n).
The observation tij = min (Tij, Cij) , where Tij and Cij are the failure and censoring
times for the j-th object of the i-th group. Tij and Cij are i.i.d. with a cumulative
distribution function (CDF) Fi(t) and FC

i (t) respectively. Survival curve means the
probability of survival in the time interval (0, t)

Si(t) = P {ξi > t} = 1− Fi(t).

Then the null hypothesis is
H0 : S1(t) = S2(t)

against alternative hypothesis

H1 : S1(t) 6= S2(t).

Let an indicator of censoring cij be equal 0 if tij is a failure time and be equal 1
if tij is a censored time.

Censoring rate r for sample Xi is

r (Xi) =

(
ni∑
j=1

cij

)
× 100%

ni
, i = 1, 2.

2 Convergence Rate of Test Statistic Distribution

to the Limit Distribution

Let a test statistic Sn has (when the hypothesis H0 is true) a pre-limit distribu-
tion Gn(t) when sample sizes are n < ∞ and Sn has the limit distribution G(t)
when n → ∞. It is impossible to prove a convergence of Gn(t) to G(t) using simu-
lation but one can determine a sample size n providing a maximal distance between
the limit and pre-limit distributions no more than ε, for example, ε = 0.01.

Finding an analytic form of the pre-limit distribution Gn(t) is usually more dif-
�cult task than �nding the limit distribution G(t). However, one can estimate em-
pirical distribution function of Gn(t) using the Monte Carlo method. It is neces-
sary simulate a sample (with a sample size N) contained test statistic values Sn:{
S

(1)
n , S

(2)
n , ..., S

(N)
n

}
and compute empirical distribution function Gn,N(t). Hence,

the Kolmogorov's distance [4],[5] is computed as

Dn,N = sup
|t|<∞

|Gn,N (t)−G (t)| .

Surely, Gn,N(t) di�ers fromGn(t) with accurate to εN . But using the Kolmogorov's
theorem [6], one can determine N that εN < ε.

According to the Kolmogorov's theorem

lim
N→∞

P

{
√
N sup
|x|<∞

|Gn,N(x)−Gn(x)| < t

}
= K(t),
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where K(t) is the Kolmogorov's distribution. One can �nd such N providing εN < ε
with a some con�dence probability. For instance, if we want a simulation error εN ≤
0.001 with the con�dence probability 0.99, then required sample size N is

N =

[(
K−1 (0.99)

0.001

)2
]

+ 1 ≈

[(
1.62762

0.001

)2
]

+ 1 = 2 649 147.

3 Two-Sample Tests

In the paper, we consider following statistical tests for the solution of the two-sample
problem:

1. the Gehan's Generalized Wilcoxon Test ([7], [8]);

2. the Peto and Peto's Generalized Wilcoxon Test ([8], [9]);

3. the log-rank test ([8], [10]);

4. the Cox-Mantel test ([8], [11]);

5. the Bagdonavičius-Nikulin tests based on the generalized Cox model [12];

6. the Bagdonavičius-Nikulin test based on the SCE model [13];

7. the Tarone-Ware test (weighted log-rank test) [13].

Additional information of these test statistics can be founded in presented papers.

4 Simulation

In the study of the distance between pre-limit Gn,N(t) and limit G(t) test statistic
distributions, we consider ε = 0.01, N = 2.7 · 106 replications (εN ≤ 0.001), the
laws of failure time distributions are Weibull-Gnedenko and Exponential, the laws of
censoring time distribution are Weibull-Gnedenko and Gamma, censoring rate is in
the range from 0% and 50% (randomly right-censored observations). The results of
computer simulation are given in Tables 1�7.

From the obtained results, it is obvious that in the case of the Gehan test, if the
sample size n ≥ 20 observations, the Kolmogorov's distance does not exceed 0.01
both in the case of complete observations and in the case with a censoring rate 50%.
For the Peto, log-rank and Cox-Mantel two-sample tests, in the case of complete
data, if the sample size n ≥ 20 observations, the Kolmogorov's distance to the limit
distributions does not exceed 0.01, and in the case with censoring rate 50% a similar
result is achieved at n ≥ 10.

For the Tarone-Ware two-sample test, if the sample size n ≥ 20 observations, the
Kolmogorov's distance to the limit distribution is no more than 0.01.
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Table 1: Simulated Kolmogorov's distance between pre-limit and limit distributions
of the Gehan's Generalized Wilcoxon test statistic

n = n1 = n2

F∼We,
FC∼We

F∼We,
FC∼Γ

F∼Exp,
FC∼We

F∼Exp,
FC∼Γ

0% 50% 0% 50% 0% 50% 0% 50%
10 0.0171 0.0227 0.0172 0.0114 0.0173 0.0328 0.0171 0.0126
20 0.0071 0.0075 0.0070 0.0039 0.0069 0.0113 0.0068 0.0040
30 0.0041 0.0045 0.0041 0.0022 0.0040 0.0061 0.0041 0.0019
40 0.0030 0.0030 0.0029 0.0014 0.0028 0.0044 0.0026 0.0016
50 0.0024 0.0018 0.0023 0.0011 0.0022 0.0030 0.0024 0.0015

Table 2: Simulated Kolmogorov's distance between pre-limit and limit distributions
of the Peto and Peto's Generalized Wilcoxon test statistic

n1 = n2

F∼We,
FC∼We

F∼We,
FC∼Γ

F∼Exp,
FC∼We

F∼Exp,
FC∼Γ

0% 50% 0% 50% 0% 50% 0% 50%
10 0.0176 0.0058 0.0172 0.0050 0.0172 0.0063 0.0169 0.0048
20 0.0065 0.0030 0.0068 0.0025 0.0069 0.0028 0.0069 0.0024
30 0.0039 0.0018 0.0039 0.0016 0.0042 0.0018 0.0042 0.0022
40 0.0029 0.0020 0.0026 0.0014 0.0028 0.0019 0.0030 0.0015
50 0.0023 0.0013 0.0025 0.0009 0.0022 0.0014 0.0023 0.0012

Table 3: Simulated Kolmogorov's distance between pre-limit and limit distributions
of the log-rank test statistic

n1 = n2

F∼We,
FC∼We

F∼We,
FC∼Γ

F∼Exp,
FC∼We

F∼Exp,
FC∼Γ

0% 50% 0% 50% 0% 50% 0% 50%
10 0.0144 0.0071 0.0136 0.0046 0.0138 0.0084 0.0139 0.0056
20 0.0075 0.0038 0.0076 0.0025 0.0075 0.0045 0.0075 0.0027
30 0.0056 0.0028 0.0055 0.0022 0.0055 0.0033 0.0050 0.0018
40 0.0041 0.0020 0.0041 0.0015 0.0042 0.0025 0.0045 0.0019
50 0.0035 0.0020 0.0034 0.0014 0.0036 0.0024 0.0035 0.0013
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Table 4: Simulated Kolmogorov's distance between pre-limit and limit distributions
of the Cox-Mantel test statistic

n1 = n2

F∼We,
FC∼We

F∼We,
FC∼Γ

F∼Exp,
FC∼We

F∼Exp,
FC∼Γ

0% 50% 0% 50% 0% 50% 0% 50%
10 0.0127 0.0068 0.0123 0.0044 0.0125 0.0087 0.0127 0.0051
20 0.0072 0.0037 0.0069 0.0021 0.0071 0.0043 0.0068 0.0028
30 0.0050 0.0024 0.0047 0.0018 0.0049 0.0031 0.0049 0.0018
40 0.0042 0.0021 0.0036 0.0013 0.0038 0.0025 0.0036 0.0017
50 0.0032 0.0019 0.0031 0.0012 0.0032 0.0022 0.0034 0.0014

Table 5: Simulated Kolmogorov's distance between pre-limit and limit distributions
the Tarone-Ware test statistic (weighted log-rank test)

n1 = n2

F∼We,
FC∼We

F∼We,
FC∼Γ

F∼Exp,
FC∼We

F∼Exp,
FC∼Γ

0% 50% 0% 50% 0% 50% 0% 50%
10 0.0108 0.0107 0.0109 0.0085 0.0104 0.0121 0.0105 0.0093
20 0.0056 0.0048 0.0053 0.0043 0.0054 0.0054 0.0056 0.0046
30 0.0034 0.0028 0.0032 0.0028 0.0035 0.0037 0.0038 0.0028
40 0.0031 0.0029 0.0028 0.0015 0.0025 0.0027 0.0024 0.0022
50 0.0020 0.0024 0.0026 0.0015 0.0024 0.0020 0.0019 0.0014

Table 6: Simulated Kolmogorov's distance between pre-limit and limit distributions
of test statistic of the Bagdonavičius-Nikulin test based on the SCE model

n1 = n2

F∼We,
FC∼We

F∼We,
FC∼Γ

F∼Exp,
FC∼We

F∼Exp,
FC∼Γ

0% 50% 0% 50% 0% 50% 0% 50%
10 0.0657 0.0472 0.0657 0.0304 0.0656 0.0577 0.0653 0.0357
20 0.0437 0.0264 0.0438 0.0132 0.0434 0.0357 0.0436 0.0178
30 0.0337 0.0196 0.0337 0.0094 0.0333 0.0275 0.0334 0.0123
40 0.0275 0.0158 0.0273 0.0063 0.0282 0.0226 0.0274 0.0098
50 0.0240 0.0136 0.0240 0.0053 0.0238 0.0202 0.0237 0.0082
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Table 7: Simulated Kolmogorov's distance between pre-limit and limit distributions
of test statistic of the Bagdonavičius-Nikulin test based on the generalized Cox
model

n1 = n2

F∼We,
FC∼We

F∼We,
FC∼Γ

F∼Exp,
FC∼We

F∼Exp,
FC∼Γ

0% 50% 0% 50% 0% 50% 0% 50%
10 0.0578 0.0455 0.0585 0.0294 0.0584 0.0555 0.0574 0.0348
20 0.0331 0.0245 0.0334 0.0129 0.0334 0.0317 0.0328 0.0173
30 0.0247 0.0173 0.0239 0.0086 0.0242 0.0234 0.0240 0.0113
40 0.0193 0.0138 0.0191 0.0060 0.0184 0.0194 0.0193 0.0089
50 0.0159 0.0114 0.0161 0.0050 0.0155 0.0164 0.0160 0.0076

For the Bagdonavičius-Nikulin tests, the results of the convergence rate are not
so ambiguous and may depend on the censored time distribution. However, if the
sample size n ≥ 200 (for two-sample test based on the SCE model), and n ≥ 100
(for a two-sample test based on generalized Cox model), the Kolmogorov's distance
to the corresponding limit distribution does not exceed 0.01.

The results obtained can be used as recommendations on the application of these
criteria in practice.

Conclusions

Summing up, we note that in this paper we described a procedure on the basis of
which we can de�ne such sample size that the distance between prelimit and limit
distributions does not exceed a certain value. It means the application of the limit
distribution for hypothesis testing is possible without loosing the accuracy in the
statistical conclusions. For this procedure, we conducted a computer simulation using
two-sample tests for both complete and censored observations. The obtained results
can be used as recommendations, starting from such volume the distance of the pre-
limit distribution to the limit distribution does not exceed 0.01. If the sample size is
not enough, then we can recommend to simulate the test statistics distribution using
the Monte-Carlo method.

The work was done with the �nancial support of the Ministry of Education and
Science of the Russian Federation as part of the project part of the state task (appli-
cation number 1.1009.2017/4.6).
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[12] Bagdonavičius V. B., Levuliene R. J., Nikulin M. S., Zdorova-Cheminadeo,
"Tests for equality of survival distributions against nonlocation alternatives",
Lifetime Data Analysis, vol. 10, num. 4, 2004, p. 445-460.
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Abstract

The problem of optimal estimation of the heavy tail index is revisited from
the point of view of truncated estimation. A class of these estimators is in-
troduced having guaranteed accuracy based on a sample of �xed size [7]. The
optimality of considered log-gamma index estimators in the sense of a special
type risk function is established. The considered risk function makes possible
to optimize not only the asymptotic variances of the estimators, as well as used
for estimation of sample size. Optimization of the parameters of log-gamma
distribution is presented. Simulation results con�rm theoretical one's.

Keywords: Optimal parameter estimation, heavy tails, log-gamma distri-
bution, optimal convergence rate.

Introduction

This paper presents results of optimality for the parameter estimators of log-gamma
distribution, introduced in [7]. Some general properties of parameter estimators are
used only and are such that the considered class of estimators is su�ciently wide.

In this paper, we use the risk function of a special type which is a linear com-
bination of mean-square deviation of parameter estimators and sample size. The
requirement of both good parameter estimation quality and reasonable duration of
observations is formulated as a risk e�ciency problem. The risk function of similar
structure was proposed in [1], see also references therein. The criterion is given by a
certain loss function and optimization is performed based on it.

Further the loss and risk functions of the type proposed in [1] were used in,
e.g., [8, 9] for optimization of interpolators and predictors of a scalar AR(1) process
with unknown parameters. Similar optimization problem of the sequential parameter
estimator of AR(1) was considered in [3]. There was considered a risk function
de�ned on the basis of squared estimation error of sequential estimator of the dynamic
parameter.

Later the results of those papers were re�ned and extended to other stochastic
models. In particular, this approach was applied to construction of optimal adaptive
predictors of the stochastic processes related with discrete and continuous-time dy-
namical systems, see, e.g, [16, 2]. The proposed procedures are based on the so-called
truncated estimators which have been developed in order to estimate ratio type func-
tionals from a wide class by dependent observations and by samples of �xed size so
that they had guaranteed accuracy in the sense of the L2m-norm, m ≥ 1. Examples
of parameter estimation problems of discrete and continuous time systems on a time
interval of a �xed length are considered.
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The truncated estimators may keep asymptotic properties of the estimators they
are based upon. Another approaches do not guarantee prescribed estimation accuracy
when using samples of non-random �nite size and lead up to complicated analytical
problems in adaptive procedures. Applications of truncated estimators with the said
quality makes possible to optimize the risk function which is a linear combination of
sample mean of mean-square deviation of predictors and sample size.

Results of non-asymptotic non-parametric problems can be found also in [5, 6]
among others. In particular, they have investigated non-asymptotic properties of the
regression and density function kernel-type estimators.

It should be noted that �rst truncated parameter estimation method was applied
for construction of adaptive optimal predictors of VAR(1) in [10]. Then this method
was applied to more complicated stochastic systems. Among the processes considered
are stable multivariate discrete time AR(1), ARMA(1,1) and RCA(1), as well as
continuous time di�usion and time delayed processes, see, e.g., [2]. The proposed
procedure is shown to be asymptotically risk e�cient as the cost of prediction error
tends to in�nity.

1 Log-gamma density function

Consider the parameter estimation problem based on i.i.d. observations X1, . . . , Xn

with the log-gamma density function

f(x) = Cfx
−(γ+1) logβ−1 x, x ≥ 1.

Our main aim is to prove the optimality of the truncated estimators βn, γn and
θn of the parameters β, γ and θ presented in [7] in the sense of the risk function
considered above.

To de�ne the truncated estimators we introduce, similar to [7] for some given
a > 0 the functional

Φ(a) = E logaX1.

Using the de�nition of f(x) according to [7] we have

Φ(a) =
γ

β + a
Φ(a+ 1).

Analogously for a given b 6= a,

Φ(b) =
γ

β + b
Φ(b+ 1).

Thus
βΦ(a)− γΦ(a+ 1) = −aΦ(a),

βΦ(b)− γΦ(b+ 1) = −bΦ(b)

and the solution of this system has the form

β =
bΦ(b)Φ(a+ 1)− aΦ(a)Φ(b+ 1)

∆a,b

,
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γ =
(b− a)Φ(a)Φ(b)

∆a,b

,

as well as
θ =

∆a,b

(b− a)Φ(a)Φ(b)
,

where
∆a,b = Φ(a)Φ(b+ 1)− Φ(b)Φ(a+ 1).

Now we de�ne the empirical functional estimator

Φn(a) =
1

n

n∑
k=1

logaXk

of Φ(a) and the truncated estimators βn, γn and θn (see also [7]) as follows

βn =
bΦn(b)Φn(a+ 1)− aΦn(a)Φn(b+ 1)

∆a,b(n)
· χ(|∆a,b(n)| ≥ log−1 n), (1)

γn =
(b− a)Φn(a)Φn(b)

∆a,b(n)
· χ(|∆a,b(n)| ≥ log−1 n), (2)

θn =
∆a,b(n)

(b− a)Φn(a)Φn(b)
· χ(|(b− a)Φn(a)Φn(b)| ≥ log−1 n), (3)

where
∆a,b(n) = Φn(a)Φn(b+ 1)− Φn(b)Φn(a+ 1).

From [7] it follows that the asymptotic normality property, de�ned in [7] is ful�lled
for the estimators γn, θn and βn with the rate αn =

√
n and the asymptotic variance

of n · γn is de�ned by equations

σ2
γ = (b− a)2∆−2

a,b · σ
2
1 + 2(b− a)2∆−3

a,b · σ2 + (b− a)2∆−4
a,b · σ

2
3, (4)

where

σ2
1 = Φ2(a)Φ(2b) + Φ(2a)Φ2(b) + 2Φ(a)Φ(b)Φ(a+ b)− 4Φ2(a)Φ2(b),

σ2 = −Φ(a)Φ(b+1)Φ(a+b)−Φ2(a)Φ(2b+1)+Φ(a)Φ(a+1)Φ(2b)−Φ(2a)Φ(b)Φ(b+1)

+Φ(a+ 1)Φ(b)Φ(a+ b) + Φ2(b)Φ(2a+ 1) + 4Φ2(a)Φ(b)Φ(b+ 1)− 4Φ(a)Φ(a+ 1)Φ2(b),

σ2
3 = Φ2(a)Φ2(b) · {Φ(2a)Φ2(b+ 1)− 4Φ2(a)Φ2(b+ 1) + Φ2(a)Φ(2(b+ 1))

+2Φ(a)Φ(b+ 1)Φ(a+ b+ 1) + Φ2(a+ 1)Φ(2b) + Φ2(b)Φ(2(a+ 1))− 4Φ2(a+ 1)Φ2(b)

+2Φ(a+ 1)Φ(b)Φ(a+ b+ 1)− 2Φ(a+ 1)Φ(b+ 1)Φ(a+ b)− 2Φ(a)Φ(a+ 1)Φ(2b+ 1)

+8Φ(a)Φ(b)Φ(a+ 1)Φ(b+ 1)− 2Φ(2a+ 1)Φ(b)Φ(b+ 1)− 2Φ(a)Φ(b)Φ(a+ b+ 2)}.
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Consider the case of known β. The parameter Gamma can be represented in the
form

γ = (β + a)
Φ(a)

Φ(a+ 1)
,

the estimator is de�ned as

γn = (β + a)
Φn(a)

Φn(a+ 1)
· χ(Φn(a+ 1) ≥ log−1 n)

and its asymptotic variance is equal to

σ2
γ = (β + a)2 Φ(2a)Φ(a+ 1) + Φ2(a)Φ(a+ 1)Φ(2(a+ 1))− 2Φ(a)Φ(2a+ 1)

Φ3(a+ 1)
(5)

Consider the optimization procedure of the parameter estimation of log-gamma
distribution.

De�ne for an estimator γn of parameter γ the loss function

Ln = A(γn − γ)2 + n.

Parameter A stands for a cost of mean square quality of the estimator γn of parameter
γ and n is a sample size. We suppose that the cost of observations is included in the
de�nition A (see, for comparison, [1]).

The corresponding risk function Rn = ELn has the form

Rn = AE(γn − γ)2 + n

and we solve the optimization problem

Rn → min
n

(6)

Consider two cases.

� Case of known asymptotic variance σ2 of γn.

Thus the principal term of the risk function has the form

Rn =
Aσ2

n
+ n.

For A large enough the optimal sample size is equal to

n0
A =
√
Aσ2, (7)

as well as the corresponding principal term of the risk function Rn0
A

R0
A :=

Aσ2

n0
A

+ n0
A = 2

√
Aσ2. (8)
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As follows the problem is solved if the number σ2 is known.

� Case of unknown σ2.

First de�ne the estimator σ2
n of the variance σ

2 as

σ2
n =

Φn(2a)Φn(a+ 1) + Φ2
n(a)Φn(a+ 1)Φn(2(a+ 1))− 2Φn(a)Φn(2a+ 1)

Φ3
n(a+ 1)

(9)

·(b+ a)2χ(Φn(a+ 1) ≥ log−1 n).

Since (7) is directly involved in the expression (8) for R0
A, the optimal sample

size cannot be obtained as before. Similarly to Konev and Lai (1995), Sriram (1988),
Sriram and Iaci (2014) and Kusainov and Vasiliev (2014), one uses the stopping time
NA as an estimator of n0

A replacing σ2 in its de�nition with the estimator σ2
n

NA = inf{n ≥ nA : n ≥ A1/2σA}, (10)

where σA = min{σnA , logA}, σn =
√
σ2
n. We use here in comparison with mentioned

above papers the estimator σA instead of σn to simplify the proofs. At the same time
all results remain true.

It should be noted that for A large enough the following property is ful�lled

E(σ2
A − σ2)2p ≤ 2rnA(p), (11)

where rn(p) is some deterministic sequence such that

A · rnA(p) = o(1) as A→∞.

Indeed, for, e.g., log2A− σ2 ≥ 1, using the Chebyshev inequality we have

E(σ2
A − σ2)2p = E(σ2

nA
− σ2)2pχ(σnA ≤ logA) + (log2A− σ2)P (σnA > logA)

≤ rnA(p) + (log2A− σ2)
E(σ2

nA
− σ2)2p

(log2A− σ2)2p
≤ 2rnA(p).

We prove the asymptotic equivalence of NA and noA in the almost surely and mean
senses (see Theorem 1 below) and the optimality of the adaptive estimation procedure
in the sense of equivalence of the obviously modi�ed risk

RA := ELNA = AE(γNA − γ)2 + ENA. (12)

Theorem 1. The observation numbers (10) and (7) and corresponding risk functions
(12) and (8) are asymptotically equivalent in the following sense: as A→∞

NA

noA
→ 1 a.s., (13)

ENA

noA
→ 1, (14)

RA

Ro
A

→ 1. (15)
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2 Simulation results

To illustrate the theoretical properties of the optimal adaptive procedure we give
some numerical results for log-gamma distribution. We obtained the estimators σ2

n

of the variance of parameter estimators. The results for di�erent values of n are
presented in Fig. 1. The horizontal line shows the asymptotic value of σ2.

Figure 1: Log-gamma distribution. γ = 1.666

The quantities CN and CR are given in Fig. 2, 3 where CN = ENA
noA

, CR = RA
RoA

.

Here n0
A, R

0
A are de�ned by (7, 8) and NA, RA � by (10, 12). Note that ENA and

RA were computed as an empirical average over 1000 Monte Carlo replications of the
experiment (for each value of A).

Figure 2: Log-gamma distribution. γ = 1.6666 CN - left, CR - right

The obtained numerical results are close to the theoretical properties of the pro-
posed adaptive procedure.

Conclusion

The paper presents the method of optimal parameter estimation of log-gamma distri-
bution. The truncated estimator is used to minimize the loss function which includes
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the weighed mean square deviation and the sample size. It is shown that the proposed
procedure is asymptotically e�cient.

The theoretical results are illustrated by numerical results which con�rm the op-
timality properties.
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Abstract

The paper deals with the estimation problem of the actuarial present value
of the continuous de�ered life annuity using auxiliary information about the
expectation of life. Nonparametric estimators of life annuity are constructed
by individuals' death moments. It is shown that the usage of such auxiliary
information can often provide the mean squared error (MSE) smaller than that
of standard estimators. An adaptive estimator is also proposed. The asymptotic
normality of all these estimators is proved.

Keywords: nonparametric estimation; de�ered life annuity; auxiliary in-
formation; mean squared error; asymptotic normality.

Introduction

Let x be the age of an individual and at the moment t = 0 payments start. The
idea of the r-deferred life annuity in accordance with [4, p. 174] is this: from the
moment t+r = r, an individual starts receiving money once a year, which we take as
a monetary unit, and payments are made only during the lifetime of an individual.
It is known that the deferred life annuity is associated with the appropriate type of
insurance. Thus, the average total cost of the present continuous r-year deferred life
annuity is given by the following formula (see [4, p. 184]):

r|ax(δ) =
1− r|Ax

δ
,

where r|ax(δ) =

∫ ∞
r

e−δtfx(t)dt is the net premium (the expectation of the present

value of an insured unit sum for the deferred life insurance at age x), δ is a force of

interest, fx(t) =
f(x+ t)

S(x)
is a probability density of future lifetime T (x) = X − x of

an individual (x) [4, p. 62], f(x) is a probability density of lifetime X of an individual
(x), S(x) = P(X > x) is a survival function. Introduce the random variable

z(x) =
1− e−δT (x)

δ
, T (x) > r. (1)

Then, by averaging the random variable z(x) (1), we get the formula of the deferred
life annuity (see [4]):

r|ax(δ) = Ez(x) =
1

δ

(
1− Φ(x, δ, r)

S(x)

)
, (2)
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where E is the symbol of the mathematical expectation, Φ(x, δ, r) = eδx
∫ ∞
x+r

e−δtdF (t),

F (x) = P(X ≤ x) = 1− S(x) is a distribution function.
Note that the whole life annuity ax(δ) is the special case of the deferred life annuity

(2) at r = 0.

1 Construction of the Deferred Annuity Estimator

Assume that we have a random sample X1, . . . , Xn of n individuals' lifetimes. Using

the empirical survival function Sn(x) =
1

n

n∑
i=1

I(Xi > x), where I(A) is the indicator

of an event A, obtain the following estimator of (2):

r|a
n
x(δ) =

1

δ

1−
eδx

n∑
i=1

e−δ XiI(Xi > x+ r)

n∑
i=1

I(Xi > x+ r)

 =
1

δ

(
1− Φn(x, δ, r)

Sn(x)

)
, (3)

Φn(x, δ, r) =
eδx

n

n∑
i=1

e−δ XiI(Xi > x+ r).

2 Bias and Mean Squared Error of Estimator r|a
n
x(δ)

In this section, we will obtain the principal term of the asymptotic MSE and the
bias convergence rate of the estimator (3). Introduce the notation according to
[6]: the function H(t) : Rs → R1, where t = t(x) = (t1(x), . . . , ts(x)) is an s-

dimensional bounded function; Hj(t) =
∂H(t)

∂tj
, j = 1, s, ∇H(t) = (H1(t), . . . , Hs(t));

the symbol T denotes the transpose; tn = (t1n, . . . , tsn) is an s-dimensional statistic,

tjn = tjn(x) = tjn(x,X1, . . . , Xn), j = 1, s; ‖tn‖ =
√
t21n + . . .+ t2sn is the Euclidean

norm of tn; =⇒ Ns {µ, σ} is the symbol of weak convergence of sequence of random
variables to the s-dimensional normal random variable with a mean µ = (µ1, . . . , µs)
and symmetric covariance matrix σ = ||σij||, 0 < σjj = σjj(x) < ∞, j = 1, s; < is
the set of the integers.

D e f i n i t i o n. The function H(t) : Rs → R1 and the sequence {H(tn)} are
said to belong to the class Nν,s(t; γ), provided that

1) there exists an ε-neighborhood {z : |zi − ti| < ε; i = 1, s}, in which the

function H(z) and all its partial derivatives
∂H(z)

∂zj
up to the order ν are continuous

and bounded;
2) for any values of variables X1, ..., Xn the sequence {H(tn)} is dominated by a

numerical sequence C0d
γ
n, such that dn ↑ ∞, as n→∞, and 0 ≤ γ <∞.
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Theorem 1 [6]. Let the conditions 1) H(z), {H(tn)} ∈ N2,s(t, γ),
2) E||tn − t||i = O

(
d−i/2n

)
hold for all i ∈ <. Then, for every k ∈ <∣∣∣E [H(tn)−H(t)]k − E

[
∇H(t)(tn − t)T

]k∣∣∣ = O
(
d−(k+1)/2
n

)
. (4)

If in formula (4) k = 1, we obtain the principal term E
[
∇H(t)(tn − t)T

]
of

the bias E [H(tn)−H(t)] for H(tn), and at k = 2, we have the principal term
E
[
∇H(t)(tn − t)T

]2
of the MSE E [H(tn)−H(t)]2.

Denote C̃(r|ax(δ)) =
Φ(x, 2δ, r)S(x)− Φ2(x, δ, r)

δ2 S3(x)
.

Theorem 2 If the survival function S(x) > 0 and S(t) is continuous at a point
x, then

1) for the bias b
(
r|a

n
x(δ)

)
of estimator (3) we have∣∣b (r|anx(δ)
)∣∣ =

∣∣Er|a
n
x(δ)− r|ax(δ)

∣∣ = O
(
n−1
)

;

2) the MSE u2
(
r|a

n
x(δ)

)
is given by the formula

u2(r|a
n
x(δ)) = E

(
r|a

n
xδ)− r|ax(δ)

)2
=
C̃(r|ax(δ))

n
+O

(
1

n3/2

)
.

Proof. For estimator r|anx(δ) (3) in the notation of Theorem 1, we have: s = 2,

dn = n, tn = (t1n, t2n) = (Φn(x, δ, r), Sn(x)), H(tn) =
1

δ

(
1− Φn(x, δ, r)

Sn(x)

)
= r|a

n
x(δ),

t = (t1, t2) = (Φ(x, δ, r), S(x)) , H(t) =
1

δ

(
1− t1

t2

)
= r|ax(δ), H1(t) =

1

δS(x)
,

H2(t) = −Φ(x, δ, r)

δS2(x)
, ∇H(t) = (H1(t), H2(t)) 6= 0.

Sequence {H(tn)} satis�es the condition 1) of Theorem 1 with C0 =
1

δ
(1 + e−δr)

and γ = 0. Indeed,

|H(tn)| ≤ 1

δ

(
1 +

Φn(x, δ, r)

Sn(x)

)
≤ 1

δ

1 +

eδx
n∑
i=1

e−δ XiI(Xi > x+ r)

n∑
i=1

I(Xi > x+ r)

 ≤

≤ 1

δ

1 +

eδxe−δ(x+r)

n∑
i=1

I(Xi > x+ r)

n∑
i=1

I(Xi > x+ r)

 =
1

δ
(1 + e−δr).
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Further, in view of t2 = S(x) > 0 the function H(t) satis�es the condition 1) of The-
orem 1. Also, this function satis�es the condition 2) of Theorem 1 due to Lemma 3.1
[5], as for all i ∈ < such inequalities hold:

E{I i (X > 0)} = S(x) ≤ 1, E{eiδ xe−iδ XI i(X > 0)} ≤ eiδ xe−iδ xS(x) = S(x) ≤ 1.

Therefore,

E|Φn(x, δ, r)− Φ(x, δ, r)|i = O
(
n−

i
2

)
, E|Sn(x)− S(x)|i = O

(
n−

i
2

)
.

It is well known that Sn(x) is the unbiased and consistent estimator of S(x). Show
that Φn(x, δ, r) is the unbiased estimator of Φ(x, δ, r):

EΦn(x, δ, r) =
eδx

n
E

{
n∑
i=1

e−δ XiI(Xi > x+ r)

}
= Φ(x, δ, r).

The ratio of two unbiased estimators can have a bias. Considering that all the
conditions of Theorem 1 are ful�lled and E(tn − t) = 0, in accordance with (4) we
get the order of the bias of r|anx(δ):∣∣E [r|anx(δ)− r|ax(δ)

]
− E

[
∇H(t)(tn − t)T

]∣∣ =
∣∣E [r|anx(δ)− r|ax(δ)

]∣∣ = O
(
n−1
)
.

Now, calculate the variance of Φn(x, δ, r):

DΦn(x, δ, r) =
e2δx

n2

n∑
i=1

D
{
e−δ XiI(Xi > x+ r)

}
=

1

n

(
Φ(x, 2δ, r)− Φ2(x, δ, r)

)
.

Similarly we �nd the components of covariance matrix σ(r|ax(δ)) =

[
σ11 σ12

σ21 σ22

]
for

statistics Φn(x, δ, r) and Sn(x):

σ11 = nDΦn(x, δ, r) = Φ(x, 2δ, r)− Φ2(x, δ, r); σ22 = nDSn(x) = S(x)− S2(x);

σ12 = σ21 = ncov (Φn(x, δ, r), Sn(x)) = (1− S(x))Φ(x, δ, r).

Using the previous results on the bias and the covariance matrix, we obtain

u2(r|a
n
x(δ)) = E

[
∇H(t)(tn − t)T

]2
+O

(
1

n3/2

)
=

= H2
1 (t)σ11 +H2

2 (t)σ22 +2H1(t)H2(t)σ12 +O

(
1

n3/2

)
=
C̃(r|ax(δ))

n
+O

(
1

n3/2

)
. (5)

The proof of Theorem 2 is completed.
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3 Asymptotic Normality of Estimator r|a
n
x(δ)

Theorem 3 (The usual central limit theorem) [1]. If ξ1, ..., ξn, ... is a sequence of
independent and identically distributed s-dimensional vectors,

Eξk = 0, σ(x) = E{ξTk ξk}, tn =
1

n

n∑
k=1

ξk,

then, as n→∞, √
ntn =⇒ Ns{0, σ(x)}.

Theorem 4 [6]. If qn(tn − t) =⇒ Ns{µ, σ} for some number sequence qn ↑ ∞,
the function H(z) is di�erentiable at the point µ, ∇H(µ) 6= 0, then

qn (H(tn)−H(µ)) =⇒ N1{∇H(µ)µT , ∇H(µ)σ∇HT (µ)}.

Theorem 5. Under the conditions of Theorem 2
√
n[r|a

n
x(δ)− r|ax(δ)] =⇒ N1

{
0, C̃(r|ax(δ))

}
.

Proof. In the notation of Theorem 3, we have s = 2, σ(x) = σ(r|ax(δ)). Thus,
√
n {(Φn(x, δ, r), Sn(x))− (Φ(x, δ, r), S(x))} =⇒ N2{(0, 0), σ(r|ax(δ)}.

The function H(z) is di�erentiable at the point t = (Φ(x, δ, r), S(x)), ∇H(t) 6= 0,
and qn =

√
n. Consequently, all the conditions of Theorem 4 hold, and using (5), we

obtain the desired result.
The proof of Theorem 5 is completed.

4 Construction of Estimators Using Expected Life-

time

Suppose we know the expected lifetime

EX = a. (6)

The estimator by making use of such information according to [2, 3] can be taken in
the following form:

r|a
n
x(δ, λ) =

1

δ

(
1− Φn(x, δ, r)

Sn(x)
− λ(x− a)

)
, (7)

where x =
1

n

n∑
i=1

Xi is an estimator of a, parameter λ we will �nd minimizing the

principal term of the asymptotic MSE of r|anx(δ, λ) (7). Estimator (7) combines the
available empirical information containing in (3) and prior information (6).
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For estimator r|anx(δ, λ) in the notation of Theorem 1, we have: s = 3; dn = n;

tn = (t1n, t2n, t3n) = (Φn(x, δ, r), Sn(x), x); t = (t1, t2, t3) = (Φ(x, δ, r), S(x), a);

H(t1, t2, t3) =
1

δ

(
1− t1

t2
− λ(t3 − a)

)
=

1

δ

(
1− Φ(x, δ, r)

S(x)
− λ(a− a)

)
= r|ax(δ, λ),

H(tn) =
1

δ

(
1− Φn(x, δ, r)

Sn(x)
− λ(x− a)

)
= r|a

n
x(δ, λ),

∇H(t) = (H1(t), H2(t), H3(t)) =

(
1

δS(x)
,−Φ(x, δ, r)

δS2(x)
,−λ

δ

)
6= 0. (8)

5 Bias and MSE of r|a
n
x(δ, λ)

Arguing as in Section 2, it is easy to show that the sequence {H(tn)} satis�es the
condition 1) of Theorem 1 with C0 =

1

δ
(1 + e−δr + |λ|(ω + a)), where ω < ∞ is

the limiting age and γ = 0; also, the statistic tn satis�es the condition 2) due to
Lemma 3.1 [5], provided that EX i ≤ ωi < ∞ for all i ∈ <. Hence, given that
E(tn − t) = 0, for the bias of (7) we obtain the following result:∣∣E [r|anx(δ, λ)− r|ax(δ)

]∣∣ =
∣∣b [r|anx(δ, λ)

]∣∣ = O
(
n−1
)
. (9)

Now, �nd the covariance matrix σ(r|ax(δ, λ)) =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 for statistics

Φn(x, δ, r), Sn(x), and x: σ23 = σ32 = ncov (Sn(x), x) = C2(x, r)− aS(x);

σ13 = σ31 = ncov (Φn(x, δ, r), x) = C1(x, δ, r)− aΦ(x, 2δ, r); σ33 = nDx = DX,

where C1(x, δ, r) = eδx
∫ ∞
x+r

e−δuudF (u), C2(x, r) =

∫ ∞
x+r

udF (u), and σ11, σ22,

σ12 = σ21 are de�ned in Section 2. Using (5) and (8), the above results for bias (9)
and covariance matrix σ(r|ax(δ, λ)), we obtain:

u2(r|a
n
x(δ, λ)) = E

[
∇H(t)(tn − t)T

]2
+O

(
1

n3/2

)
=
C̃(r|ax(δ, λ))

n
+O

(
1

n3/2

)
, (10)

C̃(r|ax(δ, λ)) =
3∑
p=1

3∑
j=1

Hp(t)σpjHj(t) = C̃(r|ax(δ)) + λ2Q1 − 2λQ2,

where Q1 =
σ33

δ2
> 0, Q2 =

H1(t)σ13 +H2(t)σ23

δ
. The minimum of C̃(r|ax(δ, λ)) with

respect to λ is achived at λ0 =
Q2

Q1

. Such λ0 minimizes the principal term of MSE

(10), and this minimum is as follows:

u2(r|a
n
x(δ, λ0)) =

C̃(r|ax(δ, λ0))

n
+O

(
1

n3/2

)
=

1

n

(
C̃(r|ax(δ))−

Q2
2

Q1

)
+O

(
1

n3/2

)
.
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So, the constant of the principal term of MSE (10) is less than the constant of the
principal term of MSE (5), i.e.,

C̃(r|ax(δ, λ0)) = C̃(r|ax(δ))−
Q2

2

Q1

< C̃(r|ax(δ)). (11)

In accordance with (11), the estimator

r|a
n
x(δ, λ0) =

1

δ

(
1− Φn(x, δ, r)

Sn(x)
− λ0(x− a)

)
, (12)

will be called the optimal (in the mean square sense) estimator. The non-negative

quantity
Q2

2

Q1

in (11) determines the decrease of the principal term of MSE for the

optimal estimator by using auxiliary information (6).

6 Adaptive Estimator

Theorem 6. For the optimal estimator r|anx(δ, λ0) under the conditions of Theorem 2

√
n
[
r|a

n
x(δ, λ0)− r|ax(δ)

]
=⇒ N1

{
0, C̃(r|ax(δ, λ0))

}
.

Proof. The statement of Theorems 6 follows from Theorem 4 with the usage of
the arguments of Sections 3�5.

The statistic r|a
n
x(δ, λ0) can be used as an estimator for r|ax(δ) if we know λ0;

otherwise, it is required to construct an adaptive estimator. We need a more detailed
formula for λ0:

λ0 =
1

S(x)DX

(
Φ(x, δ, r)

S(x)
{C2(x, r)− aS(x)} − C1(x, δ, r) + aΦ(x, δ, r)

)
. (13)

According to (13) construct the estimator

λ̂0 =
1

s2Sn(x)

(
Φn(x, δ, r)

Sn(x)

{
Ĉ2(x, r)− aSn(x)

}
− Ĉ1(x, δ, r) + aΦn(x, δ, r)

)
, (14)

where s2 =
1

n− 1

n∑
i=1

(Xi − x)2 is an unbiased estimator of the variance DX,

Ĉ2(x, r) = n−1

n∑
i=1

XiI(Xi > x+ r), Ĉ1(x, δ, r) = n−1

n∑
i=1

e−δXiXiI(Xi > x+ r).

Theorem 7. For the adaptive estimator r|anx(δ, λ̂0) under the conditions of Theorem 2

√
n
[
r|a

n
x(δ, λ̂0)− r|ax(δ)

]
=⇒ N1

{
0, C̃(r|ax(δ, λ0))

}
.
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Proof. The following equality holds:
√
n
[
r|a

n
x(δ, λ̂0)− r|ax(δ)

]
=
√
n
[
r|a

n
x(δ, λ0)− r|ax(δ)

]
+Rn,

where Rn = δ−1(λ0− λ̂0)
√
n(x−a). All the estimators, used in (14), converge almost

surely to their true values according to the strong law of large numbers (the Second
Theorem of Kolmogorov [7]. Thus, from the First Continuity Theorem of Borovkov
[1], estimator λ̂0 converges almost surely to λ0. Based on the central limit theorem√
n(x− a) =⇒ N1 {0,DX}, we retrieve Rn =⇒ 0. Now, the statement of Theorem 7

is proved by making use of Theorem 6.

Conclusions

The paper deals with the estimation problem of the present values of the continuous
de�ered life annuity using auxiliary information about the expectation of life. It is
shown that the usage of such auxiliary information can often provide the MSE smaller
than that of standard estimators. We proved the results on asymptotic properties of
the proposed estimators: unbiasedness, consistency and normality. Also, the principal
terms of the asymptotic MSEs of the estimators were found. An adaptive estimator
is constructed; such estimator is equivalent (in the sense of asymptotic distribution)
to the estimator with the optimal weight coe�cient λ0.
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Abstract

An algorithm for the synthesis of a robust extrapolator is considered, which
determines the estimate of the state vector of a discrete linear system with
random jump parameters described by a Markov chain with a �nite number of
states under incomplete information about the model and the observation chan-
nel. The transfer matrix of the extrapolator are invited to choose independent
of the state of the jump process using the nonparametric smoothing procedure.

Keywords: discrete model, robust extrapolation, jump parameters, incom-
plete information, nonparametric smoothing.

Introduction

The problem of constructing estimates of extrapolation and �ltering under incom-
plete information were considered in [3�6, 12, 13, 15]. In these papers, problems
of estimating using recurrent algorithms of the Kalman type under the condition of
the presence of unknown inputs in the model were considered, and the problem of
estimation in the presence of an unknown vector in the observation channel was also
considered in [16]. In [1, 2, 9�11, 14], estimation problems in systems with random
jump parameters were considered. Such problems arise when building models of real
processes with possible failures. In this paper, we consider the problem of synthesiz-
ing a robust extrapolator for a discrete object with random jump parameters with a
�nite number of states. Problems are considered for objects and observation chan-
nels with unknown parameters and unknown additive vectors. Using the procedure
of non-parametric smoothing, the problem of synthesizing a robust extrapolator is
solved, the transfer coe�cients of which do not depend on the state of the jump
process. The simulation results are given.

1 Statement Problem

We consider the discrete stochastic system, which is described by the equation

x(k + 1) = (Aγ + ∆Aγ)x(k) +Bγf(k) + qγ(k), x(0) = x0, (1)

and available observations are set as follows:

y(k) = (Sγ + ∆Sγ)x(k) +Hγφ(k) + vγ(k), (2)
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where x(k) ∈ Rm is a state of the system; γ = γ(k) is a jump parameter (Markov
chain with n states γ1, γ2, ..., γn); f(k), φ(k) are unknown vectors; x0 is a random vec-
tor (x̄0 = E{x0} andN0,i = E{(x0−x̄0) ×(x0−x̄0)T/γ = γi}, i = 1, n); y(k) ∈ Rl is the
observation vector; Aγ, Bγ, Sγ, Hγ are given matrices; ∆Aγ, ∆Sγ are unknown matri-
ces; qγ(k), vγ(k) are independent random sequences with the following characteristics:
E {qγ(k)} = 0, E {vγ(k)} = 0, E

{
qγ(k)qTγ (j)

}
= Qγδkj, E

{
vγ(k)vTγ (j)

}
= Vγδkj (E

denotes expectation and T denotes transposition of a matrix, δkj is the Kronecker
symbol).

The probability pi(k) = P {γ(k) = γi} , i = 1, n, satis�es the equation

pi(k + 1) =
n∑
j=1

pijpj(k), pi(0) = pi,0, (3)

where pij is the probability of transition from the state i to the state j in one step,
pi,0 is the initial probability of the i-th state. According to the information received
at the k-th step, it is required to �nd estimates of extrapolation x̂(k + 1) based on
the minimization of the following criterion:

J [0;Tf ] =
1

Tf
E{[

Tf∑
k=0

n∑
i=1

pi(k)eT (k)Ri(k)e(k)+

+
n∑
i=1

pi(Tf )e
T (Tf )Li(Tf )e(Tf )]/γ(0) = γ0},

(4)

where e(k) = x(k)− x̂(k), Ri(k) > 0, Li(k) > 0 are weight matrices, γ0 is the initial
value of jump parameter γ.

2 Optimization of the Criterion

We present the system (1) in the following form:

x(k + 1) = Aγx(k) + r(k) + qγ(k), x(0) = x0, (5)

where r(k) = ∆Aγx(k) + Bγf(k) is an unknown input. The channel of observations
we will present as

y(k) = Sγx(k) + ϕ(k) + vγ(k), (6)

where ϕ(k) = ∆Sγx(k) +Hγφ(k) is unknown vector in the observation channel.
To solve the problem of synthesizing a robust extrapolator, we use the separation

principle. This means that we �rst construct estimates of the vector under the as-
sumption that the vectors r(k) and ϕ(k) are known. For this, we use the recurrent
algorithm of Kalman extrapolation [1]

x̂(k + 1) = Aγx̂(k) + r(k) +K(k)(y(k)− Sγx̂(k)− ϕ(k)), x̂(0) = x̄0. (7)

In (7), we will look for a matrix K(k) independent of γ(k) that will ensure the
extrapolator robustness with respect to the error of jump parameter γ(k). Then, the
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estimates of the vectors r̂(k) and ϕ̂(k) are constructed under the assumption that the
prediction estimate of the state vector x̂(k) is known.

We introduce the notation for the matrices Qγ, Vγ, Rγ, Nγ, Lγ, Aγ, Sγ at γ = γi
as Qi, Vi, Ri, Ni, Li, Ai, Si, respectively (i = 1, n). Consider a theorem, in which we
construct an algorithm determining the matrix K(k) for extrapolator (7) based on
optimization of criterion (4).

Theorem. Let there exist positive de�nite matrices Ni and Li, which are the
solution of a two-point boundary value problem:

Ni(k + 1) = (Ai −K(k)Si)(
n∑
j=1

pi,jNj(k))(Ai −K(k)Si)
T +Qi+

+K(k)ViK(k)T , Ni(0) = N0,

(8)

Li(k) = (Ai −K(k)Si)
T (

n∑
j=1

pi,jLj(k + 1))(Ai −K(k)Si)
T +Ri, Li(Tf ) = LT,i. (9)

Then, the vector ct(K(k)), composed of transpose rows of the matrix K(k) and
providing the minimum of criterion (4), is determined by the formula:

ct(K(k)) = (
n∑
i=1

pi(k + 1)[Li(k + 1)⊗ Si(
n∑
j=1

pi,jNj(k))STi +

+Li(k + 1)⊗ Vi])−1ct(
n∑
i=1

pi(k + 1)Li(k + 1)Ai(
n∑
j=1

pi,jNj(k)STi )).

(10)

In (10), the symbol ⊗ denotes the Kronecker product.
Proof. Let's present the criterion (4) as a sum

J [0;Tf ] =
n∑
i=1

Ji[k, Tf ], k = 0, Tf . (11)

In (11) Ji[k, Tf ] is determined by the formula

Ji[k;Tf ] =

Tf−1∑
ξ=k

tr pi(ξ)Ni(ξ)Ri(ξ) + tr pi(Tf )Ni(Tf )Li(Tf ), (12)

where tr is the trace of a matrix.
Introduce the following Lyapunov function:

W (k,Ni(k)) = tr pi(k)Ni(k)Ri(k) + tr

Tf∑
t=k

pi(t)Ψ̄i(t)Li(t), (13)

where Li(t) is determined by equation (9), Ψ̄i(t) = Qi +K(t)ViK(t)T + Ψi(t) (Ψi(t)
is some positive de�nite matrix).
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Summing over k = t, Tf − 1, the �nite di�erences of the function W (k,Ni(k)),
taking into account formula (9), we obtain:

Tf∑
k=t

∆W (k,NI(k)) =

Tf−1∑
k=t

[W (k + 1, Ni(k + 1)−W (k,Ni(k))] =

=

Tf−1∑
k=t

tr[pi(k + 1)Ni(k + 1)Li(k + 1)− pi(k)Ni(k)Li(k)− pi(k)Ψ̄i(k)Li(k)].

(14)

On the other hand, this expression can be represented as

Tf∑
k=t

∆W (k,Ni(k)) = W (t+ 1, Ni(t+ 1))−W (t, Ni(t)) + ...+

+W (Tf , Ni(Tf ))−W (Tf − 1, Ni(Tf − 1) =

= tr pi(Tf )Ni(Tf )Li(Tf )− tr pi(t)Ni(t)Li(t)− tr

Tf−1∑
ξ=t

pi(ξ)Ψ̄i(ξ)Li(ξ).

(15)

Add into (12) the di�erence of the right parts of (14) and (15). Considering that this
di�erence is zero, criterion (11) takes the form:

J [0;Tf ] =
n∑
i=1

{
Tf−1∑
ξ=k

trpi(ξ)Ni(ξ)Ri(ξ)−
Tf−1∑
ξ=k+1

trpi(ξ)Ni(ξ)Li(ξ)+

+

Tf−1∑
ξ=k

tr pi(ξ + 1)[(Ai −K(ξ)Si)(
n∑
j=1

pi,jNj(ξ))(Ai −K(ξ)Si)
T+

+Qi +K(ξ)ViK(ξ)T ]Li(ξ + 1)}.

(16)

Now, calculate the derivatives:

dJ

dK(k)
=

Tf−1∑
ξ=k

n∑
i=1

tr[−Li(ξ + 1)pi(ξ + 1)Ai(
n∑
j=1

pi,jNj(ξ))S
T
i −

−pi(ξ + 1)Li(ξ + 1)Ai(
n∑
j=1

pi,jNj(ξ))S
T
i + pi(ξ + 1)Li(ξ + 1)K(ξ)Si×

×(
n∑
j=1

pi,jNj(ξ))S
T
i + Li(ξ + 1)pi(ξ + 1)K(ξ)Si(

n∑
j=1

pi,jNj(ξ))S
T
i +

+pi(ξ + 1)Li(ξ + 1)K(ξ)Vi + Li(ξ + 1)pi(ξ + 1)K(ξ)Vi].

(17)

Equating this derivative to zero, assuming that each summand of summation with
respect to i is zero, and using the Kronecker product operation [7], we obtain formula
(10) determining the matrix K(k).
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Calculate the �nite di�erence of the Lyapunov function:

∆W (k,Ni(k) = W (k + 1, Ni(k + 1))−W (k,Ni(k)) =

=trpi(k + 1)Ni(k + 1)Ri(k + 1)+

+tr

Tf∑
t=k+1

pi(t)[Qi +K(t)ViK(k)T + Ψi(t)]Li(t)−

−trpi(k)Ni(k)Ri(k)− tr

Tf∑
t=k

pi(t)[Qi +K(t)ViK(k)T + Ψi(t)]Li(t) =

= trpi(k + 1)Ni(k + 1)Ri(k + 1)− trpi(k)Ni(k)Ri(k)−
−pi(k)[Qi +K(k)ViK(k)T + Ψi(k)]Li(k).

(18)

Since the matrices Ni, Li are positively determined by Theorem conditions, and
the matrix Ψi(t) > 0 is given arbitrarily, it is obvious that these matrices can be
chosen such that the �nal di�erence (18) becomes negative. This condition guarantees
the Lyapunov stability of the extrapolator dynamic. Theorem is proved.

To construct the prediction estimate, we use the Kalman extrapolator

x̂(k + 1) = Aγx̂(k) + r̂(k) +K(k)(y(k)− Sγx̂(k)− ϕ̂(k)), x̂(0) = x̄0, (19)

whereK(k) is the transfer matrix depending on k and independing of jump parameter
γ(k).

3 Synthesis of the Stationary Extrapolator

In this case, the matrix of transfer coe�cients K(k) in Kalman extrapolator (19) will
be constant, and the criterion will take the form:

J [0;∞] = lim
Tf→∞

1

Tf

Tf∑
k=1

n∑
i=1

trp̄iNi(k)Ri(k). (20)

The two-point boundary value problem is transformed into the following matrix equa-
tions:

Ni = (Ai −KSi)(
n∑
j=1

pi,jNj)(Ai −KSi)T +Qi +KViK
T , (21)

Li = (Ai −KSi)T (
n∑
j=1

pi,jLj)(Ai −KSi)T +Ri, (22)

ct(K) = (
n∑
i=1

p̄i[Li⊗Si(
n∑
j=1

pi,jNj)S
T
i +Li⊗Vi])−1ct(

n∑
i=1

p̄iLiAi(
n∑
j=1

pi,jNjS
T
i )), (23)

where p̄i are steady-state probabilities (solution of system (3) as k →∞).
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Thus, to synthesize a stationary extrapolator, it is necessary to solve the system
of matrix equations (21)�(23).

Note that if there are positively de�ned solutions Ni, Li (i = 1, n) of matrix equa-
tions (21)�(23), then using the equation (22) and condition Ri > 0 (see Theorem 1.6
[8]), it follows that a stationary extrapolator with jump parameters will be stochastic
stable.

4 Estimates of Unknown Vectors

As estimates of unknown vectors, various algorithms can be used [3�5]. When using
the LSM estimates, �nding ϕ̂(k) and r̂(k) is based on minimizing of the following
criteria:

J1 =
k∑
i=1

(
∥∥y(t)− Stx̂(t)

∥∥2

W1
+
∥∥ϕ(t− 1)

∥∥2

W̄1
), (24)

J2 =
k∑
i=1

(
∥∥y(t)− ϕ̂(t)− SγAγx̂(t− 1)

∥∥2

W2
+
∥∥r(t− 1)

∥∥2

W̄2
), (25)

where W1, W̄1, W2, W̄2 are weight matrices. At each step, the estimates of ϕ̂(k) and
r̂(k) are constructed sequentially, �rst minimizing the criterion (24), then (25). In
constructing vector estimates r̂(k), based on the criterion (25), are used ϕ̂(k) vector
estimates obtained via the minimization of the criterion (24). Then, estimates of
unknown vectors by the LSM estimates are determined as follows:

ϕ̂〈LSM〉(k) = [STγW1Sγ + W̄1]−1STγW1{y(k)− Sγx̂(k)}, (26)

r̂〈LSM〉(k) = [STγW2Sγ + W̄2]−1STγW2{y(k)− ϕ̂(k)− SγAγx̂(k − 1)}. (27)

By analogy with [6], using estimates (26) and (27), we construct prediction estimates
by making use of the technique of nonparametric smoothing:

ϕ̂〈NP 〉(k) = [STγW1Sγ + W̄1]−1STγW1Ω(k), (28)

r̂〈NP 〉(k) = [STγW2Sγ + W̄2]−1STγW2Ω̄(k). (29)

In (28) and (29) the components of the vectors Ω and Ω̄ are determined by the
formulas:

Ωj(k) =

∑k
i=1

[y(i)−Sγ(x̂(i))]j
µj

G(k−i+1
µj

)∑k
i=1

1
µj
G(k−i+1

µj
)

(j = 1, n), (30)

Ω̄s(k) =

∑k
i=1

[y(i)−ϕ̂(i)−SγAγ(x̂(i−1))]s
µ̄s

G(k−i+1
µ̄s

)∑k
i=1

1
µ̄s
G(k−i+1

µ̄s
)

(s = 1, n), (31)

where in relations (30), (31) G(·) is a kernel function, µj and µ̄s are bandwidth
parameters.
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5 Simulation Results

The simulation was performed for the following data:

A1 =

(
0.85 0.1
−0.05 0.94

)
, A2 =

(
0.89 0.05
−0.02 0.45

)
, B1 = B2 =

(
1 0
0 1

)
,

Q1 = Q2 =

(
0.05 0

0 0.03

)
, ∆A1 =

(
0.05 0.01
0.02 −0.11

)
, ∆A2 =

(
0.06 0.012
−0.01 0.05

)
,

S1 = S2 =

(
1 0
0 1

)
, ∆S1 =

(
0.01 0

0 0

)
, ∆S2 =

(
0.008 0

0 0

)
,

V1 = V2 =

(
0.01 0

0 0.15

)
, H1 = H2 =

(
1 0
0 1

)
, P =

(
0.8 0.2
0.2 0.8

)
,

R1 = R2 =

(
0.1 0
0 0.15

)
, W1 = W2 =

(
1 0
0 1

)
, W̄1 = W̄2 =

(
0.1 0
0 0.1

)
,

f(k) =

(
0.1 + 0.1 sin(0.1k)

0.1 + 0.12 sin(0.15k)

)
, φ(k) =

(
0.3
0.25

)
.

We use the Gaussian kernels

G(u) =
exp(−u

2

2
)√

2π
.

Fig.1 shows the graphs of the values of the jump parameter γ.

Figure 1: The Values of the Jump Parameter γ

The transfer matrix K of the extrapolator is determined from the solution of
matrix equations (21)�(23).

The root-mean-square errors were calculated as follows:

σi(N) =

√∑N
k=1(xi(k)−x̂i(k))2

N−1
(i = 1, 2).
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Table 1: Root-Mean-Square Errors for Estimating Accuracy of State (σi(200))

Coordinate number (i) LSM Nonparametric smoothing
1 0.537 0.407
2 0.539 0.479

The corresponding values of the errors of extrapolation of the state vector (see
Table 1) were obtained using estimates of unknown vectors of the form (26)�(31).

As can be seen from Table 1, the estimation algorithm with nonparametric smooth-
ing of unknown additive vectors in the object model and in the model of the obser-
vation channel allows us to increase the extrapolation accuracy for discrete models
with jump parameters.

Conclusions

The solution of the problem of synthesizing stationary and non-stationary robust
extrapolators for a linear discrete models with random Markov jump parameters
under incomplete information was obtained. The simulation results showed that the
application of the robust extrapolation algorithm using the non-parametric smoothing
procedure allows one to increase the prediction accuracy.
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Abstract

This paper considers the Ornstein-Uhlenbeck process by observations with
additive noise that also satis�es Ornstein-Uhlenbeck equation. The truncated
parameter estimation problem of non-observable process with guaranteed accu-
racy is solved. On the basis of these estimators adaptive predictors of observable
process are constructed. Asymptotic property of predictors is established. The
presented algorithm works for predictors of any depth.

Keywords: Truncated estimation method, �xed sample size, Ornstein-
Uhlenbeck process, guaranteed accuracy, adaptive prediction

Intrduction

One of the important problems of modern applied mathematics is the construction of
mathematical models and development of the identi�cation and prediction algorithms
with guaranteed accuracy for discrete and continuous time stochastic dynamic sys-
tems. Such systems are widely used for the description of databases, for information
processing, as well as for mathematical model construction of random processes in
economics, �nancial mathematics, physics, sociology, biology, medicine etc.

The most frequently used for these purposes continuous-time models are the
di�usion-type models and the Ito processes. The structure of the abovementioned
models implies essential dependence of observations which corresponds to demands
for real stochastic processes.

According to Ljung's concept the prediction is a crucial part in constructing com-
plete probabilistic models of dynamical systems (see [1, 2]). A model is considered
to be useful if it allows to make predictions of high statistical quality.

Models of dynamical systems often have unknown parameters, which requires es-
timation in order to build adaptive predictors. The quality of adaptive prediction
explicitly depends on the chosen estimators of model parameters. Possible estima-
tion methods include the classic stochastic approximation, maximum likelihood, least
squares and sequential estimation methods among others. The �rst three methods
provide estimators with given statistical properties under asymptotic assumptions,
when the duration of observations tends to in�nity (see, e.g., [3, 4]).

The sequential estimation method makes it possible to obtain estimators with
guaranteed accuracy by samples of �nite but random and unbounded size (see, e.g.,
[4]�[11] among others).

Both approaches do not guarantee prescribed estimation accuracy when using
samples of non-random �nite size and lead up to complicated analytical problems in
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adaptive procedures.
However, the more recent truncated sequential estimation method yields estima-

tors with prescribed accuracy by samples of random but bounded size, see [7], [8]
among others.

Then the truncated estimation method was introduced in [12]. Truncated esti-
mators were constructed for ratio type multivariate functionals by samples of �xed
size and have guaranteed accuracy in the sense of the L2m-norm, m ≥ 1 (see also
[11]). The truncated estimation method is simpler in implementation then the trun-
cated sequential estimation one. At the same time, both methods are very e�ective
in problems of parameter estimation of dynamical systems.

The main aim of the paper is the construction and investigation of adaptive pre-
dictors' properties of observable process wich is a sum of two unobservable Ornstein-
Uhlenbeck processes. The presented algorithm based on the usage of truncated
estimators and works for making predictions of any depth. Similar problems for
continuous-time systems were solved in, e.g., [13, 14]. Properties of adaptive optimal
control of continuous-time processes constructed on the basis of sequential parame-
ters were considered in [15]. Adaptive optimal predictors for discre-time multivariate
system were constructed in [16].

1 Problem statement. Guaranteed parameter

estimation of Ornstein-Uhlenbeck process

Consider the estimation problem of the parameter a of the �rst order stable autore-
gressive process

dxt = axtdt+ dwt, t ≥ 0 (1)

with the initial value x0 by oservation of the process yt with the known parameter λ
of the noise θ

yt = xt + θt, θt = λθtdt+ dvt, (2)

where wt and vt are independent standard Wiener processes,θ0 - initional value for θ,
a < 0, λ < 0, λ2 6= a2.

Let's substitute an unobservable process xt in di�erential equation (1) by the
di�erence yt − θt and get the eqation

dyt = aytdt+ dwt + dθt − aθtdt. (3)

Since the parameter λ is known, we have a possibility to exclude the dependent
noise θt from the equation (3). To this end we integrate it from 0 to t and multiply
the result by dt

ytdt = y0dt+ a

∫ t

0

ysdsdt+ wtdt+ dθtdt− a
∫ t

0

θsdsdt.

Multiply the obtained equation by λ and subtract it from the equation (3)

dyt − λytdt = −λy0dt+ a

[
yt − λ

∫ t

0

ysds

]
dt+ dwt + λdθtdt
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−λwtdt− a
[
θt − λ

∫ t

0

θsds

]
dt.

De�ne zt = yt − λ
∫ t

0
ysds and then dzt = dyt − λytdt. From the equation dθt −

λθtdt = dvt it follows, that θt − λ
∫ t

0
θsds = θ0 + vt. Last equation can be written in

a form
dzt = aztdt+ d(wt + vt)− (λwt + avt)dt− (λy0 + aθ0)dt.

Let us de�ne the di�erence operator δhzt = zt − zt−h with a step h, h > 0 and
apply it to the previous equation

dδhzt = aδhztdt+ d(δhwt + δhvt)− (λδhwt + aδhvt)dt. (4)

Note that δhzt is an observable process as well. In view of the fact that δhzt and model
noises are correlated, we construct the correlation (or Yule-Walker) type estimator
with the shift h

âT =

∫ T
2h
δhzt−hdδhzt∫ T

2h
δhzt−hδhztdt

. (5)

We rewrite the deviation of estimator (5), having replaced dδhzt by the right hand
side of (4)

âT − a =
1∫ T

2h
δhzt−hδhztdt

[ ∫ T

2h

δhzt−hd(δhwt + δhvt)

−
∫ T

2h

δhzt−h(λδhwt + aδhvt)dt
]
.

Analogously to [17, 18],

1

T

[∫ T

2h

δhzt−hd(δhwt + δhvt)−
∫ T

2h

δhzt−h(λδhwt + aδhvt)dt

]
→ 0 a.s.

Taking into account the independence δhzt−h from δhwt and δhvt,

E

[∫ T

2h

δhzt−hd(δhwt + δhvt)−
∫ T

2h

δhzt−h(λδhwt + aδhvt)dt

]2

≤ C · E
∫ T

2h

(δhzt−h)
2dt ≤ C (6)

and there exists the limit

σ2
h = lim

T→∞

1

T

∫ T

2h

δhzt−hδhztdt a.s.,

where σ2
h =

(
1− λ2

a2

)
eah−1

2a
6= 0.

It is easy to verify that
lim
n→∞

âT = a a.s.
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and for every T > 0 the following inequality holds

E

[
1

T

∫ T

2h

δhzt−hδhztdt− σ2

]4

≤ C

T 2
. (7)

The truncated estimator ãT of the parameter a can be de�ned similar to [12] for
some T0 > 0 as

ãT =

∫ T
2h
δhzt−hdδhzt∫ T

2h
δhzt−hδhztdt

· χ
(∣∣∣∣∫ T

2h

δhzt−hδhztdt|
∣∣∣∣ ≥ T · log−1 T

)
. (8)

Using (13), (7) and similar to the scheme of the proof for truncated estimators in
[12], we get

E(ãT − a)2 ≤ C

T
, T ≥ T0. (9)

By the condition a < −r, r > 0 the estimator σ2
h has the form

σ2
h =

(
1− λ2

a2

)
eah − 1

2a
,

where a = proj(−∞,−r]ãs and satisfy the condition

E(σ2
h − σ2)2 ≤ C

T
, T ≥ T0.

Without a priory information about a, the truncated estimation method can be
applied for estimation σ2

h .

2 Adaptive prediction

Consider the model (1), (2). The purpose is to construct an adaptive predictor for yt
by observations yt−u = (ys)0≤s≤t−u. Here u > 0 - is a �xed time delay.

Using the solution of the equation (1), we get

xt = µxt−u + ξt,t−u, t ≥ u, (10)

where ξt,t−u =
t∫

t−u
ea(t−s)dws, µ = eau.

De�ne
µs = eâsu, s ≥ 0. (11)

Here
âs = proj(−∞,0]ãs,

âs is a projection of the truncated estimator ãs of the parameter a, de�ned in (7).
It can be shown that

E(µt − µ)2p ≤ C

tp
, p ≥ 1. (12)
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Replacing xt in the formula (9) using (2) we get

yt = µyt−u + ξt−u,t + θt − µθt−u,

Introduce the notation

ηt−u,t =

∫ t

t−u
eλ(t−s)dws, ξt−u,t − eλuξt−2u,t−u, ηt−u,t − eλuξt−2u,t−u.

and
zt = yt − eλuyt−u.

The function zt satis�es the equation

zt = µzt−u + ξt−u,t + ηt−u,t − µηt−2u,t−u. (13)

Applying operator of conditional mathematical expectation E(·|yt−3u) to the last
equation we get

E(zt|yt−3u) = µE(zt−u|yt−3u).

By the de�nition of zt we have

E(zt|yt−3u) = E(yt|yt−3u)− eλuE(yt−u|yt−3u).

Let us de�ne si(t) = E(yt|yt−iu), i = 1, 3.
The equation for optimal predictions si(t), i = 1, 3, has the form

s3(t) = (eau + eλu)s2(t) + e(a+λ)us1(t).

De�ne adaptive predictors ŝi(t), i = 1, 3. The equation for ŝi(t), is constructed
with truncated estimators instead of unknown parameters

ŝ3(t) = (eât−3uu + eλu)ŝ2(t) + e(ât−3u+λ)uŝ1(t).

Prediction errors can be written as

ei(t) = si(t)− ŝi(t), i = 1, 3.

It can be shown that

limt→∞ Ee2
i (t) <∞, i = 1, 3.

In the conclusion we note that obtained property for this model probably can not
be improved in view of complicated structure of noise dependence. At the same time
this property re�ects proximity of adaptive and optimal predictors in L2 - metric,
which is important in analytical investigations and practical applications.
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Abstract

This paper presents a truncated estimator of the dynamic parameter of a
stable AR(1) process by observations with additive noise. The estimator is
constructed by a sample of a �xed size and it has a known upper bound of the
mean square deviation. Cases of known and unknown variance of observation
noise are considered.

Keywords: autoregressive process, �xed sample size, guaranteed accuracy,
observations with noise.

1 Introduction and problem statement

Development of parameter estimation methods of dynamic systems by samples of
�nite or �xed size is very important in statistical problems such that model construc-
tion and various adaptive problems (prediction, control, �ltration etc.).

One of the possibilities for �nding estimators with the guaranteed quality of infer-
ence using a sample of �xed size is provided by the approach of truncated estimation.
Truncated estimators were constructed in [9] for ratio type multivariate functionals
by a �xed-size sample. They have guaranteed accuracy in the sense of the L2m-norm,
m ≥ 1. This fact allows one to obtain desired non-asymptotic and asymptotic prop-
erties of the estimators. The truncated estimation method was developed in [1] and
others for parameter estimation problems in discrete-time dynamic models. Solutions
of some non-asymptotic parametric and non-parametric problems can be found also
in [4], [8], [5], [6], among others. In particular, [8] established the minimax optimality
of the least-squares estimator of the dynamic parameter in AR(1) model.

In this paper, the truncated estimation method introduced in [9] is applied for
the parameter estimation of AR(1) by additively-noised observations with unknown
noise variance (another applications of this method can be found, e.g., in [2], [3]).

Consider the estimation problem of the parameter λ of the scalar �rst-order au-
toregressive process (xn)n≥0 satisfying the equation

xn = λxn−1 + ξn, n ≥ 1 (1)

by observations

yn = xn + ηn, n ≥ 0. (2)

Process (1) is supposed to be stable, i.e. |λ| < 1. Introduce the notation ζ =
(x0, ξ1, η0.) The processes (ξn), (ηn) and x0 are supposed to be mutually independent;
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noises ξn and ηn form sequences of i.i.d. random variables such that Eζ = 0, E||ζ||4 <
∞. Denote σ2 = Eη2

0. We assume that the variance of ξ1 is known. Then without
loss of generality we put Eξ2

1 = 1.
The main aim of the paper is to construct truncated estimators of λ ∈ (−1, 1)

with guaranteed accuracy in the mean square sense by sample of �xed size. Cases of
both known and unknown values of σ2 will be considered.

A similar problem has been solved in, e.g., [10] on the basis of the sequential
approach (when the sample size is a random value determined by a special stopping
rule) for λ ∈ (−1, 0) ∩ (0, 1)

2 Parameter estimation of AR(1) with known noise

variance

To estimate the parameter λ, we use the correlation method. To this end, we obtain
from the system (1), (2) the recurrent equation for the observed process y = (yn)n≥0 :

yn = λyn−1 + δn, n ≥ 1,
δn = ξn + ηn − ληn−1.

(3)

Due to the dependence of noises δn, the least squares estimator (LSE) of λ obtained
from equation (3) is asymptotically biased, see, e.g., [7], [10]. Equation (3) implies
the following formula for correlations of the process (yn):

Eλynyn−1 = λEλ(y
2
n−1 − σ2), n ≥ 1.

Hence, the consistent correlation estimator λ̂n of λ has the following form (see [7])

λ̂n,σ =

n∑
k=1

ykyk−1

n∑
k=1

(y2
k−1 − σ2)

, n ≥ 1. (4)

It is easy to verify that

lim
n→∞

1

n

n∑
k=1

(y2
k−1 − σ2) =

1

1− λ2
> 1 Pλ − a.s. (5)

Thus, according to the general procedure described in [9], it is reasonable to
construct the truncated estimator λ̃n of λ as follows:

λ̃n = λ̂n · χ(
n∑
k=1

(y2
k−1 − σ2) ≥ hn), n ≥ 1, (6)

where h ∈ (0, 1) and χ(A) is the indicator of the set A.
The following theorem gives the �rst main result of this paper.

220



Applied Methods of Statistical Analysis

Theorem 1. Assume model (1), (2). Then for every |λ| < 1 and n ≥ 1, estimator
(7) has the property

Eλ(λ̃n − λ)2 ≤ C

n
. (7)

The proofs of theorems and lemmas are given in Section 5.

3 Parameter estimation of AR(1) with unknown noise

variance

To estimate λ ∈ (−1, 1), we use an adaptive modi�cation of estimator (5):

λ∗n =

1
n

n∑
k=1

ykyk−1

1
n

n∑
k=1

y2
k−1 − σ2

n

, n > 1. (8)

Taking into account (6), we construct the estimator σ2
n of σ

2 as follows

σ2
n =

1

n

n∑
k=1

y2
k−1 −

1

1− λ2
n

, n > 1 (9)

where λn is the pilot estimator of λ

λn = proj[−1,1]λ̆n, n > 1, (10)

λ̆n =

n∑
k=2

ykyk−2

n∑
k=2

yk−1yk−2

· χ(|
n∑
k=2

yk−1yk−2| ≥ Hn), n > 1. (11)

Here we put Hn = n(log n)−1. According to the general truncated estimation method
[9], the multiplier (log n)−1 in the de�nition of Hn can be any other slowly-decreasing
function.

It should be noted that the estimator (10) is constructed on the bases of the
correlation (Yule-Walker type) estimator which can not be used if λ = 0 (see Lemma
1 below). Our main aim is to construct an estimator of λ without this restriction.

Taking into account (10), estimator (9) can be written in the form

λ∗n = (1− λ2
n)

1

n

n∑
k=1

ykyk−1, n > 1. (12)
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Lemma 1. Assume that in model (1), (2), E||ζ||8 < ∞. Then estimator (10) for
every λ ∈ (−1, 0) ∪ (0, 1) and n > 1 has the following property

Eλ(λn − λ)2 ≤ C1

n
+ C2

log4 n

n2
.

This lemma makes possible to obtain the main result of the section.

Theorem 2. Assume that in model (1), (2), E||ζ||8 < ∞. Then for every |λ| < 1
and n > 1, estimator (12) satis�es the following condition

Eλ(λ
∗
n − λ)2 ≤ C

n
+ C

log4 n

n2
.

4 Simulation Results and Discussion

We conducted numerical simulation of the proposed estimation algorithm. For every
set of the parameters, the experiment was performed 100 times, the number of ob-
servations is equal to 100, the parameter of the procedure h = 0, 5. Table 1 presents
the results of simulation. Here λ and σ are the parameters of model (1), λ̃n and λ∗n
are the mean estimators of the parameter λ when the noise variance σ2 is supposed
to be known and unknown, correspondingly; d̃n and d∗n are sample standard errors of
the corresponding estimators.

One can see that d̃n < d∗n in all experiments; thus, if the noise variance is unknown
then the standard error increases at least twice (if λ = 0, 5); but d∗n can be fully ten
times larger than d̃n, if λ = 0, 9. Both deviations increase with the grow of σ2, as one
should expect; besides, d̃n decreases and d∗n increases with the increase of λ.

5 Proofs

5.1 Proof of Theorem 1

To investigate the non-asymptotic properties of λ̃n we use the following representation
of the deviation

λ̃n − λ =
fn
gn
· χ(|gn| ≥ h)− λχ(|gn| < h), (13)

where

fn =
1

n

n∑
k=1

[yk−1(ξk + ηk)− λ(yk−1ηk−1 − σ2)],

gn =
1

n

n∑
k=1

(y2
k−1 − σ2).

It can be directly veri�ed that for |λ| < 1

Eλf
2
n ≤

I−1(λ, σ)

n
. (14)
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Table 1: Simulation results

λ σ2 λ̃n d̃n λ∗n d∗n
0,5 0,09 0,477 0,0092 0,452 0,0294
0,5 0,25 0,492 0,0111 0,490 0,0314
0,5 0,49 0,487 0,0150 0,470 0,0488
0,5 0,81 0,475 0,0229 0,418 0,0795
0,5 1 0,473 0,0419 0,424 0,0953
0,8 0,09 0,786 0,0046 0,796 0,0465
0,8 0,25 0,794 0,0054 0,854 0,0793
0,8 0,49 0,786 0,0054 0,789 0,0737
0,8 0,81 0,772 0,0120 0,765 0,1435
0,8 1 0,788 0,0122 0,797 0,1590
0,9 0,09 0,876 0,0038 0,865 0,0772
0,9 0,25 0,889 0,0018 0,913 0,0596
0,9 0,49 0,888 0,0030 0,910 0,1044
0,9 0,81 0,874 0,0044 0,886 0,1822
0,9 1 0,891 0,0028 0,891 0,1780

Introduce the notation g = 1/(1− λ2). Then, using a representation

gn − g =
1

n

n∑
k=1

(x2
k−1 − σ2) +

2

n

n∑
k=1

xk−1ηk−1 +
1

n

n∑
k=1

(η2
k−1 − σ2)

and the following formula (see, e.g., the proof of Theorem 2 in [9])

1

n

n∑
k=1

(x2
k−1 − g) =

g

n
· [x2

0 − x2
n + 2λ

n∑
k=1

xk−1ξk +
n∑
k=1

(ξ2
k − 1)],

it is easy to prove that

Eλ(gn − g)2 ≤ C0

n
, n ≥ 1. (15)

Further, similar to [9] using the Chebyshev inequality we estimate

Pλ(|gn| < h) ≤ Pλ(|gn − g| > g − h) ≤ Eλ(gn − g)2

(g − h)2
≤ C0

(1− h)2n
, n ≥ 1. (16)

Using (13�16), we estimate

Eλ(λ̃− λ)2 ≤ 1

h2
Eλf

2
n + Pλ(|gn| < h) ≤ I−1(λ, σ)

h2n
+
Eλ(gn − g)2

(g − h)2
≤ C

n

and obtain assertion (7).
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5.2 Proof of Lemma 1

The proof of Lemma 1 is similar to the proof of the second assertion of Theorem 1
in [9].

De�nition (10) of λn implies

Eλ(λn − λ)2 ≤ Eλ(λ̆n − λ)2.

Introduce the following notations

fn =
1

n

n∑
k=2

yk−2δk, gn =
1

n

n∑
k=1

yk−1yk−2, g =
λ

1− λ2
, hn = (log n)−1.

By the de�nition of λ̆ in (11), its deviation has the form

λ̆n − λ =
fn
gn
· χ(|gn| ≥ hn)− λ · χ(|gn| < hn) =

fn
g
· χ(|gn| ≥ hn)

+
fn(g − gn)

ggn
· χ(|gn| ≥ hn)− λ · χ(|gn| < hn) = J1 + J2 + J3.

Using the Cauchy-Schwarz-Bunyakovsky and Chebyshev's inequalities, estimate
the second moments of these summands:

EλJ
2
1 ≤ CEλf

2
n, EλJ

2
2 ≤

1

g2h2
n

√
Eλf 4

nEλ(gn − g)4, EλJ
2
3 ≤ h−4

n Eλ(gn − g)4.

In view of the structure of the function fn it is easy to verify that Eλf 4
n ≤ C/n2.

By the de�nition of gn we have

gn − g =
1

n

n∑
k=1

yk−1yk−2 −
λ

1− λ2
=

1

n

n∑
k=1

xk−1xk−2 −
λ

1− λ2

+
1

n

n∑
k=1

xk−1ηk−2 +
1

n

n∑
k=1

ηk−1xk−2 +
1

n

n∑
k=1

ηk−1ηk−2 = λ

(
1

n

n∑
k=1

x2
k−2 −

1

1− λ2

)
+

1

n

n∑
k=1

xk−1ηk−2 +
1

n

n∑
k=1

(ηk−1 + ξk−1)xk−2 +
1

n

n∑
k=1

ηk−1ηk−2.

Using this representation, it is easy to verify similarly the proof of Theorem 1
that

Eλ(gn − g)4 ≤ C

n2
.

Thus we have

EλJ
2
1 ≤ C

1

n
, EλJ

2
2 ≤ C

log2 n

n2
, EλJ

2
3 ≤ C

log4 n

n2
.
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5.3 Proof of Theorem 2

Introduce the following notations

∆n = (λ2 − λ2
n)

λ

1− λ2
+ (1− λ2

n)λ
1

1− λ2

{
1

n
(x2

0 − λ2x2
k−1) +

2λ

n

n∑
k=2

xk−2ξk−1

+
1

n

n∑
k=2

(ξ2
k−1 − 1)− 1

n

}
+ (1− λ2

n)
1

n

n∑
k=1

[λxk−1ηk−1 + yk−1(ξk + ηk)].

De�nition (12) of the estimator λ∗n and equation (3) imply

λ∗n = (1− λ2
n)

1

n

n∑
k=1

[λy2
k−1 + yk−1(ξk + ηk)− λyk−1ηk−1]

= (1− λ2
n)

{
λ

1

n

n∑
k=1

x2
k−1 +

1

n

n∑
k=1

[λxk−1ηk−1 + yk−1(ξk + ηk)]

}

= (1− λ2
n)

λ

1− λ2
+ (1− λ2

n)λ

[
1

n

n∑
k=1

x2
k−1 −

1

1− λ2

]
+(1− λ2

n)
1

n

n∑
k=1

[λxk−1ηk−1 + yk−1(ξk + ηk)] = λ+ (λ2 − λ2
n)

λ

1− λ2

+(1− λ2
n)λ

1

1− λ2

{
1

n
(x2

0 − λ2x2
k−1) +

2λ

n

n∑
k=2

xk−2ξk−1 +
1

n

n∑
k=2

(ξ2
k−1 − 1)− 1

n

}
+(1− λ2

n)
1

n

n∑
k=1

[λxk−1ηk−1 + yk−1(ξk + ηk)] = λ+ ∆n.

Thus the mean square deviation of the estimator λ∗n has the following form

Eλ(λ
∗
n − λ)2 = Eλ∆

2
n · χ(λ = 0) + Eλ∆

2
n · χ(λ 6= 0) =: I1 + I2,

where

I1 = Eλ((1− λ2
n)

1

n

n∑
k=1

[yk−1(ξk + ηk)])
2 · χ(λ = 0)

= Eλ((1− λ2
n)

1

n

n∑
k=1

(ξk−1 + ηk−1)(ξk + ηk))
2 · χ(λ = 0),

I2 = Eλ∆
2
n · χ(λ 6= 0).

From assumptions of Theorem 2 it follows I1 ≤ C/n. In view of Lemma 1 and the
property |λn + λ| ≤ 2, we have

I2 ≤ Eλ

(
2|λn − λ|

1− λ2
χ(λ 6= 0) +

1

1− λ2

{
1

n
(x2

0 + x2
k−1) +

2

n

∣∣∣∣∣
n∑
k=2

xk−2ξk−1

∣∣∣∣∣
+

1

n

∣∣∣∣∣
n∑
k=2

(ξ2
k−1 − 1)

∣∣∣∣∣+
1

n

}
+

1

n

∣∣∣∣∣
n∑
k=1

xk−1ηk−1

∣∣∣∣∣+
1

n

∣∣∣∣∣
n∑
k=1

yk−1(ξk + ηk)

∣∣∣∣∣
)2

≤ CEλ(λn − λ)2χ(λ 6= 0) +
C

n
+
C

n2
≤ C

n
+ C

log4 n

n2
.
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Abstract

In paper, optimality properties of the minimum gamma-divergence estima-
tor (MGDE) relative to weighted L2-norm of Hampel's in�uence function, and
also Shurygin's model of the point Bayesian contamination under theory of
parameter estimation from multivariate non-homogeneous data are considered.
In�uence functions of the MGDE and close to it of the minimum beta-divergence
estimator and the generalized radical estimators for the ordered probit model
are compared. The MGDE applicability is evaluated using a simulated dataset.

Keywords: M -estimator, robust estimation, in�uence function, gamma-
divergence, beta-divergence, non-homogeneous data, ordered probit model.

Introduction

The classical statistic procedures are based on a number of assumptions which cannot
be ful�lled in practice. Under such conditions a lot of widespread statistic procedures
lose their positive qualities. For instance, the procedures, which rest on the maximum
likelihood estimator (MLE). However, this problem can be solved by using robust
estimators. Generally, robustness theory has been developed for the quantitative
continuous random variables modeling [3, 12]. Much less attention is paid to the
modeling of ordinal regression, and existing approaches are often based on semi-
heuristic nature. Few papers are devoted to robust parameter estimation of the
cumulative link model and the ordinal probit model as its particular case (see, for
example [4, 10, 19]).

Previously, we developed the general theory of asymptotically optimal estimation
of unknown model parameters from multivariate non-homogeneous incomplete data
(see [5]). At the bottom of this theory we �nd synthesis of approach by F.R. Hampel
[8] which is associated with the in�uence function and approach by A.M. Shurygin [18]
which is associated with the point Bayesian contamination model. Resulting methods
are robust against the model misspeci�cation, estimators often have redescending
property [17, 18]. This theory is applied to cases with non-homogeneous quantitative
(including count), qualitative, mixed data, and also in the presence of missing data
(see references in [3]). The application to qualitative response regression models is
considered in [12].

The very robust minimum gamma-divergence (or logarithmic density power di-
vergence) estimator (MGDE) is used for a parameter estimation of distributions [11],
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regression [6], heteroscedactic regression [14], dichotomous logistic regression [9]. In
the latter two cases the data are non-homogeneous. Many well-known robust estima-
tors of location are special versions of the MGDE for suitable model (see, for example,
[16, 17]). These are the estimators associated to names of Tukey (biweight), Andrews
(sine), Huber (skipped mean), Welsch, Smith, Bernoulli, Charbonnier (generalized
version). For example, the latter case is related to the Student's t distribution.

In connection with the above, it is important to �nd out optimality properties of
the MGDE, corresponding results are given in Section 1. In Section 2, we apply the
MGDE to the ordered probit model, namely, we compare in�uence functions of the
MGDE and similar estimators, also present the result for one simulated dataset.

1 Optimality properties of the MGDE

Let n-dimensional independent random variables ζi = (ζi1, . . . , ζin)T, i = 1, . . . , N ,
have an assumed (or ideal) probability density functions (p.d.f.'s) gi(zi|φ), zi ∈ Rn,
with respect to a σ-�nite measure µ, φ is p-vector of parameters.

M -estimate φ̂ of vector φ is obtained from the observations ζ̃i, i = 1, . . . , N , of
random variables ζi, i = 1, . . . , N , by means of a solution of the system of estimating
equations

N∑
i=1

ψi(ζ̃i, φ̂) = 0,

where ψi(ζ̃i, φ̂) is p-dimensional estimating function satisfying further condition

Eψi(zi, φ) = 0, i = 1, . . . , N, (1)

E is expectation under the assumed p.d.f. [1]. Alternative (but no equivalent) way
of de�nning M -estimate is optimization, namely

φ̂ = arg min
φ̃

N∑
i=1

ρi(ζ̃i, φ̃),

where ρi(ζ̃i, φ̃) is a loss function [1]. We obtain the �rst way by choosing ψi(zi, φ̃)
proportional to the gradient of ρi(zi, φ̃).

Robust estimates have high quality not only in the assumed distribution, but in
the case of deviations from it. One form of deviation is de�ned by the contaminated
distribution such that the real p.d.f. of observations is determined by the mixture
model (1−ε)gi(zi|φ)+εhi(zi), where 0 ≤ ε < 1 is an amount of contamination, hi(zi)
is a contamination p.d.f.

One of the major indicators of estimator's robustness is the in�uence function
[8]. In our case, for M -estimator under certain regularity conditions, the in�uence
function for the ith observation take the form [5]

IFi(zi, ψ) = M−1ψi(zi, φ),
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where ψ = (ψT
1 , . . . , ψ

T
N)T,

M = −
N∑
i=1

∂

∂φ̃T
Eψi(zi, φ̃)

∣∣∣∣
φ̃=φ

=
N∑
i=1

∫
Rn

ψi(zi, φ)
∂gi(zi|φ)

∂φT
dµ

is non-singular p× p matrix.
Indicator of estimation badness can be written as square of the weighted L2-norm

of the in�uence function [5]

Λs(ψ) =
N∑
i=1

∫
Rn

IFT
i (zi, ψ)W IFi(zi, ψ)si(zi|φ) dµ, (2)

where s = (s1, . . . , sN)T, si(zi|φ) > 0 is weight function, W = W (φ) is a symmetric
positive de�nite weight matrix of size p × p (under some conditions W can provide
invariance of Λs to one-to-one di�erentiable parameter transformation).

Optimal estimating function is a solution of minimization problem [5]:

ψ∗s = arg min
ψ

Λs(ψ)

under constraints (1) and has the form

ψ∗s,i(zi, φ) = C

[
∂

∂φ
ln gi(zi|φ) + bi

]
gi(zi|φ)

si(zi|φ)
, (3)

where C = C(φ) is insigni�cant non-singular matrix, bi = bi(φ) is determined from
condition (1).

Also, indicator (2) can be interpreted in accordance with the model of the point
Bayesian contamination [18].

Consider a version non-homogeneous point Bayesian contamination model (see
[14]). There is a series of samples with random point contamination. A random
contamination point in the ith observation has a p.d.f. χi(zi|φ), zi ∈ Rn, with respect
to measure µ. The ith observation is the only one contaminated in all samples and has
a random contamination point z∗ki in the kth sample and an amount of contamination
equal to εi.

The asymptotic bias of the estimate under a small amount of contamination and
certain regularity conditions is Bi(z

∗
ki) ≈ εiIFi(z

∗
ki, ψ). The sum of the expected values

of BT
i (z∗ki)WBi(z

∗
ki), i = 1, . . . , N , approximately equal to

Λ̃χ,ε(ψ) =
N∑
i=1

ε2
i Eχi

[
IFT

i (zi, ψ)W IFi(zi, ψ)
]
, (4)

where χ = (χ1, . . . , χN)T, ε = (ε1, . . . , εN)T, Eχi is expection under the p.d.f. χi(zi|φ).
This sum coincides with (2) for the weight function si(zi|φ) = ε2

iχi(zi|φ).
Let

χi(zi|φ) = g1−γ
i (zi|φ)/Iγ,i(φ), (5)

where γ ≥ 0 is a parameter, Iγ,i(φ) =
∫
Rn
g1−γ
i (zi|φ) dµ, and
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εi = c
√

Iγ,i(φ)∆γ,i(φ),

where c is a proportionality factor, ∆γ,i(φ) =
[∫
Rn
g1+γ
i (zi|φ) dµ

] γ
1+γ . Then weight

function given by
si(zi|φ) = c2g1−γ

i (zi|φ)∆γ,i(φ). (6)

Optimum estimating function (3) is

ψ∗γ,i(zi, φ) = C

{
∂

∂φ
ln gi(zi|φ) + bi

}
gγi (zi|φ)

∆γ,i(φ)
(7)

and corresponds to loss function

ργ,i(ζ̃i, φ) = −gγi (ζ̃i|φ)/∆γ,i(φ).

This loss function de�nes the MGDE with robustness parameter γ. Although, in
our opinion, it is more natural to associate this estimator with the pseudo-spherical
divergence (cf. [6, 9, 13]).

Distribution (5) has optimality properties from the point of view of information
theory [3, 16]. In regression problems the amount of contamination can be considered
as dependent on input variables (see also [6]).

If g1−γ
i (zi|φ) is not integrable, then we can consider some sequence of integrable

functions ηi,u(zi|φ), u = 1, 2, . . . , converging to g1−γ
i (zi|φ), the correspondyng se-

quence of integrals Υi,u(φ) =
∫
Rn
ηi,u(zi|φ) dµ, and sequence of amounts of con-

tamination εi,u = c
√

Υi,u(φ)∆γ,i(φ). Then, under certain regularity conditions, the
weight (6) will be the limit of functions ε2i,uηi,u(zi|φ)/Υi,u(φ) = c2ηi,u(zi|φ)∆γ,i(φ),

and indicator (4) will be the limit of sequence of integrals Λ̃η̃u,εu(ψ), where η̃u =
(η1,u(zi|φ)/Υ1,u(φ), . . . , ηN,u(zi|φ)/ΥN,u(φ))T, εu = (ε1,u, . . . , εN,u)

T (see also [15]).
Note that we can postulate a constant amount of contamination and multiply the

terms in sum (4) by the products Iγ,i(φ)∆γ,i(φ) as additional weights of observations.
Moreover, we obtain the estimating function (7), if we directly use weight (6) in the
square of the weighted L2-norm of the in�uence function (2) without using model of
the point Bayesian contamination.

Choosing si(zi|φ) = g1−γ
i (zi|φ) and si(zi|φ) = χi(zi|φ) (χi from (5)) we obtain

generalized radical estimators (GRE's) [3, 12, 14, 15, 16], but, in order to distinguish
them, we will name the latter the Bayesian GRE (BGRE), since its weight function
is p.d.f.

The GRE and BGRE don't have optimization formulation. Therefore, choosing
the estimate as one of the estimating equation solutions can be problematic. In this
case, a frequently used approach is to choose a suitable initial approximation with the
calculation of the estimate using a local solution method. This initial approximation
usually is a good (in some sense) estimate [3]. Such an estimate can be the MLE or
the MGDE.

An alternative is the minimum beta-divergence (or density power divergence)
estimator (MBDE) [11]. For non-homogeneous data, it is de�ned by the loss function
[7]
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ρi(ζ̃i, φ) =

∫
Rn

g1+γ
i (zi|φ) dµ−

(
1 + γ−1

)
gγi (ζ̃i|φ).

The remarkable fact is that the MBDE applied to the qualitative response regres-
sion model is a version of the Bianco and Yohai estimator (cf. [2, 3]).

Note that the MGDE, GRE, and BGRE are actually the same for homogeneous
data; for this case, optimality properties were discussed earlier (see, for example,
[15, 16]).

2 Robust estimation of the ordered probit model

We will apply the above theory to regression with a discrete output variable (re-
sponse), in this case µ is counting measure.

Let the assumed distribution of a discrete random variable ζi under the ith ob-
servation be given by a set of probabilities

P {ζi = j|xi, φ} = g(j|xi, φ), i = 1, . . . , N , j = 1, . . . , J,

where xi is a vector of deterministic input variables.
For modeling dependence of the ordinal response on input variables the following

cumulative link model is often used. Consider latent variable ζ∗i under the ith obser-
vation that satis�es the regression model ζ∗i = F (xi)α + ei, where F (xi) is a vector
of nonconstant regressors (functions of input variables), α is a vector of parameters,
ei is a random error with a cumulative distribution function G. When lj−1 < ζ∗i ≤ lj,
where −∞ ≡ l0 < l1 < · · · < lJ−1 < lJ ≡ +∞, the response ζi takes the value j.
Corresponding probabilities are

g(j|xi, φ) = G (lj − F (xi)α)−G (lj−1 − F (xi)α) .

If errors have standard normal distribution, we obtain the ordered probit model. The
vector of estimated parameters is φ = (l1, . . . , lJ−1, α

T)T.
Consider the following model: J = 3, single input variable (also it is regressor)

takes values in N = 301 nodes of the uniform grid on the segment X = [−1.5, 1.5],
φ = (−1.5, 1.5, 2.8)T.

The study of in�uence functions for the MGDE, MBDE, GRE, and BGRE shows
that under small values γ all estimates are close. The MBDE di�ers from other
estimators in that the in�uence of observations with values j = 1 and j = 3 increases
in parts of X with small probabilities of these values as γ increases (all investigated
in [3] estimators had similar properties), and in the case of γ ≥ 0.5 such di�erence is
too noticeable. In the case of γ < 1 other estimators are very close. In the case of
γ > 1 the BGRE di�ers from other estimators in that the in�uence of observations
with value j = 2 increases in parts of X with small probabilities of this value as
γ increases. For this reason in the case of γ ≥ 1.3 the BGRE seems too di�erent
from the other three estimators. This is due to the speci�city of the BGRE weight
function. The GRE and MGDE are close in the wide range of γ values. Thus, the
MGDE seems to be the most preferable estimator.
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Results are illustrated by Figure 1 where for the case of γ = 1.5 dependences of the
element of the in�uence function corresponding to α on input variable are presented.
Here and below, dependences for di�erent values j are designated by lines of di�erent
styles: solid for j = 1, dotted for j = 2, dashed for j = 3. For comparing of in�uence
functions it is convenient to use dependences g(j|x, φ); they are represented in Figure
2 by gray lines.

Figure 1: In�uence functions

To evaluate the applicability of the MGDE, a small numerical experiment was
performed using a simulated dataset. The MLE and MGDE were compared under
the same model as above. Real distribution was homogeneous contaminated, contam-
ination distribution was uniform, ε = 0.1. And the robustness parameter was γ = 1
(there is some analogy with the estimator of minimum variance sensitivity [17]). The
results of the MLE are φ̂ = (−0.9808874, 0.7818217, 1.615199)T. And corresponding
results of the MGDE are φ̂ = (−1.444982, 1.253272, 2.317606)T.

Figure 2 shows us estimated dependences of probabilities on the input variable;
they are represented by black lines. The left panel corresponds to the MLE, the right
panel corresponds to the MGDE. As a results of the experiment, the MGDE is less
a�ected by contamination than the MLE.
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Figure 2: Ideal (gray lines) and estimated (black lines) probabilities
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Abstract

The article studies the asymptotic properties of an adaptive model selection
procedure for estimation an unknown drift coe�cient in di�usion processes. It
is shown that the procedure is asymptotically e�cient, i.e. it is established
that the asymptotic quadratic risk of the procedure coincides with the Pinsker
constant, which provides an exact lower bound of the quadratic risk for all
possible estimates.

Keywords: improved estimation, stochastic di�usion process, mean-square
accuracy, oracle inequalities, Pinsker constant, asymptotic e�ciency.

Introduction

Consider the problem of asymptotically e�cient estimation of the unknown drift coef-
�cient in di�usion process, described by the following stochastic di�erential equation:

dyt = S(yt) dt+ dwt , 0 ≤ t ≤ T , (1)

where (wt)t≥0 is a scalar standard Wiener process, the initial value y0 is some given
constant, and S(·) is an unknown function. Note that such models are widely used
in �nancial markets, radio-physics, etc. [1]. The problem is to estimate the function
S(x), x ∈ [a, b], from the observations (yt)0≤t≤T . The main goal of this paper to
prove the asymptotic e�ciency property of the improved model selection procedure
proposed in [2] for estimating the function S in (1). The concept of asymptotic
e�ciency is associated with the optimal rate of convergence of the minimax risk, i.e.
An important issue in the optimality results is the study of the exact asymptotic
of the minimax risk. The problem of asymptotic non-parametric estimation in the
model of heteroscedastic regression was studied by Efroimovich [3] and Pinsker [4].
To prove the asymptotic e�ciency of the procedure, it is necessary to show that
its asymptotic quadratic risk coincides with the lower bound de�ned by the Pinsker
constant [5, 6]. In this paper, the problem is solved using an approach based on the
model selection methods and sharp oracle inequalities. Recall that the model selection
method appeared in the pioneering works of Akaike [7] and Mallows [8], in which
proposed to introduce a penalization term in the criteria of maximum likelihood.
Further, Barron, Birgé and Massart [9], Massart [10] and Kneip [11] developed this
method to obtain non-asymptotic oracle inequalities in non-parametric regression
models with Gaussian noise in discrete time. Unfortunately, this method cannot be
applied in our case to prove an asymptotic e�ciency property, since the coe�cient
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in main term of the resulting oracle inequalities is greater then one. For this reason,
in this paper we will use the method proposed in [12]. This paper deals with the
estimating the unknown function S(x), a ≤ x ≤ b, in the sense of the mean square
risk

R(ŜT , S) = ES‖ŜT − S‖2 , ‖S‖2 =

∫ b

a

S2(x)dx , (2)

where ŜT is some estimate of S by observations (yt)0≤t≤T , a < b are some real
numbers. Here ES is the expectation with respect to the distribution PS of the
random process (yt)0≤t≤T given the drift function S. To obtain a reliable estimator
of function S, it is necessary that the process (1) has the ergodicity property. For
this we suppose that unknown function S belongs to the following functional class:

ΣL,N = {S ∈ LipL(R) : |S(N)| ≤ L ; ∀|x| ≥ N, ∃ Ṡ(x) ∈ C(R)

such that− L ≤ inf
|x|≥N

Ṡ(x) ≤ sup
|x|≥N

Ṡ(x) ≤ −1/L} , (3)

where L > 1, N > |a| + |b|, Ṡ(x)− derivative S(x). For estimating the drift S
in (1) Galtchouk and Pergamenshchikov [13] have proposed to apply the sequential
approach. First step is a passage to a discrete time regression model by making use
of the truncated sequential procedure introduced in [5]. To this end, at any point
xk of an equidistant partition of the interval [a, b], we de�ne a sequential procedure
(τk, S

∗
k
) with a stopping rule τk and an estimators S∗

k
. For Yk = S∗

k
with 1 ≤ k ≤ n,

we come to the regression equation on some set Γ ⊆ Ω (sup
S∈ΣL,N

PS(Γc) ≤ ΠT ,

where limT→∞ Tm ΠT = 0 for any m > 0):

Yk = S(xk) + ζk . (4)

Here, in contrast with the classical regression model, the noise sequence (ζk)1≤k≤n
has a complicated structure, namely,

ζk = σk ξk + δk , (5)

where (σk)1≤k≤n is a sequence of some observed random variables, (δk)1≤k≤n is a
sequence of bounded random variables and (ξk)1≤k≤n is a sequence of i.i.d. random
variables N (0, 1) which are independent of (σk)1≤k≤n.

In order to estimate the function S in model (4) we make use of the model selection
method based on improved weighted least squares estimates proposed [18]. Improved
estimation method in nonparametric regression models has been developed in [15, 16,
17].

1 Oracle inequalities

To estimate the unknown function in model (4), we use improved weighted least
squares estimates, de�ned in [2],

S∗
λ
(xl) =

n∑
j=1

λ(j) θ∗
j,n
φj(xl) 1Γ , 1 ≤ l ≤ n , (6)
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where (φj)j≤1 is an orthonormal functions system, the vector of weight coe�cients
λ = (λ1, ..., λn) belongs some �nite set Λ from [0, 1]n,

θ∗
j,n

=

(
1− c(d)

‖θ̃n‖
1{1≤j≤d}

)
θ̂j,n, ‖θ̃n‖2 =

d∑
j=1

θ̂2
j,n
, θ̂j,n =

b− a
n

n∑
l=1

Ylφj(xl) .

Here the coe�cient d ≈ nε/ lnn, 0 < ε < 1, c(d) ≈ d/n. Now we de�ne the estimate
for S in (1). We set for any a ≤ x ≤ b

S∗
λ
(x) = S∗

λ
(x1)1{a≤x≤x1} +

n∑
l=2

S∗
λ
(xl)1{xl−1<x≤xl} . (7)

In order to obtain a good estimator, we have to write a rule to choose a weight vector
λ ∈ Λ in (7). It is obvious, that the best way is to minimize the empirical squared
error with respect to λ:

Errn(λ) = ‖S∗
λ
− S‖2

n
→ min .

Making use of (7) and the Fourier transformation of S imply

Errn(λ) =
n∑
j=1

λ2(j)θ∗2
j,n
− 2

n∑
j=1

λ(j)θ∗
j,n
θj,n +

n∑
j=1

θ2
j,n
.

Since the coe�cient θj,n is unknown, we need to replace the term θ∗
j,n
θj,n by some its

estimator which we choose as

ϑ̃j,n = θ̂j,nθ
∗
j,n
− b− a

n
sj,n with sj,n =

b− a
n

n∑
l=1

σ2
l
φ2
j
(xl) .

One has to pay a penalty for this substitution in the empirical squared error. Finally,
we de�ne the cost function of the form

Jn(λ) =
n∑
j=1

λ2(j)θ∗2
j,n
− 2

n∑
j=1

λ(j) ϑ̃j,n + ρPn(λ) ,

where the penalty term is de�ned as

Pn(λ) =
b− a
n

n∑
j=1

λ2(j)sj,n

and 0 < ρ < 1 is some positive constant which will be chosen later. We set

λ̂ = argmin
λ∈Λ

Jn(λ)

and de�ne an estimator of S of the form (7):

S∗(x) = S∗
λ̂
(x) for a ≤ x ≤ b . (8)

Now we obtain the non asymptotic upper bound for the quadratical risk of the esti-
mator (8).
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Theorem 1. Let Λ ⊂ [0, 1]n be any �nite set such that the �rst d ≤ n components
of the weight vector λ are equal to 1. Then, for any n ≥ 3 and 0 < ρ < 1/6, the
estimator (8) satis�es the following oracle inequality

ES‖S∗ − S‖2
n
≤ 1 + 6ρ

1− 6ρ
min
λ∈Λ

ES‖Ŝλ − S‖2
n

+
Ψn(ρ)

n
,

where limn→∞Ψn(ρ)/n = 0.

Now we consider the estimation problem (1) via model (4). We apply the estimat-
ing procedure (8) with special weight set introduced in [5] to the regression scheme
(4). Denoting S∗

α
= S∗

λα
we set

S∗ = S∗
α̂

with α̂ = argmin
α∈Aε

Jn(λα) .

Theorem 2. Assume that S ∈ ΣL,N and the number of the points n = n(T ) in the
model (4) . Then the procedure S∗ satis�es, for any T ≥ 32, the following inequality

R(S∗, S) ≤ (1 + ρ)2(1 + 6ρ)

1− 6ρ
min
α∈Aε

R(S∗
α
, S) +

BT (ρ)

n
,

where limT→∞ BT (ρ)/n(T ) = 0.

2 Asymptotic e�ciency

In order to study the asymptotic e�ciency we de�ne the following functional Sobolev
ball

W 0
k,r

= {f ∈ Ck
0
([a, b]) :

k∑
j=0

‖f (j)‖2 ≤ r} , (9)

where r > 0 and k ≥ 1 are some unknown parameters, Ck
0
([a, b]) is the space of k

times di�erentiable functions f : R→ R such that

f (i)(x) = 0 , for 0 ≤ i ≤ k − 1 and x /∈ [a, b] .

We will call such functions periodic on the interval [a, b]. Let S0 be a �xed k+1 times
continuously di�erentiable function from ΣL,N . We set

Θk,r = {S = S0 + f , f ∈ W 0
k,r
} . (10)

In order to formulate our asymptotic results we de�ne the following normalizing
coe�cient

γ(S) = ((1 + 2k)r)1/(2k+1)

(
J(S)k

π(k + 1)

)2k/(2k+1)

(11)

with

J(S) =

∫ b

a

1

qS(x)
dx , qS(x) =

exp{2
∫ x

0
S(z)dz}∫ +∞

−∞ exp{2
∫ y

0
S(z)dz}dy

.
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It is well known that for any S ∈ Θk,r the optimal rate of convergence is T
−2k/(2k+1)

(see, for example, [18]). On the basis of the model selection procedure (8) in the next
section we construct the adaptive procedure S∗ for which we obtain the following
asymptotic upper bound for the quadratic risk.

Theorem 3. The quadratic risk (2) for the estimating procedure S∗ has the following
asymptotic upper bound

lim sup
T→∞

T 2k/(2k+1) sup
S∈Θk,r

R(S∗, S)

γ(S)
≤ 1 . (12)

Moreover, we show that this upper bound is sharp in the following sense.

Theorem 4. For any estimator Ŝ of S measurable with respect to FyT ,

lim inf
T→∞

inf
Ŝ
T 2k/(2k+1) sup

S∈Θk,r

R(Ŝ, S)

γ(S)
≥ 1 , (13)

where FyT is a σ−�eld generated by observations (yt)0≤t≤T .

Remark 1. It should be noted that the choice of the functional class Θk,r in the form
of (10) is related to the ergodicity of the process (1). This property is provided when
the drift derivative is negative on the outside of a �nite interval. The last excludes
the choice of periodic functions as a class of admissible drifts. For this reason, we
use the Sobolev ball of periodic functions with a non periodic center S0 as a class of
admissible drift functions.

Remark 2. Note that the inequalities (14) and (13) imply that the function (11) is
the Pinsker constant in this case (cf. [4]).

Corollary 1. From Theorems 2 and 3 it follows that the procedure for choosing a
model S∗, de�ned in (8), is asymptotically e�cient, i.e.

lim
T→∞

T 2k/(2k+1) sup
S∈Θk,r

R(S∗, S)

γ(S)
= 1 . (14)

3 Numerical simulations

We suppose that in the model (1)

S(x) = x2 sin(2πx) + x2(1− x) cos(4πx).

For weight coe�cients we choose n = T ,

k∗ = 100 +
√

lnn, ε =
1

lnn
, m = ln2 n, ωα = 100 + (Aβtn)

1
2β+1 .

The empirical risk:

R(S∗, S) =
1

1000

1000∑
m=1

‖S∗m − S‖2
n.

Table 1 shows the results of the behavior of empirical mean-square risks for the
proposed estimation procedure (8).
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Table 1: Empirical quadratic asymptotic risks

n 501 1001 2001 10001
T 2k/(2k+1)R(S∗,S)

γ(S)
) 4.7257 2.0856 1.0072 0.9012

From Table 1 it is clear that with an increase in the number of observations n,
the normalized empirical mean-square risks tend to unity, which con�rm numerically
the Corollary 1.

The �gures show the behavior of observation processes (yt)0≤t≤1, function S (red
line), and improved estimate S∗ (green line):

Figure 1: n=501

Figure 2: n=1001
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Figure 3: n=10001
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Abstract

When solving real-world problems, there are often processes that take place
not in the area de�ned by the vectors of input and output variables, but in a
sub-area. The article describes the following types of processes: H-processes,
K-processes.

Keywords: Discrete-continuous systems, H-processes, K-processes.

Introdution

The controlled processes that occur continuously in time and the control variables
that are carried out at discrete points in time traditionally refers to the class of
discrete-continuous processes. In particular, A.A. Feldbaum in the �rst works on the
theory of dual control in the monograph [2] considered the following system.

Figure 1: Block diagram of the discrete-continuous control system

In Figure 1, the following symbols are used: x∗s is setting e�ect, that through the
channel H∗ is mixed with the noise h∗s and enters as a regulator y∗s ; xs is an output
of the object, that passing through channel H and mixing with the noise hs in the
form of ys also enters the regulator; us is a control action that, passing through the
channel G and mixing with the gs interference, comes in the form of νs to the object
that is a�ected by the interference ξs; s is discrete time. The object was represented
as xs = ανs, i.e., the object was parameterized with the accuracy of the parameter
α, and the equations of communication channels were assumed as additive ones with
normally distributed noise.

When identifying dynamic processes, a situation often arises when the measure-
ment of output variables is carried out in considerable time intervals. Moreover, the
technology of these variables measuring is such that the time spent on it can be quite
signi�cant. As a result, the total time exceeds the object constant. Ultimately, it
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leads to the fact that we are forced to consider the object as inertial with delay. Such
a process on the appropriate channel of the object should be presented in the form

x(t) = f(u(t− τ), ξ(t)), (1)

where x(t) is the output variable of the object; u(t− τ) is input variable, here τ is
delay; ξ is random perturbation in�uencing the object; (t) is continuous time period.

The measurement channels with interferences hu, hx, and measurement discrete-
ness ∆T >> ∆t are given in Figure 1. In principle, the object delay τ may be absent
and then we deal with a normal dynamic object, but due to the large value of ∆T . In
this case we are to consider it as a static delay determined by the measurement time
duration of the variable x(t). Note that the time constant of the object is much less
than ∆T , i.e., ∆T >> ∆t . Thus, a sample of observations in a discrete form can be
represented as follows: u[t], x[t + n + m] , where t = 1, 2, . . . , s; n is delay discrete-
ness, n = τ/∆t, m is delay caused by the duration of the monitoring, m = ∆T/∆t
. Carrying out the implementation shift in cycles, a sample of observations can be
rewritten as follows: {ut, xt, t = 1, s} without reducing the generality, reduce the task
to identi�cation of a static object.

Consider u = (u1, . . . , uk) ∈ Ω(u) ⊂ Rk, x ∈ Ω(x) ⊂ R1. Generally speaking,
each component of the vector ui ∈ [ai; bi], i = 1, k, and x ∈ [c; d]. In real processes
investigation, values of the coe�cients {ai, bi, cd}, i = 1, k, are always known. In
technological processes, values of these coe�cients are controlled by the technological
regulations (by a technological map). Further, we will take these intervals as single
ones without breaking the generality, then Ω(u) is a single hypercube, and Ω(x) =
[0; 1], i. e, x ∈ [0; 1].

Usually the identi�cation problem of the static object is reduced to parametric
identi�cation [3, 3, 4], that consists of two main stages: selection (de�nition) of the
parametric model (1) in the form x̂ = f̂(u, α), where α is a parameter vector, and the
subsequent estimation of the parameters α based on the incoming sample elements
(u1, x1), (u2, x2), . . . , (us, xs), i.e., getting the estimation αs. In this case, an adaptive
model will be as follows:

x̂s = f̂(u, αs) (2)

If a row is taken as a function f̂(u, α)

x̂ = f̂(u, α) =
N∑
j=1

αjϕj(u), (3)

where ϕj(u), j = 1, N is a system of linearly independent functions of a vector
argument u = (u1, . . . , uk) ∈ Ω(u), then, according to the method of stochastic
approximations [3], we obtain

αls = αls−1 + γls(xs −
N∑
j=1

αls−1ϕl(us))ϕl(us), l = 1, . . . , N, (4)

where γls, l = 1, N are Robbins � Monroe coe�cients.
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This is the general scheme for solving parametric identi�cation problems. Note
that the weakness here is a choice of the parametric structure of the model. If a
rather serious mistake has been made at the �rst stage, then the resulting model is
unlikely to be satisfactory. Note that the models of the form (2) are hypersurfaces in
the object input-output variable region: (u, x) ∈ Ω(u, x) ⊂ Rk+1.

Let us analyze two important circumstances that arise while modeling real pro-
cesses. The �rst of these is that a sample size s {xi, ui, i = 1, s} is often rather
insu�cient relative to the dimension of the vector u = (u1, . . . , uk) ∈ Ω(u), as math-
ematical statistics requires. For example, in practice we often have the following
situation when 20 . . . 30, and s = 900 . . . 1 000, and therefore a satisfactory solution
to the problem of identi�cation cannot be obtained. The second circumstance is that
if, according to the available data, a model of the type (2) has been developed, and
then at u ∈ Ω(u) ⊂ Rk we can get the estimation xs /∈ Ω(x), i.e., the estimation of x
outside the process regulations and even physically unrealizable values x(u). Both of
these circumstances can be explained taking into account the following considerations.

So, the investigated process without loss of generality proceeds in a single cube
Ω(u, x) = Ω(u1, u2, x) ⊂ R3. If we omit the in�uence of random perturbations ξ(t)
and measurement mistakes u1, u2, x, i.e., the absence of hu, hx and ξ (Figure 1) then,
for simplicity, the process takes place in the space ΩH(u, x) ⊂ Ω(u, x), as follows from
the model of the form (2), which is a surface in the space Ω(u, x) (Figure 2).

Figure 2: Scheme of the H-process

The actual values that process variables will take may be known to the researcher,
for example, from process regulations. Thus, a real process takes place in a certain
region Ω(u1, u2, x), in our example, in a unit cube. In the case of the stochastic
dependence of the input variables, a process does not proceed in the entire region
Ω(u1, u2, x), but only in its subspace ΩH(u1, u2, x) ⊂ Ω(u1, u2, x) which is always
unknown. And since we do not know anything about the subspace ΩH(u, x), we
cannot say for sure that the investigated object has this feature. This is the main
problem of modeling this kind of processes, which is called H-processes. When one
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uses models of the form (2) for individual values of input variables of the process
u ∈ Ω(u) ⊂ Rm, for which a relationship u /∈ ΩH holds, we can get estimation
x̂s /∈ ΩH(u, x) (point B in Figure 2) or even x̂s /∈ Ω(u, x) (point C in Figure 2). In
this case, the identi�cation results will be unsatisfactory.

If the investigated process has a tube structure, then models (2) and (3) need to
be corrected as follow:

x̂s(u) = Is(u)f̂(u, αs), (5)

or

x̂s(u) = Is(u)
N∑
j=1

αjϕj(u), (6)

where the indicator Is(u) is as follows:

Is(u) =

{
1, if u ∈ ΩH

s (u),

0, if u /∈ ΩH
s (u)

(7)

Models (5) and (6) will be called H-models.
Generally speaking, it should be noted that the space ΩH(u), is unknown and

only a sample {xi, ui, i = 1, s} is known. If an indicator is equal to zero, then the
estimation x̂(u) cannot be calculated, i.e., with such values of component vector
u ∈ Ω(u) the process cannot proceed. If an indicator Is(u) at any value u ∈ Ω(u)
is equal to one, then a model (5) coincides with model (2), and model (6) coincides
with model (3).

As the estimation of the indicator Is(u), it is possible to take the following ap-
proximation [5]:

Is(u) = sgn(scs)
−1

s∑
i=1

Φ(c−1
s (xs(u)− xi))

k∏
j=1

Φ(c−1
s (uj − uji )), (8)

where

xs(u) =
s∑
i=1

xi

k∏
j=1

Φ(c−1
s (uj − uji ))/

s∑
i=1

xi

k∏
j=1

Φ(c−1
s (uj − uji )) (9)

a blur parameter cs and the bell-shaped function Φ(·) satisfy the convergence
conditions given in [5].

Thus, at a known value u = u′ ∈ Ω(u), �rst it is necessary to build the estimation
xs(u = u′) using the formula (9), and then it is necessary to calculate the indicator
and only then to use the models (5) or (6) if the indicator turns out to be equal to
zero. If the indicator is equal to one, then this means that although u ∈ Ω(u) but
u /∈ ΩH(u), i.e., vector components u = u′ = (u′1, . . . , u

′
k) are de�ned incorrectly and

the actual �owing tube process does not correspond to the set of speci�ed values of
the vector component u = u′. It is natural to assume that the identi�cation process of
the object in a parametric formulation should also be carried out taking into account
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the tube structure of the object. In conclusion, we note that the nature of H-processes
di�ers from fractal [6] and attractors.

If we interpret H-processes in a more general case as a function of several variables,
then the variability of this function over time can be shown in the following chain of
ratios operating in time:

The diagram of a dynamic object and the control of input and output variables
is given below.

The input of the investigated process receives a vector of input variables u(t) =
(u1(t), . . . un(t)) ∈ Ω(u) ⊂ Rn, the a vector of input variables gives
x(t) = (x1(t), . . . , xm(t)) ∈ Ω(x) ⊂ Rm, x̂(t) is the output of the model. Both vari-
ables are controlled at discrete instants of time through the interval ∆t. In the
process of the object investigation, a sample of observations xi = (xi1, . . . , xim), ui =
(ui1, . . . , uin), i = 1, s (where s is a training sample) can be obtained ξ(t) is a vector
of random impacts operating on an object whose expectation is equal to zero, and
the dispersion is limited. The random noises hu(t) and operating in the measurement
channels also have zero expectation and limited dispersion.

The peculiarity of identifying a multidimensional object is that the investigated
process is described by a system of implicit stochastic equations.

Fj(u(t− τ), x(t), ξ(t)) = 0, j = 1,m (10)

where Fj(·) are unknown, τ is a delay along the various channels of the multidi-
mensional system. Here τ means a delay known for all channels of the process under
study. Further, τ will be omitted for reasons of simplicity. Objects will be treated as
static. In subsequent models one can easily achieve it by the corresponding shift of the
elements of the sample of observations xi = (xi1, . . . , xim), ui = (ui1, . . . , uin), i = 1, s.
The identi�cation problem is to build a model of the system presented in Figure 3 with
the presence of a priori information and the training sample xi = (xi1, . . . , xim), ui =
(ui1, . . . , uin), i = 1, s. When identifying multidimensional inertialess systems, the
representation of the object model is traditionally used in the form:

x̂j = fj(u1, u2, . . . , un, α), j = 1,m (11)

where the parametric structure of the object is found from the available a priori
information, and α is a vector of parameters estimated by the existing or incoming
training sample.

In the case of a stochastic components dependence of the output variables of an
object, its model in the parametric version is:

F̂j(u, x, α) = 0, j = 1,m (12)

From practical considerations, it is natural to assume that at
x(t) = (x1(t), . . . , xm(t)) ∈ Ω(x) ⊂ Rm and u(t) = (u1(t), . . . , un(t)) ∈ Ω(u) ⊂ Rn a
system has a unique root.

Due to the lack of a priori information, the type of the functions F̂j(·), j = 1,m
cannot be determined with accuracy to the parameters α. It leads to the necessity
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to consider the investigated process as a T-process, and its model as a T-model
respectively.

In general, the investigated multidimensional system that implements the T-
process can be represented in Figure 3.

Figure 3: Multidimensional object

In the �gure, the following symbols are taken: u = (u1, . . . , un) is the n-dimensional
vector of input variables, x = (x1, . . . , xm) is the m-dimensional vector of the output
variables. Through various channels of the investigated process, the dependence of
the j-th component of the vector u can be represented as a dependence on certain com-
ponents of the vector u: x<j> = fj(u

<j>), j = (1,m). Each j-th channel depends on
several components of the vector u, for example u<5> = (u1, u3, u6) where u<5> means
a compound vector. The vector components ~u : u2, u4 are not included in its struc-
ture due to the reasons of the nature of the investigated process, or x<4> = (x1, x3)
is also a compound vector. The vertical arrows in Figure 3 for the components of the
vector x(t) illustrate their stochastic dependence, which is unknown. In this case, the
T-model of such a process should be considered as a system:

F̂j(u
<j>, x<j>) = 0, j = 1,m (13)

As a result of measuring input and output variables, a sample xi = (xi1, . . . , xim),
ui = (ui1 . . . , uin), i = (1, s), used to develop an adaptive model of this object, can be
obtained. In this case it is necessary to solve a system of the type (13) for the given
values of input impacts u1 = u′1, u2 = u′2, . . . , un = u′n. As a result, we can obtain
estimates of the components of the vector x for the corresponding values of the input
impact.

K-models. The diagram that takes into account the reality while investigating
some technological processes is given below.

Consider the problem of building a model of a dynamic process, shown in Figure
4. Note that the time intervals ∆T and T signi�cantly exceed a constant of the object
time along all other channels. Without breaking the generality, one can assume that
the control of variables u(t), µ(t), ω(t), x(t) is carried out in time interval ∆t,∆t <<
∆T << T . Consequently, the processes for channels q(t) and z(t) can be assigned to
the class of inertialess with a delay, and through the channels ω(t) and x(t) can be
assigned to the dynamic class, since the control of variables u(t), µ(t), ω(t) is carried
out in an interval ∆t that is signi�cantly smaller than the constant of the object time
through the corresponding channels. In this case, a rather general K-model can be
accepted as
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Figure 4: Block diagram of the interrelated stochastic process



f̂i(u
<i>(t− τ), µ<i>(t− τ), ω<i>(t− τ), x<i>(t), dx

<i>(t)
dt

,
d2x<i>(t)

dt2
, . . . , α) = 0, i = 1, k,

f̂i(u
<i>(t− τ), µ<i>(t− τ), ω<i>(t− τ), x<i>(t), q<i>(t)z<i>(t), β)I is = 0,

i = k + 1, l,

Ŝi(u
<i>(t− τ), µ<i>(t− τ), ω<i>(t− τ), x<i>(t), q<i>(t)z<i>(t),W<i>

s ) = 0,

i = l + 1,m,

(14)
Let us explain the symbols of the vector x<i>(t), which is a compound vector, in

particular x<1>(t) = (x1(t), x3(t)), x<2>(t) = (x2(t), x3(t), x4(t)) , and etc. This vec-
tor is not composed of all the components of the vector , but of their part, due to the
nature of the investigated process. Other variables u<i>(t−τ), µ<i>(t−τ), ω<i>(t−τ)
are also the corresponding compound vectors. Here it is important to pay attention
to the fact that various compound vectors are formed exclusively from practical con-
siderations when analyzing various real processes.

The �rst group of equations system (14) is found on the basis of the known
fundamental laws that correspond to the process under study with an accuracy of
parameters α. The second group of equations of the object is obtained on the basis
of the available prior information up to the vector of parameters β. The third group
of equations Ŝi is not known up to parameters, but a class of functions describing the
relationship between input-output and intermediate variables is determined on the
basis of a priori information. A symbol W<i>

s appearing here is a combination of all
the i-th observations of variables with volume s:

W<i>
s = (u<i>, µ<i>, ω<i>, x<i>, q<i>z<i>), i = l + 1,m (15)

The values estimation of the components of the vectors of output variables
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x(t), q(t), z(t) can be found as a result of solving the system of equations (14) with
the �xed values u(t), µ(t), ω(t).

K-models are fundamentally di�erent from those generally accepted �rst of all
because they take into account all the available variables and interrelations between
them in a situation where the discreteness of control of the latter is signi�cantly
di�erent, as are the levels of a priori information about the various channels of the
process being investigated. Thus, K-models are an organic synthesis that describes
the process under investigation or a system of interconnected objects in all their
diversity.

Thus, various processes occurring in real-life processes are considered. The fol-
lowing notion should be noted. H-T-processes appear as a result of the real processes
functioning. It generates H-T-models. And K-models are obtained as a result of a
lack of a priori information through various channels and they are based on the triad:
fundamental laws, parametric equations obtained as a result of engineering research
and some dependencies due to the lack of a priori information when only qualitative
properties are known. It should also be noted that the exact mathematical formula-
tion of the control problem in Figure 1, taken from the monograph written by A.A.
Feldbaum, is a removed a bit from the speci�c operating systems. The representation
of the object in Figure 4 does not make possible to get a similar mathematical formu-
lation of the problem due to the lack of a priori information through various channels,
and it means that a more adequate formulation of the control problem re�ecting the
reality is needed.
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Abstract

In the formulation of the problem of identi�cation and control, the impor-
tance of the available volume of a priori information about the process under
study. A priori information is classi�ed by the levels of a priori information
depending on the volume. The non-parametric level of a priori information has
been reviewed which implies that there is no data on the parametric structure
of the process under study.

Keywords: priori information, H-processes, changing space dimension.

Introduction

A. Feldbaum [2] was one of the �rst scientists who paid attention to systems with
various information and, accordingly, to the levels of a priori information. A.A.
Feldbaum identi�ed some levels of a priori information in his known book. They are
as follows:

� systems with complete information;

� systems with maximum but incomplete information;

� systems with incomplete information;

� systems with active accumulation of information.

Later, Ya.Z. Tsypkin considered systems with parametric uncertainty. That is,
it is a case when there is enough information a priori to determine the parametric
structure of the object under investigation. He considers in [3] various problems in
the theory of adaptive systems from these points of view. For example, an object
model can be represented as a function of input actions.

x(t) = f(~u, t), (1)

where x is the object's output, and ~u are input variables, t is time. If f(*) is known
up to parameters, then (1) is as follows:

x(t) = f(~u, ~α, t), (2)

where ~α is a parameter vector.
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This path is connected directly with approximations of the projection type. For us,
the presence of an approximation of a local character is essential. A classic example
of such an approximation of a function is the Lagrange interpolation polynomial

Denote a training sample (implementation of observations) as (xi, yi), i = 1, s. In
this case, the function approximating (1), in particular, the regression function from
observations, can be represented as follows:

x(t) = f(~u, t, ~xs, ~us), (3)

where ~xs, ~us are time vectors. ~xs = (x1, x2, ..., xs), ~us = (u1, u2, ..., us).
As Y.Z. Tsypkin noted several times, a priori information is a tool for mathemat-

ical formulation of the problem, and current information is a tool for its solving.
We consider the levels of a priori information corresponding to the levels of para-

metric and non-parametric uncertainty in more detail.
Parametric uncertainty means the fact that a priori information is su�cient to

determine reasonably the equation of the process under study with an accuracy of
the parameter vector. The next steps in this operation are to estimate these pa-
rameters based on the current available information. This method is described in
numerous monographs, in particular [3]. The application of the stochastic approx-
imation method is described in some detail in the book written by Ya.Z. Tsypkin
[3]. In particular, according to this book, algorithms of stochastic approximations
are used to solve various problems of the adaptive systems theory [3].

Non-parametric uncertainty means the fact that a priori information is insu�cient
for a reasonable determination of the parametric equation of the process under inves-
tigation with an accuracy of the parameter vector when only its qualitative properties
are known. For dynamic processes these features are linearity or non-linearity class;
for inertialess systems with delay these features are unambiguous characteristics of
di�erent channels of an object or ambiguity. In this case, the objects can be described
by the equations: x(t) = f(~u, t, ~xs, ~us), or F (~x(t), ~u(t), t, ~xs, ~us) = 0, where f(.), F(.)
are unknown.

In general, the investigated multidimensional system can be represented in Figure
1.

Figure 1: Multidimensional object
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In the �gure, the following designations are used: ~u = (u1, . . . , un) is n-dimensional
vector of input controlled variables, ~µ = (µ1, . . . , µl) l-dimensional vector of unman-
aged input variables, but controlled, ~x = (x1, . . . , xm) is m-dimensional vector of
output variables.

Each component of the output variable vector can be represented using compound
vectors.

Let's explain a term "a compound vector". It is a vector composed of some com-
ponents of the corresponding input vectors. For example, the components of the
vector of input variables ν(t)(Figure 1) may have the form ν1

t = (u1
t , µ

3
t , u

2
t ), ν

2
t =

(u2
t , u

4
t , µ

1
t , µ

3
t ) and etc. The components of the compound vectors are directly depen-

dent on the speci�cs of the process under investigation, the availability of a priori
information about it, its characteristics, properties, etc.

The formation of compound vectors is carried out on the basis of the available
a prior information. If it is absent, then the compound vector combines all the
components of the corresponding variables.

A lot of really occurring processes in technologies and nature reveal the follow-
ing feature: components of the vector of input and output variables turn out to
be stochastically dependent (Figure 1).So, in particular, if the input variables of a
multidimensional system are stochastically dependent, then the process under inves-
tigation takes place in a subregion of the �tube� structure. A frequent variant of such
a structure is shown in Figure 2.

Figure 2: Process with a "tube" structure

In Figure 2, the following designations are used: Ω(u1, u2, x) is a region of the pro-
cess without taking into account the stochastic dependence between the components
of the vector of input variables; ΩH(u1, u2, x) is a region of the process taking into
account the stochastic dependence between the components of the vector of input
variables.

Such processes are called H-processes.
It is natural to assume that the identifying process of an object in a parametric

formulation should also be carried out taking into account the tube structure of the
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object. In conclusion, we note that the nature H-processes are di�erent from fractals
and attractors.

If we interpret H-processes in a more general case as a function of several variables,
then the variability of this function over time can be shown in the following chain of
ratios operating in time:

x = f(t, u1,u2,u3, u4, u5)− T1;

x = f(t, u1, u2,u3, u4, u5)− T2;

x = f(t, u1, u2, u3, u4, u5)− T3;

x = f(t, u1, u2, u3, u4, u5, u6)− T4;

x = f(t, u1, u2, u3, u4, u5, u6)− T5;

x = f(t, u1, u2, u3, u4, u5, u6)− T6;

x = f(t, u1,u2, u3, u4,u5, u6)− T7;

x = f(t,u1,u2, u3, u4,u5,u6, u7)− T8.

(4)

Further the explanation of our designations is given. The darkest color (u1) in-
dicates the variables that have the strongest e�ect on x (possibly, functional depen-
dence). The less obscure designation (u1) indicates a weaker in�uence of the variable
on x (perhaps, a stochastic dependence), and the variables u1 and u1 have a still
weaker e�ect on x.

Thus, in actual H-processes, the in�uence of variable values changes signi�cantly:
some variables may lose their value, some variables may �rst lose value and then
restore it, and some variables may appear for the �rst time, such as u6, u7.

The case when the components of the vector are stochastically related isimportant
from the practical point of view. Then the dependency x(~u) can be described by a
system of implicit functions of the following type:

F (~x, ~u) = 0 (5)

In this case, a system (4) can be represented as follows:

F (t, x, u1,u2,u3, u4, u5) = 0− T1;

F (t, x, u1, u2,u3, u4, u5) = 0− T2;

F (t, x, u1, u2, u3, u4, u5) = 0− T3;

F (t, x, u1, u2, u3, u4, u5, u6) = 0− T4;

F (t, x, u1, u2, u3, u4, u5, u6) = 0− T5;

F (t, x, u1, u2, u3, u4, u5, u6) = 0− T6;

F (t, x, u1,u2, u3, u4,u5, u6) = 0− T7;

F (t, x,u1,u2, u3, u4,u5,u6, u7) = 0− T8.

(6)

Let us examine Figure 1 from the point of view of the availability of a priori
information, both parametric and non-parametric. Often a situation arises when,
through some channels of a multidimensional object, its parametric structure can
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be determined. And through other channels an investigator is under non-parametric
uncertainty, that is, under conditions where the parametric structure cannot be de-
termined due to lack of a priori information. Only some qualitative properties of the
process under investigation are known. In this regard, a priori information is applied
to both parametric and non-parametric levels of uncertainty. In such a situation, the
development of the model is signi�cantly di�erent from the traditional approaches to
the theory of identi�cation.

Let us consider a grinding process of a speci�c product, a relatively typical for
many industries. We mean grinding the clinker in three-chamber mills for dry grinding
(the clinker is granules obtained as a result of burning raw mix, grinding which leads
to the production of cement.

A dry grinding mill (Figure 3) is a cylindrical rotating drum, divided by grid
partitions into three chambers loaded with grinding bodies: chamber I contains fairly
large metal balls, chamber II contains smaller balls, chamber III contains cylinders
(metal cylinders small size). The clinker entering the mill is crushed in chambers I,
II, III and it is converted into cement. Thus, from a technological point of view, the
entrance of the mill is clinker loading, and the output is cement.

Figure 3: Scheme of the ball three-chamber mill

The following designations are introduced in Figure 3 µ(t) is uncontrolled input
variable (grindability of the clinker); u(t) is input variable controlled with a random
error (load / number of the clinker); ω(t) is noise in the �rst chamber, monitored by
induction sensor A in an interval of time ∆t. It is used as an output signal of the
grinding process in current control systems; q(t) is output of the mill (a technological
parameter "�neness of grinding"), measured after an interval of time ∆T >> ∆t;z(t)
- the main indicator of the cement quality is the activity (strength of the cement
beam under compression in 28 days after its mixing), monitored over a period of
time T >> ∆T >> ∆t. The object time constant is about 5�7 minutes, u(t) and
ω(t) in local analog control systems are monitored continuously, and it is discrete in
digital control systems in an interval of time ∆t (can be measured in a few seconds).

The control of the output variables q(t), z(t) is carried out in the laboratory
according to the technology regulated by the standard, with ∆T = 2 hours and
T = 28 days. Note that q(t) in this case is a technological indicator of the grinding
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process, and z(t) is the main indicator of the quality (grade) of cement (cement
activity), which depends not only on the re�nement of grinding q(t), but also on the
performance of previous technological conversions: raw mix preparation, grinding,
burning.

The variable µ(t) shown in Figure 3, is an important technological indicator of the
grindability of the clinker, which signi�cantly a�ects the grinding process of the latter,
but cannot be measured.Of course, expert assessments of the grindability of clinker
and the analysis of one of its granules by means of petrography and etc are possible.
But everything requires much time. They are very laborious, unrepresentative, and
they give rough average results. However, it was possible to develop a su�ciently
high-quality system for controlling the process of dry grinding without measuring in
this case such an indicator as the grindability of clinker. It was done as a result of the
system analysis of the control unit and the technological unit of the grinding process,
that led to a slightly di�erent control system in the industry at that time.

Thus, the technology of variables control that a�ects signi�cantly the grinding
process is laborious in various time intervals, and the controlled process is a subject
to various random factors, that leads to serious di�culties in modeling such pro-
cesses. But this is a relatively simple technological process, which is typical for many
industries, but even this process does not �t to the classical scheme of identi�cation
problem.

Hence one can understand the importance of a priori information for solving
identi�cation and control problems. Moreover, it can be seen that it can be di�erent
for di�erent channels of the studied multidimensional system. Naturally, this leads
to a special regard at the solution of the problems described above.

In conclusion, it should be noted that the levels of a priori information in the
formulation of certain problems of identi�cation and control inevitably lead to the
necessity to use the relevant divisions of the control theory, which, of course, may
be di�erent.We have already talked about deterministic control, stochastic theories
and etc. Each of the ��oors� of a priori information corresponds to its own speci�c
theory, both in the problems of the identi�cation theory and in the problems of the
control theory. The last level of non-parametric uncertainty should correspond to
the theory of non-parametric systems [1]. The problems of identi�cation and control
under non-parametric uncertainty are also considered there.
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Introduction

The task of recovering the distribution of random variable, particularly, estimating
the probability density function, is one of main objectives in mathematical statistics
[5]. In this case the researcher often �nds himself in a situation of nonparametric un-
certainty [12]. The situation is complicated also by small amount of data. At present
time there is range of nonparametric estimates of probability density, including kernel
estimates, orthogonal series estimates, nearest neighbors method, etc. Due to this
the task of choice the best method of estimation for given class of distributions and
given amount of data n appears.

At present time the problem of comparison the quality of probability density
function estimators is complex to compute even on model distributions. The quality
of approximation, as a rule, is evaluated by a functional in a form of mathematical
expectation of a random variable with unknown distribution. In this research the
quality functional is numerically calculated by the Monte Carlo method.

1 Calculation the coe�cients of orthogonal estima-

tor with the method of moments

Let x1, . . . , xn be independent sample of continuous random variable ξ with unknown
probability density f(x) belonging to a Hilbert space H(Ω) of measurable real func-
tions with the domain Ω ⊆ R. We choose in the space H(Ω) a complete orthonormal
system (basis):

{ϕ0, ϕ1, . . . , ϕl, . . .}.
We call an orthogonal series estimate [3] of the probability density function the ran-
dom function in form

f̂(x) = a0ϕ0(x) + a1ϕ1(x) + · · ·+ alϕl(x),
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where random variables l, a0, . . . , al are parameters of this estimate, that should be
adjusted.

We will now estimate the coe�cients a0, . . . , al, having in view that series length
l is �xed. Assume that investigating random variable ξ has row moments of order
j = 1, . . . , l. Then values aj we can �nd from equality between estimate of j-th
raw moment, found with the orthogonal series estimate f̂(x), and j-th sample raw
moment: ∫ +∞

−∞
xj f̂(x)dx =

1

n

n∑
i=1

xji , j = 0, . . . , l. (1)

The conditions (1) are equivalent to the system of linear equations about aj:
a0(1, ϕ0) + · · ·+ al(1, ϕl) = 1

a0(x, ϕ0) + · · ·+ al(x, ϕl) = ν̂1

...

a0(xl, ϕ0) + · · ·+ al(x
l, ϕl) = ν̂l

, (2)

where ν̂j is j-th sample raw moment of the ξ:

ν̂j =
1

n

n∑
i=1

xji ,

(f, g) is inner product in the space H(Ω):

(f, g) =

∫
Ω

f(x)g(x)dx.

Using matrix notations

B =

 (1, ϕ0) . . . (1, ϕl)
...

. . .
...

(xl, ϕ0) . . . (xl, ϕl)

 , a =

a0
...
al

 , ν̂ =

ν̂0
...
ν̂l

 ,

we can rewrite the system (2) by such a way:

Ba = ν̂.

Now, if the determinant |B| 6= 0 then there exists unique solution

a = B−1ν̂. (3)

We suggest to use the elements of found column matrix a as estimates of coe�-
cients for f̂(x).
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2 Calculation of series length

The choice of series length l signi�cantly a�ects the quality of orthogonal series es-
timate. We will characterize the quality of estimator f̂(x) by mean global quadratic
approximation error [6], which we will minimize by l:

Q{f̂} = M

{∥∥∥f̂ − f∥∥∥2

H(Ω)

}
→ min

l
.

After simplifying this functional has a form:

Q{f̂} = M
{
‖f̂‖2 − 2(f̂ , f)

}
+ ‖f‖2.

The last summand in received expression does not depend on l, so it can be omit
within minimization. Thus, for adjusting the series length we de�ne the functional

W{f̂} = M
{
‖f̂‖2 − 2(f̂ , f)

}
. (4)

As shown in [10], the minimum of functional (4) is achieved with �nite l. When
we use the formula (3) for estimation the coe�cients aj, the functional (4) takes the
form:

W{f̂} = trB−1
(
M
{
ν̂ν̂T

} (
B−1

)T − 2ναT
)
, (5)

where
ν = (ν0, . . . , νl)

T , α = (α0, . . . , αl)
T ,

νj = (xj, f) =

∫ +∞

−∞
xjf(x)dx � j-th raw moment of random variable ξ;

αj = (ϕj, f) =

∫ +∞

−∞
xjf(x)dx � j-th Fourier coe�cient of series of the density f(x)

by basis {ϕj}.
During research the unbiased sample estimate of the functional (5) was built:

Ŵl = trB−1
(
ν̂ν̂T

(
B−1

)T − 2Ĝ
)
, (6)

where

Ĝ =

g0,0 . . . g0,l
...

. . .
...

gl,0 . . . gl,l

 ,

gj1,j2 =
1

n(n− 1)

(
n∑
i=1

xj1i

n∑
i=1

ϕj2(xi)−
n∑
i=1

xj1i ϕj2(xi)

)
.

Then we can choose series length estimate l̂ by minimization the (6):

l̂ = arg min
l
Ŵl.
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Figure 1: Dependence of estimator quality on sample amount

Due to asymptotic features of the method of moments [4], built estimator of prob-
ability density function is consistent, and it is also con�rmed in numerical experiments
(�g. 1).

Fig. 1 shows the dependence of quality functional (2) on sample amount n withing
the task of recovering the standard normal distribution, where {ϕj(x)} is the Hermite
basis [5, ch. 12]. Values of the functional (2) was calculated by Monte Carlo method
described in [1].

Also during research the quality comparison between suggested estimator and ker-
nel Rosenblatt � Parzen estimator [11] has been implemented. The spread parameter
of the kernel estimator is calculated by method of minimizing the estimate of quality
functional [1] or maximum likelihood method [7] (�g. 2).

On �g. 2 we made following notations:

� f̂
(1)
n (x) is suggested orthogonal series estimator;

� f̂
(2)
n (x) is Rozenblatt � Parzen estimator in which

ĥ = arg min
h

 1

hn2

n∑
i=1

n∑
j=1

τ

(
xi − xj
h

)
− 2

hn(n− 1)

n∑
i=1

n∑
j=1
j 6=i

Φ

(
xj − xi
h

) ,

τ(x) =

∫
R

Φ(z)Φ(z + x)dz,

Φ(z) � Gaussian kernel function;
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Figure 2: Comparison the quality of density estimators

� f̂
(3)
n (x) is Rozenblatt � Parzen estimator in which

ĥ = arg max
h

n∑
i=1

ln
n∑
j=1
j 6=i

Φ

(
xi − xj
h

)
− n ln((n− 1)h).

This comparison is implemented to recover the probability density of standard
normal distribution. As we can see, suggested estimator gives lesser mean global
square error approximation than Rozenblatt � Parzen estimator in su�ciently wide
range of sample amount n (at least when 20 ≤ n ≤ 60 ).

Conclusions

Thus, in the paper we have considered applying the method of moments to build
the orthogonal series estimator of probability density function of continuous random
variable. It should be noted that to use the orthogonal series estimator requirement
that true density belongs to Hilbert space is not too restrictive, because, as shown in
[2], for each probability density function f(x) exists a Hilbert space in form L2,w(Ω)
that contains f(x).

Given method of comparison nonparametric estimators can be also applied to
compare other nonparametric estimators, e.g. histogram, k-nearest neighbors [9],
etc.
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In the work new robust correlation coe�cients on the basis of weighted
maximum likelihood method are suggested. The research is conducted on the
e�ciency of proposed estimates on the class of elliptical distribution. It is shown
that the estimates got have a high level of e�ciency while having outliers of
Tukey's model.

Keywords: correlation, robust estimates, weighted maximum likelihood
method, adaptive estimates.

Introduction

The task of the estimation of parameters of statistical models is one of the main
tasks of mathematical statistics. By now quite a number of estimates, having di�erent
qualities, have been proposed. The choice of the estimates depends on the information
given a priori. The researches show that in real observations outliers may often
present (abnormal observations), which can degrade classical estimates. If there
is such information, we deal with robust statistics. Within this theory, estimates
resistant to outliers on the basis of di�erent criteria have been suggested [1]-[3]. In
robust statistics much attention is paid to the construction of robust estimates of
distribution parameters and a little less attention is paid to the estimation of links
between random variables. It is known that sample Pearson correlation coe�cient
is resistant to the outlier presence and its proposed robust analogues [1]-[6]. do not
have high e�ciency in the conditions of outlier absence. The criteria of e�ciency
and resistance appear to be competitive. Often e�ective estimates own low robust
qualities and, vice a versa, high robust estimates own low e�ciency without outliers.
So, it is necessary to get �compromise� estimates, capable to adjust to the form and
level of �contamination� of observations, staying robust to outliers and at the same
time having high e�ciency.

1 Estimates of weighed maximum likelihood method

Let's consider two-dimensional random variable (X, Y ), having elliptical distribution
[7] with joint density of the form:

f(x, y, θ) =
c

sxsy
√

1− p2
g

(
1

1− p2

[(
x− µx
sx

)2

− 2p

(
x− µx
sx

)(
y − µy
sy

)
+

(
y − µy
sy

)2
])

, (1)
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where g(x) is a generating function (R→ R+), ful�lling condition
∫∞

0
g(x) dx <∞;

θ = (µx, µy, sx, sy, p)
T ,

µx and µy location parameters of random variables X, Y respectively;
sx and sy are scale parameters of random variable X, Y respectively;
p is a correlation coe�cient;
c is a norming quantity.

According to the weighed maximum-likelihood method (WMLM) [8] the param-
eter estimate θ of a random variable X with density f(x, θ) will be determined by
equation of the form:

N∑
i=1

(
∂log f(xi, θ)

∂θ
+ βθ

)
f l(xi, θ) = 0, (2)

where βθ, is a parameter, answering for unbiasedness of the estimate,
l is a radical parameter, l ∈ [0; 1].

Using the weighed maximum likelihood method (2) for parameter estimation of
two-dimensional random variable (X, Y ) with density (1), de�ning parameters β, as
well as using identity substitution, the estimates of the following from will be got:

N∑
i=1

(xi − µ̂x)w(xi, yi, θ̂)f
l(xi, yi, θ̂) = 0,

N∑
i=1

(yi − µ̂y)w(xi, yi, θ̂)f
l(xi, yi, θ̂) = 0,

N∑
i=1

[(
xi − µ̂x
sx

)2

w(xi, yi, θ̂) +
1

l + 1

]
f l(xi, yi, θ̂) = 0, (3)

N∑
i=1

[(
yi − µ̂y
sy

)2

w(xi, yi, θ̂) +
1

l + 1

]
f l(xi, yi, θ̂) = 0,

N∑
i=1

[(
xi − µ̂x
sx

)(
yi − µ̂y
sy

)
w(xi, yi, θ̂) +

p

l + 1

]
f l(xi, yi, θ̂) = 0,

w(x, y, θ) =
2f ′(x, y, θ)

f(x, y, θ)
,

f(x, y, θ) =
c

sxsy
√

1− p2
g′

(
1

1− p2

[(
x− µx
sx

)2

− 2p

(
x− µx
sx

)(
y − µy
sy

)
+

(
y − µy
sy

)2
])

.

If for joint density of the distribution f(x, y, θ) marginal densities of the distribu-
tion can be received analytically, the system of equation (3) may be divided into two
systems of equation for the parameter estimation of random variables X and Y and
non-linear equation for estimation of correlation coe�cient.
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The e�ciency of estimates (3) depends on the radical parameter l. At l = 0 we
get estimates of maximum likelihood method, at l = 0.5 - radical estimates [3] and
at l = 1 � estimates of maximum stability [3]. The radical parameter de�nes robust
qualities and e�ciency of estimates. The higher the radical parameter is, the higher
the robust qualities of the estimate are, though in the conditions of outlier absence
the e�ciency of such estimates, as the researches show [9]-[12], is not high. Under
the conditions of coincidence of a priori distribution with real distribution the radical
parameter must approach to 0 (estimate of maximum likelihood method). However
estimates of maximum likelihood method of distribution parameters with light tail
while having outliers may own an extremely low e�ciency. That's why a procedure
of estimate adaptation of WMLM is required on the radical parameter to the form
and a fraction of outliers.

Let only correlation coe�cient p be estimated, while all the other parameters are
parasitic. In this case the optimal value of the radical parameter will be de�ned
through the solution of optimization problem of the form:

l∗ = min
l∈[0;1]

V (p̂, l),

where V (p̂, l) is a mean square error of estimate p̂ from true value.
In practice when there is only one sample it is suggested to use its estimation on the
basis of bootstrap method instead of mean square error of estimate [13].

2 Study of estimate e�ciency

2.1 Two-dimensional elliptical distributions

In the work the research is carried out on the e�ciency of correlation coe�cient p
estimates for distributions with di�erent degree of tail stretching, belonging to the
class of elliptical distributions: two-dimensional 4th degree generalized normal distri-
bution (GND4), two-dimensional normal distribution (ND), two-dimensional Laplace
distribution (LD), two-dimensional Cauchy distribution (CD). Analytic expressions
of generic functions and norming quantity values are given in table 1.

Table 1: Elliptical two-dimensional distributions

Distribution Generic function Norming quantity
4th degree GND e−x

2 2
πΓ(0.5)

Normal distribution e−x/2
1

2πLaplace distribution e−
√
x

Cauchy distribution (1 + x)3/2

Graphic representations of joint densities of distributions are given in �gures 1-4.
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Figure 1: Density of
two-dimensional 4th generalized

normal distribution

Figure 2: Density of
two-dimensional normal

distribution

Figure 3: Density of
two-dimensional Laplace

distribution

Figure 4: Density of
two-dimensional Cauchy

distribution

Within the research of the received estimates scale parameters of the studied dis-
tributions have been estimated so that quantiles of level 0.95 of marginal distributions
coincided.

2.2 Models of outliers

To research the behavior of estimates while having outliers Tukey's supermodel has
been used [1], [2], [4] with a fraction of outliers ε:

1. Model of asymmetrical outliers:

f(x, y) = (1− ε)g(x, y, µx, µy, sx, sy, p) + εg(x, y, µx − 8, µy − 8, sx, sy, p).
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2. Model of symmetrical outliers:

f(x, y) = (1− ε)g(x, y, µx, µy, sx, sy, p) + εg(x, y, µx, µy, 3sx, 3sy, p).

3. Model of outliers on parameter p:

f(x, y) = (1− ε)g(x, y, µx, µy, sx, sy, p) + εg(x, y, µx, µy, sx, sy,−p).

Graphic representations of samples of mixture of two-dimensional 4th degree gener-
alized normal distributions are given in �gures 5-7.

Figure 5: Model of
asymmetrical outliers

Figure 6: Model of
symmetrical outliers

Figure 7: Model of
outliers on parameter p

2.3 Results of research of estimate e�ciency

The e�ciency of received estimates is compared to the e�ciency of classical estimates.
Let us introduce the following notation:

AED4 � estimation of parameter p of two-dimensional 4th degree generalized
normal distribution on the basis of the weighed maximum likelihood method with
adaptation on the radical parameter.

AEND � estimation of parameter p of two-dimensional normal distribution on
the basis of the measured maximum-likelihood method with adaptation on the radical
parameter.

AELD � estimation of parameter p of two-dimensional Laplace distribution on
the basis of the measured maximum-likelihood method with adaptation on the radical
parameter.

AECD � estimation of parameter p of two-dimensional Cauchy distribution on
the basis of the measured maximum-likelihood method with adaptation on the radical
parameter.

SCP � sample Pearson correlation coe�cient.
FQ � quick robust estimate of Shevlyakov-Smirnov [5], [6].

It is important to note that while modeling package robcor was used [14], in which
FQ-estimate is realized. Parameters for FQ- estimate were chosen by default.

In tables 3-6 a part of results of research of estimate e�ciency of correlation
coe�cient on di�erent samples at the presence and absence of outliers of Tukey's
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model is presented. Parameters of real distributions are given in table 2. Sample
scope has comprised 1000 observations, the number of samples is 500.

Relative estimate e�ciency has been de�ned within the chosen estimates:

ε(p̂, F ) =
min(MSE(p̂i, F ))

MSE(p̂, F )
,

where MSE(p̂, F ) is a mean-square error of estimate p̂ on distribution F .
The reference was considered the estimate, which has a minimum MSE among

the studied estimates.

Table 2: Parameters of real distributions

Parameter µx µy sx sy p ε
4th degree generalized normal distribution 0 0 1.6 1.6 0.5 0.1
Normal distribution 0 0 1 1 0.5 0.1
Laplace distribution 0 0 0.6 0.6 0.5 0.1
Cauchy distribution 0 0 0.2 0.2 0.5 0.1

Table 3: E�ciencies and mean square error of estimates at two-dimensionalc 4th
degree generalized normal distribution and presence of asymmetrical outliers

Estimates AED4 AEND AELD AECD SCP FQ
MSE 0.000422 0.000593 0.001243 0.001719 0.197704 0.024029
E�ciency 1.00 0.71 0.34 0.25 0.00 0.02

Table 4: E�ciencies and mean square error of estimates at two-dimensional normal
distribution

Estimates AED4 AEND AELD AECD SCP FQ
MSE 0.000589 0.000520 0.000589 0.001062 0.000520 0.000642
E�ciency 0.88 1.00 0.88 0.49 1.00 0.81

Conclusions

According to the results of the researches it is possible to make the following conclu-
sions:
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Table 5: E�ciencies and mean square error of estimates at two-dimensional Laplace
distribution and presence of symmetrical outliers

Estimates AED4 AEND AELD AECD SCP FQ
MSE 0.002341 0.001700 0.001333 0.002117 0.009875 0.002860
E�ciency 0.57 0.78 1.00 0.63 0.14 0.47

Table 6: E�ciencies and mean square error of estimates at two-dimensional Cauchy
distribution and presence of outliers on parameter p

Estimates AED4 AEND AELD AECD SCP FQ
MSE 0.009596 0.008149 0.007794 0.007391 0.130750 0.008602
E�ciency 0.77 0.91 0.95 1.00 0.05 0.86

1. Sample Pearson correlation coe�cient has an extremely low e�ciency at the
presence of outliers.

2. Quick robust estimate of Shevlyakov-Smirnov has quite a high e�ciency on all
the models, excepting for the model with asymmetrical outliers. The doubtless
advantage of this estimate is its low level of calculation in relation to WMLM.

3. The estimates of the weighed maximum likelihood method have a high e�-
ciency only on condition of coincidence of a priori distribution with basic real
distribution. Otherwise estimate of the weighed maximum likelihood method
may have not a very high e�ciency even with the use of adaptation procedure.
So, it is necessary to use adaptation not only to outliers but to the form of
basic distribution of Tukey's model with the use of non-parametric estimates
of density [12].

4. The estimates of WMLM are not able to suppress inner outliers (outliers on
parameter p) because of "compressed" qualities of weight function f l(xi, θ).

So, the received robust estimates of WMLM may be used e�ectively for estima-
tion of correlation coe�cient in the conditions of semi-parametric level of a priori
information at the presence or absence of symmetrical and asymmetrical outliers.
The proposed procedure to de�ne optimal value of radical parameter contributes to
the adaptation of the estimates of WMLM to a fraction of outliers, increasing their
e�ciency.
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Abstract

Regression recovery from observations with errors can be performed within
the parametric or nonparametric setting. The problems of nonparametric es-
timation of regression characteristics by measurements of variables with errors
under some features are considered below.
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Introduction

The identi�cation tasks [1,2] of inertialess systems with delay, as mentioned above,
are often close to estimating regression characteristics according to observation of
input-output variables. These tasks are focused on the restoration of the regression
function according to the observations, when the studied processes are described by
mutually ambiguous characteristics [3-6]. These tasks are reduced to the problem of
approximation, the feature of which is the absence of a priori information about the
parametric structure of the model of the process under study. A non-parametric eval-
uation of mutually ambiguous characteristics [7, 8] and a robust estimation technique
[9�12] are proposed.

1 Nonparametric estimates of mutually ambiguous

regression function from observations

To restore the regression function, the non-parametric Nadaraya-Watson estimate is
used, for a one-dimensional case, as follows (1):

Ys(x) =

∑s
i=1 yiΦ(x−xi

cs
)∑s

i=1 Φ(x−xi
cs

)
, (1)

where Φ(v) - the core - is a �nite bell-shaped function satisfying the properties:

0 < Φ(v) <∞ ∀v ∈
⋂

(v), 1
cs

∫
Φ
(
x−xi
cs

)
dx = 1, limn→∞

1
cs

Φ
(
x−xi
cs

)
= δ (x− xi) ,

cs- blur parameter with properties:
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cs > 0, lims→∞ s(cs)
k =∞, lims→∞ cs = 0

if x is a k-dimensional vector, then the formula takes the form (2):

Ys(x) =

∑s
i=1 yi

∏k
j=1 Φ(

xj−xij
cs

)∑s
i=1

∏k
j=1 Φ(

xj−xij
cs

)
. (2)

When restoring the mutually ambiguous regression function, the Nadaraya-Watson
estimate should be changed as follows [3, 14]:

Ys(xt) =

∑s
i=1 yiΦ(xt−xi

cs
)Φ(xt−1−xi−1

cs
)Φ(yt−1−yi−1

cs
)∑s

i=1 Φ(xt−xi
cs

)Φ(xt−1−xi−1

cs
)Φ(yt−1−yi−1

cs
)
, (3)

where xt−1, yt−1 are the coordinates of the regression function at the previous step
of its estimation.

It is advisable (3) to correct, as shown by numerous computational experiments,
as follows (4):

Ys(xt) =

∑s
i=1 yiΦ(xt−xi

cs
)Φ0(xt−1−xi−1

cs
)Φ0(yt−1−yi−1

cs
)∑s

i=1 Φ(xt−xi
cs

)Φ0(xt−1−xi−1

cs
)Φ0(yt−1−yi−1

cs
)
, (4)

where Φ0(v) repeats with accuracy Φ(v), and Φ0(v) = 1, if v < 1 and 0 in other
cases. In this case, Φ0(v) will not a�ect the recovery error, but will allow ��xing� the
previous data area at the estimated point as it moves along the chosen trajectory.

2 Computational Experiments

Below we present the results of some computational experiments for reconstructing
mutually ambiguous characteristics from observations. When conducting a compu-
tational experiment, mutually ambiguous characteristics may have di�erent shapes:
circles, ellipses, hysteresis loops, Cassini oval, cardioid, and other curves.

We considered cases with the addition of random noise h on the values of y
in computational experiments. The interference to each observation of the output
variable forms as follows (5):

hi = lyiξ, (5)

where ξ ∈ [−1, 1], level of interference l = 0%; 5%; 10%.
As a non-parametric evaluation accuracy criterion, we used the ratio (6):

w =
s∑
i=1

|yi − ys (xi)|

/
s∑
i=1

|yi − y|, (6)

where y = 1
s

∑s
i=1 yi - average; ys(xi) - nonparametric evaluation; yi - the real

sample.
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We present the results of a numerical study illustrating the e�ciency of the algo-
rithm. A triangular core was used as the bell-shaped function. The algorithm was
tested on training samples of various sizes.

Let us designate in all �gures by the digit (1) - the training sample, (2) - non-
parametric estimation.

Figures 1 and 2 show the operation of the algorithm (3). Figures 3 and 4 show
the operation of the algorithm (4).

Figure 1: S=100; w=0,0205 Figure 2: S=100; l=10%; w=0,0404

Figure 3: S=100; l=0%; w=0,0062 Figure 4: S=100; l=10%; w=0,0098

These �gures show some fragments of numerous computational experiments. Al-
gorithms (3) and (4) were used. They di�er from the well-known non-parametric
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algorithms for estimating the Nadaraya-Watson regression function by observation.
Some modi�cations of non-parametric estimates are given, in such conditions atten-
tion is paid to the method of bypassing the entered non-parametric estimates along
the trajectory determined by the elements of the training set.

In other words, algorithms suitable for recovering ambiguous dependencies that
are described by more complex curves are proposed. We only know: a sample of
observations of the process under study. Such identi�cation tasks may appear when
building robotic devices when driving in unknown terrain.

3 Non-parametric robust estimation

When solving the problem of identi�cation with inertia-free objects with a delay,
sometimes there are overshoots that a�ect the variable characteristics of the object.
Actually, there is a robust statistics, which designed to reduce the impact of a miss
on the further evaluation of statistical characteristics as subsequent measurements
arrive.

Below are a few approaches, di�erent from [11,12], which restore the values of the
estimates of various statistical characteristics. The impact of emissions will disappear
as relevant variable measurements become available. The di�erences in the considered
approach consist in the detection and exclusion of an overshoot from the training
sample [15], which is used for the statistical evaluation of certain parameters or
various characteristics. In this case, algorithms for nonparametric estimation of the
regression function were used according to observations (3,4).

The computational experiment was carried out as follows:

1. A training sample of regression of the type y = sin(x)2 dependence was formed.
Emissions were arti�cially added when forming the training set.

2. Select the bell-shaped function, set the blur parameter. The triangular core is
used as a bell-shaped function:

Φ (v) =

{
1− |v| ,
0,

|v| ≤ 1,
|v| > 1.

3. Determined the exam sample for the implementation of the exam or the exam
was conducted in a sliding mode.

4. Check each sampling point for the quality of estimation.

Next, we work with the entire sample, constructing a function and its restoration
we �nd the accuracy criterion. As a non-parametric estimate accuracy criterion, we
use the quadratic criterion:

σ2 =
∑s

i=1 (yi − ys(xi))2 ,
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where yi� measured variable value y, ys(xi) � its nonparametric evaluation (1).
After checking the accuracy criterion, we draw attention to the points that have

a large recovery error and they satisfy the criterion (7). The elements of the training
sample that meet the requirement:

ρi > 2σ2, (7)

where ρi = (yi − ys(xi)), i = 1, s are selected and removed from the original
sample. In the �gures, the following notation is used: 1 is a training sample, 2
is a non-parametric assessment. A triangular core was used as a bell-shaped �nite
function.

We present the results of a numerical study illustrating the e�ciency of the algo-
rithm (7). Consider restoring the regression function from observations, which has
several overshoots with a sample size of 100.

Figures 5 and 6 show a sample with two overshoots, in the �rst case there is no
interference, and in the second case 10% is added. Figure 7 shows the operation of
the algorithm (7).

Figure 5: w=0,36 Figure 6: l=10%, w=0,42

Figure 7: w=0,06 Figure 8: w=0,31

Figure 9: l=10%, w=0,34 Figure 10: without overshoots, w=0,04
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Figures 8 and 9 show the function y = cos(x)2∗sin(x) with one overshoot. Figure
10 shows the operation of the algorithm (9)

We can conclude about the e�ectiveness of the proposed algorithms from the anal-
ysis of the conducted numerical studies for nonparametric estimation of the regression
function from observations with misses.

It is possible to obtain signi�cantly better quality of function recovery from ob-
servations using the proposed robust estimation technique. The accuracy of recovery
y increased signi�cantly after eliminating overshoots. For clarity, the experiment was
considered several functions y = f(x). We also considered cases that correspond to
di�erent levels: 0, 5 and 10% on y.

Conclusions

When constructing models of multidimensional inertia-free objects with delay, it is
advisable to use the above algorithms for recovering mutually ambiguous characteris-
tics from observations with overshoots. As shown by computational experiments, the
accuracy of the predicted variables is signi�cantly increased. Solving such problems
required a certain change in the traditional approaches to nonparametric estima-
tion of the regression function, as well as a di�erent approach to estimating y(x) in
the presence of overshoots. The restoration of mutually ambiguous characteristics is
largely due to the direction of movement along the path chosen by the researcher. it
is arbitrary, but it is obligatory to return to the same point from which the movement
began.

Nonparametric robust estimation algorithms di�er signi�cantly from the generally
accepted approach in robust statistics. The main feature of this is the detection and
elimination of a slip from the training set.

Both of these tasks are typical in identifying multidimensional inertialess objects.
Conducted numerous computational experiments con�rm their e�ectiveness in con-
structing models of objects. The article presents some typical fragments of the results
of extensive numerical studies.
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Abstract

The work is devoted to the problem of acute pancreatitis severity classi�-
cation. This problem is characterized by a small amount of data, which leads
to unstable estimations for new patients and a strong in�uence of the training
sample on the predictions. In this paper prediction stability visualization based
on violin plot is proposed and applied. A simulation experiments are carried
out to study the stability of linear regression, support vector machine, random
forest trained with various subsets.

Keywords: classi�cation, machine learning, visualization, violin plot, boot-
strapping.

Introduction

Early recognition of disease severity is important to identify patients on admission
or during the �rst 24 to 48 hours who will require aggressive resuscitation. These
patients should be treated in an intensive care unit or transferred to a high-acuity
care hospital.

Classi�cation of acute pancreatitis de�nes 3 degrees of severity according to the
morbidity: mild, moderately severe, and severe acute pancreatitis.

Mild acute pancreatitis lacks organ failure or local or systemic complications. Pan-
creatitis resolves rapidly, mortality is rare, pancreatic imaging is often not required.

Moderately severe acute pancreatitis has transient organ failure, local complica-
tions, and/or systemic complications but not persistent (>48 hour) organ failure.
The morbidity is increased as is mortality (< 8%) compared with that of mild acute
pancreatitis.

Severe acute pancreatitis is de�ned by persistent organ failure and patients usually
have 1 or more local and/or systemic complications. Patients with severe acute
pancreatitis that develops within the early phase are at a markedly increased risk
(36%-50%) of death [1].

1The reported study was funded by Krasnoyarsk Regional Fund of Science, to the research project:
Development and implementation of decision support system for acute pancreatitis diagnosis and
treatment in the Krasnoyarsk Territory
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The study was based on a retrospective analysis of 130 cases of acute pancreati-
tis: 47 cases from Krasnoyarsk Regional Clinical Hospital and 83 cases from RSBHI
Regional Interdistrict Clinical Hospital 20 named after I.S. Berzon in the period from
2015 to 2017.

The task is to estimate of acute pancreatitis severity by using patient clinical ex-
amination data D = {(x̄i, yi), i = 1, ..., 130}, where x̄ = {x1, ..., x27} is set of features
(Clinical Blood Analysis, Biochemical Blood Analysis, Ultrasound of pancreas, the
results of the examination of the patient) measured in 130 patients.

1 Data preparation

1.1 Feature Scaling

Since the range of values of raw data varies widely, in some machine learning al-
gorithms, objective functions will not work properly without normalization. For
example, the Support Vector Machine is based on the distances between points. If
one of the features has a broad range of values, the distance will be governed by this
particular feature. Therefore, the range of all features should be normalized so that
each feature contributes approximately proportionately to the �nal distance.

All variables are preprocessed using the min-max scaling.
Min-max scaling is the simplest method and consists in rescaling the range of

features to scale the range in [0, 1]. The general formula is given as:

x′ =
x−min(x)

max(x)−min(x)

, where x is an original value, x′ is the normalized value.

1.2 Filling missing values

Data scientists often check data for missing values and then perform various opera-
tions to �x the data or insert new values. The goal of such cleaning operations is to
prevent problems caused by missing data that can arise when training a model.

Two types of operations for "cleaning" missing values are implemented:

� Replacing missing values with a linear regression. If two features are strongly
correlated linear regression is used to �ll missing values. For example, the size of
the head, body or tail of the pancreas may be absent due to poor visualization
of the pancreas on ultrasound examination of the abdominal cavity. However,
the size of the head, body and tail of the pancreas is highly linearly correlated
and can be �lled.

� Replacing missing values with a within-class median. If features there are not
correlated missing values are replaced using a within-class median. This tech-
nique allows to avoid reduction of the in�uence of feature with a large number of
missing values as in the case of replacement with median for the whole sample.
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2 Accuracy estimation

Since the three classes are strictly ranked, the multi-class classi�cation problem can
be solved as a regression problem. As a result, each new object (patient) instead of
the class number (1 - mild acute pancreatitis; 2 - moderately severe acute pancreatitis;
3 - severe acute pancreatitis) will be assigned a value from 1 to 3, characterizing not
only the class of disease severity, but also how likely this severity class. For example,
if the �rst patient has prediction 1.1 and the second has prediction 1.3, then although
they will both be assigned to patients with mild severity of acute pancreatitis, but
the probability that the �rst patient has a mild severity is higher than the second has
one.

As accuracy criteria the following indicators were chosen:

� Mean Absolute Error (MAE);

� Mean Squared Error (MSE);

� Correlation Coe�cient (Corrcoef);

� Number of Mistakes (NoM). If the prediction di�ers from the actual value by
more than 0.5, it means that the classi�er predict wrong class. Such forecasts
will be called mistakes.

� Number of Mistakes x2 (NoM x2). If the prediction di�ers from the actual
value by more than 1.5, it means that the classi�cation error is more than one
class (mild acute pancreatitis instead of severe acute pancreatitis or vice versa).
Such forecasts will be called mistakes x2.

Table 1 contains accuracy of di�erent algorithms calculated using leave-one-out
cross-validation technique. Experiments show that SVM provides the greatest accu-
racy in all indicators.

Table 1: Accuracy of Linear Regression, SVM and Random Forest

MAE MSE Corrcoef NoM NoM x2
Linear Regression 0.375 0.269 0.783 44 1

Support Vector Machine 0.354 0.243 0.808 35 0
Random Forest 0.413 0.293 0.765 43 1

3 Robustness

3.1 Small dataset problem

Acute pancreatitis severity classi�cation task is characterized by small sample size
for objective reasons. Analysts in medicine face with small dataset problem due to
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the prohibition on disclosure and dissemination of personal data. In such tasks, the
analyst deals with the following challenges:

� Over�tting. With only a few data, the risk to over�t model is higher;

� Outliers. If analysts have millions of data, a couple of outliers will not be a
problem. But with only a few, they will de�nitely skew prediction results.

The bootstrap procedure [2] can be used to evaluate the robustness of the pre-
dictions for the original sample and the e�ect of certain observations from the initial
sample on the predictions.

3.2 Bootstrapping

The basic idea of bootstrapping is that inference about a population from sample
data (training set) can be modelled by resampling the sample data and performing
inference about a sample from resampled data. As the population is unknown, the
true error in a sample statistic against its population value is unknown. In bootstrap-
resamples, the 'population' is in fact the sample, and this is known; hence the quality
of inference of the 'true' sample from resampled data is measurable.

The bootstrap creates a large number of datasets that we might have seen and
computes the statistic on each of these datasets. Thus we get a distribution of the
statistic.

In our task, we are interested in the acute pancreatitis severity class of people
worldwide. But we cannot measure all the people in the global population, so instead
we sample only a tiny part of it, and measure that. Assume the sample (the training
dataset) is of size N ; that is, we measure the features (Clinical Blood Analysis,
Biochemical Blood Analysis, Ultrasound of pancreas, the results of the examination
of the patient) of N individuals. From that single sample, only one acute pancreatitis
severity prediction can be obtained for each new patient. In order to reason about
the population, we need some sense of the variability of the prediction that we have
computed.

The most popular bootstrap method involves taking the original data set of N
patients and randomly sampling from it to form a new sample (bootstrap sample)
that is also of size N . The bootstrap sample is taken from the original by using
sampling with replacement. On the �rst step, we randomly choose N1 patients from
the original data, On the second step, we randomly choose N − N1 patients from
chosen on the �rst step. The key parameter for bootstrapping is the ratio between the
number of unique observations in the bootstrap sample (N1) and the initial sample
size (N): p = N1

N
. This process is repeated a large number of times, and for each of

these bootstrap samples we �t model (Linear Regression, Support Vector Machine
and Random Forest) and make predictions for new patients.

After applying the bootstrap technique we can have a set of predictions for each
new patient that can be analyzed and visualized to make the �nal decision.
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4 Visualisation

4.1 Violin plot

Many di�erent graphs and statistics interpret the characteristics of dataset.
While a box plot [3] only shows summary statistics such as median and interquar-

tile ranges and gives information about location, scale, symmetry and tail thickness,
the kernel density estimation shows the full distribution of the data. The di�erence
between the box plot and kernel density estimation is particularly useful when the
data distribution is multimodal. In this case a density trace shows the presence of
di�erent peaks, their position and relative amplitude.

Violin plots [4] combines the box plot and density trace smoothed by a kernel
density estimator and can be used to show robustness of machine learning algorithms.

4.2 Comparison of Machine Learning algorithms

Figure 1 illustrates the in�uence of the training set on the prediction stability for typ-
ical observations from di�erent classes (classes were determined by a medical expert):
a - mild acute pancreatitis; b - moderately severe acute pancreatitis; c - severe acute
pancreatitis. The ratio p between the number of unique observations in the bootstrap
sample (N1) and the initial sample size (N) is equal to 0.9. The density trace is plot-
ted symmetrically to the upper and the lower of the horizontal box plot. Symmetric
plot makes it easier to see the magnitude of the density. The black vertical line shows
the median of the predictions, while the gray rectangle depicts interquartile range.

The graph demonstrates ambiguity of severity predictions produced di�erent ma-
chine learning algorithms. Note that the Random Forest makes di�erent predictions
even with the same training set because of the elements of randomness in the model.
When di�erent bootstrap samples are used to �t model, the range of possible fore-
casts becomes even higher for almost all patients. On the contrary, SVM predicts
based on several basic observations. In the case when both bootstrap subsets contain
the same basic observations (support vectors), the models trained on them give very
close the acute pancreatitis severity estimations. The diversity of SVM forecasts is
achieved by subsets that do not contain one or more support vectors.

The Figure 2 shows a comparison of predictions made by di�erent algorithms for
patients of the same class (severe acute pancreatitis):

� The predictions of algorithms can be inconsistent, as in the case of Figure
2.a. While Random Forest tends to determine the moderately severe acute
pancreatitis, Linear Regression and Support Vector Machine predict a severe
acute pancreatitis;

� The predictions of algorithms can be consistent, as in the case of Figure 2.b.
This is observed for typical class members for whom the initial training set
contains many similar patients.
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Figure 1: Violin plots based on various model predictions for typical observations
from di�erent classes: a - mild acute pancreatitis; b - moderately severe acute

pancreatitis; c - severe acute pancreatitis

� The predictions of the algorithms can be incorrect, as in the case of Figure 2.c.
Note the large scatter of the random forest predictions to the side of severe
acute pancreatitis class that can be interpreted as classi�er hesitation.

4.3 The e�ect of the bootstrap parameter p to the prediction

diversity

The ratio between the number of unique observations in the bootstrap sample and
the initial sample size p has an impact on predictions. The smaller the value of the
parameter p, the smaller the subsets intersect and the greater the di�erences in the
forecasts.

Figure 3 shows the e�ect of the parameter p on the prediction diversity by the
example of one patient. If the parameter p is 0.95, the subsets di�er by a maximum of
7 observations and the predictions of the class are compact on the numerical axis. If
the parameter p is 0.9, the subsets di�er by a maximum of 14 observations, medians
change slightly, but the prediction diversity increases signi�cantly for all models. And
further, with a decrease in the parameter, this trend continues. When the parameter
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Figure 2: Violin plots based on various model predictions for patients with severe
acute pancreatitis

p reaches 0.7, the linear regression and random forest predictions cover almost half
of the numeric axis in the range [1, 3].

Taking the �nal decision on the severity of acute pancreatitis, it is important
to consider not only the average value of the forecasts, but also the variance of the
forecasts.

Conclusions

Prediction stability visualization procedure was proposed and applied to estimation
of acute pancreatitis severity. Visualization method allows to evaluate the prediction
diversity of di�erent machine learning algorithms for observation on a single graph.
The study compared the stability of forecasts of Linear Regression, Support Vector
Machine, Random Forest. This research can be useful to estimate the current dataset
quality and to justify the need initial dataset increasing.
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Figure 3: Violin plots based on various model predictions and in�uence of the ratio
p between the number of unique observations in the bootstrap sample and the

initial sample size on the stability of predictions
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Abstract

The report is devoted to the control algorithms of inertialess processes. A
feature of the problem under consideration is that the components of the input
variables vector in the processes under study are in a stochastic dependence. In
this regard, the proposed control algorithm, taking into account the speci�ed
feature.
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Description of the investigated processes

When controlling multidimensional processes, a situation may often occur when the
components of the input variables vector are stochastically dependent, and the nature
of the relationship between these components is unknown. Such a dependence leads
to the fact that the process does not take place in the entire region de�ned by the
input-output variables, but in a certain subdomain. In the following, for reasons
of brevity, processes with stochastically dependent input variables will be called H-
processes 1. For clarity, we give an example of an H-process with two input variables
and one output variable(Figure 1).

The following notation is used in the �gure 1: ΩH(~u) is the domain of de�nition of
input actions without taking into account the dependence between the input variables;
ΩH(~u) is the domain of input actions with regard to the relationship between the input
variables.

Process under investigation

The article deals with the task of managing multidimensional inertialess H-processes
under nonparametric uncertainty. The �gure 2 presents the classical object control
scheme.

~u(t) - vector of input controlled actions, of dimension n; ~x(t) is the vector of
output variables of the process, of dimension k; ~x∗ - vector of de�ning actions (task);
ξ(t) - interference e�ect on the process.

It is important to note the features that arise when controlling the H-process. As
noted above, the process does not take place in the whole area de�ned by the vector
of input and output variables. This means that when choosing a driver action, it is
necessary to make sure that the driver action is included in the subdomain of the
process. In other words, the driving force is achievable.
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Figure 1: Example of an H-process

Figure 2: The classical object control scheme

Algorithm of non-parametric dual control

The nonparametric dual control algorithm is an improvement to the algorithm pro-
posed by A.A. Feldbaum [2], which allows researcher to move away from the de�nition
of a parametric model.

It was designed and researched by A.V. Medvedev[1].
The analytical expression of this control algorithm is as follows:

~us+1 = ~us(~x
∗) + δ~us+1(~x∗, ~xs). (1)

~us(~x
∗) � is the component responsible for the accumulation of information about

the controlled process (study of the control object). In the initial stages of regulation,
this variable is close to zero and does not a�ect the management of the process,
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but with the accumulation of the training sample, its role increases and becomes
dominant; ~x∗ � setting e�ect; ~xs is the sample of observations consisting of the values
of the components of the vector of output variables ~x.

The component ~us(~x∗) is the mathematical expectation of ~u for a given value of
~x∗:

~us(~x
∗) = M(~u(~x∗)) (2)

In the non-parametric dual control algorithm, the non-parametric estimate of the
regression function from observations is used as the estimate of M(~u(~x∗)). [3]:

M(ul(~x
∗)) =

∑s
i=1 ui

∏k
j=1 Φ(

x∗j−xi,j
csj

)∑s
i=1

∏k
j=1 Φ(

x∗j−xi,j
csj

)
, l = (1, n), (3)

Φ(∗) � bell-shaped function, csj, j = 1, k � blur options.
δ~us+1(~x∗, ~xs) � this is the "search step" algorithm. In the initial stages of regu-

lation, this variable makes the main contribution to the management of the process,
but with the accumulation of the training sample, its role in management becomes
insigni�cant.

The component δ~us+1(~x∗, ~xs) is calculated by the formula 4:

δus+1,j(~x
∗, ~xs) = m

k∑
i=1

(x∗i − xsi), j = (1, n), (4)

(x∗i − xsi) is di�erence between the task and the past output of the object, and m is
the parameter responsible for the value of the "step"

Impacts produced by the non-parametric dual algorithm have two functions at
once: the study of the object and its management. This is the reason for its duality.

Adaptation of non-parametric dual control algorithm

for the case of control of the H-process

Note that when controlling a multidimensional H-process, the driving forces deter-
mining the desired values of the components of the output vector cannot be chosen
arbitrarily, as is customary in control theory. This is due to the fact that it is possible
to set such a vector of de�ning in�uences that

∏k
i=1 ΩH

i (~x∗) = ∅,Ii other words, this
action is not achievable for all components of the vector ~x∗. In this regard, researcher
must �rst select the achievable (consistent) setting e�ects ~x∗ ∈

∏k
i=1 ΩH

i (~x∗), that is,
de�ne x∗1, x

∗
2, ..., x

∗
k.

The following method of solving the problem is proposed:
1. Calculate value

∑s
i=1

∏k
j=1 Φ(

x∗j−xij
csj

), ~x∗ - de�ning actions, s - sample size of
observations;
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2. If the calculated value
∑s

i=1

∏k
j=1 Φ(

x∗j−xij
csj

) is not equal to 0, it means that
the de�ning in�uence is achievable, otherwise it is mean that the de�ning in�uence
cannot be achieved.

In the non-parametric dual control, the search step δ~us+1 is calculated using the
formula (4). In the case of controlling the H-process with several output variables, the
described method for calculating the search step δ~us+1 does not �t, since in addition
to bringing the object to the task, it is necessary to take into account that the input
action must belong to the region

∏k
j=1 ΩH(~u).

Based on the described feature, for calculating δ~us+1 it is proposed to use an
algorithm with the punishment by randomness.

The modi�ed non-parametric dual control algorithm is as follows:
1) ~us(~x∗) is calculated;
2) a random vector δ~us+1 is selected;
3) the value ~us+1(x∗) is calculated;
4) if ~us+1 ∈ ΩH(~u), then we use ~us+1 as a control, otherwise, return to step 2;
5) if

∑k
i=1 |xi,s+1−x∗i | <

∑k
i=1 |xi,s−x∗i |, then as the next value of the search step

δ~us+2 it is necessary to take δ~us+1 , otherwise, again, a random vector is selected as
δ~us+2;

6) go back to step 1.
The length of the vector δ~u is m|x∗ − xs|, where m is a customizable coe�cient.
The proposed algorithm was used to control the H-process, which has the following

structure: {
x1 = u1 + u2 + 2

x2 = −2u1 + 3u2 + 1
(5)

u2 = sin(
u1

2
) + ξ (6)

Computational experiments were conducted for 3 cases:

1. the algorithm has no training sample;

2. the algorithm has a small training sample;

3. the algorithm has a large training sample.

The �rst case in which the size of the training sample s=0 is shown at the �gure
3:

As can be seen from the �gure, at the beginning the algorithm controls the object
rather roughly, but then improves its characteristics due to the experience gained.

The second case, where s=20 is shown at the Figure 4:
As can be seen in the �gure 4, the quality of control has improved dramatically,

even with a small training sample.
The second case, where s=100 is shown at the Figure 5
As expected, a large amount of the training sample led to precise control of the

H-process.
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Figure 3: The control process in the case when the algorithm does not have a
training sample

Figure 4: The control process in the case when the algorithm has a small size of
training sample

Numerous computational experiments were carried out to control various multi-
dimensional H-processes using the proposed algorithm. Experiments have con�rmed
that the proposed modi�cation of non-parametric dual control allows researcher to
successfully manage the multidimensional H-process.
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Figure 5: The control process in the case when the algorithm has a large amount of
training sample
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Abstract

The problem of classi�cation by data with gaps, bypassing the stage of their
�lling, is considered. An adaptive restructuring of algorithms is proposed as a
result of the introduction of corresponding indicators into them. The indicators
take into account the �ow of current information, on the basis of which a decision
is made to change the algorithm and the data processing technology itself at
each cycle. Computational procedures are based on non-parametric estimation,
are given their settings and the results of numerical modeling.

Keywords: supervised learning, missing data, adaptive algorithm, non-
parametric estimation of probability density, smoothing window, kernel func-
tion, numeric and nominal features.

Introduction

When solving practical problems, the fact of missing values in real data has tradi-
tionally been the case. It is possible to solve the problem of processing gaps in the
data using di�erent techniques, among which are both suggestions to form training
samples only from completely �lled objects and �ll in the missing values with various
approaches and methods. Any initial information about the object is of great value
for the researcher, therefore, they most often resort to recovering the missing data,
which is already a traditional stage of data preprocessing [1, 3].

The authors of the article were engaged in solving an applied problem related
to the classi�cation of objects with a teacher, having a very small sample of data,
obtaining of which is also slow. Di�erences between objects a�ect the shift of their
statistical characteristics in each class. Due to the bias of statistical evaluations of
objects of di�erent classes, the choice of tactics for restoring gaps in a training sample
for building a classi�er and in a new object entering to determine its class is di�cult
[2, 3].

Also, it was not possible to search for dependencies between features to �ll in
the gaps due to the smallness of the samples. Therefore, an adaptive classi�cation
algorithm was developed that will be able to process data with gaps without a pro-
cedure for �lling them. The article presents the essence of the algorithm, identi�es
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the conditions for its use, provides the results of numerical experiments on simulation
data and widely known data (Fisher's Iris data set).

The adaptive nature of the classi�cation algorithms is expressed in the reshaping
of the training sample from the original, depending on the set of �lled features. The
computational algorithm changes at each step of the iterative procedure, depending
on the completeness of the current information.

To construct adaptive classi�cation algorithms, a modi�cation multidimensional
non-parametric probability estimate of the Rosenblatt-Parzen is applied [4].

1 Problem formulation

Let there be a set of objects {Oi, i = 1, s}, where s, which are described by a known
set of features is the sample size {pi, i = 1, n}, measured in numeric (n1) and nominal
(n2) scales: n1 + n2 = n. . For each object there is an indication of the label (i.e.,
class): Oi ∈ Zll = 1, L}, L - number of classes. We denote feature measurements for
each object with a set of values {

(
zi, x

j
i

)
, i = 1, s, j = 1, n}, where xji - value of pj

feature at Oi object, zi - class, sl - number of class objects Zl,
∑L

l=1 sl = s.
Object feature measurements contain omissions. It is necessary to build a clas-

si�cation algorithm that operates with data that contains gaps without a process of
their �lling, and to develop procedures for setting parameters.

2 Classi�cation algorithm for objects with missing

data

For each classi�ed object Ot it is necessary to evaluate its belonging to each class.
This procedure involves a comparison with the objects of the training set of each
class. The basic idea of the algorithm is to use for evaluation only a set of features Ot

that have initial values p. At each t step of the algorithm, the entire training set must
be re-sorted relative to the existing set of features p of Ot, presented for classi�cation.
Then the size of the training data set may change:

∑L
l=1 s

t
l = st ≤ s, where stl - class

data set Zl, st - total data set after selection of non-empty attributes. Since the set
of attributes for assessing the similarity with objects of each class will change, then
we denote the number of numeric and nominal features nt1 and n

t
2, respectively.

Let us demonstrate the idea visually using the example of 3 classes. In the tables
below, the �lled attributes are highlighted in gray, the features with missing values
are displayed without highlighting.

Table 1: Features p of Ot without specifying a teacher

1 2 3 4 5 6 7 8 ... pn1+n2
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Table 2: Initial selection of objects with the teacher

� Class 1 2 3 4 5 6 7 ... pn1+n2

1 z1

2 z2

... ...
s zs

Subsequent lines of the training set are formed similarly.
For each class, we enter the following value:

αtl =

stl∑
i=1

nt1∏
i1=1

Φ

(
xj1t − x

j1
i

Cj1

)
nt2∏
j2=1

1(xj2t , x
j2
i ), l = 1, L, (1)

which constructively repeats the Rosenblatt-Parzen multidimensional nonparametric
estimator of probability density. As a bell-shaped function in (1), a triangular kernel,
a truncated parabola, a Gaussian kernel, cos, the Sobolev function, and others can
be used for features on an numeric scale. For nominal features, the Kronecker delta
indicator is used:

1(xj2t , x
j2
i ) =

{
1, if xj2t = xj2i
δj2 , if xj2t 6= xj2i

. (2)

where δj2 , 0 < δj2 < 1 � some threshold value for each feature. The speci�c value
of the threshold is selected in the process of training the classi�er. Kernel functions
satisfy the convergence conditions for nonparametric estimates and are discussed in
detail [4].

If nt1 = 0 or nt2 = 0, then the resulting value of the product is limited to some
threshold value from the bottom of the entire product, in order to preserve the non-
zero value of the other indicators. The more objects di�er in the values of the nominal
features, the closer the whole work tends to zero, reducing the total weight of the
in�uence of points on the assignment of class values. But at the same time, the
di�erence in only one attribute does not reduce the magnitude of the assessment of
the general belonging of an object to a class. A lower bound on the result of the
entire work is introduced:

0 < δ <

nt2∏
j2=1

1(xj2t , x
j2
i ) < 1. (3)

The smoothing parameter is a vector (by the number of quantitative features).
The optimization procedure for setting the parameters of the algorithm is carried out
according to the number of points k under the bell-shaped function, the threshold
values δ, δj2 .

294



Applied Methods of Statistical Analysis

The value αtl estimates the belonging of an object Ot to a class Zl according to
the initial set. For each new object Ot presented for classi�cation, the volume of
the training set for calculating relation (1) will vary due to a di�erent set of un�lled
features. Thus, the number of items to be calculated within one class of objects will
change. This fact re�ects the adaptive nature of the computational procedure, which
uses for each object arriving to the classi�cation the newly formed training set from
the original.

The next step for deciding whether an object belongs to a particular class is the
calculation of normalized estimates βtl based on the calculated ones αtl :

βtl = αtl

/ L∑
l=1

αtl . (4)

The probability that an object belongs to a class is proportional to the relative
assessment of belonging. The closer it is to 1, the higher the probability of the truth
of this class. This can be formulated as follows:

Ot ∈ Zk| βtk = max
l=1,L

(βtl ) (5)

As a quality criterion of the classi�er, an estimate of the area under the ROC-curve
(AUC) is used.

3 Numerical experiment

The numerical study of the algorithm was carried out on three data sets. The �rst
data set corresponded to two non-intersecting classes in the three-dimensional at-
tribute space. The second data set had two intersecting classes in the space of 7
features: 2 in nominal and 5 in numeric scales. To assess the accuracy of the clas-
si�cation, cross-validation using the Monte-Carlo method was used to divide the
training and test samples. The calculation results contain the AUC mean value for
each sample.

Figure 1: Example of a sample with random gaps

The �rst sample demonstrates how the algorithm works under favorable con-
ditions. This sample was used with and without gaps. In the case of gaps, two
approaches were used: random imitation of gaps (Fig. 1, left side) and random imi-
tation of sequential pairs with disjointed gaps (Fig. 2, right side). The di�erence of
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these approaches is shown in Figure 1. Gaps were introduced in each class in equal
numbers, similarly by features.

The share of gaps in both variants was 10% for each attribute, class. Table 1
contains the results of setting the number of points under the kernel function, δ due
to the small number of features was set as following: δ = δ

nt2
j2
, δj2 = 0, 01.

Table 3: First data set, non-intersecting classes

AUC
k No gaps Random gaps sequential

pairs of
disjointed
gaps

�lled with a
median

5 1 0.89 0.9096 1
10 1 0.991 0.994 1
20 1 0.99997 0.9999 1
30 1 0.99956 0.9995 1
Max 1 0.99845 0.9987 1

Figure 2: Dynamics of changes in AUC depending on k

The second data set with the intersection of classes contained about 7% of volume
of the initial sample of common points in the intersection area. The results of the
classi�cation for this sample are presented in Fig. 2, which shows the dynamics
of AUC (range and average value) depending on the number of points k under the
nuclear function. The average value of accuracy has a stable position, and taking
into account the spread of AUC, the best values of k are in the range [169; 178].

The Fischer's Iris appears as the third data set. Table 2 shows the results of
the algorithm on accuracy of two Iris classes. Classes with maximum intersection of
versicolor and virginica are selected.

To compare the accuracy of the algorithm under the same conditions, in addition
to Table 5, the algorithm was tested on a sample with gaps �lled with a median by
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Table 4: The Fischer's Iris without gaps

k
AUC minimum
value

AUC maximum
value

AUC mean value

1 0.55 1 0.8358
2 0.59 1 0.84305
3 0.7 1 0.91355
4 0.7 1 0.9141
5 0.7 1 0.9225
6 0.75 1 0.92725
7 0.75 1 0.9338
8 0.8 1 0.9428
9 0.8 1 0.9528
10 0.8 1 0.9563
11 0.8 1 0.95525
12 0.8 1 0.95435

class (Table 6). The �lling was done before the stage of dividing the data set into
training and test sets, simulating the process of analyzing the labeled data. But in
real conditions for newly received unlabeled data it is not possible to use the principle
of �lling with a median by class.

During the launches of the algorithm, with a gap proportion of 0.1, its accuracy
deteriorated by 0.02035 relative to the sample with gaps �lled with the median by
class and the original sample (Table 6). However, medians for the Fischer's Iris
arti�cially overestimate the accuracy. They contribute to the separation of classes in
the original space, because the medians di�er from each other. This e�ect is more
clearly observed with an increase in the median �lling percentage. Also Table 3 shows
the change in the accuracy of the algorithm with di�erent percentage of gaps for each
feature. As a result, the algorithm was able to maintain an accuracy of 0.9 under the
conditions of 120 gaps from 400 values.

Conclusions

The proposed algorithm can be applied to solve the classi�cation problem if the initial
data have gaps. In this case, the algorithm does not require the step of �lling the
gaps, therefore, its result is not a�ected by the bias of estimates of the restored gap
values. A comprehensive study of the algorithm features requires a comparison with
traditional approaches. Also, the further development of the algorithm is supposed
to be directed to the formulation of criteria for identifying signi�cant features or their
sets for the classi�cation with the teacher in case of having gaps in initial data.
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Table 5: First data set, non-intersecting classes

Average AUC
k Percentage of

gaps 0.1
Percentage of
gaps 0.2

Percentage of
gaps 0.3

1 0.70205 0.6639 0.6726
2 0.7374 0.691 0.711
3 0.8847 0.80545 0.80595
4 0.8897 0.81185 0.8336
5 0.9075 0.8474 0.88205
6 0.9136 0.85805 0.8869
7 0.93275 0.87895 0.8969
8 0.9344 0.891 0.89745
9 0.93575 0.9078 0.8987
10 0.93595 0.9155 0.9008
11 0.93785 - -
12 0.93745 - -
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Abstract

The article is devoted to the construction of a new class of models in the
context of lack of priori information. It centers around multidimensional in-
ertialess objects, when the components of the output vector are stochastically
dependent, but the nature of this dependence is unknown. In the process of
building a model it is necessary to accomplish the solution of implicit functions
when the inputs and outputs vectors are non-linear. It should be noted that the
form of these functions with an accuracy of the parameters vector is unknown.
In this regard, it is necessary to use T-models, when the prediction of output
variables is carried out using known input.

Keywords: identi�cation, forecasting, mathematical modeling, T-models,
T-processes.

Introduction

Identi�cation of multidimensional stochastic processes is a topical issue for many
technological processes of discrete-continuous nature. In real practical problems,
such as in [1], the discreteness of object's output variables control can be performed
di�erently. For example, some indicators are measured electrically and others by
physico-mechanical or laboratory tests.

A discrete-continuous process is a process that is continuous, but the data is
recorded in a discrete time interval. This leads to the fact that dynamic processes,
by their nature, are forced to be considered as inertialess with delay.

This article centers around the problem of identifying processes whose output
variables are stochastically dependent, however, that dependence is unknown. It is
called T-processes [2] and the identi�cation problem in this case is to build T-models
of multidimensional statistical objects.

It should be mentioned that the term �process� is not considered as a process of
probabilistic nature (for instance, stationary, Gaussian, Markov etc. [3]). Below we
discuss the T-processes which occur or develop in time, for instance, technological or
economical ones. These processes were �rst mentioned by A. V. Medvedev in [4].

1 T-model

The system of equations describing T-processes in general form [5] can be represented
as follows:

Fj(u(t), x(t)) = 0, j = 1, n, (1)
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where u(t) is an input vector of variables, x(t) is an output vector of variables.
Although, in practice, it is more likely to be a situation when the system of equations
(1) can be represented in the following form:

Fj(u
<j>(t), x<j>(t)) = 0, j = 1, n, (2)

where u<j>(t), x<j>(t) are composite vectors. Composite vector is the vector which
includes some components, for instance: x<j>(t) = (u2(t), u5(t), x2(t), x7(t)). At the
same time, the main feature of modeling such process under nonparametric uncer-
tainty is the fact that the type of functions in (1) is unknown. In this case, the system
of equations takes the form:

F̂j(u
<j>(t), x<j>(t), ~xs, ~us) = 0, j = 1, n, (3)

where ~xs, ~us are time vectors (data set received at the s-th time point), for exam-
ple: ~xs = (x1, . . . , xs) = (x11, x12, . . . , x1s, . . . , x21, x22, . . . , x2s, . . . , xn1, xn2, . . . , xns).
However, functions F̂j(·), j = 1, n remain unknown for this case. In the theory of
identi�cation, such problems are not only considered, but even not de�ned. Most
often it is followed the path of choosing the parametric structure (1) but overcoming
this stage is di�cult due to the lack of a priori information [6]. In addition, it takes
a long time to determine the parametric structure, i.e. model representation in the
form of:

F̂j(u
<j>(t), x<j>(t), α) = 0, j = 1, n, (4)

where α is parameter vector.
Further, there is a procedure for estimating the parameters using the training

sample ui, xi, i = 1, s and the subsequent solution of the nonlinear interrelated ratios
system. The success of building a model in this case depends on the qualitative
parametrization of the system (4) [7].

2 Computational experiment

For the computational experiment we have multidimensional object with �ve input
variables u(t) = {u1(t), u2(t), u3(t), u4(t), u5(t)}, which take random values in the in-
terval u(t) ∈ [0; 3] and with four output variables x(t) = {x1(t), x2(t), x3(t), x4(t)}
which take their values in the following intervals: x1(t) ∈ [−0.54; 18.23], x2 ∈
[−0.58; 35.9], x3 ∈ [−2.27; 60.5], x4 ∈ [−3.23; 75.73].

It is formed a sample of input and output variables for the object based on the sys-
tem of equations, which are chosen arbitrarily (under a computational experiment):

x1(t)− 2u2(t)− u5(t)− 0.3x2(t) = 0;

x2(t)− u3
1(t)− 0.3u3(t)− 0.5x1(t) = 0;

x3(t)− u2
4(t)−

√
u5(t)− 0.2x4(t) = 0;

x4(t)− u2
2 − u3(t)− 0.4x3(t) = 0.

(5)
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Figure 1: Multidimensional object

The system of equations (5) is not a description of the real process and is introduced
only for a given computational experiment. Such representation allows to conduct
a modeling process and compare the results of output vector components estimates
which are obtained using the T-model. In examine real-world problems the training
and test samples are obtained by conducting a series of numerous experiments with
the studied object.

At the �rst stage of the computational experiment we solve the system (5). To do
this we de�ne it relative to x(t) with known values of the u(t), which can be formed
randomly from the mentioned above intervals.

In the form of qualitative dependence system (5) can be represented as follows:
F̂x1(x1(t), x2(t), u2(t), u5(t)) = 0;

F̂x2(x1(t), x2(t), u1(t), u3(t)) = 0;

F̂x3(x3(t), x4(t), u4(t), u5(t)) = 0;

F̂x4(x3(t), x4(t), u2(t), u3(t)) = 0.

(6)

Thus, it is necessary to estimate the values of the output variables using the
known components of the input u(t) = {uk(t), k = 1, 5}. This is the main result
of the identi�cation problem solution. Surely, one is tempted to name the system
of equations (6) as a model of the process under study, but the reality is di�erent
due to the functions F (x) are unknown. That is why the chain of corresponding
non-parametric statistics acts as the T-model.

At the �rst stage of the experiment it is calculated the residual errors for each
component of the output vector using the following formula:

εj(i) = Fεj(u<j>,xj(i)) = xj(i)−

s∑
i=1

xj[i]
<n>∏
k=1

Φ

(
u
′

k − uk[i]
csuk

)
s∑
i=1

<n>∏
k=1

Φ

(
u
′

k − uk[i]
csuk

) (7)

where j = 1, n and < m > ≤ m is the number of dimensions of the composite vector
uk.

Bell-shaped functions Φ

(
u
′

k − uk[i]
csuk

)
and bandwidth parameter csuk satisfy con-

vergence conditions [8] and have the following properties:

Φ(·) <∞;
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c−1
s

∫
Ω(u)

Φ(c−1
s (u− ui))du = 1;

lim
s→∞

c−1
s Φ(c−1

s (u− ui)) = δ(u− ui);

lim
s→∞

cs = 0;

lim
s→∞

scs =∞.

In this experiment, the triangular core was chosen as a bell-shaped function.
It should be added that the residual errors can be represented in the form which

is mentioned below: 
ε1(i) = F̂x1(xi1(t), xi2(t), ul2(t), ul5(t));

ε2(i) = F̂x2(xi1(t), xi2(t), ul1(t), ul3(t));

ε3(i) = F̂x3(xi3(t), xi4(t), ul4(t), ul5(t));

ε4(i) = F̂x4(xi3(t), xi4(t), ul2(t), ul3(t)).

(8)

Accordingly, each residual error is compliant to a speci�c output of the object.
In order to understand how accurate the model corresponds to the object, it

is necessary to calculate the error value, which mathematical description presented
below:

δj =

s∑
j=1

|xj(t)− xj(u<j>(t))|

s∑
j=1

|xj(t)−Mxj |
(9)

In the computational experiment it is calculated the optimal bandwidth parame-
ter. Sample sizes are s = 1000 and s = 3000. The results are presented in the �gures
2, 3, 4, 5 and the table 1 below.

Table 1: The error values (9) for di�erent noise levels and sample sizes

s = 1000 s = 3000
without noise δ1 = 0.01 δ1 = 0.002
5% noise δ1 = 0.264 δ1 = 0.261
10% noise δ1 = 0.431 δ1 = 0.337

Figures 2 and 3 show the true values of the output variables and their prediction.
As it can be seen, the process of modeling gives quite accurate result (according to
values in table 1 without noise). This indicates the high accuracy of the T-model.

In the second computational experiment we show how the 5% and 10% noise
levels, which are imposed on the output component values, a�ect the �nal simulation
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Figure 2: Output variable x1 model values without noise, s = 1000, optimal cs = 0.3

Figure 3: Output variable x1 model values without noise, s = 3000, optimal cs = 0.3

303



Novosibirsk, 18-20 September, 2019

Figure 4: Output variable x1 model values with noise equals 5%, s = 1000, optimal
cs = 0.3

Figure 5: Output variable x1 model values with noise equals 10%, s = 1000, optimal
cs = 0.3
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results. The sample size is set to s = 1000 and s = 3000. We also give graphs for
one of the outputs as it has been done above (�gures 4 and 5).

Figures 4 and 5 show the true and predicted values of the output variables with
di�erent noise levels. Results in table 1 and �gures 4, 5 show how accurate the model
approximates the object.

Conclusions

The article has been considered the problem of identifying inertialess multidimen-
sional objects with delay as well as unknown stochastic connections of the compo-
nents of the output vector. The experiments described in the paper include a change
in a sample size. In addition, the output variables of the model were subjected to
stochastic noise of various levels. Computational experiments have shown the high
e�ciency of the T-modeling process according to values of modeling mistakes.
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Abstract

The article devotes to the problem of controlling discrete linear dynamic
systems under non-parametric uncertainty. Control action are calculated in
which the di�erence equation degree of a dynamic process model is re�ned based
on the rule of selection of signi�cant variables. The computational experiments
con�rmed the e�ciency of using non-parametric algorithms to control dynamic
systems in comparison with the PID algorithm and the quasi-optimal control
system.

Keywords: non-parametric algorithm, discrete dynamic system, priory in-
formation.

Introduction

Designing intelligent systems for controlling dynamic objects is one of the important
task of system analysis. Previously, algorithms of control dynamic objects were de-
veloped, in particular, the most widely used standard control algorithms. In some
cases, their use is not e�ective enough. Into contemporary scienti�c approaches, op-
timal control algorithms are used. However, for their application, as a rule, a priori
knowledge of the structure and parameters of the controlled object is necessary.

In the conditions when there is no prior information, the development of new
control algorithms is a signi�cant scienti�c problem. One of the ways to solve this
task to use non-parametric methods [5]. For the application of non-parametric
methods, it is necessary to know only about the quality characteristics of the object
under study.

1 Dual control

Dual control was suggested by A.A. Feldbaum [7] and developed on the basis of the
theory of statistical solutions. The theory of dual control was further developed in
the studies of various authors [4], in particular B. Wittenmark [2]. It should be
noted that a system in which dual control algorithms are used is an adaptive system,
because as current information is received from an object, the quality of functioning
increases.
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2 Problem set-up and algorithm

The paper considers classes of control objects that can be described by linear di�er-
ence equations of the form (1).

xt = F (xt−1, ..., xt−k, ut, ξt). (1)

where F is an unknown linear functional, k is the degree of a di�erence equation,
which is limited k ≤ kmax. The input ut and output xt of a dynamic object are
represented by measurements that form a sample of the form xi, ui, i = ¯1, s, where s
is the sample size, ui, xi are the measurements of the input and output of the object
at a time instant ti.

For a dynamic object that can be described by di�erence equation (1), the control
problem is to �nd the control functions ut. The control function translates the output
of an object xt to a speci�ed value x∗t in some �nite time tp. In this case, the functional
F is assumed to be unknown from a priori information, but there is a sample of
observations xi, ui, i = ¯1, s. Non-parametric dual control algorithm has the following
form (2) [3]:

us+1 = u∗s + ∆us+1, (2)

where u∗s is the component accumulating information about the object under study,
∆us+1 = ε(x∗s+1−xs) is the �studying� search step. The dual control scheme is shown
in Figure 1.

Figure 1: Dual control scheme of a dynamic object

In this case, we use the following estimation to get the value u∗s from equation
(3):
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u∗s =

∑s
i=1 ui · Φ

(
x∗s+1−xi

cs

)
·
∏k

j=1

(
xs−j−xi−j

cs

)
∑s

i=1 Φ
(
x∗s+1−xi

cs

)
·
∏k

j=1

(
xs−j−xi−j

cs

) , (3)

where u∗s is a kernel function, cus , c
x[j]
s are bandwidths. The optimal bandwidths are

found by minimizing a quadratic error function by using the sliding exam method.

3 Essential variables

The control algorithm for dynamic systems is constructed as follows. The di�erential
equation degree of the dynamic process model k is determined on the bases of the
rule of selection of essential variables. The vale k is further used in the calculation of
control actions in (3), where only selected variables are present.

Formulation of the rule: in formula (3), each variable xs−1, ..., xs−k is assigned its
own bandwidths cx[1]

s , ..., c
x[j]
s , the greater bandwidths, the less in�uence this variable

has on the output of the object.
The algorithm for calculating signi�cant variables xi−j is based on the following

scheme. First, the initial value of k is given. The model is constructed by equation.

xts =

∑s
i=1 xi · Φ

(
us−ui
cus

)
·
∏k

j=1

(
xs−j−xi−j

cs

)
∑s

i=1 Φ
(
us−ui
cs

)
·
∏k

j=1

(
xs−j−xi−j

cs

) , (4)

and the relative error W0 is calculated:

W =

√√√√1

s

s∑
i=1

(xi − xsi )
2 /

s∑
i=1

1

s− 1
(mx − xi)2 (5)

where mx is an expected value.
For each i - th iteration, the following set of actions is performed:

1. For each coe�cient cx
1

s , ..., c
xk

s the optimal value is found: cx
1

s = c∗x
1

s , cx
2

s =
c∗x

2

s ,...,cx
k

s = c∗x
k

s ;

2. The maximum of all the values obtained is found: cx
j

maxs ;

3. The model is constructed by the equation (4). The multiplier Φ
(
us−ui
cus

)
is

excluded, taking into account that j is a number for cx
j

maxs .

4. A relative error Wi is calculated.

These actions will be repeated until Wi ≥ Wi−1.
We choose a non-gradient multidimensional optimization the Nelder-Mead method

as an optimization algorithm, since this method is e�ective at a low speed of cal-
culation of the minimized function. To select the initial vertices of a deformable
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polyhedron, a region of possible values of bandwidths of the kernel functions was set,
from which n+ k + 1 points were chosen arbitrarily, where n is the number of input
variables, k is the degree of the di�erence equation, which form the simplex n+ k.

In the case of the relation of an object to a class of linear, the algorithm allows
one to determine the structure of the model with an accuracy of parameters.

4 Computational experiment

To illustrate the performance of the proposed algorithm, an example will be consid-
ered.The results of controlling a dynamic object using a non-parametric dual control
algorithm (3) were compared with the control results of a typical control algorithm
(PID), and with the results of using an quasi-optimal control system (criterion is
control time).

The control quality was estimated by the control time (tp) �the time from the
beginning of the control to the moment when the output quantity di�ers from of no
more than some given value α. (α = 5%). As an example, we give the work of three
control algorithms. The control object is a series connection of three aperiodic links.
Detailed control results are shown in table.

Table 1: Comparison results of the non-parametric dual control algorithm (NDCA)
with the PID controller and the quasi-optimal control system (QOCS)

Type of con-
trol systems

tp

1 PID 7.9
2 NDCA 8.1 (at the stage of information accumulation)

1.2 (after passing the stage of accumulation of information)
3 QOCS 3.5

The dualism of the algorithm (3) is as follows. At the �rst control cycles, the main
role in the formation of control actions is played by the term ∆us+1 from formula
(3). But with the accumulation of information about the object, the role of the term
u∗s increases. Thus, the use of the non-parametric algorithm after passing through
the stage of accumulation of information alows it possible to reduce the control time
under equal conditions of noise and sample size compared to a typical PID controller
and a quasi-optimal control system.

Conclusions

Nonparametric dual control algorithms for dynamic objects have been developed. A
distinctive feature of the algorithms is the use of information about the order of a
di�erence equation of a dynamic object when calculating control actions. The task
of controlling dynamic objects is most e�ectively solved by the proposed algorithm,
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as compared with typical control algorithms, in particular, the PID algorithm and
the quasi-optimal control system.
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Abstract

In this paper, a numerical stochastic model of the joint non-stationary time-
series of the wind speed modulus, air temperature and relative humidity is
proposed. It is shown that this model may be used for studying the statistical
properties of the time series of the bioclimatic index of severity of climatic
regime.

Keywords: stochastic simulation, periodically correlated random process,
meteorological time series, bioclimatic index of severity of climatic regime.

Introduction

Air temperature and relative humidity, wind speed and atmospheric pressure, as well
as other meteorological parameters signi�cantly a�ect the state of a human being and
his or her ability to work. To describe the combined e�ects of various meteorological
parameters, di�erent climatic indicators and weather indices are used. Some of them,
such as the heat index, are used to describe the e�ects of high temperatures and of a
high relative humidity [1]. Other indices, such as the Siple index and the Hill wind
chill index, are used to characterize the e�ects of low temperatures and high winds
[9, 17]. One of the most universal indicators is the bioclimatic index of severity of
climatic regime (BISCR), proposed in [5, 6]. In this paper, probabilistic properties
of the time series of the BISCR are studied, as well as the possibility of constructing
an appropriate stochastic model.

1 Bioclimatic index of severity of climatic regime

In this paper, the probabilistic properties of the time series of the bioclimatic index
of severity of climatic regime (BISCR) are investigated. According to [7], the BISCR
is an integral indicator to the degree of bioclimatic discomfort in various types of the
vital activity. The BISCR (a non-dimensional value) is a function of a number of me-
teorological and physiographic parameters, including air temperature (measured in
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degrees Celsius), atmospheric pressure (in hectopascals), wind speed modulus (in me-
ters per second), relative humidity of the air (measured in percentage), and elevation
of the terrain under consideration above the sea level (in meters).

To calculate the BISCR, the following formula is used [3, 12]:

B = T̃ (P−266)(1−0.02V )

75R̃S̃
,

where T̃ , R̃, S̃ are the temperature, humidity and radiation coe�cients, P, V are the
atmospheric pressure and the wind speed modulus, respectively. The coe�cients are
determined by the following formulas:

T̃ =

{
1− 0.0089 (22− T ) , if T < 22,
1− 0.0263 (T − 22) , if T > 22,

R̃ =

{
1 + 0.06 (50−R)

100
, if R < 50,

1 + 0.06 (R−50)
100

, if R > 50.

Here T,R are air temperature and relative humidity. The radiation coe�cient S̃
depends only on the elevation H of the terrain above the sea level:

S̃ =

{
1, if H < 2000,
1 + 0.45 (H−2000)

1000
, if H > 2000.

We should note that as the basis for the creation of the BISCR are empirical concepts
of "comfort" and "extremes" of the in�uence of meteorological factors on a human
being, as well as the condition that the index equals 10 under special meteorological
and geographical conditions, i.e. at T = 22 oC, R = 50 %, V = 0 m/s, P =
1016 hPa, H < 2000 m [3, 7].

2 A stochastic model

We have to simulate the time series ~B = (B1, ..., B8, B9, ..., B8N) of the BISCR on N
days interval with 8 measurements per day.

There are two approaches to the simulation of the time series ~B. The �rst ap-
proach is that the �real� BISCR is calculated based on real data for the atmospheric
pressure, wind speed modulus, air temperature and relative humidity. After that, the
values obtained are used to evaluate parameters of a stochastic model of the BISCR.
In the second approach, parameters of the stochastic model of the joint meteoro-
logical time series are estimated from observation data and then �arti�cial� BISCR
series are constructed on the simulated trajectories of the joint time series. Each of
these approaches has its advantages and disadvantages. Models of the �rst type are
numerically implemented faster than models of the second type (since when using
the �rst approach, it is necessary to simulate the scalar time series, and when using
the second � the vector time series). However, models of the second type allow us to
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study properties of the BISCR as functions of one or several meteorological parame-
ters. In this paper, we use the second approach to study the properties of the BISCR
time series.

The following assumptions will be used:

1. The meteorological time series, as well as the time series of the BISCR, are
assumed to be periodically correlated random processes. On the one hand, this
assumption allows one to take into account the daily variation of real meteoro-
logical processes, and on the other hand - to reduce the simulation complexity
as compared to the case when non-stationary (both by one-dimensional distri-
butions and by correlations) time series are simulated.

2. Since the daily variation of the atmospheric pressure time series is mild, the
atmospheric pressure P j

i , i = 1, 8, j = 1, N is assumed to be constant and equal
to the sample average pressure calculated over the considered N days interval.
Due to this assumption, instead of the joint series of the four meteorological

parameters, it is possible to simulate the time series ~C =
(−→
C1,
−→
C2, ...,

−→
CN
)
of

the three parameters, where

−→
Cj =

(
T j1 , ..., T

j
8 , R

j
1, ..., R

j
8, V

j
1 , ..., V

j
8

)T
, j = 1, N ,

T ji , R
j
i , V

j
i are the values of air temperature, relative humidity and the wind

speed modulus at the measurement number i per a day number j (i = 1, 8, j =
1, N).

3. It is also assumed that the one-dimensional distribution of T ji is a mixture of
the two Gaussian distributions. In this paper, the parameters of the mixtures
for all i = 1, 8, j = 1, N were chosen using the algorithm, proposed in [13]. It
is shown in [10] that the use of such a method for approximating the sample
one-dimensional density of air temperature distribution allows one to simulate
the time series of this weather element with a high accuracy.

In [11], the sample one-dimensional distributions of relative humidity, de-
pending on the weather station under consideration, were approximated with
mixtures of beta distributions, mixtures of truncated Gaussian or gamma-
distributions. In this paper, for uni�cation, we use piecewise-linear approxi-
mation of the sample distribution function of a relative humidity Rj

i .

To approximate the one-dimensional distribution densities of the wind speed
modulus, the Weibull distribution is often used (see, for example, [2, 8]). How-
ever, the numerical experiments have shown that approximation with a mix-
ture of the two gamma-distributions with the mixture parameters determined
according to the algorithm, presented in [14], allows one to reproduce more pre-
cisely the sample coe�cients of asymmetry and kurtosis (in comparison with
the approximation with the Weibull distribution). The usage of the mixtures
of two gamma-distributions also minimizes the deviation of the approximating
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density from the sample one in the sense of the Pearson functional. Therefore,
in this paper, we assume that V j

i has one-dimensional distributions in the form
of a mixture of two gamma-distributions.

4. For the simulation of the joint time-series ~C, the sample correlation matrix R
was used. Analysis of real data shows that for all meteorological stations and
time intervals considered, the amplitudes of diurnal oscillations of the auto-
and cross-correlation functions of meteorological elements are signi�cant. For
estimating the sample correlation coe�cients, the biased estimator was used
[15].

For the simulation of the joint time series ~C with given one-dimensional distri-
butions of T ji , R

j
i , V

j
i , i = 1, 8, j = 1, N and a given correlation matrix R, the

method of inverse distribution function was used. The simulation of an auxil-
lary standard Gaussian sequence was done using the Cholesky decomposition
of its correlation matrix [16].

3 Numerical experiments

Any stochastic model has to be veri�ed before one starts to use the simulated tra-
jectories to study properties of a simulated process. For the model veri�cation, it is
necessary to compare the simulated and the real data based on estimations of such
characteristics, which, on the one hand, are reliably estimated by real data, and on
the other hand are not input parameters of the model. A number of examples of such
characteristics are presented below. Although all examples in this paper are given
only for the stations in the cities of Tomsk (West Siberia, Russia; subarctic cyclonic
climate) and Pogranichniy (Russian Far East; arctic climate), all the conclusions are
valid for all the considered weather stations situated in di�erent climatic zones. For
the veri�cation, the data collected in 1966-2016 were used.

It should be noted that hereafter 106 simulated trajectories for estimations were
used . To denote the estimations based on the real and simulated data, abbreviations
RD and MD are used, respectively. Hereinafter, σ is the statistical estimate of the
standard deviation of the characteristic under consideration when estimating with
real data.

The �rst characteristic to be compared was the average number AN of days over
the considered time interval with the average daily BISCR belonging to the given
interval. The intervals were chosen according to distinguished levels of discomfort,
for example, the BISCR from 10 to 8 points is the level of comfort and the BISCR
from 4 to 0 points is the level of non-compensable discomfort [4]. Table 1 shows the
corresponding estimations, obtained based on of the real and simulated data. The
estimations based on real and simulated data agree reasonably well.

The next characteristic used for the comparison of the real and simulated BISCR
time series is the average number AD (l) of days over the interval considered, in
which the daily minimum BISCR is below the speci�ed level l. The numerical
analysis shows that for most of the considered time-intervals, the simulated data
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based estimations belong to the corresponding the real data con�dence intervals
(AD (l)− σ,AD (l) + σ), see, for example, Table 2.

One more characteristic that can be used to investigate how much the stochastic
model of the joint time-series ~C �ts for studying the properties of the BISCR is the
portion s (v, n) of periods of n measurements with the BISCR not exceeding v among
all the periods of measurements. Tables 3 and 4 present examples of estimations of
s (v, n) from real and simulated data. The numerical analysis shows that for almost all
the considered weather stations, time intervals, levels v and lengths n, the deviations
of estimations based on the simulated data from the corresponding estimations from
real data do not exceed 3σ.

We have also compared the probabilities P24 (∆) of the BISCR change greater
than by ∆ in 24 hours, estimated on real and simulated data. Examples of the
estimations of the P24 (∆) are shown in Table 5. In these examples, the proba-
bilities, estimated based on of the simulated data, belong to the corresponding in-
tervals (P24 (∆)− 3σ, P24 (∆) + 3σ), calculated withe the use of real data, but for
other weather stations and time-intervals, in, approximately, 25% of cases (mostly
for ∆ < 0.8) this is not true. The reason why the model proposed unsatisfactorily re-
produces this characteristic of the joint time-series ~C, is unclear and calls for further
investigations.

The results of the numerical analysis show that the trajectories of the model
proposed are close in their statistical properties to the real time series of the BISCR.
Therefore, it is possible to use the model in question to study the extreme weather
events that are characterized by unfavorable values of the BISCR and to study the
dependence of the BISCR properties on the climate change.

Table 1: The Average Number AN of Days on the Considered Time Interval with
the Average Daily BISCR Belonging to the Given Interval

Interval Pogranichniy,
July 1�15

Tomsk, January
16�30

RD AN ± σ MD RD AN ± σ MD
[10; 8] 0.065± 0.048 0.107 0.000± 0.000 0.000
(8; 7] 13.065± 0.241 13.245 0.000± 0.000 0.004
(7; 6] 1.870± 0.234 1.645 0.900± 0.028 1.094
(6; 5] 0.000± 0.000 0.000 8.460± 0.531 8.500
(5; 4] 0.000± 0.000 0.000 5.440± 0.533 5.159
[4; 0] 0.000± 0.000 0.000 0.200± 0.001 0.244

Conclusions

In this paper it is shown that the proposed stochastic model of the joint time series
of the wind speed modulus, air temperature and relative humidity may be used for
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Table 2: The Average Number AD (l) of Days on the Considered Interval, in Which
the Daily Minimum BISCR is Below the Level l

l Pogranichniy,
January 1�15

Tomsk. July
1�15

RD AD (l)± σ MD RD AD (l)± σ MD
10.0 15.000± 0.000 15.000 15.000± 0.000 15.000
9.5 15.000± 0.000 15.000 14.920± 0.032 14.948
9.0 15.000± 0.004 14.999 11.580± 0.281 11.425
8.5 15.000± 0.010 14.996 6.600± 0.357 5.707
8.0 14.978± 0.023 14.981 2.680± 0.255 2.170
7.5 14.913± 0.066 14.851 0.620± 0.127 0.562
7.0 13.783± 0.204 13.707 0.120± 0.042 0.073
6.5 10.022± 0.386 9.676 0.000± 0.006 0.006
6.0 3.957± 0.348 3.824 0.000± 0.002 0.000
5.5 0.826± 0.148 0.6690 0.000± 0.001 0.000
5.0 0.022± 0.036 0.049 0.000± 0.000 0.000
4.5 0.000± 0.006 0.002 0.000± 0.000 0.000
4.0 0.000± 0.001 0.000 0.000± 0.000 0.000

Table 3: Probabilities s (v, n). Tomsk. January, 1-15

n v = 7 v = 6
RD s (v, n)± 3σ MD RD s (v, n)± 3σ MD

2 0.995± 0.002 0.999 0.913± 0.045 0.899
4 0.991± 0.003 0.999 0.877± 0.059 0.855
6 0.987± 0.004 0.999 0.849± 0.069 0.820
8 0.983± 0.005 0.998 0.824± 0.078 0.790
10 0.978± 0.007 0.998 0.804± 0.086 0.762
12 0.973± 0.008 0.998 0.785± 0.093 0.736
14 0.969± 0.009 0.997 0.769± 0.010 0.712

studying the probabilistic properties of the high resolution time series of the biocli-
matic index of severity of climatic regime on the time intervals on which a seasonal
variation has not a signi�cant in�uence on the real meteorological processes. In the
future, similar studies will be conducted on longer time intervals. Since the character-
istics of the atmospheric pressure change signi�cantly over long time intervals, instead
of the model of a periodically correlated complex �air temperature - relative humidity
- wind speed modulus�, a model of the non-stationary joint time series �temperature
- relative humidity - wind speed modulus - atmospheric pressure� will be used. This
will allow us to take into account both the daily and the seasonal variations of real
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Table 4: Probabilities s (v, n). Tomsk. January, 1-15

n v = 5 v = 4
RD s (v, n)± 3σ MD RD s (v, n)± 3σ MD

2 0.321± 0.084 0.293 0.015± 0.018 0.019
4 0.254± 0.078 0.223 0.007± 0.013 0.010
6 0.213± 0.073 0.181 0.003± 0.010 0.006
8 0.185± 0.068 0.150 0.002± 0.008 0.004
10 0.164± 0.064 0.126 0.002± 0.007 0.003
12 0.146± 0.060 0.106 0.001± 0.005 0.002
14 0.131± 0.057 0.090 0.001± 0.004 0.001

Table 5: Probabilities P24 (∆) of the BISCR change more than by ∆ in 24 hours

∆ Tomsk, July 16-
30

Pogranichniy,
July 16-30

RD P24 (∆)± 3σ MD RD P24 (∆)± 3σ MD
0.1 1.0000± 0.000 1.000 1.000± 0.000 1.000
0.5 0.980± 0.012 0.986 0.887± 0.026 0.935
1.0 0.832± 0.046 0.858 0.454± 0.075 0.522
1.5 0.524± 0.072 0.591 0.173± 0.059 0.189
2.0 0.224± 0.061 0.268 0.049± 0.031 0.056

meteorological processes.
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Abstract

This research is devoted to the development of an approximate numerical
stochastic modeling based on real data of a periodically correlated Gaussian
process based on a spectral representation in which the Fourier coe�cients
form a stationary vector Gaussian process.

Keywords: spectral model, vector process, matrix correlation function.

Introduction

In [5], a spectral model of a scalar periodically correlated random process was con-
sidered, based on the representation of

ξ (t) =
∑
p∈Z

ηp (t) exp

(
i
2π

T
pt

)
, (1)

and ηp (t) - are the components of the vector in�nite-dimensional stationary random
process with zero means and the matrix correlation function Kpq (t− s) , p, q ∈ Z ,
T - is an arbitrary deterministic value having the dimension of time. This process is
a periodically correlated process with a period T [4] that has such properties

Eη (t) = Eη (t+ T ), Dη(t) = Dη (t+ T ),
E (η (t)− Eη (t)) (η (s)− Eη (s)) = R (t, s) = R (t+ T, s+ T ).

In our research it will be shown that covariance function of this process is

R (t, s) =
∑
p∈Z

Kpq (t− s) exp

(
i
2π

T
(pt− qs)

)
and this function covers the entire class of covariance functions of an arbitrary peri-
odically correlated process. In this study, this representation is used to construct an
approximate stochastic model of a periodically correlated random process, in which an
in�nite-dimensional random vector η (t) is replaced by a �nite-dimensional dimension
n. Here we note that the algorithms for constructing periodically correlated processes
based on other approaches were considered in [6], [8], [7] based on Markov chains
with a periodically changing transition probability matrix, based on Poisson �ows
with a periodic intensity, based on spectral representation with periodically varying
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spectral density. The most common approach to modeling periodically correlated
processes is an approach based on modeling vector Gaussian stationary processes of
a discrete argument with a constant time step, which also allows you to simulate
non-Gaussian periodically correlated sequences based on the method of inverse dis-
tribution functions [3], [4]. Models based on the spectral representation make it
possible to model processes with an uneven time step [30], [31] without additional
computational costs.

1 Construction of a spectral model of periodically

correlated processes with using real data

We consider a periodically correlated random process ξ (t) of continuous time in the
interval [0,∞) with a period of correlation T . We divide the time axis into intervals
[(k − 1)T + 1, kT + 1], k = 1, 2, . . .. Consider the representation (1) in the form

ξ (t) =
n∑
p=0

(
ηp (k) cos

(
2π

T
pt

)
+ ζp (k) sin

(
2π

T
pt

))
, (2)

where t ∈ [(k − 1)T + 1, kT + 1], ηp (k) and ζp (k) - are components of stationary
vector Gaussian random processes with mean µηp (k) and νζp (k), variances σ2

ηp (k)
and σ2

ζp (k) and a joint matrix correlation function

Φ (τ)=
(

Φηη (τ) Φηζ (τ)
Φζη (τ) Φζζ (τ)

)
,

τ = k − p, k, p = 0, 1, . . .

Algorithm for numerical simulation of the process (2) and methods for estimating
the parameters of the model based on real data are considered in this study. In
meteorological tasks, in order to choose one or another approximation, for example,
stationarity or periodic correlation, time intervals are considered at relatively short
time intervals, most often one month long or less. Time series for the same mo-
ments of time within a year, but corresponding to di�erent years of observation, are
approximately considered independent and are analogous to the trajectories of the
process ξ (t). Lets represent l-th trajectory of a periodically correlated process ξ̃l(t) ,
l = 1, 2, . . . with a discrete argument and a period of correlation equal to T = m in
the form of

ξ̃l(t1), . . . , ξ̃l(tm), ξ̃l(tm+1), . . . , ξ̃l(t2m), . . . ξ̃l(t(k−1)m+1), . . . , ξ̃l(tkm), . . . .

We divide the range of values of its argument into intervals [(k − 1)T + 1, kT + 1],
k = 1, 2, . . .. Let m+ 1 - the number of measurements in each of these intervals. In
each k-th interval, process values are given in a discrete sequence of points.

(k − 1)T + 1 = t(k−1)m+1 < t(k−1)m+2 < · · · < t(k−1)m+m < t(k−1)m+m+1 = kT + 1.
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The process values ξ̃l(t) = ξ̃l,k(t) in these points are denoted as

ξ̃l,k(t(k−1)m+1), . . . , ξ̃l,k(tkm+1),

where k - is interval number. Interpolate ξ̃l,k (t) in the interval [(k−1)T +1, kT +1],
k = 1, 2, . . ., by its values ξ̃l,k(t(k−1)m+1), . . . , ξ̃l,k(tkm+1) at these points. In each k-th
interval [(k− 1)T + 1, kT + 1] we represent l-th trajectory ξ̃l(t), l = 0, 1, . . . process
ξ (t) as a Fourier series

ξ̃l (t) = ξ̃l,k (t) =
n∑
p=0

(
η̃p,l (k) cos

(
2π

T
pt

)
+ ζ̃p,l (k) sin

(
2π

T
pt

))
, (3)

where η̃p,l (k) and ζ̃p,l (k) are the Fourier coe�cients and these coe�cients are deter-
mined by the expressions

η̃p,l(k) =
2

T

T/2∫
−T/2

ξ̃l,k (t) cos(
2π

T
pt)dt, t ∈ [(k − 1)T + 1, kT + 1],

ζ̃p,l(k) =
2

T

T/2∫
−T/2

ξ̃l,k (t) sin(
2π

T
pt)dt, t ∈ [(k − 1)T + 1, kT + 1], (4)

p = 1, 2, . . . , n,

η̃0,l(k) =
1

T

T/2∫
−T/2

ξ̃l,k (t)dt, t ∈ [(k − 1)T + 1, kT + 1], ζ̃0,l(k) = 0.

and for each l form scalar sequences η̃p,l(k) and ζ̃p,l(k), p = 0, 1, . . . , n, k = 0, 1, . . . , K.
We represent these sequences as a single vector sequence

~̃φl,0,
~̃φl,1, . . . ,

~̃φl,K , (5)

where

~φl,k = (~̃ηTl (k), ~̃ζTl (k))T = (η̃0,l(k), η̃1,l(k), . . . , η̃n,l(k), ζ̃1,l(k), . . . , ζ̃n,l(k))T − (6)

is vector formed from the Fourier coe�cients for the l-th trajectory and interval
[(k−1)T +1, kT +1]. Here the number of components for the sub-vectors ~̃ηTl (k) and
~̃ζTl (k) of the vector ~̃φl,k is equal to n+1 and n while the numbering of the second sub-
vector begins with p = 1. The sequence (5) forms a sample of a stationary sequence
~φl,0, ~φl,1, . . . of vectors formed from the Fourier coe�cients η̃p,l (k) and ζ̃p,l (k). The
stationarity of this sequence directly follows from the periodic correlation of the
process ξ (t).
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It is assumed that the period of correlation is known in advance. For example,
when modeling meteorological series, this period is usually determined by a daily
or annual cycle. If the period of correlation is determined by other factors, then
special additional studies are needed to determine it [5], [9],. The algorithm for sim-
ulating a Gaussian periodically correlated sequence based on the representation (2)
and relations (3)-(5) based on real data is reduced to the following transformations:
Algorithm

1. The original time interval is divided into sub-intervals [(k − 1)T + 1, kT + 1],
k = 1, . . . , K.

2. The values of the series k-th in the subinterval ξ̃l,k(t(k−1)m+1), . . . , ξ̃l,k(tkm+1)
are interpolated to each point of this interval. As a result, we obtained the
functions ξ̃l,k (t), t ∈ [(k − 1)T + 1, kT + 1].

3. Integrals (4) are calculated for each value k = 1, . . . , K, l = 1, 2, . . . , L ,
p = 0, 1, . . . , n

4. For each p = 0, 1, . . . , n k = 1, . . . , K, l = 1, 2, . . . , L vector sequences
~̃φl,0,

~̃φl,1, . . . ,
~̃φl,K (5) are formed from the obtained values η̃p,l(k) and ζ̃p,l(k),

forming a sample of vector sequences length K in which the dimension of the
vectors is 2n+ 1.

5. For this sample, the mean values ~µ = (µ1, . . . , µ2n−1)T , variances
~σ2 = (σ2

1, . . . , σ
2
2n−1)T and matrix correlation function Φ(τ) of the vector se-

quence of Fourier coe�cients are estimated.

6. Next, a Gaussian stationary vector sequence ~φl,0, ~φl,1, . . . , ~φl,K is simulated with
zero mean, unit variance and correlation matrix Φ(τ).

7. Based on the obtained vector sequence, a stationary vector sequence of model
Fourier coe�cients is constructed by multiplying the obtained components
of the Gaussian vectors ~φl,0, ~φl,1, . . . , ~φl,K by the corresponding sample stan-
dard deviations and additions with the corresponding sample means µi, i =
1, . . . , 2n+ 1.

8. The �nal periodically correlated process is constructed using the relation (3)
for t ∈ [(k − 1)T + 1, kT ], k = 1, . . . , K.

2 Numerical experiments

As an example, in this paper, the considered algorithm is used to simulate periodically
correlated time series of air temperature according to four-time observations of the
temperature at the Sverdlovsk meteorological station in the month of May for the
period from 1936 to 1984 years. The period of correlation in this case is one day (or
four periods of observation T = m = 4). In this research, the values of a real time
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series ξ̃(t1), ξ̃(t2), . . . , ξ̃(tM) correspond to conditional time points t1, t2, . . . , tM , ti =
i with a step ∆t = ti+1 − ti = 1. Here M = K × T = 31 × 4 (K- number of days
in May, T = ti+m − ti = 4 - period of correlation). The original time interval is
divided into subintervals [(k − 1)T + 1, kT + 1], k = 1, . . . , K. The interpolation
is a piecewise linear interpolation from the Algorithm point 2. In each k-th interval
[(k− 1)T + 1, kT + 1] the integrals (4) are calculated by the Simpson method. And
further, Algorithm points 5-7 are implemented.

The Gaussian vector sequence ~φl,0, ~φl,1, . . . , ~φl,K is simulated based on the spec-
tral decomposition of the matrix Φ(τ). In the calculations, n was chosen equal to
9. L = 10000 of process trajectories were used in the calculations. The matrix
correlation functions R(τ) of the model ξ (t) and real ξ̃l(t), i = 1, . . . , L processes
at the points t1, t2, . . . , tM , ti = i were calculated along these trajectories. We note
that a periodically correlated scalar process de�ned at equally spaced points is equiv-
alent to a vector stationary process in which the dimension of the vectors is equal
to the correlation period [5]. Therefore the correlation function of a periodically
correlated scalar process is equivalent to the matrix correlation function R(τ) of a
vector stationary process. These functions for model and real processes are shown in
Table1.

Table 1.

Model and real matrix correlation functions of the process

Modeldata Realdata

ti τ = 0 τ = 0
1 1.000 0.848 0.718 0.701 1.000 0.834 0.709 0.694
2 0.848 1.000 0.841 0.704 0.834 1.000 0.837 0.692
3 0.718 0.841 1.000 0.904 0.709 0.837 1.000 0.897
4 0.701 0.704 0.904 1.000 0.694 0.692 0.897 1.000
ti τ = 1 τ = 1
1 0.669 0.517 0.426 0.435 0.678 0.516 0.437 0.460
2 0.640 0.659 0.510 0.411 0.638 0.665 0.523 0.422
3 0.791 0.772 0.645 0.543 0.792 0.781 0.662 0.560
4 0.892 0.785 0.701 0.666 0.894 0.784 0.709 0.677
ti τ = 2 τ = 2
1 0.423 0.293 0.233 0.276 0.459 0.327 0.283 0.329
2 0.359 0.379 0.286 0.241 0.380 0.416 0.333 0.281
3 0.480 0.459 0.380 0.327 0.505 0.493 0.422 0.365
4 0.615 0.494 0.415 0.411 0.634 0.514 0.446 0.445
ti τ = 3 τ = 3
1 0.287 0.183 0.147 0.170 0.335 0.219 0.200 0.256
2 0.209 0.252 0.184 0.130 0.249 0.296 0.251 0.213
3 0.296 0.293 0.208 0.160 0.325 0.331 0.280 0.241
4 0.384 0.282 0.219 0.232 0.424 0.321 0.281 0.303
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The di�erence in the values of the model and real correlation matrices is de-
termined by such factors as, for example, the accuracy of the calculation of the
integrals, the limited number of harmonics used. If the estimation of the matrix
correlation function is carried out at points di�erent from t1, t2, . . . , tM , ti = i,other
than, the corresponding values of the model matrix are determined by the method of
interpolation of the initial vector sequence in the intervals [(k − 1)T + 1, kT + 1],
k = 1, . . . , K.

Conclusion

In conclusion, we note that by increasing the number of harmonics and the accuracy
of calculating the integrals, we can signi�cantly increase the accuracy of modeling.
The accuracy of the simulation is checked by the magnitude of the proximity of
the sample and model matrix correlation functions, which are estimated at the time
points of real observations. The real correlation function of the process is not an
input information to the model, but the matrix correlation function of vectors from
the Fourier coe�cients that signi�cantly depends on the sample size, so the sample
size implicitly a�ects the accuracy of the simulation. The model reproduces the real
process, which is initially set on a regular grid in arbitrary points of the considered
time domain and everywhere, except for the moments in which the initial process is
speci�ed, is determined to the interpolation method. Thus it is of further interest to
study the dependence of the properties of the correlation function of the simulated
process on the choice of interpolation method. Probably the considered approach
can be generalized to the case of a nonstationary process of a more general form. It
should also be noted that interpolation methods can also be applied to the methods
considered in [3], [5], however, the di�erence is that in this investigation interpolation
is applied to the source data within intervals [(k-1)T+1, kT+1], k=1,...,K, and in
methods based in the simulation of stationary vector processes, interpolation should
be applied to the modeling process.
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Abstract

The e�ective coe�cients for equations of the convective di�usion are ob-
tained. The correlated �elds of conductivity and porosity are approximated by
the Kolmogorov multiplicative continuous cascades with a lognormal probability
distribution. The theoretical results for the incompressible �ow are compared
with the results from direct 3D numerical simulations.

Keywords: e�ective coe�cients, convective di�usion, lognormal probabil-
ity distribution, multiplicative continuous cascades.

Introduction

In natural conditions, as a rule, the spatial geometry of small-scale heterogeneities
is not exactly known, and the irregularity of conductivity and porosity abruptly
increases as the scale of measurements decreases. Since generally porosity and con-
ductivity vary in an irregular manner, it is customary to regard them as random
space functions characterized by the joint probability distribution functions and they
are taken into account with the help of the e�ective parameters. Many natural me-
dia are "scale regular" in the sense that they can be described by multifractals and
hierarchical cascade models. In this paper, by the method of subgrid modeling, we
obtain formulas of e�ective coe�cients for for equations of the convective di�usion.
The e�ective coe�cients depend not only on means and variances of the parameters,
but also on the correlation between the conductivity and porosity. The theoretical
results are veri�ed with the help of direct 3D numerical simulations.

1 Governing equations and model of the medium

At low Reynolds numbers, the �ltration velocity v and the pressure are related by
Darcy law v = −σ(x)∇p , where a random function of the spatial coordinates σ(x)
is a conductivity coe�cient. The condition of incompressibility yields the equation

∇[σ(x)∇p(x)] = 0, (1)

where x is the three-dimensional vector of spatial coordinates, p(x) is the pressure.
At the initial time a colored liquid �ow-in into a volume �lled with a pure liquid. The
interface is labelled with passive particles, which are moved by a stationary velocity
�eld. Since both liquids have the same physical parameters, their �ltration velocities
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satis�es the Darcy equation (1). The movement of the labelled particles is described
by the equation [1]

m(xi)
dxi(t)

dt
= −σ(xi)∇p, xi(0) = xi0, : (2)

where i = 1, . . . , N is the number of a particle. The pressure p is de�ned by equation
(1) and gradient is calculated at the point xi, m(x) is the porosity coe�cient.

Let the conductivity �eld be known. This means that it is measured at each
point as the �uid is pumped through a sample of small size. In an experiment, one
measures a conductivity �elds within the accuracy of a minimal scale l0. A random
function of spatial coordinates σ(x) is considered as limit of conductivity, as, we
have l0 → 0, σ(x)l0 → σ(x). Let the conductivity �eld satis�es σ(x) = σ(x)l0 . To
pass to a coarser grid l1, one can smooth the resultant �eld σ(x)l0 using the scale
l1 > l0. The obtained �eld is not the true conductivity that describes �ltration in
the interval of scales (l1, L), where L is the maximum scale of heterogeneities. To
�nd conductivity on a coarser grid one has to repeat the measurements, pumping
the �uid through larger sample of size l1. This procedure is necessary, since the
�uctuations of conductivity within the scale interval (l0, l1) have correlations with
pressure �uctuations induced by them (equation (1)). The search of a transformation
law of the e�ective conductivity, when the scale grid varies, is not so di�cult for the
self-similar medium. Similar to [3], we consider a dimensionless �eld ψ equal to
the ratio of conductivity smoothed using two di�erent scales (l, l1). More detail this
approach have been described in [2]. The �eld σ(x)l is σ(x)l0 smoothed over scale
l, ψ(x, l, l1) =

σ(x)l1
σ(x)l

. If l1 → l we obtain ∂ lnσ (x,l) /∂ ln l = ϕ (x,l), where function

ϕ(x, l) = dψ(x,l,lλ)
dλ

|λ=1 de�nes the all statistical properties of porous medium [2]. The
solution to this equation gives the conductivity as the function of �eld ϕ with the
given distribution:

σ(x)l0 = σ0 exp

− L∫
l0

ϕ(x, l)
dl

l

 , (3)

where σ0 is constant. The �eld ϕ determines statistical properties of the conduc-
tivity. According to the limit theorem for sums of independent random variables,
if the variance of ϕ(x, l) is �nite, the integral in (3) tends to a �eld with a normal
distribution as the ratio L/l0 increases. If the variance of ϕ(x, l) is in�nite and there
exists a non-degenerate limit of the integral in (3), the integral tends to a �eld with a
stable distribution. In this paper, it is assumed that the conductivity σ(x)l0 ≡ σ(x)
has heterogeneities of the scale l in the interval l0 < l < L and a correlation function
of �eld ϕ(x, l) is statistically homogeneous, isotropic

Φϕϕ(x,y, l, l′) = 〈ϕ(x, l)ϕ(y, l′)〉 − 〈ϕ(x, l)〉 〈ϕ(y, l′)〉 = Φϕϕ (|x− y| , l) δ(ln l − ln l′).
(4)

For simplicity, we use the same notation Φϕϕ in right-hand side. The angle brackets
denote the ensemble averaging. It follows from (4) that the �uctuations of ϕ(x, l) at
di�erent scales do not correlate. This assumption is standard in the scaling models,
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see [3], and is due to the fact that the statistical dependence is small if the scales of
�uctuations are di�erent. To derive subgrid formulas to calculate e�ective coe�cients,
this assumption may be ignored. However, this assumption is important for the
numerical simulation of the �eld ϕ(x, l). Here we assume that the random �eld
ϕ(x, l) has the Gaussian distribution. For a scale invariant medium, the following
relation holds for any positive K: Φϕϕ (|x− y| , l, l′) = Φϕϕ(K |x− y| , Kl,Kl′).

If for any l the equality < σ(x)l >= σ0 is valid (the conservative cascade), then
it follows from (3) and (4) that Φϕϕ

0 = 2 〈ϕ〉, where Φϕϕ
0 = Φϕϕ (0, l).

The porosity coe�cientm(x) is constructed similar to the conductivity coe�cient:

m(x)l0 = m0 exp

− L∫
l0

χ(x, l)
dl

l

 . (5)

The function χ(x, l) is assumed to have a normal distribution and to be delta corre-
lated in the logarithm of scale. From the physical essence of the porosity follows that
the parameters of the porosity �eld is satis�ed: Φχχ

0 = 2 〈χ〉 .
The correlation between the porosity and conductivity �elds is determined via the

correlation of the �elds ϕ(x, l) and χ(x, l):

Φϕχ(x,x,l, l′) = 〈ϕ(x, l)χ(x, l′)〉 − 〈ϕ(x, l)〉 〈χ(x, l′)〉 = Φϕχ
0 δ(ln l − ln l′);

2 E�ective coe�cients

The conductivity function σ(x), m(x) are divided into two components with respect
to the scale l. The large-scale (ongrid) components σ(x, l), m(x, l) are obtained,
respectively, by statistical averaging over all ϕ(x, l1), χ(x, l1) with l0 < l1 < l, l− l0 =
dl, where dl is small. The small-scale (subgrid) components are equal to σ′(x) =
σ(x)− σ(x, l), m′(x) = m(x)−m(x, l):

σ(x, l) = σ0 exp

− L∫
l

ϕ(x, l1)
dl1
l1

〈exp

− l∫
l0

ϕ(x, l1)
dl1
l1

〉 , (6)

σ′(x) = σ(x, l)


exp

[
−

l∫
l0

ϕ(x, l1))dl1
l1

]
〈

exp

[
−

l∫
l0

ϕ(x, l1)dl1
l1

]〉 − 1

 , 〈σ′(x)〉 = 0,

m(x, l) = m0 exp

[
−
∫ L

l

χ(x, l)
dl

l

]〈
exp

− l∫
l0

χ(x, l)
dl

l

〉 , (7)

m′(x) = m(x, l)

exp

− l∫
l0

dl

l

(
χ(x, l)− 〈χ〉+

1

2
Φχχ

0

)− 1

 .
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We carry out similar partitions for the displacement and the pressure:

x(t) = x(t, l) + x′ (t) , p(x) = p(x, l) + p′ (x) , 〈x′ (t)〉 = 0, 〈p′ (x)〉 = 0,

where x(t, l), p(x, l) are respectively solutions to equations (1), (2) averaged over the
small-scale �elds σ′, m′. Averaging equations (1),(2) over m′, σ′ with given m(x, l),
σ(x, l) yields the ongrid equations:

σ (x,l)4p (x,l) = −
〈
∂

∂xi
σ′ (x)

∂

∂xi
p′ (x)

〉
(8)

m(x, l)
dx

dt
= −σ(x, l)∇p(x, l)− 〈σ′(x)∇p′ (x)〉 −

〈
m′
dx′(t)

dt

〉
(9)

The subgrid terms
〈

∂
∂xi
σ′ (x) · ∂

∂xi
p′ (x)

〉
,
〈
m′ dx

′(t)
dt

〉
in equations (8), (9) are un-

known. This terms cannot be neglected without preliminary estimation since the
correlation between the �eld σ′ (x), m′ (x) and the derivatives p′ (x), x′(t) may be
signi�cant. Subtracting equations (8), (9) from equations (1), (2) and taking into
account only the �rst order terms, we obtain the subgrid equations:

∆p′ (x) = − 1

σ (x,l)

∂

∂xi

(
σ′ (x)

∂

∂xi
p (x, l)

)
, (10)

m(x, l)
dx′(t)

dt
= −σ(x, l)∇p′(x)− σ′(x)∇p(x, l)−m′(x)

dx(t, l)

dt
. (11)

To evaluate subgrid terms in equations (8), (9), the right-hand sides of equations
(10),(11) are considered to be known. This approach are described in detail in [4],
[2], [5]. We suppose σ(x, l), p(x, l), x(t, l) and their derivatives varying slower than,
σ′(x), p′(x), x′(t and their derivatives (the property of multiplicative cascades). Using
the Green function, we can approximate the solution of equation (10):

p′ (x, l) ≈ 1

4πσ(x, l)

∫
V

1

r

∂

∂x′j
σ′ (x′) dx′

∂p (x, l)

∂x′j
, r = |x− x′| . (12)

The correlation functions are small outside the domain with radius L� L0 and the
center at the point x, where L0 is the scale of the domain V . Thus, integration over the
�nite volume V is changed to integration with an in�nite limit. Using (12), formula
∂2

∂xi∂xj

1
r

= −1
3
δij , integrating by parts and changing the Cartesiasian coordinates to

spherical coordinates, we obtain, that〈
σ′(x)

∂p′(x)

∂xi

〉
≈ −1

3
Φϕϕ

0 (l)
dl

l
σ (x, l)

∂p (x, l)

∂xi
. (13)

In the same manner we can evaluate the correlation between m′(x) and ∂p′(x)
∂xi

:

〈m′(x)
∂p′(x)

∂xi
〉 ≈ −1

3
Φϕχ

0 (l)
dl

l
m (x, l)

∂p(x, l)

∂xi
. (14)
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For the second subgrid term in (9) we have from the equation (11):〈
m′ (x)

x′ (t)

dt

〉
= −〈m

′ (x)σ′ (x)〉
m (x, l)

∇p (x, l)− σ (x, l)

m (x, l)
〈m′ (x)∇p′ (x)〉

−〈m
′ (x)m′(x)〉
m (x, l)

dx (t, l)

dt
. (15)

Substituting (13), (14), (15) in equations (8), (9), we get

∇
{
σ (x, l)

[
1− Φϕϕ

0

3

dl

l

]}
∇p (x, l) ≈ 0, (16)

m (x, l)

[
1− Φχχ

0

dl

l

]
dx (t, l)

dt
≈ σ (x, l)

[(
Φϕϕ

0

3
+

2

3
Φϕχ

0

)
dl

l
− 1

]
∇p (x, l) .

The e�ective coe�cients σ (x)efl and m (x)efl are evaluated by the formulas:

σ (x)efl = σ0l exp

[
−
∫ L

l
ϕ(x, l1)

dl1
l1

]
,m (x)efl = m0l exp

[
−
∫ L

l
χ(x, l1)

dl1
l1

]
,

σ0l ≈ σ0

[
1 +

(
−〈ϕ〉+

1

2
Φϕϕ

0

)
dl

l

] [
1− Φϕϕ

0

3

dl

l

]
≈ σ0

[
1 +

(
−〈ϕ〉+

1

6
Φϕϕ

0

)
dl

l

]
,

m0l ≈ m0

[
1− Φχχ

0

dl

l

]
,

σ1
0l = σ0

[
1 +

(
−〈ϕ〉+

1

2
Φϕϕ

0

)
dl

l

] [(
Φϕϕ

0

3
+

2

3
Φϕχ

0

)
dl

l
− 1

]
≈

≈ −σ0

[
1 +

(
−〈ϕ〉+

1

6
Φϕϕ

0 −
2

3
Φϕχ

0

)
dl

l

]
.

For dl→ 0 we obtain
d lnσ0l

d ln l
= −〈ϕ〉+

1

6
Φϕϕ

0 , σ0l0 = σ0,
d lnm0l

d ln l
= −Φχχ

0 , m0l0 = m0,

d lnσ1
0l

d ln l
= −〈ϕ〉+

1

6
Φϕϕ

0 −
2

3
Φϕχ

0 , σ1
0l0

= σ0. (17)

In scale invariant media the solution of the equations (17) have the form:

σ0l = σ0

(
l

l0

)〈−ϕ〉+ 1
6

Φϕϕ0

, m0l = m0

(
l

l0

)−Φχχ0

, ε1
0l = ε0

(
l

l0

)−〈ϕ〉+ 1
6

Φϕϕ0 −
2
3

Φϕχ0

. (18)

The variance of velocity vector in the scale-invariant medium is evaluated by the
formulas: 〈(

dx(t)

dt

)2
〉
−
〈
dx(t)

dt

〉2

= Ω

[
1

3
A− Ω1E

](
dx (t, l)

dt

)2

, (19)

where Ω =
(
l
l0

)− 4Φ
ϕχ
0
3

+
2Φ
ϕϕ
0
3

+Φχχ0

and Ω1 =
(
l
l0

)−2〈ϕ〉−
Φ
ϕϕ
0
3

+Φχχ0

, the main diagonal

elements of matrix A equal 2
(
l
l0

)−(Φϕϕ0 /5)
+ 1 and all other array elements are equal

to −
(
l
l0

)(−Φϕϕ0 /5)
+ 1.
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3 Numerical modeling

The equations (1), (2) are numerically solved in a cube L0 on edge. On the sides
of the cube x2 = 0, x2 = L0 the pressure is constant p (x1, x2, x3) |x2=0 = p1,
p (x1, x2, x3) |x2=L0 = p2, p1 > p2. On the other sides of the cube, the pressure is
speci�ed by the linear relation for x2: p = p1+(p2−p1)y/L0. The basic �ltration �ow
is directed along x2:-axis. For the numerical calculation the dimensionless variables
are used. The all lengths are measured in terms of L0, the unit di�erence of pressure
is chose di�erence p1 − p2, the conductivity is measured in terms of σ0. Thus, the
problem is solved in unit cube with unit di�erential pressure for σ0 = 1. For the
spatial variables, we use 5123 grid. At the �rst, the conductivity and the porosity
�elds are modelled. The integrals in (3), (5) are replaced by a �nite di�erence
formula, in which it is convenient to pass to the logarithm with base 2:

σ(x)l0 = exp

[
− ln 2

0∑
k=−8

ϕ(x, τk)δτ

]
,m(x)l0 = m0 exp

[
− ln 2

0∑
k=−8

χ(x, τk)δτ

]
. (20)

ϕ(x, τk) =

√
Φϕϕ0
ln 2

ζ(x, τk) + 〈ϕ〉 , χ(x, τk) =

√
Φχχ0
ln 2

(
rζ (x,τk) +

√
1− r2ς (x,τk)

)
+

Φχχ0
2
.

(21)

Here is, lk = 2τk , τk = kδτ , δτ = 1 is discretization step in the logarithm of the scale,
−1 ≤ r ≤ 1 is a correlation coe�cient. The �elds ϕ(x, τk), χ(x, τk) are generated
separately for each l. The total power exponents in (20) are summed over statistically
independent layers. The number of additives in (20) and scales were chosen so that
the largest scale of displacement pulsations would allow us to replace the probabilistic
mean values by spatially average values, while the smallest scale of pulsations would
provide that the numerical methods would approximate equations (1), (2) quite well
on all the scales. Thus, three layers are used in the calculations lj = 8h, 16h, 32h. A
minimal scale is l0 = 1/64. The independent Gaussian �elds ζ(x, τk), ς (x,τk) have
unit variance, zero mean and correlation function e[−(x−y)2δij/2

2τi ]. For the modeling
the random �elds the method [6] is used . For solving equation (1) an iterative
method combined with the Fourier transform and the sweep method [7] and for
solving equations (2) the Runge-Kutta method of second order accuracy are used.
We use parameters:m0 = 0.15, Φχχ

0 = 0.1, 〈ϕ〉 = 0.2, Φϕϕ
0 = 0.4, 〈χ〉 = 0.05, r = 0.8,

Φϕχ
0 =

√
Φϕϕ

0 Φχχ
0 . For evaluation the mean velocity of the front is applied formula

log2

〈
dx2 (τk)

dt

〉
= ak, ak =

(
〈ϕ〉 − 1

6
Φϕϕ

0 +
2

3
Φϕχ

0 − Φχχ
0

)
k, (22)

where k = 1, 2, 3 is the number of layers in (20). In the �gure 1 The dashed line is
the result obtained by the conventional perturbation theory, solid line is the result
obtained by the e�ective equations, stars is the result of numerical modeling. In �gure
2 the variance of x2(t) in double logarithmic coordinates is described. The increase
in square thickness occurs according to a power law with an exponent 1.77. The
exponent depending on time of particle size domain is equal to 0.87 > 0.5, (

√
Dx2(t) ∝

t0.87), that indicates the super di�usion process. In �gure 3 the theoretical results
described by (22) are compared with result of direct 3D numerical modeling and the
result obtained by conventional perturbation theory.
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Figure 1: Mean velocity 〈x2(t)〉. Figure 2: The dependence
Dx2 = ln 〈(x2(t)− 〈x2(t)〉)2〉 on ln t.

Conclusions

We have presented the e�ective coe�cients for the wave equation if its parameters
are described by extremely irregular small-scale �elds that are close to multifractals.
The multifractals can be obtained if a minimum scale l0 in formulas (3), (5), tends
to zero. As a minimum scale is �nite, any singularities are absent, we use only the
theory of di�erential equations and the theory of stochastic processes. The numerical
verify, when use the spatial averaging and following additional averaging over Gibbs
ensemble, gives good agreement with the theoretical results.
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Abstract

The paper deals with the estimation problem for random processes in dy-
namical systems whose mathematical models are described by stochastic dif-
ferential equations with a compound Poisson process. The particle method
and the maximum cross section method are applied for estimating (�ltering,
smoothing, and prediction).

Keywords: stochastic di�erential equation, Poisson process, estimation, �l-
tering, smoothing, prediction, particle method, maximum cross section method,
statistical modeling.

Introduction

In many practical problems [6, 8, 13, 16, 19, 20], such as the tracking, navigation,
and �nancial analysis, it is necessary to estimate parameters or the state vector of a
dynamical system given the observations. In this paper, the estimation problem is
considered for jump-di�usion systems [9, 18].

The estimation of parameters or the state vector of the jump-di�usion system is
considered for the current time (�ltering problem) and for the past or future (smooth-
ing or prediction, respectively) [7, 17]. The particle method, which involves modeling
trajectories of a dynamical system, is used for solving these problems. Previously, the
particle method was already applied to solve �ltering problem for jump-di�usion sys-
tems [15], but the simplest method was used to simulate points of the Poisson process
(the mathematical model of the jump-di�usion system involves the stochastic di�er-
ential equation (SDE) with a compound Poisson process). Here, it is suggested to use
the maximum cross section method and its modi�cation [11, 12] for modeling these
points in estimation algorithms. These methods provide more accurate estimation in
the �ltering, smoothing, and prediction problems. The complexity of these methods
and their constructive dimension is lower due to fewer random number generator
calls.
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1 Estimation problem for jump-di�usion systems

We consider a stochastic continuous-time observation system that includes two equa-
tions:

dX(t) = f
(
t,X(t)

)
dt+ σ

(
t,X(t)

)
dW (t) +

∫
Ξ

v
(
t,X(t−), ξ

)
ν(dt× dξ),

X(0) = X0, (1)

dY (t) = c
(
t,X(t)

)
dt+ ζ(t)dV (t), Y (0) = Y0 = 0. (2)

The equation (1) is the Itô SDE with a compound Poisson process, where X ∈ Rn

is a state vector, t ∈ T = [0, T ], f(t, x) : T × Rn → Rn, σ(t, x) : T × Rn → Rn×s,
v(t, x, ξ) : T × Rn × Ξ → Rn, Ξ = Rq; W (t) is the s-dimensional standard Wiener
process, ν is the Poisson random measure on T × Ξ with the characteristic measure
Πν given by the function π(t, x, ξ) : T × Rn × Ξ → R+; X0 is an initial state vector
with a given distribution.

The equation (2) is also SDE, where Y ∈ Rm is an observation, c(t, x) : T×Rn →
Rm, ζ(t) : T → Rm×d; V (t) is the d-dimensional standard Wiener process. The
matrix η(t) = ζ(t)ζT(t) is nondegenerate, i.e., det η(t) 6= 0 for any t ∈ T. The initial
state vector X0, Wiener processes W (t) and V (t), the Poisson random measure ν are
independent.

Let λ(t, x) : T×Rn → R+ denote the jump rate (or intensity) and let ψ(t, δ) : T×
Rn → R+ denote the probability density function for jumps (random increments
of the state vector). These two functions de�ne the characteristic measure Πν , the
Poisson random measure ν, and the function v(t, x, ξ). Thus,

Pr
(
P (t+ ∆t)− P (t) = 1 |X(t) = x

)
= λ(t, x)∆t+ o(∆t)

for small ∆t, where Pr is a probability, P (t) is the Poisson process such that [9, 10]

P (t) =

∫ t

0

∫
Ξ

ν(dt× dξ) = ν([0, t]× Ξ),

and ψ(τj, δ) is the probability density function for the jump ∆j at time τj, {τj} are
points of the Poisson process P (t), τ0 = 0, i.e.,

X(τj) = X(τ−j ) + ∆j, j = 1, 2, . . . , (3)

P c(t) =

∫ t

0

∫
Ξ

v
(
t,X(t−), ξ

)
ν(dt× dξ) =

P (t)∑
j=1

∆j,

where P c(t) is the compound Poisson process.
Functions f(t, x), σ(t, x), λ(t, x), ψ(t, δ), c(t, x), and ζ(t) are given, they satisfy

the conditions on the existence and uniqueness of the solution of SDEs [18]. In
addition, E|X0|2 <∞, where E is an expectation or mean.
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The optimal estimation problem is to �nd an estimate X̂(θ) given the observations
Y t

0 = {Y (τ), τ ∈ [0, t]} such that X̂(θ) = ψ(θ, Y t
0 ), where the function ψ(θ, · ) satis�es

for all θ ∈ T the following condition:

E
[(
X(θ)− X̂(θ)

)T(
X(θ)− X̂(θ)

)]
→ min

ψ(θ, · )
.

This implies that X̂(θ) = ψ(θ, Y t
0 ) = E

[
X(θ)|Y t

0

]
.

For θ = t we have the �ltering problem, for θ < t and θ > t we have the smoothing
problem and the prediction problem, respectively.

2 Particle method for estimation of jump-di�usion

random processes

The algorithm based on modeling a special random process with terminating and
branching paths was proposed in [14] to solve the optimal �ltering problem. Paths
of such process are completely determined by the SDE (1), and the observations de-
scribed by the SDE (2) a�ect on the terminating and branching rates (or intensities).
Then, this algorithm was modi�ed so that it was possible to solve not only the �l-
tering problem but also the prediction problem [4]. The smoothing problem is more
di�cult in this way, therefore, we will use the particle method [5].

The weight function ω(t) should be de�ned in the particle method [5]. This is
a random process, which depends on the process X(t) determined by the SDE (1)
and observations Y t

0 . For example, the estimate X̂(t) in the �ltering problem for the
di�usion random process is the normalized weighted mean, i.e.,

X̂(t) =
E
[
ω(t)X(t)

]
Eω(t)

.

In this paper it is proposed to apply the particle method in the �ltering, smooth-
ing, and prediction problems for the jump-di�usion random process. We will focus
only on modeling paths for the jump-di�usion random process using the maximum
cross section method, modeling paths of the weight function, and �nding the optimal
estimate.

Let {tk} be a discretization of the time interval T with a variable step size hk > 0:

tk+1 = tk + hk, k = 1, 2, . . . , N ; t0 = 0, tN = T.

Denote by Xk a discrete-time approximation of the random process X(t) deter-
mined by a numerical method for the Itô SDE (1) without the compound Poisson
process [3, 9, 13], i.e., the random vector Xk is an approximation of X(t) at time tk,
and λ(t, x) ≡ 0. For example,

Xk+1 = Xk + hkf(tk, Xk) +
√
hk σ(tk, Xk) ζk (Euler�Maruyama method); (4)
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Xk+1 = Xk +
hk
2

(
a(tk, Xk) + a(tk+1, X

p
k)
)

+

√
hk
2

(
σ(tk, Xk) + σ(tk+1, X

p
k)
)
ζk (Derivative-free Heun method), (5)

where Xp
k = Xk + hk f(tk, Xk) +

√
hk σ(tk, Xk) ζk;

Xk+1 = Xk +
hk
2

[
I − hk

2

∂a(tk, Xk)

∂x

]−1(
a(tk, Xk) + a(tk, X

p
k)
)

+

√
hk
2

(
σ(tk, Xk) + σ(tk, X

p
k)
)
ζk (Rosenbrock type method), (6)

where I is the n-dimensional identity matrix, Xp
k = Xk +

√
hk σ(tk, Xk) ζk, and

ai(t, x) = fi(t, x)− 1

2

n∑
j=1

s∑
l=1

∂σil(t, x)

∂xj
σjl(t, x), i = 1, 2, . . . , n.

In relations given above ζk is an s-dimensional random vector with independent co-
ordinates having the standard normal distribution for all k.

According to [5] the weight function ω(t) is de�ned by

ω(t) = exp

{∫ t

0

cT
(
τ,X(τ)

)
η−1(τ)dY (τ)− 1

2

∫ t

0

c
(
τ,X(τ)

)
η−1(τ)c

(
τ,X(τ)

)
dτ

}
,

and a discrete-time approximation of the random process ω(t) at time tk is denoted
by ωk, where

ωk+1 = ωk exp

{
cT(tk, Xk)η

−1(tk)
(
Y (tk+1)−Y (tk)

)
−1

2
cT(tk, xk)η

−1(tk)c(tk, Xk)hk

}
,

ω0 = 1. (7)

The discretization {tk} is a superposition of the discretization of the time interval
T with a �xed step size h > 0 and points of the Poisson process P (t). It is suggested
to use the maximum cross section method for modeling these points {τj}. According
to [1, 2, 11, 12], if there exists λ∗ such that λ(t) 6 λ∗, then the random time between
neighboring points τj and τj+1 should be simulated as follows:

τ = θN , N = min

{
ϑ : αϑ 6

λ(τj + θϑ)

λ∗

}
, θϑ =

ϑ∑
i=1

ξi,

where ξ1, ξ2, . . . , ξϑ, . . . is a sequence of independent random variables having the
exponential distribution with parameter λ∗: ξi = − ln βi/λ

∗; α1, α2, . . . , αϑ, . . . ,
β1, β2, . . . , βϑ, . . . is a sequence of independent random variables having the uniform
distribution on the interval (0, 1), and λ(t) = λ(t,X(t)).
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The modi�ed maximum cross section method [1, 2, 12] is more e�cient, and for
this modi�ed method the number N is de�ned by

N = min

{
ϑ : 1− α >

ϑ∏
i=1

(
1− λ(τj + θi)

λ∗

)}
,

where α is a random variable having the uniform distribution on the interval (0, 1).
To �nd the approximate solution of the �ltering, smoothing, and prediction prob-

lems it is necessary to simulate M sample paths X i(t) of the random process X(t)
and the corresponding paths ωi(t) of the weight function ω(t) by the scheme (4), (5)
or (6) and the relation (7) taking into consideration points of the Poisson process
P (t) and the relation (3), i = 1, 2, . . . ,M .

The approximate solution of the optimal estimation problem is the normalized
weighted mean:

X̂(tκ) ≈ X̂κ =

( M∑
i=1

ωik

)−1 M∑
i=1

ωikX
i
κ,

where the index k corresponds to the current time t = tk and the index κ corresponds
to the time θ = tκ for which the state vector estimate is calculated. The higher order
moments can be also found as well as estimations of the probability density function
or distribution function of the state vector.

Thus, it is obtained the approximate solution of the �ltering problem if κ = k. We
have the approximate solution of the smoothing problem and the prediction problem
if κ < k and κ > k, respectively.

Note that in the smoothing problem unlike the �ltering problem it is necessary
to store paths of the random process X(t) in the computer memory. In the �ltering
problem it is enough to store the states for the current time only, these states de�ne
the initial data in the prediction problem [4].
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Abstract

In this paper, a model of a random-structure system is constructed. The
model describes control of an unmanned aerial vehicle (AV). The model is tested
by using a specially designed statistical algorithm.

Keywords: unmanned aerial vehicle, block diagram, random structure sys-
tem, stochastic di�erential equation, statistical algorithm

Introduction

At present, dynamic systems with random changes in the conditions of functioning
and perturbations causing abrupt changes in the structure as a whole (that is, struc-
tural uncertainty) are widely used. A systematic description of such problems and
methods of their analysis can be found in [3].

Such models have been developed in many branches of science to perform scienti�c
research related to modeling of complicated phenomena and control processes. These
are, for instance, problems of automatic control of a system with di�erent operation
modes and di�erent structures in non-overlapping time intervals. Such systems are
called dynamic systems with random structure change (DSRSC) or random-structure
systems.

Examples of random-structure systems are airborne collision avoidance systems,
systems of search for and interception of signals in navigation and AV �ight control,
combined target guidance systems, as well as systems with possible failures.

1 Construction of a stochastic model for an

unmanned aerial vehicle control system

We construct a mathematical model of a control system (CS) of an unmanned aerial
vehicle (AV) of the DSRSC class.

The system being simulated has two states: The �rst (basic) state is searching
for a target and tracking by AV angular coordinates and distance using a radar
information system. The second one is target interception and autotracking by the
angular coordinates and distance using a laser locator. If the laser information system
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Figure 1: Block diagram of the guidance loop of a remote controlled AV in a
vertical plane

fails, it rapidly changes to the radar information system, that is, the system returns
to the �rst state.

Transitions from the r-th structure to the l-th one are governed by using transition
intensities ν(r,l)(t) or conditional probabilities P(r,l)(t, A) calculated as convolutions
of the probability density distribution (PDD) of the �life� times preceding the l-th
structure.

The PDD of the DSRSC �life� times in each of the possible structures, f (1)(τ) and
f (2)(τ), is determined from results of natural (or seminatural) experiments.

Fig. 1 presents a typical block diagram of the guidance loop of a distance controlled
AV in a vertical plane with an integrated (radar-laser) information system. The
following notation is used in this �gure:

FF, transfer functions of the forming �lters in the form of oscillatory links, pro-
viding the formation of the output error of measurement of the di�erence between
the angular coordinates of the target and AV in a vertical plane in the l-th structure
(phase coordinate);

R(t), deterministic function approximating the current slant distance to AV;
CGD, transfer function of the command guidance system of AV in a vertical plane;
PM, transfer function of the AV control actuator in the form of an aperiodic link;
3UP, transfer characteristic of the AV in the form of an oscillatory link with

nonstationary parameters;
DG, transfer function of damping gyroscope;
K3, transfer function of nonstationary kinematic link of the AV remote controlled

loop.
The following assumptions and constraints are used in the AV remote controlled

loop block diagram shown in Fig. 1:
1) a two-dimensional model of the AV remote controlled loop is considered only

in one (vertical) guidance plane;
2) strong radar and laser signals re�ected from the target are considered, in which
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the ratio of the signal power to the noise power is much larger than unity;
3) pulsed control commands transmitted to the AV are not taken into account,

since the re-mote controlled loop is a narrow-band tracking system;
4) measurement errors of the di�erence in the angular coordinates of a single

target and in vertical and horizontal planes are assumed to be Gaussian random
processes with exponential-oscillatory correlation functions

K
(l)
y (τ) = D

(l)
y e−α

(l)|τ |cos(β(l)|τ |).

Table 1: Description of the phase coordinates of the AV control system

phase phase coordinate unit
coord. name
y

(l)
1 (t) AV tilt angle at the kinematic link output in the l-th CS rad

structure
y

(l)
2 (t) Pitch angle in the l-th CS structure rad
y

(l)
3 (t) Angular velocity of rotation of the AV velocity vector in a rad

s

vertical plane in the l-th CS structure
y

(l)
4 (t) Angular acceleration of rotation of the AV velocity vector rad

s2

in a vertical plane in the l-th CS structure
y

(l)
5 (t) AV elevator de�ection angle in the l-th CS structure rad
y

(l)
6 (t) AV control command at the onboard command decoder output rad

output in the l-th CS structure
y

(l)
7 (t) AV control command in a vertical plane at the CGD output m

(up to the stopper) sent to the AV in the l-th CS structure
y

(l)
8 (t) Signal at the output of the second CGD forming �lter m

in the l-th CS structure
y

(l)
9 (t) Signal derivative at the output of the second CGD forming m

s

�lter in the l-th CS structure
y

(l)
10 (t) Signal at the output of the �rst CGD forming �lter rad

in the l-th CS structure
y

(l)
11 (t) Error derivative of measurement of the di�erence between rad

s

the angles of target location and AV at the FF
output in the l-th CS structure

y
(l)
12 (t) Error of measurement of the di�erence between the angles of rad

target location and AV at the FF output in the l-th structure

When investigating only the AV remote controlled loop this allows replacing the
radar and laser systems of measuring the di�erence in the angular coordinates of
the target and vehicle by two equivalent forming �lters in the form of oscillatory
links. The parameters of these forming �lters are calculated using the values of the
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parametersD(l), α(l), β(l), in the exponential-oscillation correlation functions for every
structure of the control system.

The input master control in the AV remote controlled loop is the current angle of
target location in a vertical plane ε0.

The deterministic function M
(l)
∆ε(t) takes into account the nonstationary mean

error in the measurement of the di�erence of the angular coordinates of the target
and AV in a vertical guiding plane in the l-th structure.

The deterministic function h(l)
u (t) is used to form a preemptive kinematic trajec-

tory of AV �ight with respect to the target sighting line.
The function h(l)

k (t) compensates for the dynamic error of the AV guidance loop
in the l-th structure.

The function gcos(θp)/(
√

2Vp) takes into account the e�ect of the AV mass on the
pitch angle variation rate (the angle of inclination of the AV velocity vector to the
horizon).

Phase coordinates are introduced only at the outputs of inertial links (integrators,
aperiodic and oscillatory ones). The physical meaning and dimensions of the phase
coordinates (see Fig. 1) of the AV control system under study is explained in the
table.

Using standard rules, a random-structure system is constructed for each l-th (l =
1, 2) state of the structure:

dy
(l)
1

dt
= Vp(t)

rp(t)
(θ0 − y(l)

1 + y
(l)
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dy
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dt
= −g cos(θp)√

2Vp(t)
+ y

(l)
3 ,

dy
(l)
3

dt
= y

(l)
4 ,

dy
(l)
4

dt
= − 1

T 2
p (t)

y
(l)
3 −

2ξp(t)

Tp(t)
y

(l)
4 + kp(t)

T 2
p (t)

ϕ
(l)
2 (y5),

dy
(l)
5

dt
= −kgkpm

Tpm
(y

(l)
3 + T1py

(l)
4 ) + 1

Tpm
(kpmy

(l)
6 − y

(l)
5 + kpmVn(t)),

dy
(l)
6

dt
= 1

T7
(−y(l)

6 + k
(l)
u ϕ

(l)
1 (y7) + Vn(t)) +

k
(l)
u T

(l)
2

T
(l)
6 T7

ϕ
(l)
1 (y7)(y

(l)
8 + T

(l)
3 y

(l)
9 ),

dy
(l)
7

dt
=

k
(l)
u (T

(l)
2 )2T

(l)
3

T
(l)
4 (T

(l)
5 )2T

(l)
6

(
R(t)[ε0(t) +M

(l)
∆ε − y

(l)
1 + y

(l)
12 ] + h

(l)
u + h

(l)
k

)
+

k
(l)
u (T

(l)
5 )2−T (l)

2 T
(l)
3 T

(l)
6

(T
(l)
5 )2T

(l)
6

y
(l)
8 − 1

T
(l)
6

y
(l)
7 +

ku(l)(T
(l)
2 +T

(l)
3 )T

(l)
5 −2ξ1T

(l)
2 T

(l)
3

T
(l)
5 T

(l)
6

y
(l)
9 +

k
(l)
u T

(l)
2 T

(l)
3

(T
(l)
5 )2T

(l)
6

y
(l)
10 ,

dy
(l)
8

dt
= y

(l)
9 ,

dy
(l)
9

dt
=

T
(l)
2

T
(l)
4 (T

(l)
5 )2

(
R(t)[ε0(t)+M

(l)
∆ε−y

(l)
1 +y

(l)
12 ]+h

(l)
u +h

(l)
k

)
− 2ξ

(l)
1

T
(l)
5

y
(l)
9 + 1

(T
(l)
5 )2

(y
(l)
10 −y

(l)
8 ),

345



Novosibirsk, 18-20 September, 2019

dy
(l)
10

dt
=

T
(l)
4 −T

(l)
2

(T
(l)
4 )2

[R(t)(ε0(t) +M
(l)
∆ε − y
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2ξ
(l)
0

T
(l)
0

y
(l)
11 +

k
(l)
0

(T
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12

dt
= y

(l)
11 ,

These equations are nonstationary and nonlinear with additive white noises Vn, V1.
Nonlinearity: ϕ(l)

1 (y7) limits the control command size, and ϕ(l)
2 (y5) limits the angle

of deviation of the AV steering wheels.
This system can be written as a system with random structure given by stochastic

di�erential equations:

dY (t) = F (l)(t, Y (t))dt+ Σ(t)(l)dw(t),

where w(t) is 2-dimensional standard Winer process.
The input master control for the AV control system under study is the current

target location angle ε0(t), described by the expression

ε0(t) = arctan y0(t)
x0(t)

= arcsin y0(t)
r0(t)

,

where y0(t) is the current target �ight altitude; r0(t) =
√
x2

0(t) + y2
0(t) is the current

slant distance to the target in a vertical plane; and x0(t) is the current horizontal
distance to the target.

2 Statistical modeling of the control system

When changing the structures, some natural conditions of reconstruction are con-
sidered. The exception is y(l)

12 (t), which is reconstructed in the neighborhood of the
functions M (1)

∆ε (t) and M (2)
∆ε (t) ).

LA error in the vertical plane in the l-th structure is calculated by the formula

h
(l)
1 = (ε0 +M

(l)
∆ε − y

(l)
1 + y

(l)
12 )R(tv),

where tv is the point of contact. An indicator of the e�ciency of the AV control
system is the probability of getting into a circle of radius RPB speci�ed with respect
to the target. Under a normal PDD of the error, f(h

(l)
1 ) is calculated by the following

formula:

P(−RPB ≤ h1 ≤ RPB) =
∫ PB
−PB f(h1)dh1 = Φ

(
RPB−Mh1

σh1

)
+ Φ

(
RPB+Mh1

σh1

)
,
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where h1 is the unconditional (taking into account the two states of the structure)
AV error in a vertical plane; Mh1 is the unconditional mean of the AV error in a
vertical guidance plane; σh1 is the unconditional standard deviation of the AV error

in a vertical guidance plane; and Φ(u) = 1√
2π

∫ u
0
e−

t2

2 dt is the Laplace function.
Statistical modeling of the solutions of system (1) allows estimating various proba-

bilistic characteristics of the solution, including the PDD error. The above-developed
stochastic model of the DSRSC class was studied on an Intel Core i5 3330 PC (3.00
GHz) using an algorithm for statistical modeling of random-structure systems with
distributed transitions described in [1] and stochastic Euler method

Yn+1 = Yn + F (l)(tn, Yn)h+ Σ(l)(tn)
√
hζn,

where ζn are independent standard Gaussian variables, n = 1, 2, ...,

ζ2s−1 =
√
−2 lnαs cos(2πβs), ζ2s =

√
−2 lnαs sin(2πβs), s = 1, 2, ...

The RND128 pseudorandom generator [5] (with a modulus 2128 and a multiplier
5100109) was used for the simulation of uniform random variables αs, βs on the interval
(0, 1). N = 105 samples of the solution were used in numerical examples. The time
mesh nodes include a uniform mesh with the step h = 0.1 and the moments of change
of structure.

The constant parameters of the model are shown in table 2.

Table 2: The constant parameters of the model

if t ≤ 21.2 if t > 21.2
k0 0.591 -0.039
k1 -0.0147 0.016
k2 0.537 -0.2364
k3 -0.014 0.022
k4 0.06857 -0.0261
k5 -0.0018 0.0026
k6 0.1205 -0.0063
k7 -0.0015 0.0044
k8 551 2662
k9 14.1666 -108.53
k10 -0.1334 0.9559
k11 -834 -21494

The following nondimensional parameters of the model were speci�ed for the test
calculations:
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k0 = 0, 707, ξ0 = 0, 27, T
(1)
0 = 0.76, T

(2)
0 = 0.37, k

(1)
u = 1, k

(2)
u = 3, ξ1 = 0.8,

kpM = 0.5, TpM = 0.035, kg = 0.375, T
(1)
2 = 1.8, T

(2)
2 = 1.0, T

(1)
3 = 0.33,

T
(2)
3 = 0.174, T

(1)
4 = 0.14, T

(2)
4 = 0.0725, T

(1)
5 = 0.14, T

(2)
5 = 0.063,

T
(1)
6 = 5.0, T

(2)
6 = 2.5, T7 = 0, 04, T1p(t) = k0 + k1t,

Tp(t) = k4 + k5t, kp(t) = k2 + k3t, ξp(t) = k6 + k7t,
rp(t) = k11 + k8t+ k9

2
t2 + k10

3
t3, Vp(t) = k8 + k9t+ k10t

2.

Conclusions

In this paper, a stochastic model of a control system of unmanned aerial vehicles of the
DSRSC class has been developed. Test calculations with this model using a statistical
algorithm have shown that it can be successfully used with some nondimensional
parameters of natural and semi-natural tests. It is planned to

� develop an analytical mathematical model with the same AV remote controlled
loop according to the method [4];

� perform additional studies with a modi�ed statistical algorithm [2] of the stochas-
tic CS model constructed in the present paper;

� compare the results of calculations in analytical and statistical modeling.
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Abstract

The main objective of this study is to examine the impact of tourism on
the economic growth in Tunisia during the period (1985-2017). To achieve
this goal, the ARDL model was used in its form reduced using two variables
(tourism revenues (TOUR), exchange rate (EX)). The unit root test was also
used to determine if the variables were stable over time and if the variable
(LTOUR) was stable at the level, but the variables (LGDP, LEX) were stable
after the �rst di�erence level. The results of the study showed a positive e�ect
of the tourism revenues, but the e�ect of exchange rate was not signi�cant in
the long term.

Keywords: Tunisian economy, Tourism revenues, Autoregressive-Distributed
Lag model (ARDL).

Introduction

According to the WTO, Holloway and others [3, 12], tourism activity is de�ned as the
activities of people on their journey and residence in a place outside their habitual
residence during a continuous period of less than one year for recreation, business
or other purposes. Thus, income from tourism can be de�ned as follows: the total
income from tourism activities during the year.

The focus of tourism research since the 1930s has been on the importance of
tourism as a source of foreign exchange. But the contribution of tourism and its im-
pact on development and macroeconomic variables have only recently been discussed.
There is no doubt that tourism is the main engine of a country's economy and that
it has a positive impact on the economy.

The World Travel and Tourism Council succinctly summarized the important role
that travel and tourism play in the growth of global economy as follows:

In 2017, Travel & Tourism' s total contribution to the global economy has risen
to 10.4% of global GDP (US $8.3 trillion), as it grows at a faster pace than most
other important sectors such as trade, �nance, transportation and manufacturing. In
total, nearly 313 million jobs related to tourism were created, which means that 1
of 10 jobs around the world come from the travel and tourism sector. Travel and
tourism still capable of generating high levels of employment through ever-increasing
demand, demonstrating the importance and value of the sector as a tool for economic
development and job creation [11].

In this paper, the impact of tourism on economic growth in Tunisia will be mea-
sured through the use of the Nicolas Detsakis's model.
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1 Pilot study methodology

Cointegrating tests, such as Engle and Granger (1987), Johansen (1988) and Johansen
and Juselius (1990), require that variables be in the same level: in this case they
cannot be performed with integral variables of di�erent levels, i.e. I(0) and I(1).
Therefore, the Autoregressive-Distributed Lag (ARDL) model has become the best
alternative to what does not require that the estimated variables have the same level
of integration.
The ARDL method used to test the overall cointegrating has many advantages:
It can be applied regardless of whether the variables studied are cointegrated from
I(0) or I(1) or cointegrated in di�erent levels, that is, they can be used when the
degree of cointegration is unknown or not homogeneous for all variables. This would
be good if the sample size (number of observations) is small, and this is not the case
for most traditional cointegration tests that require a large sample size so that the
results are more e�ective. Moreover, its use allows us to simultaneously evaluate the
components of the long-term and short-term (relations) in one equation instead of
two separate equations [4].

The ARDL method will be used in three stages: at the �rst stage, cointegration
test within the UECM, which adopts the following formula, imposing a relationship
between Y (dependent variable) and X (independent variable vector):

∆Yt = α0 +
m∑
i=1

β0∆Yt−i +
n∑
i=0

Θi∆Xt−i + λ1Yt−1 + λ2Xt−1 + ηt (1)

Where λ1, λ2 expresses long-term ratios, and β, Θ expresses short-term ratios, and
∆ denotes the �rst di�erences of variables, while each from (m, n) lag for variables
(although not necessarily Number of time delay periods) for variables on the same
level or quantity (m 6= n) [9]. And η the random error, which has an average equal
to zero and a constant variance and does not have consecutive correlations between
them.

Cointegration is checked between variables in equation (1) using the following
assumptions: Null hypothesis (H0): no cointegration: λ1 = λ2 = 0, in comparison
with the alternative hypothesis (H1): cointegration λ1 6= λ2 6= 0 Because the distri-
bution of test F is non-standard and depends on: (1) whether the variables included
in the ARDL form are cointegrated from I(0) or I(1); (2) the number of independent
variables; (3) sample size, and therefore the null hypothesis is rejected by comparing
the calculated F values with the values set within the critical limits proposed by Pe-
saran et al. (2001), Two sets of asymptotic critical values are provided: one when all
regressors are I(1) and the other if they are all I(0). These two sets of critical values
provide a band covering all possible classi�cations of the regressors into I(0), I(1) or
mutually cointegrated [5]. If the calculated value for F is greater than UCB, in this
case the null hypothesis is rejected and an alternative hypothesis (cointegration) is
accepted. Conversely, if the calculated F is less than the LCB, in this case the null
hypothesis is accepted (no cointegration). If the F value is between UCB and LCB,
the result will not be adjusted.
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In the case of general cointegration of variables, the second stage includes an
assessment of the long-term equation as follows:

Yt = α0 +

p∑
i=1

ϑiYt−i +

q∑
i=0

σiXt−1 + ρt. (2)

Where ϑ, σ coe�cients of the variables and p, q indicates the delay periods for these
variables, ρ is the random error limit.

The delay rank is selected in the ARDL model according to Akaike (AIC) or
Schwarz Bayesian Criterion (SBC) before evaluating the OLS model to eliminate
sequential or self-correlation of random errors. Pesaran and Shin (2009) recommended
a maximum of two periods of deceleration for annual data [6].

In the third stage, the ARDL speci�cation can be obtained for short-term dynam-
ics by building the following error correction model (ECM):

∆Yt = c+

p∑
i=1

ϑi∆Yt−i +

q∑
i=0

σi∆Xt−i + ψECTt−1 + ρt (3)

Where ECTt-1 is the error correction term, and all the coe�cients of the short-
term equation are related to the short-term dynamics of the model's proximity to
equilibrium, ψ is the coe�cient of the error correction term, which measures the
adjustment speed at which the imbalance is equal to the corrected in the short-term
direction long-run equilibrium.

2 Speci�cations and model data

The main objective of this paper is measuring the impact of tourism on the economic
growth. To do this, we will evaluate this relationship, in particular, by the Tunisia
experience (as an example) and, therefore, on the basis of economic theory, as well
as empirical models in previous studies (Du & others 2016; Dritsakis 2012) on the
same issue [1, 2], equation will be evaluated to measure the impact of tourism on the
economic growth (taking into account the exchange rate as an independent variable)
in Tunisia during the period: 1985-2017.

LGDPt = α + β1LTOURt + β2LEXRt + εt t = 1, 2, . . . ..., T. (4)

Where GDP is real GDP per capita, TOUR is tourism revenues and EXR is the
exchange rate.

3 Empirical Results

Before considering the combined cointegration of the ARDL model and evaluation its
results, it is important to conduct unit root tests to determine the degree of stability of
variables, that is not a necessary condition for using the ARDL model, but the model
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does not work exactly if some variables are stationary in the second di�erence I(2).
According to the test results shown in table (1), LGDP & LEX variables stationary
at the �rst di�erence, with the exception to LTOUR is stationary at the level.

Table 1: Unit root tests

level series �rst di�erence series
PP ADF PP ADF

LGDP -0.34 -0.31 -5.81* -5.84*
LTOUR -3.69* -2.16 -5.55* -5.54*
LEXR 0.90 0.75 -5.21* -5.21*

Notes: data include all variables, they are in natural logarithms.The numbers in
parentheses are p-values. * Rejection of null hypothesis at the 1%, 5% and 10% level
of signi�cance, respectively. The null hypothesis of these tests is that the time series
has a unit root (nonstationary series)
Source: output from Eviews 10.

4 Autoregressive Distributed Lag (ARDL) cointe-

gration technique

The ARDL model, based on the UECM and ARDL Bound Testing Approach models,
proposed by Pesaran et al (2001), is most suitable for detecting the cointegration
of model variables. Cointegration is estimated by evaluating the UECM model as
follows:

∆LGDPt = β0 +

p∑
i=1

βi∆LGDPt−i +

q∑
i=0

Θi∆LTOURt−i +

q∑
i=0

ωi∆LEXRt−i

+λ1LGDPt−1 + λ2LTOURt−1 + λ3LEXt−1 + εt (5)

To test the cointegration of variables, hypotheses are formulated as follows: Null
hypothesis (H0): no cointegration : λ1 = λ2 = λ3 = 0, Alternative hypothesis (H1):
cointegration : λ1 6= λ2 6= λ3 6= 0

From the table (2) of cointegration results using the model (ARDL), it is clear
that its (F) calculated values are greater than the critical value at a signi�cant 1%
level, and then reject the null hypothesis that there is no cointegration between the
variables and existence long-term relationships between variables.

Since there is cointegration between model variables, this cointegration includes
long-term relationships between these variables, which accept the following formula:

LGDPt = β0 +

p∑
i=1

βiLGDPt−i +

q∑
i=0

ΘiLTOURt−i +

q∑
i=0

ωiLEXRt−i + εt (6)
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Table 2: Conditional Error Correction Regression

Regressor Coe�cient STD
C 1.377743*** 0.352211
LGDP(-1)* -0.223266*** 0.052741
LIT(-1) 0.066957*** 0.015451
LEX(-1) 0.049234 0.037576
D(LIT) 0.034423* 0.017370
D(LIT(-1)) -0.057722*** 0.016469
D(LEX) -0.017244 0.047454
D(LEX(-1)) -0.101720* 0.052050
D(LEX(-2)) -0.122552** 0.054218
Case 2: Restricted Constant and No Trend
LIT 0.299900*** 0.046453
LEX 0.220519 0.140680
c 6.170858*** 0.331246
F-Bounds Test
F-statistic 20.91202
K 2
10% 2.63 3.35
5% 3.1 3.87
2.5% 3.55 4.38
1% 4.13 5

Note: *, ** and *** indicates signi�cance at 10, 5 and 1% level.
Source: output from Eviews 10.

In light of the ARDL criteria (1, 2, 3), to determine the variance of the variables, it
was found that the total sum of the balanced weight of the long-term relationship has a
negative and signi�cant factor indicating that there is an error correction mechanism,
and the equation can be written as follows:

LGDP = 0.2999 ∗ LTOUR + 0.2205 ∗ LEXR + 6.1709 (7)

The results showed that the error correction parameter was signi�cant by compar-
ing the calculated value of t (t = -4.2332) with the tabulated values of the t_bound
test of pesaran et all (2001). Where the test value for the case 2 was -3.66, for two
explained estimators and level of signi�cance of 1%. Thus, the error correction pa-
rameter is signi�cant at the 1% signi�cance level. The results indicate that the
value of this parameter is smaller than zero, which con�rms the existence of a coin-
tegration relationship and the possibility of correcting short-term errors to return to
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the long-term equilibrium position at a speed of 0.2233 annually, which means that
we need 4.29 years to address the e�ects of one shock occurs in the short term.

On the other hand, the F_bound test indicates that the calculated value is much
greater than the tabulated value at the 1% signi�cance level. Which recon�rms the
previous result i.e. a common integration relationship between model variables. The
results show that the increase in tourism income in Tunisia by 1% leads to an increase
in GDP by 0.2999% annually. All are signi�cant values at the level of less than 1% as
indicated by Prob. Finally, the results did not show a long-term relationship between
the Tunisian dinar exchange rate and GDP.

The Diagnostic tests of the residual of the model. The Breusch-Godfrey Se-
rial Correlation LM test indicates that accept the null hypothesis: that is no auto-
correlation, Prob. Chi-Square(2)=0.5530> 0,05. And the Breusch-Pagan-Godfrey
indicates that we can't reject the null hypothesis of homoscedasticity, Prob. Chi-
Square(8)=0.1884> 0,05. The normality test for Jarque-Bera shows that the null
hypothesis cannot be rejected and therefore the residuals are naturally distributed,
Probability=0.832278> 0,05

5 The test results on the structural stability of the

estimated ARDL modelg

According to Pesaran and Pesaran (1997), the next step after evaluating the formula
for the ARDL model is to check the structural stability of short-term and long-term
transactions. This means that the data used in this study do not have any structural
changes over time. Two tests are used for this: CUSUM (cumulative sum) and
CUSUM-sq (CUSUM squared) [7].

The structural stability of the estimated coe�cients is achieved if the CUSUM
and CUSUMSQ histogram is within critical limits at a signi�cant level of 5%. Conse-
quently, these coe�cients are unstable if the graph of the above two tests is exceeded
at this level.

From Figure 1, it can be seen that the calculated coe�cients are structurally
stationary during the study period, the test statistics diagram is within the critical
limits at a signi�cant level of 5%.

Conclusions

The purpose of this study is to investigate the relationship between tourism rev-
enues (as an independent variable) and economic growth (as a dependant variable) in
Tunisia in the period 1985-2017. To achieve the objective of the study, an autoregres-
sive distributed delay model (ARDL) was used after using the necessary diagnostic
tests of time series (i.e. unit root tests).

The results showed a positive impact for tourism on the economic growth in
Tunisia during the long term, with elasticity coe�cient equal 0.2999, while the ex-
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Figure 1: CUSUM and CUSUMSQ
Source: Researchers based on the results (Eviews 10).

change rate was not signi�cant, which might be due to the relative stability in the
exchange rate during the period under review.

Therefore, this study recommends focusing on both short and long periods in
terms of maintaining moderate exchange rate, and taking appropriate measures (such
as marketing campaigns) to attract as many tourists as possible to increase the income
from tourism in Tunisia.
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Abstract

The article presents an iteration algorithm for the estimation of regression
parameters using inverse operations. Possible usages in the case of linear and
nonlinear dependences are provided for. The application of the developed al-
gorithm for solving more complex problems is considered, in particular, results
of neural network training using a hybrid algorithm are presented.

Keywords: inverse calculations, regression, optimization.

Introduction

Problems of deriving regression equations have become widespread in various �elds:
economics, medicine, and technology. Parameter values are determined using a set of
input and output data. Both simple methods (for example, the mean-value method)
and more complex methods based on optimization problems solving can be used
to estimate regression parameters depending on the conditions of the problem, the
requirements for the accuracy of the solution and the resources of the researcher. The
most common method is the least square method. In the case of linear regression,
the following formula can be used to estimate the parameter vector θ:

θ =
(
XTX

)−1
XTY , (1)

where X is the matrix of input values, Y is the column vector of output variable
values.
In the case of nonlinear dependence, it is necessary to use optimization methods (the
method of gradient descent, the Fletcher-Reeves method, etc.) [6].
This paper is devoted to the development of an iteration algorithm based on inverse
operations to estimate regression parameters, which can also be used in conjunction
with other methods to reduce the search time and improve the solution accuracy.

1 Algorithm for Determining Linear Regression Pa-

rameters Based on Inverse Operations

The mathemiatical expectation of remainders shall be equal to zero - it is one of
the conditions of the classical linear model of multiple regression. According to the
mathematical expectation formula, the condition will be met, if the sum of remainders
is close to zero. Fig.1 shows examples of two lines built provided that the sum of
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remainders is equal to zero. You can see that line y = 1.66+0.57x is the best in terms
of minimizing the sum of squares of deviation remainders. So, the following principle
of parameters determination can be considered: derivation of a regression equation
so that the sum of remainders is equal to zero, consistent changing of its position
while maintaining the equality of the sum of remainders to zero, and selection of the
best optimized parameter from the point of view of the value (in our case - the sum
of remainder squares).

Figure 1: Setting up a regression equation

Let us use a simple example to consider the solution of the problem of determining
the parameters of equation y = b+ ax. The values of x are 5, 6, 2, the corresponding
values of y are 30, 50, 10 (the initial values of the parameters a = 1, b = 1). So, it
is necessary to solve the following equation to �nd the values of the parameters at
which the sum of remainders will be zero:

3b+ 13a = 90 (2)

Let us derive parameter a from the equation, the resulting line is shown in Fig.2. It
is a set of a and b combinations, at which the equality (2) is ful�lled. Let us now
consider two ways of transition from starting point A (1; 1) to the point on the line:

1. Calculate value a by substituting the initial value of b: a = 90−3·1
13

= 6.69. As a
result we get point B (1; 6.69).

2. Determine the shortest distance to the line:

∆a2 + ∆b2 → min

(b+ ∆b) + (a+ ∆a)x = 90.

The solution of such a problem with the help of inverse operations [5] is considered
in [3]. So, it is necessary to solve the system of equations to determine argument
increments:
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Figure 2: Possible solutions of the equation

 3(1 + ∆b) + 13(1 + ∆a) = 90

∆b

∆a
=

3

13
.

So, ∆b = 1.247, ∆a = 5.404 . We get point C (2.247; 6.404). Now we need to calculate
the value of the sum of error squares at obtained point B (or C), change parameter
b by some value to the higher or lower side (points A1, A2), determine the sum of
error squares at new points B1, B2 (or C1, C2) and remember the solution with the
lowest value of the calculated indicator. The resulting algorithm can be presented as
follows ( δ- parameter change step, ε - speci�ed accuracy, u - step reduction factor):
Step 1. Initialization of parameters a and b by random numbers (a∗ = a, b∗ = b).
Step 2. Calculation of variables to form the sum of errors.
Step 3. Solution of the problem of determining parameters a∗ and b∗ to achieve the
sum of the error equal to zero. Calculation of the sum of squares of remainders:

s =
N∑
i=1

(yi − di)2

where N is the number of observations, yi is the actual value of the output variable,
di is the model value of the output variable.
Step 4. Increasing parameter b by the value of δ and determining the parameters to
achieve the total error equal to zero (the resulting values of the parameters are equal
to a1, b1). Calculation of the sum of squares of remainders s1.
Reduction of parameter b by the value of and determining the parameters to achieve
the total error equal to zero (the resulting values of the parameters are equal to
a2, b2). Calculation of the sum of squares of remainders s2 .
If s1 < s, then a∗ = a1, b

∗ = b1, s = s1,
else if s2 < s, then a∗ = a2, b

∗ = b2, s = s2,
otherwise, δ increment reduction in accordance with u factor: δ = δ

u
.

Step 5. Checking the end of the algorithm. If δ < ε, then the algorithm is completed,
otherwise - go to step 4.
In the case of multiple regression, the number of variables changed in step 4 will be
equal to the number of variables in the model reduced by 1.
The formula for the formation of the function of the sum of errors is as follows:
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e = b ·N +
m∑
j=1

N∑
i=1

(ai · x(j)
i ) =

N∑
i=1

yi,

where m is the number of explanatory variables in the model. Then, when using the
method based on inverse operations, it is necessary to solve the following system:

N(b+ ∆b) +
m∑
j=1

N∑
i=1

(aj + ∆aj)x
(j)
i =

N∑
i=1

yi

∆b

∆aj
=

N
N∑
i=1

x
(j)
i

, j = 1..m.

Changes of weighing factors to achieve the sum of errors equal to zero will be:

∆b =
bN+

m∑
j=1

N∑
i=1

(ai·x
(j)
i )−

N∑
i=1

yi

−(N+
m∑
j=1

(
N∑
i=1

x
(j)
i )2/N)

,

∆aj = ∆b

N∑
i=1

x
(j)
i

N
.

Comparing the two ways of calculating the parameters (substitution of the initial
value of the parameter in the dependence equation and use of the smallest increments)
we can draw the following conclusion. The �rst way to �nd a solution is simpler to
implement, because it does not require calculating increments by solving a system of
equations. However, it is less preferable in those cases where the calculation scheme
does not provide for reduction of step δ (step 4 of the algorithm), since it is more likely
to �nd the best solution (move to new point C1 or C2) using the method based on
the minimum increments of arguments at each iteration. This is due to the following
fact: when using the �rst method with a slight change in one parameter (step δ is
small), the second one can increase or decrease to a much greater extent, which will
result in a signi�cant change in the sum of squares of errors, so the best solution
in the vicinity of the point being studied may not be found. An example of such a
problem is neural network training, when weighing factors are adjusted in each epoch
(steps 2-4 of the algorithm, the condition with step δ reduction is eliminated).
Table 1 presents the subsequent iterations when using inverse operations for the
example shown in Fig.2. The results obtained using formula (1): b= -10, a = 9.23,
the sum of squares of remainders is 61.54.

2 Estimation of Nonlinear Regression Parameters

In the case of nonlinear dependence, if possible, linearization shall be performed. In
the case of nonlinear dependence that cannot be linearized, it is necessary to derive
one of the variables and calculate partial derivatives of the function obtained to use
the approach based on inverse operations. This is how the shortest distance to the
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Table 1: Results of the search for linear function parameters

Step, δ Parameter b Parameter a Sum of error
squares, s

1 2.247 6.404 130.791
2 20 -16.742 10.787 82.528
3 10 -7.247 8.596 65.031
4 5 -11.994 9.691 63.374
5 2.5 -9.691 9.143 61.605
6 0.625 -10.214 9.28 61.559
7 0.313 -9.917 9.212 61.542

line tangent to the graph of the line of the level of variables is determined [3]. Now
let us consider the following function as an example:

y = a · xb + µ,

where µ is the value of a random remainder.
Initial data: x values are 2, 5, 6, the corresponding values of y are 49, 748, 1297. The
initial values of parameters a and b are equal to 1. Here is a corresponding problem
of optimization at the �rst iteration:

∆a2 + ∆b2 → min

(a+ ∆a)2(b+∆b) + (a+ ∆a)5(b+∆b) + (a+ ∆a)6(b+∆b) = 2094

Let us consider problem solution using inverse operations. We will derive parameter
a: a(b) = 2094

2b+5b+6b
. The value of the derivative at the initial point is a′(1) = −250.091.

The system of equations is as follows:
∆b

∆a
= 250.091

(1 + ∆a)2(1+∆b) + (1 + ∆a)5(1+∆b) + (1 + ∆a)6(1+∆b) = 2094.

After solving the system we get: ∆a = 0.01215,∆b = 3.0382. After that the deriva-
tive value is determined at new point a′(1 + 0.01215) = −1.745, and the new system
of equations is solved, in which the ratio of increments will be equal to the ob-
tained value. Iterations are performed until the stop condition is met (the change
in increments becomes less than the speci�ed accuracy). The results of parameters
calculation (accuracy ε = 0.001): a=5.899, b=3.010, s=3.941; to �nd the root of the
equation, Newton's method with an accuracy of 10−7 was used (the values of param-
eters obtained using Mathcad package: a = 5.865, b = 3.013). The time required to
solve the problem was 0.0073 seconds (VBA language was used for the implementa-
tion). The problem was solved using the method of gradient descent at the descent
parameter equal to or less than 5 · 10−8 , since the objective function increased at
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large values. 212,163 iterations and 13.3047 seconds were required to get the solution
found with the help of inverse operations using the method of gradient descent. The
solution at the given accuracy was found in 0.37 seconds using the random search
method with a step of 0.1.

3 Use of the Algorithm for Neural Network Training

The developed algorithm based on inverse operations assumes a step-by-step imple-
mentation and can be used in iterative algorithms in conjunction with other methods,
for example, the method of gradient descent, as well as in various heuristic algorithms.
So, we considered the use of this algorithm when implementing hybrid algorithms for
neural networks training. These algorithms imply the use of various methods in
training di�erent layers of a neural network. When solving optimization problems,
besides hybrid algorithms [4], [2] portfolios of algorithms [4] are created, where every
subgroup of observations uses its own algorithm for solving the problem.
Computational experiments were conducted using the developed algorithm (VBA
language was used for the implementation). The data set included 2 variables, 100
numbers were randomly generated, output variable values were set depending on the
threshold values (Fig.3, the elements belonging to the �rst class are black, to the
second class - gray). The simulation was performed for 50 random implementations,
the maximum number of iterations in the stochastic search was 50, while the param-
eters in the stochastic algorithm were changed in increments of 0.1. The used neural

Figure 3: Source data set

network consisting of three layers is shown in Fig.4. The logistic activation function
was used for �rst layer neurons, and the linear function was used for neurons of the
subsequent layers. The following options for neural network training were considered:

1. The hybrid algorithm presented in [2], which uses formula (1) to calculate the
weighing factors associated with the output neuron.

2. The hybrid algorithm described in [4], which uses the delta rule [7] to calculate
the weighing factors associated with the output neuron.
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Figure 4: Three-layer neural network

3. A modi�cation of the hybrid algorithm considered in [4], which uses inverse
operations to calculate the weighing factors associated with the output neuron
(every epoch uses one iteration of the algorithm presented above).

The average value of the sum of squares of errors was obtained for the �rst algorithm.
It was equal to 20.856, the minimum value of the sum of squares of errors was 16.16.
Fig. 5 shows values of the sum of squares of errors of the second and third algorithms
with the number of epochs equal to 20 and the best values of algorithm parameters
(the parameter of the delta rule descent was 0.004, the sum of squares of errors was
17.618, the minimum value of the sum of squares of errors was 10.063; the step for δ
parameters change in the method of inverse operations was 0.4, the sum of squares
of errors was 13.569, the minimum value of the sum of squares of errors was 6.426).
The Figure also shows the results of the algorithm, which is a combination of the
delta rule and the method based on inverse operations: in each epoch a solution was
determined using these two methods and the one that provided the smallest sum of
squares of errors was selected. Using this algorithm the average value of the sum of
squares of errors turned out to be 11.64, the minimum value of the sum of squares
of errors was 6.852. In this case the solution obtained using the method of inverse
operations was adopted as the best one 815 times, the delta rule - 185 times. So, the
combination of the two methods provided the smallest value of the sum of squares of
errors, however, the time required to solve the problem increased.

Conclusions

The article investigates the possibility of using an algorithm based on inverse opera-
tions to solve regression problems. The presented algorithm is simple to implement
and allows solving the problems considered in the article at a higher speed as com-
pared to the method of gradient descent and stochastic algorithm. In the course
of the work two hybrid algorithms presented in the literature were implemented to
train a neural network, and a modi�cation of one of them that consists in using in-
verse operations to determine the weighing factors associated with the output neuron
was proposed. The proposed algorithm can be used to solve regression problems
both independently and in conjunction with other methods to increase the speed and
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Figure 5: Values of the sum of squares of errors for three algorithms

accuracy of problem solution.
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Abstract

We consider Grubbs's statistics for normal sample, i.e. the standardized
maximum and minimum. One-parameter distribution of these statistics is con-
sidered. We extract one-parameter copula by an inversion method from the
joint distribution of Grubbs's statistics. We describe properties of the rotated
versions of Grubbs's copula. It is proved the existance of domains in which ro-
tated by 90 and 270 degrees Grubbs's copulas coincide with Frechet-Hoe�ding
upper bound. It is found that rotated by 90 and 270 degrees Grubbs's copulas
can model positive dependence between the marginals.

Keywords: symmetric copula, Frechet-Hoe�ding lower and upper bounds,
rotated copulas, joint distribution function of standardized maximum and min-
imum.

Introduction

Dependence modeling by means copulas are used in many areas. New copula-function
can be extracted from the new joint distribution of random variables. Therefore
Grubbs's copula which is extracted from the joint distribution of Grubbs' statistics
can be of practical interest. The goal of this article is to investigate the properties of
rotated versions Grubbs's copula.

1 On the joint distribution of Grubbs's statistics

LetX1, X2, . . . , Xn−1, Xn be a random sample from a normal distribution with mean
a and variance σ2. We consider one-sided Grubbs' statistics that are extreme studen-
tized deviations of observations from sample mean:

T (1)
n =

max
1≤i≤n

{Xi} −X

S
; Tn,(1) =

X − min
1≤i≤n

{Xi}

S
,

where X = 1
n

∑n
i=1Xi is the sample mean and S2 = 1

n−1

∑n
i=1(Xi−X)2 is the sample

variance.
F.E. Grubbs proposed to use these statistics for testing a normal sample on the

presence of anomalous observations [3]. It is known that distributions of statistics
T

(1)
n and Tn,(1) coincide, i.e. P (T

(1)
n < t) = P (Tn,(1) < t).

We denote F (1)
n (t) = P (T

(1)
n < t). The distribution function of of Grubbs's statis-

tic can be found with special recursive procedure which has been described in the
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book [1] (pp.115-116). A recursive formula for describing the distribution function
has the form [1],[8]

F (1)
n (t) = P (T (1)

n < t) =


0, t ≤ 1√

n
, n ≥ 2;

n
t∫

1√
n

F
(1)
n−1(gn(x))fTn(x)dx, 1√

n
< t ≤ n−1√

n
, n ≥ 3;

1, t > n−1√
n
, n ≥ 2;

(1)

where

fTn(x) =
1

n− 1

√
n

π
Γ

(
n− 1

2

)
/Γ

(
n− 2

2

)(
1− n

(n− 1)2
x2

)n−4
2

, |x| < n− 1√
n

; (2)

Γ(x) =

∞∫
0

ξx−1e−ξdξ;

gn(x) =
n

n− 1
x
/√n− 1

n− 2

(
1− n

(n− 1)2
x2

)
, |x| < n− 1√

n
, n ≥ 3. (3)

Let Λn(t1, t2) = P (Tn,(1) < t1, T
(1)
n < t2) be the joint distribution function of the

statistics T (1)
n and Tn,(1). It can be proved that recursive relationships for distribution

function Λn(·) in the case n > 2 have the form [5]

Λn(t1, t2) =



F
(1)
n (t2), t1 ≥ n−1√

n
;

F
(1)
n (t1), t2 ≥ n−1√

n
;

n
t2∫
1√
n

Λn−1 (ρn(t1,−x), gn(x)) fTn(x)dx, (t1, t2) ∈ ∆n;

0, (t1, t2) /∈ ∆n, t1 <
n−1√
n
, t2 <

n−1√
n
,

(4)

where distribution function F (1)
n (t) can be calculated with using (1);

ρn(u, v) = (u+
v

n− 1
)
/√n− 1

n− 2

(
1− n

(n− 1)2
v2

)
, |v| < n− 1√

n
; (5)

functions gn(x) and fTn(x) can be calculated with using (3) and (2) correspondingly;
∆n = [1/

√
n < t1 < (n− 1)/

√
n; 1/

√
n < t2 < (n− 1)/

√
n ].

In case n = 2 they are given by

Λ2(t1, t2) =

{
1, (t1, t2) ∈ ∆2, ∆2 = [

√
2

2
< t1 <∞;

√
2

2
< t2 <∞];

0, (t1, t2) /∈ ∆2.
(6)

Note some properties of the joint distribution function Λn(t1, t2) which can be
derived from (4) .
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1. Function Λn(t1, t2) is symmetrical [5], i.e.

Λn(t1, t2) = Λn(t2, t1).

2. It is valid for (t1, t2) ∈ Σn and n ≥ 3 [7]:

Λn(t1, t2) = F (1)
n (t1) + F (1)

n (t2)− 1, (7)

where Σn = [ 1√
n
≤ t1 <

n−1√
n

; θn(t1) ≤ t2 <
n−1√
n

];

θn(t1) =
t1

n− 1
+
√
n− 2

√
1− nt21

(n− 1)2
. (8)

3. In the case n = 3 we can write[6]

Λ3(t1, t2) =

{
0, (t1, t2) ∈ ∆3\Σ3

F
(1)
3 (t1) + F

(1)
3 (t2)− 1, (t1, t2) ∈ Σ3,

(9)

where F (1)
3 (t) = 3

π
arcsin

(√
3

2
t
)
− 1

2
, 1/
√

3 ≤ t ≤ 2/
√

3.

2 Construction of Grubbs copula

To construct Grubbs's copula by extruction from Λn we apply Sclar's Theorem [4].
Denote φn(x) is inverse- function for Fn,(1), i.e. the equalities are true

F (1)
n (φn(x)) = x, ∀x ∈ [0, 1],

and
φn(F (1)

n (t)) = t, ∀t ∈ [1/
√
n, (n− 1)/

√
n].

Then Grubbs's copula CGr : [0, 1]2 → [0, 1] has the following form

CGr(u, v;n) = Λn(φn(u), φn(v)) (10)

Note some properties of the Grubbs's copula which can be deducted from the
properties of the joint distribution function Λn(·).
1. Grubbs's copula is symmetrical [6], i.e.

CGr(u, v;n) = CGr(v, u;n), ∀(u, v) ∈ [0, 1]2.

2. Let n > 3 and Ξn = [0 ≤ u ≤ 1; δn(u) ≤ v ≤ 1]. Then ∀(u, v) ∈ Ξn Grubbs's
copula coincides with Frechet-Hoe�ding lower bound [7], i.e.

CGr(u, v;n) = u+ v − 1, (11)

where
δn(u) = F (1)

n (θn(φn(u)); (12)
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functions θn(·) and F (1)
n (·) is calculated by formulas (8) and (1), respectively.

3. In the case n = 3 Grubbs's copula coincides with Frechet-Hoe�ding lower bound
[6], i.e.

CGr(u, v; 3) = max(u+ v − 1; 0), ∀(u, v) ∈ [0, 1]2. (13)

Analyzing properties 2�3 we lead to conclusion that the bound δn(u) of the
domain Ξn contains the points with coordinates (0, 1) and (1, 0). Besides, δ3(u) =
1− u. If v = δn(u) then ∀u ∈ [0, 1] and n ≥ 3 we obtain

CGr(u, δn(u);n) = u+ δn(u)− 1.

Hence, ∀u ∈ [0, 1] and n ≥ 3 we have

CGr(u, δn(u);n) = δn(u)− δ3(u).

We can write in accordance with copulas de�nition [4]

CGr(u, v;n) ≥ 0, ∀(u, v) ∈ [0, 1]2, n ≥ 3.

Then
δn(u) ≥ δ3(u), ∀u ∈ [0, 1], n ≥ 3. (14)

Thus, the domain Ξn is bounded by the lines u = 1, v = 1 and the curve v = δn(u).
With the increasing parameter n the bound v = δn(u) is removed from the main
diagonal u+ v = 1 of the unit square.

3 Rotated versions of Grubbs's copula

Grubbs's copula allows to describe negative dependencies between marginals. In ad-
dition to this copula we can introduce its rotated versions. Rotation by 180 degrees
leads to the survival copula. Survival copula CGr

180 can be extracted from the corre-
sponding joint survival function Λn(t1, t2) = P (Tn,(1) > t1, T

(1)
n > t2). Then we have

[4]

Λn(t1, t2) = CGr
180(F

(1)
n (t1), F

(1)
n (t2);n),

where F (1)
n (t) = P (T

(1)
n > t) = P (Tn,(1) > t).

It is valid the following equality

CGr
180(u, v;n) = u+ v − 1 + CGr(1− u, 1− v;n). (15)

When rotating Grubbs's copula by 90 and 270 degrees we obtain its rotated ver-
sions which allow to describe the positive dependence.

Rotated versions of CGr are given as follows [2]

CGr
90 (u, v;n) = v − CGr(1− u, v;n); (16)

CGr
270(u, v;n) = u− CGr(u, 1− v;n). (17)

Some properties of rotated versions of Grubbs's copula are contained in the next
theorems.
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Theorem 1. Let Ξ
(90)
n = {0 ≤ u ≤ 1; δn(1 − u) ≤ v ≤ 1}, Ξ

(180)
n = {0 ≤ u ≤ 1; 0 ≤

v ≤ 1 − δn(1 − u)}, Ξ
(270)
n = {0 ≤ u ≤ 1; 0 ≤ v ≤ 1 − δn(u)} and function δn(·) is

de�ned in accordance with (12). Then for n ≥ 3 the next equalities take place

CGr
90 (u, v;n) = min(u, v) ≡ u, ∀(u, v) ∈ Ξ(90)

n . (18)

CGr
180(u, v;n) = 0, ∀(u, v) ∈ Ξ(180)

n . (19)

CGr
270(u, v;n) = min(u, v) ≡ v, ∀(u, v) ∈ Ξ(270)

n . (20)

Proof. Taking into account formula (11) we obtain

CGr(1− u, v;n) = v − u, ∀(u, v) ∈ Ξ(90)
n .

Applying (16) we can write

CGr
90 (u, v;n) = u, ∀(u, v) ∈ Ξ(90)

n . (21)

Taking into account inequality (14) we have δn(1−u) ≥ u, ∀u ∈ [0; 1]. Therefore
∀(u, v) ∈ Ξ

(90)
n we can write u ≤ δn(1 − u) ≤ v. Hence, ∀(u, v) ∈ Ξ

(90)
n we obtain

min(u, v) = u. Then the formula (21) takes the form (18). Similarly, it is possible to
prove the validity of equality (19) and (20).

Theorem 2. Let n = 3. Then rotated copulas CGr
90 and CGr

270 coincide with Frechet-
Hoe�ding upper bound and CGr

180 coincides with Frechet-Hoe�ding lower bound, i.e.

CGr
90 (u, v;n) = CGr

270(u, v;n) = min(u, v), ∀(u, v) ∈ [0; 1]2; (22)

CGr
180(u, v;n) = max(u+ v − 1; 0), ∀(u, v) ∈ [0; 1]2. (23)

Proof. If n = 3 then δ3(u) = (1− u). Taking into account formula (13) we can write

CGr(u, v; 3) =

{
0, 0 ≤ u ≤ 1, 0 ≤ v ≤ 1− u

u+ v − 1, 0 ≤ u ≤ 1, 1− u ≤ v ≤ u,

Hence,

CGr(1− u, v; 3) =

{
0, 0 ≤ u ≤ 1, 0 ≤ v ≤ u

v − u, 0 ≤ u ≤ 1, u ≤ v ≤ 1,

Taking into account formula (16) we obtain (22). Similarly, it is possible to prove the
validity of equality (23).

Conclusions

1. While Grubbs's copula models negative dependence between the marginals, its
rotated by 90 and 270 degrees versions can model positive dependence between the
marginals.
2. For all parameter's values n ≥ 3 there are domains in which rotated by 90 and
270 degrees Grubbs's copulas coincide with Frechet-Hoe�ding upper bound.
3. If copulas parameter n = 3 then rotated by 90 and 270 degrees Grubbs's copulas
completely coincide with Frechet-Hoe�ding upper bound and rotated by 180 degrees
Grubbs's copula completely coincides with Frechet-Hoe�ding lower bound.
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Abstract

For exploring student characteristics of retention, a logistic regression model
is constructed. Candidate predictors correlate strongly. Hence the problem of
variable selection arises. For stabilizing the LASSO the Bolasso is used. But the
choice of the regularization parameter based on cross-validation does not give a
well-interpretable model. Therefore, approach to analyzing the regularization
path is being developed to select a model structure that includes only relevant
covariates. For this, simple indicators of multicollinearity and signi�cance are
introduced. The applicability of the proposed approach is shown by example of
identifying the reasons why students are left to study in the master's program.

Keywords: LASSO, bootstrap, regularization path, student retention, lo-
gistic regression, variable selection.

Introduction

Logistic regression is often used to estimate the impact of various factors on student
retention [7]. From a large number of attributes related to university drop-out and
persistence, the LASSO regression selects the relevant variables during the model con-
struction process. The LASSO estimates are however known to be highly unstable for
several reasons. First, irrelevant attributes can enter the model randomly with strictly
positive probability. This problem can be solved using the Bolasso [1] that asymptot-
ically selects with overwhelming probability the correct relevant variables. Secondly,
the regression solution is sensitive to the penalty parameter chosen. Cross-validation
is often used to select an optimal value of the regularization parameter. For stabiliz-
ing the LASSO against cross-validation variability the percentile-lasso is introduced
[6]. But cross-validation evaluates a model prediction performance, so too many co-
variates can be selected, and the model can lack interpretability. A "one-standard
error" rule [4] gives the more parsimonious model, but not always a su�ciently sparse
solution. Third, when variables are highly correlated, a single variable is picked at
random. Some kinds of modi�ed penalty functions [3] have been developed to this
instability. However, they lose some of computationally attractiveness.

In contrast to the loss function modi�cation, we propose to analyze the Bolasso
regularization path. This paper introduces new simple indicators that allow to �nd
a meaningful model structure. The model selection procedure is semi-automatic and
incorporates a subjective assessment of strong correlated input variables. This is
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a more �exible approach, since the initial set of variables can be extended by interac-
tion e�ects and combined categorical variables. The approach is however applicable
only in medium-dimensional problems (no more than a hundred variables). It is this
number of factors that in�uence the student retention that can be extracted from
databases of educational institutions.

1 Logistic regression

Let us introduce a Bernoulli random variable η which takes the value 1 in case of
student retention. Suppose a conditional probability of student persistence for a given
vector x of explanatory variables is modeled by logistic regression [5]:

Pr(η = 1|x) = E(η|x) = F (µ+ x′θ), (1)

where F is a logistic distribution function, θ is a vector of e�ects of explanatory
variables to be estimated, µ is an intercept.

The regression coe�cients in (1) can be estimated by minimizing the negative
log-likelihood:

−L(µ,θ) =
N∑
i=1

ρµ,θ(xi, yi), (2)

where yi is a value of η for i-th student, xi is a vector of values of covariates for i-th
student, N is a total number of students, the loss function is de�ned as ρµ,θ(xi, yi) =
−yi(µ+ x′iθ) + log(1 + exp(µ+ x′iθ)).

The initial set of variables usually includes some irrelevant attributes and redun-
dant ones. This makes the model too complex. Thus, optimization of (2) results
in over�tting that can produce misleading regression coe�cients. The regularization
can be performed in order to enhance the interpretability of the logistic model.

2 LASSO regularization

The LASSO regularization imposes a constraint on the model parameters to shrink
some regression estimates towards zero [4]. The estimation problem is de�ned as
follows:

min
µ,θ

1

N

N∑
i=1

ρµ,θ(xi, yi) + λ‖θ‖1, (3)

where λ is a regularization parameter, ‖ · ‖1 is the `1-norm.
The sparsity of the solution in the problem (3) depends on the choice of the

regularization parameter λ.

2.1 Bolasso

Drastic changes in LASSO-regression coe�cients are however known to arise in the
case of small data perturbations. So for a given value of λ the subset of selected
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variables is also unstable. This can be revealed by resampling methods such as the
bootstrap. The intersection of subsets of selected variables for the bootstrap samples
de�nes the Bolasso model structure [1]. Thus, the �nal subset contains only those
attributes that were entered simultaneously in all LASSO regression models. As a
result, the Bolasso can select the correct relevant variables.

The Bolasso regression estimates are computed simultaneously for a large number
of regularization parameters. That allows to �nd the entire regularization path. Let
a decreasing sequence of the regularization parameter values be given λ1, ..., λT , that
is, λ1 corresponds to the simplest model with fewer variables.

The Bolasso is sometimes too strict in intersecting models. We preferred a soft
version of the Bolasso (referred to as Bolasso-S), where we select those variables
which are present in at least 90% of the bootstrap replications. Then, at each λt, the
empirical frequency fjt of that the estimates of j-th covariate do not get shrunk to
exactly zero is calculated. The subset of relevant variables is de�ned by the condition
fjt ≥ γ, where γ is the threshold value (1 for the Bolasso, 0.9 for the Bolasso-S). For
each such subset, the parameter vector of the ordinary logistic regression is estimated
by minimizing (2). The vectors obtained may have a di�erent number of elements
depending on t. In order to avoid this, we �ll the missing elements of the vectors (the
coe�cients of eliminated variables) with zeros. Denote such a vector as θt.

The optimal value of the regularization parameter and the corresponding model
structure can be selected using cross-validation. However, it provides a good predic-
tive ability of the model, but does not guarantee its simplicity and interpretability.
Moreover, in presence of strong correlations between variables, the estimates cannot
be consistent. Further, we propose to analyze the entire regularization path in order
to select an interpretable model structure.

2.2 Analysis of the Bolasso Regularization Path

There are two main problems that arise by entering a new variable in the model:

� this variable has no signi�cant e�ect on the response and is not correlated with
other input variables;

� this variable is signi�cantly related to the response and other relevant covariates
already entered in the model.

The signi�cance of attribute e�ect can be tested by t-statistic for the correspond-
ing coe�cient. If the calculated p-value will be above the threshold α chosen for
statistical signi�cance (usually the 0.10, the 0.05, or 0.01 level), then the e�ect of this
attribute on the response is insigni�cant.

However, in the second case, the t-test can give misleading results due to the
multicollinearity. By adding some predictor variables to a regression model that are
highly related, the estimated regression coe�cients change drastically. It is proposed
to detect this case by calculating the maximum absolute deviation of the parameter
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estimates:

Dt = max
i∈It

∣∣∣∣θit − θi(t−1)

θi(t−1)

∣∣∣∣ , (4)

where It = {i : θit 6= 0&θi(t−1) 6= 0}, θit is i-th element of the vector θt corresponding
to the value of the regularization parameter λt.

If the deviation (4) is large, then multicollinearity may be present in a model. In
this case, strong correlated input variables are evaluated subjectively. The decision
on which of the correlated variables should be added to the model can be made on
the basis of their correlation with the response or economic considerations.

Additionally, it makes sense to check whether a large deviation is actually caused
by multicollinearity, by calculating the maximum correlation between the predictors.
Since student retention is in�uenced by numerical as well as nominal attributes, it is
proposed to use mutual information of the variablesXi, Xj to measure the dependence
between them.

MI(Xi, Xj) = H(Xi)−H(Xi|Xj),

calculated on the basis of entropies:

H(Xi) = −
∑K

k=1 p(Xi = k) log p(Xi = k),
H(Xi|Xj) = −

∑K
k=1

∑M
m=1 p(Xi = k,Xj = m) log p(Xi = k|Xj = m),

where p(A) is the relative frequency of the event A, p(Xi = k|Xj = m) is the relative
frequency with which i-th variable takes the value k under the condition that j-
th variable is equal to m, K,M are the numbers of categories of the i-th and j-th
variables, respectively. The discretization of the numerical attributes is performed.
In empirical study quartiles were used as discretization thresholds.

The multicollinearity indicator proposed is the maximum of the mutual informa-
tion of all pairs of predictors entered in the model for a given λt:

maxMIt = max
i,j∈Ut

MI(Xi, Xj), (5)

where Ut = {i, j : fit ≥ γ&fjt ≥ γ&i 6= j}.
The jump of the indicator (5) should detect that the model structure at λt di�ers

from one at λt−1 in that a predictor correlated with the other variables was included.
The proposed analysis of the the regularization path involves the following steps.
Step 1. For all values of the regularization parameter, the multicollinearity indi-

cators logDt,maxMIt, t = 1, ..., T are calculated.
Step 2. Student's t-test is used to determine which regression parameters are not

signi�cantly di�erent from zero. The p-value is computed for such parameters which
are added to the model at λt (θi(t−1) = 0&θit 6= 0) or excluded from the model at λt
(θi(t−1) 6= 0&θit = 0). Denote the set of p-values calculated for a given λt as PVt.

Step 3. Set t := 2.
Step 4. If logDt < 1 and |maxMIt −maxMIt−1| < δ, where δ is a small positive

value, then go to step 5, otherwise, multicollinearity is detected when the variable
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subset at λt−1 changes to the subset at λt. Then the redundant (correlated or du-
plicated) variables are eliminated from the model or interaction e�ects (or combined
categorical variables) are added to the model.

Step 5. Exclude from the model those covariates for which PVt > α, except for
those variables that were not signi�cant due to multicollinearity and were left in the
model at step 4.

Step 6. Set t := t+ 1 and go to step 4, while t ≤ T .
We have implemented the proposed analyze the regularization path using a stan-

dard set of R packages. In addition a publicly available package glmnet [2] is used
for �tting the entire lasso regularization path for logistic regression model. For the
Bolasso, samples of size N were drawn uniformly at random with replacement from
the original data. Three hundred bootstrap replications were generated.

3 Empirical results

The empirical study is devoted to analysis of choice of a master's degree at the uni-
versity. The dataset is collected from the information system of the largest university
in Novosibirsk. Table 1 presents the original set of variables in�uencing the choice of
a master's degree. For categorical attributes the �rst level is the reference. The set
contains strong correlated predictors, in particular Grade Point Average (GPA) on a
5-point system and on a 100-point one.

Table 1: Candidate predictors of master's degree applicant's choice

Index Variable Categories
1 Faculty 8 technical, 4 humanitarian
2 Year of the �rst publication No, 1st-2nd, 3rd, 4th
3-5 Number of publications: total, 3rd,

4th course
0, 1, 2, more than 2

6 WoS publication No, yes
7 Publication language No or russian, foreign
8 Independence of publications No, independent, co-authored
9-12 GPA on 1st-4th years On a 5-point system
13-16 GPA on 1st-4th years On a 100-point system
17 Government grant support Budget, contract
18 Residence other, Novosibirsk
19 Year of the �rst research No, 1st-2nd, 3rd, 4th
20 Obtaining funding No, yes
21 Amount of funding in logarithms, "no" replaced by 0

A preliminary analysis revealed that the probability of choosing a master's degree
di�ers for technical and humanitarian faculties. Therefore, it was decided to build
two di�erent logistic models. Figure 1 shows the empirical frequencies of selecting
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any given variable for the Bolasso as the regularization parameter varies. The large
frequencies are in white, the small values are in black. The horizontal axis shows the
values of − log λt.

Figure 1: The relative frequencies of variable selection
for technical (left) and humanitarian (right) faculties

By estimating a model for technical faculties, the Bolasso does not work so badly.
First variable included in the model is the amount of funding. Further, signi�cant
factors are added: GPA on 4th year on a 100-point system, the government grant
support, the faculty, the residence, and the year of the �rst research. Next, an
insigni�cant variable of GPA on 2th year on a 5-point system is included. Adding
GPA on 2th year on a 100-point system causes multicollinearity. In Figure 2 this can
be clearly seen from the peak value of logDt with a sharp increase in maxMIt. At the
same value of λt, an insigni�cant factor of the publication language is added. Further,
the number of publications on the 4th year and their total number are added. They
are signi�cant, but highly correlated, so we enter into the model the second only. All
further included variables are insigni�cant or correlated (duplicated) and ignored.

Figure 3 shows that for humanitarian faculties at large values of the regularization
parameter, only the �rst three changes in the model structure led to selection of
signi�cant attributes: GPA on the 4th year on a 5-point system, the faculty, the
residence, the independence of publications. The number of publications on the 4th
year is signi�cant at 10% level, we will neglect it. Further, only insigni�cant variables
are added while the total number of publications and the number of publications for
the 3rd year are included. This causes a jump in logDt. maxMIt also increases
sharply. Thus, only the total number of publications should be included in the model.
However, this attribute has the same level with the independence of publications,
namely "no publications". Therefore, it was decided to combine these two categorical
variables into one with the reference level "no publications".

The signi�cant factors added to the model at large values of − log λt are the
government grant support, the obtaining and amount of funding. They correlate
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Figure 2: The multicollinearity indicators
for technical (left) and humanitarian (right) faculties

strongly, this causes the last two peaks of logDt. All budget students are supported
by a government grant. So it is impossible for them to estimate the impact of not
funding. At the same time, for contract students, funding is so rare that it is di�cult
to estimate the impact of its amount. Therefore, it was decided to include the factor
Contract and the interaction between Contract and Obtaining funding. Thus, in
order to obtain the �nal structure of the model, it was necessary to analyze the entire
regularization path up to the minimum value of the regularization parameter.

Conclusions

The Bolasso is used to stabilize the results of the LASSO regression estimation. How-
ever, the choice of the regularization parameter that provides a good interpretation
can be a serious issue. In the presence of multicollinearity the parameter estimates
may get counterintuitive signs. An empirical study showed that in such cases it is
impossible to �nd the optimal value of the regularization parameter, which ensures
the simplicity and meaningfulness of the regression model. Therefore, the proposed
analysis of the regularization path is a good solution to the problem. It allowed us to
understand what predictors it makes sense to include in the model. As a result, we
extended the original set of attributes by interaction e�ects and combined categorical
variables. This would not have been achieved by optimal choice of the regularization
parameter.
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Figure 3: The signi�cance indicator
for technical (left) and humanitarian (right) faculties
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Abstract

The article studies geostatistical methods for estimating individual transport
speeds in a populated area. The authors proposed spatial models of velocities,
namely the model of geographically-weighted regression and and interpolation
using universal kriging and kriging with external drift. Optimal parameters of
the models were chosen and a comparison of the proposed methods was made.
The study was carried out on the data of road users in Novosibirsk, Russia.

Keywords: tra�c speeds, spatial speed model, geographically weighted
regression model, universal kriging, kriging with external drift.

Introduction

Residents of the modern metropolis constantly face the problem of tra�c conges-
tion and ine�cient operation of the transport system in general. The authorities of
population center need tools to support management decisions to optimize the trans-
portation system. The model of the transport system can serve as an instrument
that displays not only the current state of transport complex, but also predicts the
consequences of management impacts. Practically suitable methods of creating such
models are extremely limited nowadays.
With the development of spatial data collection technologies, new methods of statis-
tical analysis that take into account the location of the objects of research appear.
Such methods include the method of geographically-weighted regression (GWR) [2]
and methods of the kriging family [5]. In the paper, it is proposed to adapt these
methods for constructing a model of transport speed in a populated area that is part
of the transport system model as a whole. Using the methods of geostatistics allows
to take into account the spatial heterogeneity of the data and to obtain more accu-
rate models. Application of the methods of geographically weighted regression and
universal kriging to estimate transport speeds was proposed for the �rst time in [1].
Interpolation of transport speeds by kriging with external drift and comparison of
the quality of estimation of all three methods in this paper was carried out for the
�rst time.

This research has been supported by the Ministry of Education and Science of the Russian
Federation as part of the state task (project No 2.7996.2017).
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1 Geographically weighted regression

We divide the entire study area into m areas, each characterizes a certain point of
interest with coordinates (ui, vi). There are ni observation in each such area. Total
data used for analysis contains N observations. Then the model of geographically-
weighted speed regression is following:

yi = β0(ui, vi) +
r∑

k=1

βk(ui, vi)x
i
k + εi, i = 1...m, (1)

where yi - individual transport speed (km/h) in some area which characterizes by
point i with coordinates (ui, vi); βk(ui, vi) - an estimated parameter that is an im-
plementation of a continuous function βk(u, v) at point i; εi - random error at point
i , ∀i 6= j cov(εi, εj) = 0; xik - signi�cance of the explanatory factor Fk. The paper
considers r = 16 input factors; the list of them and their possible values are:

� F1 - Road section type, F1 ∈ {rural road, highway with signal controled traf-
�c, main street of regional, importance (pedestrian-transport), main street of
district importance (transport-pedestrian), non, stop city-wide main street ,
city-wide main street with signal controled tra�c and transit �ow, city-wide
main street with signal controled tra�c, street of urban housing, street in in-
dustrial district, pedestrian street, street with a dedicated lane};

� F2 - Number of lanes, F2 ∈ {1,2,3,4,5,6 };

� F3 - The maximum allowed speed (km/h), F3 > 0;

� F4 - Max. throughput (vel./h), F4 > 0;

� F5 - Intersection regulation of the road section start, F5 ∈{1-tra�c light, 0-
without regulation};

� F6 - Intersection regulation of the road section end, F6 ∈{1-tra�c light, 0-
without regulation};

� F7 - Right turn at the road section start, F7 ∈{1- allowed, 0-denied };

� F8 - Left turn at the road section start, F8 ∈{1- allowed, 0-denied };

� F9 - Backward turn at the road section start, F9 ∈{1- allowed, 0-denied };

� F10 - Go straight at the road section start, F10 ∈{1- allowed, 0-denied };

� F11 - Right turn at the road section end, F11 ∈{1- allowed, 0-denied };

� F12 - Left turn at the road section end, F12 ∈{1- allowed, 0-denied };

� F13 - Backward turn at the road section end, F13 ∈{1- allowed, 0-denied };

� F14 - Go straight at the road section end, F14 ∈{1- allowed, 0-denied };

380



Applied Methods of Statistical Analysis

� F15 - Share of the traversed path to the road section end, F15 ∈[0,1];

� F16 - Length of the road section (km), F16 > 0.

Some factors are qualitative and have several possible levels, therefore, the corre-
sponding sets of dummy variables [4] were used to estimate the regression parameters.
The parameters of the regression equation (1) at each point of interest i with coordi-
nates (ui, vi) can be estimated by the following formula:

β̂(ui, vi) = (XT
i W (ui, vi)Xi)

−1XT
i W (ui, vi)Yi, (2)

where β̂(ui, vi) =
β̂0(ui,vi)

...
β̂r(ui,vi)

- vector of parameters estimations β̂r(ui, vi),Xi =
xi11 ... xir1
... ... ...
xi1ni

... xirni
- matrix of size ni ∗ r of values of input factors Fk at observation points for i-th area,

Yi =
yi1
...
yin1

- vector of values of the dependent variable yi at observation points,W (ui, vi)

- matrix of weights for each point (ui, vi). The elements of the matrix W (ui, vi) are
chosen so that observations near the point (ui, vi) have a greater weight than obser-
vations that are far away. Matrix has the following form:

W (ui, vi) = diag{wi1, ...wini}, (3)

where wij - weight of observation at point j for point i. Weight can be calculated as
follows:

wij = e−0.5(dij/h)2

, (4)

where dij - is Euclidean distance between points i and j, and h - a parameter that
a�ects the bandwidth of a geographically weighted regression.
Matrix M = XT

i W (ui, vi)Xi of size r ∗ r , undergoing the operation of reversal in (2),
for certain sets of observations may become degenerate. This happens because sets
of dummy variables were used for qualitative factors. Therefore, instead of the usual
inversion in (2), the pseudo-inversion operation of Moore-Penrose was used:

M = UDV T ,M+ = V D+UT , (5)

where U and V - unitary matrices of order r, consisting of left and right singular
vectors, respectively, and D is a diagonal matrix of size r ∗ r , containing singular
numbers on the main diagonal.

2 Methods of kriging family

To predict the value of Zi in some point of interest i of area Ωi using methods of
kriging family, it is necessary to average existing observations (6):

Zi =

ni∑
k=1

αk(ui, vi)Zk, (6)
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where (ui, vi) ∈ Ωi - point of interest with coordinates (ui, vi), where the value of Zi
(speed) is predicted, Zk- value of transport speed observation in (uk, vk), αk(ui, vi)-
unknown weight coe�cient, ni - the number of observations Zk in Ωi.
To predict the values of Zi one needs to �nd αk(ui, vi). At the �rst stage, it is
necessary to analyze the spatial correlation structure of the initial set of observations.
To do this, one should use a statistical moment such as a variogram [6]. Its values
are explicitly included in the kriging equations.
Variogram is a correlation measure for two values of the observed variable in points
Zk and Zj, located at a distance d(Zk, Zj) = h from each other:

γ(h) = 0, 5V ar[Zk − Zj] = 0, 5E[Zk − Zj]2. (7)

For Nh observation points, located at a distance h from each other,
Ah = {(Zk, Zj)|d(Zk − Zj) = h}:

γ(h) =
1

2Nh

∑
(Zk,Zj)∈Ah

[Zk − Zj]2. (8)

To construct an experimental semivariogram, it is necessary to group all pairs
of measurement points by distance and calculate the semivariogram values for all
groups using formula (8). A permissible range of distances, called a lag, is used dur-
ing variogram calculation. Pairs of points are grouped using lag value and it provides
some reduction in the e�ect of the emissions on its values. Kriging methods require
knowledge of the variogram values for all distances. For this purpose, a theoretical
semivariogram model is constructed γ̂(h) - a function that approximates the values
of the experimental variogram. The functions that were used to approximate the
experimental variogram are given in [7]. These models are functions de�ned up to
parameters. One of the parameters is the correlation radius, which is the limiting
distance between points, at which a correlation e�ect is still observed. After the stage
of the semivariogram calculation, one should proceed to the direct prediction of the
values of the observed quantity.
It is possible to decompose observed variable Z(u, v) into the sum of the deterministic
and stochastic components: Z(u, v) = m(u, v) + R(u, v). The methods of the krig-
ing family di�er with each other by propositions about the form of the deterministic
component - mean of the function m(u, v).

2.1 Universal kriging

To calculate the estimates in this paper, universal kriging was applied. Universal
kriging [5] suggests that the deterministic component m(u, v) of Z(u, v) is a linear
combination of certain basis functions fp(u, v), with coe�cients λp(u, v). These coef-
�cients are assumed to be constant in Ωi.

m(u, v) =
T∑
p=0

λp(u, v)fp(u, v), (9)
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where (u, v) ∈ Ωi, fp(u, v) - selected basis functions, f0(u, v) = 1, λp(u, v) - unknown
coe�cients, T + 1 - the number of used basis functions.
It should be noted that kriging methods, including universal one, allow calculating
local estimates of the function Z(u, v), namely, to use for estimation only those
measurements that are located in some neighborhood Ωi of point (u, v).
The solution of the problem of �nding unknown weights is carried out using the
minimization of the functional σ2

L(u, v), where in addition to the variation of the
estimation error by the kriging method, the unbiasedness of the estimate with weight
coe�cients µp are included (the Lagrange multipliers):

σ2
L(ui, vi) =

ni∑
k=1

ni∑
j=1

α̂k(ui, vi)α̂j(ui, vi)(σ
2
Z − γ̂kj)−

−2
n∑
k=1

α̂k(ui, vi)(σ
2
Z − γ̂ik) + σ2

Z+

+2µ0(ui, vi)(1−
ni∑
k=1

α̂k(ui, vi))+

+2
T∑
p=1

µp(ui, vi)(fp(ui, vi)−
ni∑
k=1

α̂k(ui, vi)fp(uk, vk))

(10)

where γ̂kj = γ̂(d(Zk − Zj)).
The system of universal kriging equations, obtained by di�erentiating the variation
(10) by weights α̂i and coe�cients µp and equating the derivative to zero, looks as
follows:

∑ni
j=1 α̂j(ui, vi)γ̂kj + µ0(x) +

∑T
p=1 µp(ui, vi)fp(uk, vk) = γ̂ik, k = 1, ..., ni,∑ni

k=1 α̂k(ui, vi) = 1,∑ni
k=1 α̂k(ui, vi)fp(uk, vk) = fp(ui, vi), p = 1, ..., T.

(11)

The variation of universal kriging can be calculated from formula (10) using the
�rst part of system (11) as follows:

σ2 =

ni∑
k=1

α̂k(ui, vi)γ̂ik + µ0(ui, vi) +
T∑
p=1

µp(ui, vi)fp. (12)

2.2 Kriging with external drift

In many practical problems of spatial estimation, the value of the interpolated vari-
able may be accompanied by additional information, presented in the form of external
parameters, set over the entire �eld of observation. Under certain conditions, addi-
tional information may contribute to improving the quality of interpolation of the
values of the considered value. The main condition for the ossibility and expediency
of using additional information is its correlation with the main variable being as-
sessed.
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Kriging with external drift can be considered as a modi�cation of universal kriging -
if in the case of predictor variables only measurement coordinates are used. However,
in the general case, kriging with external drift assumes that the deterministic part
of the measurement can be de�ned as a combination of functions of some auxiliary
variables gp(u, v), known up to coe�cient values λp(u, v):

mKED(u, v) =
T∑
p=0

λp(u, v)gp(u, v), (13)

where (u, v) ∈ Ωi, gp(u, v) - known functions of auxiliary variables, g0(u, v) =
1, λp(u, v) - unknown coe�cients, T + 1 number of auxiliary variables.
By constructing the corresponding Lagrangian (by analogy with the functional of
the universal kriging method (10), its di�erentiation over all unknown variables and
equating the corresponding derivatives to zero, a system of kriging equations with
external drift (14) is obtained:


∑ni

j=1 α̂j(ui, vi)γ̂kj + µ0(x) +
∑T

p=1 µp(ui, vi)gp(uk, vk) = γ̂kj, k = 1, ..., ni,∑ni
j=1 α̂j(ui, vi) = 1,∑ni
j=1 α̂j(ui, vi)gp(uk, vk) = gp(ui, vi), p = 1, ..., L.

(14)

Most often, in the kriging method with external drift, the variables that have a
close to linear dependence with the estimated value and vary quite smoothly on the
studied area are taken into account as additional.
In this paper, the same variables are used as additional variables for kriging with
external drift as for the method of geographically weighted regression In this paper,
the same variables are used as additional variables for kriging with external drift as
for the geographically weighted regression method, which are mentioned in (1).

3 Processing of GPS tracks of road users

The e�ciency of the above-described GWR model was veri�ed based on statistical
information on the movement of the Novosibirsk city private transport. The initial
data was an array containing more than one million records of the instantaneous
speeds of users of one of the known GPS navigators. Each element of the data array
contained:

� user coordinates,

� unique user identi�er,

� direction of movement (azimuth) of the user,

� instantaneous speed,

� time of �xing the speed.
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The topology of the transport network of the Novosibirsk city was obtained from
the open source OpenStreetMap [3]. It contains information on roads, intersections
and their attributes, such as the number of lanes, the maximum allowed speed, road
type, max. throughput, type of intersection regulation and allowed turns.
At the �rst stage, the analysis and processing of the initial data was carried out. All
observations of road users were processed and grouped by time intervals (1 hour) on
weekdays and workdays. At the same time, the vehicles were linked to the roads,
taking into account the direction of the vehicle, the type of road, the number of lanes
and the direction of the road. The data received from cars standing at the curb was
not taken into account.
To apply the above methods, it is necessary to select the points of interest (ui, vi).
In addition, it is necessary to determine the observation sets that will be used to
construct the regression at each of the points (ui, vi). Thereafter, the second stage of
data preparation consisted of the formation of a list of points of interest (ui, vi) and
subsamples of the initial sample of observations obtained at the previous stage for
each such point.
The topology of the transport network was taken into account. In all the considered
methods, the observations included observations with the point of interest on the
same road, taking into account the direction of interest. However, for methods of
geographically weighted regression and kriging with external drift, observations were
also added to the sample, which are located on roads adjacent to the road point of
interest (having common intersections).
A study and comparison of the presented grouping methods in terms of the quality
of regression models and computational costs was carried out. The following quality
criteria was selected: the adjusted determination coe�cient , the residual sum of
squares, the maximum and minimum values of the residuals.

4 Investigation and comparison of models

To illustrate the results of the study of transport velocity models, the most indicative
time interval (from 18 to 19 hours on weekdays) was selected. This period of time
is interesting because the transport network is experiencing peak loads due to the
massive movement of city residents from work to their homes. As points of interest
(ui, vi), in which velocities were predicted, random 2000 observations on the most
popular roads were taken from the available initial sample. Whole initial data con-
tained 692,634 observations.

In cases of geographically weighted regressions, for each local area, input factors
that have the same values for the entire set of observations in the corresponding sub-
sample were excluded. Similarly, factors were taken into account in the interpolation
of values using the kriging method with external drift. In the case of the universal
kriging method, factors were clearly not taken into account in the model.
It was necessary to choose the optimal form of weight function and values of it's
parameters to calculate the weights W (ui, vi) . This parameters a�ects the weight
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of the observations and should be chosen taking into account the density of observa-
tions near the local points under study. The dependence of the adjusted coe�cient of
determination of the geographically weighted regression model R2 on the parameter
h for di�erent weight functions was studied. The study showed that the best model
corresponded to weight function (4) and h = 70.
In the universal kriging method, the model that best approximates the experimental
variogram was chosen as an exponential model [7], a distance of 205 meters was cho-
sen as the optimal correlation radius, and the type of trend model was linear. For
the method kriging with external drift was also carried out to investigate the depen-
dence of quality vehicles velocity estimates obtained considering external factors - the
characteristics of the roadway on the magnitude of the correlation radius exponential
model variogram results are shown in Table 1.

Table 1: Comparison of results of speeds evaluation by kriging with external drift at
di�erent correlation radiuses (N = 2000)

Correlation radius 105 meters 205 meters 425 meters

Adjusted determination coe�cient 0.36 0.53 0.42
Residual sum of squares 840968 589053 783514
Minimum value of residuals -81.40 -79.53 -81.70
Maximum value of residuals 75.44 63.51 75.06

The closest to the actual speed values were obtained with a correlation radius
of 205 meters (similar to universal kriging). Reducing the correlation radius to 105
meters leads to a signi�cant decrease in the number of points in the samples, which
negatively a�ects the quality of the estimates. However, an increase in the correlation
radius to 425 meters leads to the use of a larger number of points and, consequently, to
their noticeable in�uence on the estimates, although in practice there may be no e�ect
on the speed at such a signi�cant distance. Table 2 shows the results of comparing
the methods of estimating speeds with the optimal parameters of the models.

Table 2: Comparison of methods for estimating speeds (N=2000)

Method GWR Universal kriging Kriging with external dreft

Adjusted determina-
tion coe�cient

0.75 0.68 0.53

Residual sum of
squares

356613 454452 589053

Minimum value of
residuals

-66.22 -66.67 -79.53

Maximum value of
residuals

74.15 68.99 63.51

Figures 1, 2, 3 show the results of estimating the speed of the tra�c �ow on the
streets of the Novosibirsk city using the methods presented in this paper.
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Figure 1: Residuals between actual and calculated speeds using geographically
weighted regression

Figure 2: Residuals between actual and calculated speeds using the universal kriging

All models well estimate the speed of tra�c in the Novosibirsk city. The most
accurate results are provided by a model based on geographically weighted regression
(Fig. 1). The universal kriging model (Fig. 2) demonstrates a somewhat less high
correlation between estimated and actual values, however, this model is independent
of factors and uses only the values of the observed variable. The model obtained by
estimating the values of kriging with external drift (Fig. 3) demonstrates the least
high correlation between the actual and estimated values, despite the fact that this
model, like the model based on the geographically weighted regression method, takes
into account the values of external factors - characteristics of the roadway. This is
probably due to the fact that the relationship between speed and some factors is not
linear, or the values of the factors change unevenly on the study area. However, it
is worth noting that the magnitude of the largest deviations of the estimated values
from the actual values in the kriging family methods is less than in the geographi-
cally weighted regression method. The external drift kriging method is less prone to
signi�cant outliers.
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Figure 3: Residuals between actual and calculated speeds using kriging with
external drift

Conclusion

It was proposed to use the geographically weighted regression method and methods
of Kriging family for constructing the model of private transport speeds in real ur-
ban conditions in the paper. The quality of the estimation of the universal kriging
method from the types of the trend and variogram models, as well as the quality of
the estimation of the geographically-weighted regression method from the form of the
weighing function, were investigated. A study of models on real data of Novosibirsk
was carried out. During the study, the optimal bandwidth for GWR and lag for Krig-
ing model were obtained. This study showed the expediency of using the proposed
methods for estimating the speeds of transport.
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Abstract

In the article the problem of outlier detection in multidimensional data is
discussed. The capabilities of ABOD-approach as an element of a family of
spatial-based methods are being studied. For improvement of outlier detection
quality in multidimensional data the modi�cation of the criterion based on
cumulative curve analysis is proposed. The comparison of results obtained by
classical and modi�ed algorithms is provided.

Keywords: multivariate statistical analysis, outliers, ABOD, statistic
simulation.

Introduction

In contemporary studies of complex technical and economic processes one has often to
deal with big data formed by the values of numerous indicators. For such multidimen-
sional data it is necessary to develop specialized methods for collecting, processing
and analyzing them, since classical approaches of statistics and econometrics could
give considerably distorted results. In this case one of the problems most in�uenced
by dimensionality is an identi�cation of speci�c (anomalous) elements in the sample
called outliers.

An outlier, according to D. Hawkins, is �an object that deviates from others so
much as to be suspected that a di�erent mechanism generated it� [2]. In the case
of multidimensional data analysis the outlier detection will often face with so-called
�curse of dimension� � the property of multidimensional spaces, meaning that as the
dimension increases, there is an exponential increase in the volume of necessary exper-
imental data, which complicates both the analytical and the algorithmic apparatus
used to solve such problem [1, 6].

In the past few decades in multidimensional data analysis some algorithms based
on the geometry of the mutual arrangement of observations in multidimensional space
have become widespread. In previous studies (including authors [4]) it has been shown
that in comparison with other frequently used algorithms ABOD-method is invariant
to changes in the dimension of space, and this is a reason to intensive studying and
development it in applications.
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1 Problem statement

Let there be a database D ∈ Rd, where Rd is a real space, d - spatial dimension,
n = card(D) - database's size. We will assume that the norm µ : Rd → R+

0 is
associated with Rd. It induces the scalar product (. , .) : Rd×Rd → R. In the current

study we will consider Euclidean ‖x‖2 =
√∑

i |xi|
2 and Manhattan ‖x‖1 =

∑
i |xi|

as a norm µ, because they are most frequently used when investigating the issues of
detecting anomalous observations.

Since the initial set D is divided by the algorithm into subsets D1 (regular
observations), D2 (outliers) and, possibly, D3 (intermediate), the main hypothesis
H0 : x ∈ D1 means that the observation x is regular. It can be rejected in favor of
the alternative H1 : x ∈ D2 or, maybe H2 : x ∈ D3

The purpose of the study is to build a decision rule G : D → W , where W =
D1∪D2∪D3 to classify sample observations into two (or, depending on the method's
capabilities, into three) categories � regular observations, outliers, and possibly inter-
mediate observations with unclear situation arising, which can be clari�ed by applying
more accurate and/or statistically more robust methods.

2 Theoretical basis

The family of geometric methods is developing nowadays and becoming more and
more popular, so, according to [3], most popular among them are DiBOD (Distance
Based Outlier Detection), DeBOD (Depth Based Outlier Detection), ABOD (Angle
Based Outlier Detection), and others.

The principle of DiBOD-method is as follows [1]: it is necessary for each obser-
vation to �nd the number of other observations lie in some its neighbourhood, and
then observations for which the number of neighbours is signi�cantly less than the
average will be considered as outliers. The bene�ts include ease of implementation of
the algorithm and a small number of computational operations. But it has a serious
drawback: it is weakly invariant to multidimensionality.

Method DeBOD based on the concept of �depth of space�, suggested by P.
Rousseeuw [8]. According to it outliers will be observations that correspond to the
smallest depth value. This approach is applicable when one need to process a large
amount of data in a short time, but also, like DiBOD, is weakly invariant to multi-
dimensional problems.

Unlike DiBOD and DeBOD, ABOD-method is invariant to multidimensionality,
and the method itself is based on estimation the multidimensional angles at which
all other observations would be visible from a certain point in space corresponding
to a particular observation in the sample.

In this case on the basis of the following expression the estimation of the angle
variance for observation x is carried out [3]:

ABOF (x) = V AR
y,z∈D

(
(xy, xz)

||xy||2 ∗ ||xz||2

)
, (1)
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where ABOF(x) is a function which estimates the degree of anomality for observation
x, VAR(.) � variance function, y, z � points in multidimensional space, selected from
database D, (. , .) � scalar product of two vectors represented by two points from the
database, ‖.‖ � norm (length) of the corresponding vector in multidimensional space.

Observations whose maximum values of type (1) are minimal in the sample are
potentially considered outliers.

In order to determine that the value in (1) is small enough to consider the cor-
responding observation as an outlier it is necessary to apply certain statistical test.
From a wide variety of such tests we will focus on the following:

� Chauvenet test;

� maximum relative deviation (MRD) test;

� test based on cumulative curve analysis (CCA-test).

Chauvenet and MRD-tests are based on the assumption of data's normal dis-
tribution. This assumption in the analysis of actual data is appeared infrequently,
primarily because the data homogeneity is not hold. However it is important to un-
derstand that even in such situation with su�ciently large sample sizes the methods
developed under the assumption of normality could bring consistent results. In this
case it is said that normality shows asymptotically.

When using Chauvenet test the suspected value of the sample x∗ delivers maxi-
mum to the absolute deviation of the mean [4], namely

x∗ = Argmax
k
|xk − x|.

In this case the statistic for testing the hypothesis H0 is τ̂ = |x∗−x|
S

(x - arithmetical
mean, S- standard deviation), and if inequality τ̂ > |u 1

4n
| is hold, when the null

hypothesis is rejected, and observation x∗ is recognized as an outlier.
When using MRD-approach the test statistic remains the same as in Chauvenet

test [4], but the decisive rule is changing as follows:

τα,n = t1−α,n−2
√
n−1√

n−2+t21−α,n−2

.

where α− quantile of Student′s distribution, t− student distribution quantile.
Here if τ̂ < τ5%,n then suspected observation considered as regular, else if τ̂ >

τ0.1%,n it becomes an outlier, and otherwise it occupies an intermediate position, and
will be an outlier if one has some additional considerations on it.

In order to provide the invariancy relative to the distribution of analyzed data
and to take into account their internal structure, not relying on the critical values
associated with certain distributions (like normal distribution in Chauvenet and MRD
tests), one could apply the test based on the cumulative curves analysis. To construct
a speci�c cumulative curve it is necessary to determine its speci�cation and after that
to estimate its parameters by using one of various approaches, for example, Gauss-
Markov least squares [5].
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In the current study the cumulative curve speci�cation was chosen as Ballou-
Pareto type. Within this class of functions the most successful appeared to be the
parameterization of Ballou-Pareto type III (f(x) = (α+1)xγ

α+xγ
), since it often provides

the minimum value of the residual sum of squares for the problem being solved [5, 7,
9].

The next step of analysis is the implementation of the integral method [7, 9]
according to which the cumulative curve is going to be divided into three parts
corresponding to outliers, intermediate observations and regulars.

There are various standard outlier detection software, such as Statistica, SPSS,
etc. One of the main problems of them is that they realize only some classical
methods based on normal distribution, which mostly result poorly, or even lead to
contradictory conclusions for multidimensional tasks. Besides in academic versions
applying in the educational process they do not allow analyzing big data. Therefore
it was decided to develop the original software package, which includes

� module to input and generate data for analysis;

� module to apply the classical outlier detection tests;

� module to apply some modi�cations of classical methods (ABOD and CCA);

� statistical simulation module;

� module for analytical report construction (tabular and graphical presentation
of results).

In this way the developed approach and its modi�cations will have both analytical
and algorithmic support which will allow studying their properties and establishing
the scope of applicability.

3 Experimental results

In order to ensure statistical correctness of the results obtained it is necessary to
explore the proposed algorithm on model problems by simulation.

For studying purposes let us model the samples with data dimensions as d = 3, 4,
and 5, and sample size equal to n = 100. The initial data are going to be simulated
uniformly on the basis of the corresponding equations for multidimensional spherical
coordinates. For conventionally regular observations the polar radius ρ lies within
interval from 0 to 2, for outliers � from 3 to 4 (which means from 150% to 200%
out of initial values, which should provide their signi�cant di�erence from regular
observations). For each dimension the share of outliers will vary from 5% (standard
statistical error) till 15%. The results to comparison of the considered methods'
e�ciencies are the shares (in percentage) of correctly detected outliers which are
averaged for all replications (number of replications is R = 1000).

When comparing the results obtained by classical methods and with the help
of the algorithm proposed in the paper for estimating the mutual arrangement of
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observations in d-dimensional space two options were considered: on the basis of sum
of distances to all observations (denoted as DIST-modi�cation) and on the basis of
angular variance (ABOD-modi�cation).

In Fig. 1-3 comparisons of the true irregular observations in the sample and
outliers, identi�ed during the simulation using Chauvenet, MRD and CCA-tests, used
with DIST- and ABOD- modi�cations appropriately are depicted. From Fig. 1 it can

Figure 3. Comparison of shares of correctly identi�ed outliers 5D-space
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be seen that the proportion of correctly detected outliers using ABOD-modi�cation
is higher than using the DIST. For example, for MRD-test this di�erence ranges from
1,75 to 3,02 times, and for Chauvenet from 1,58 to 4,76 times, i.e. it grows with the
increasing share of simulated outliers. At the same time it can be found that the more
technically complicated CCA-method does not work well (its results are worse than
for MRD-ABOD by 23% on average). It seems reasonable since the e�ectiveness of
the CCA-method should become noticeable at high dimensions of the analyzed data
space.

From Fig. 2 it is clear that there is also a tendency that the share of detected
outliers using ABOD-modi�cation is higher than using DIST. For example for MRD
this di�erence ranges from 1,10 to 3,25 times, and for Chauvenet from 1,88 to 9,33.
However, unlike the previous case, CCA-method provides a share of correctly recog-
nized outliers higher than MRD from 1,19 to 1,81 times. It comes out due to the
fact that with the increase in the space dimension it becomes more di�cult to recog-
nize outliers for MRD and Chauvenet tests, which con�rms their weak invariance to
changes in the dimension of the observation space.

In �g. 3 that when increasing the dimension, the share of detected outliers by
the CCA algorithm remained almost unchanged (no more than +23% when com-
paring �ve-dimensional and four-dimensional spaces, or from + 2% to + 29% for
�ve-dimensional and three-dimensional, respectively) compared to other algorithms
that once again con�rms its dimensionality invariance.

Analyzing the results one could see that when comparing four- and three-dimensio-
nal spaces MRD-algorithm with ABOD-modi�cation (MRD-ABOD) on average �nds
21% less outliers, MRD with DIST- modi�cation (MRD-DIST) - 9,2% less , Chauvenet-
ABOD - 5,3% less, Chauvenet-DIST is 0,8% less and only CCA reveals 3,9% more
on average.

When comparing the results for �ve- and four-dimensional spaces, it can be noted
that MRD-ABOD �nds 12% less outliers (averaged on true outliers share), MRD-
DIST - on 5,7% less, Chauvenet-ABOD - on 0,7% less, Chauvenet-DIST on 0,1%
less, and only CCA reveals on 3,6% more on average.

Such results give us assurance that suggested ABOD-modi�cation appears to be
more e�cient than usually used DIST-modi�cation. On the other hand the applica-
tion of CCA-approach make it possible to reveal bigger share of true outliers than
other methods because it could adapt better to the inner structure of multispaced
data.

Conclusions

In the study of ABOD-modi�cation it was found that on the simulated data it shows
more accurate results, since on identical samples it provides the error of the �rst type
signi�cantly less than for the method based on distances between observations. It is
also worth noting that as the dimension increases the results obtained on the basis
of CCA-approach remain at the same level, unlike other algorithms when the error
of the �rst kind of which increases drastically.
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Based on the analysis performed it should be concluded that the combination of
ABOD-method and CCA-algorithm is promising for solving classi�cation problems
including in identifying anomalous observations. Therefore, their further study and
development seems necessary and challenging.
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Abstract

The NP-hard clustering problem as applied to the data of neurophysiological
studies (indicators of postoperative cognitive dysfunction) is considered. Vari-
ants of the problem of clustering in the form of mixed integer programming,
including the use of continuous relaxation, reducing the complexity of solutions
without loss of accuracy are given. The results of computational experiments
on real data using the software implementation of the algorithm of binary cuts
and branchings are presented. They demonstrate the high e�ciency of the
developed toolkit.

Keywords: clustering, minimax quality criterion, additive criterion, linear
relaxation, binary cut and branch algorithm, detection of postoperative cogni-
tive dysfunction.

Introduction

There are many works on applied statistics and methods of discrete optimization,
which are devoted to the development of various modi�cations of applied problems of
clustering [1, 2, 3]. Most of them belong to the category of intractable problems of
mixed integer programming [2]. This study is aimed to solving the applied clustering
problem by identifying and comparing the substantive patterns of partitions of various
sets of objects into subsets due to comparing such partitions by EEG characteristics
in patients before coronary bypass surgery and in the postoperative period.

1 Statements of the Clustering Problem

This article is presented an approach based on the use of tools (models and methods)
of mixed integer linear programming (milp). A similar problem has been formulated
early [4, 5]. The directions of connections between objects within each cluster are
not �xed and must be determined. Cluster intersections by objects (and objects by
clusters) are not allowed. The most rational and most often used measure is the sum
of the distances between all pairs of objects within a cluster [1]. We present a formal
formulation of the optimal clustering problem for this case.
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We introduce the notation: i,j = 1, n,- object numbers, l, k = 1,m. - cluster
numbers. cki,j - distances between objects i and j in cluster k. Then the task
of clustering is to determine the Boolean variables xki,j . De�ne the variables yki
(identifying the ownership of objects i, j, i,j = 1, n, into cluster k, k = 1,m) under
certain conditions:

yki =

{
1 if the object i belongs to a cluster k ,

0 otherwise, i = 1, n, k = 1,m,
(1)

m∑
k=1

yki = 1, i = 1, n, (2)

We also de�ne dependent variables xki,j = yki · ykj and linearizing inequalities [8]:
0 ≤ yki +ykj −2xki,j ≤ 1, k = 1,m, i,j = 1, n, i 6= j, which by means of an asymmetric
distance matrix, are converted into:

0 ≤ yki + ykj − xki,j − xkj,i ≤ 1, k = 1,m, i,j = 1, n, i 6= j. (3)

xki,j =

{
1 if the objects i,j belongs to a cluster k : yki = 1, ykj = 1,

0 otherwise, i,j = 1, n, i 6= j, k = 1,m.
(4)

By adding conditions to the task that implement the minimax criterion:
n∑
j=1

n∑
i=1

ci,jx
k
i,j 6 λ, k = 1,m, i 6= j, λ→ min. (5)

we obtain the desired formalization (1) - (5) of the task named in the section title.
In addition to criterion (5), depending on the meaning of the clustering problem,

in some cases the additive criterion is more acceptable:
n∑
j=1

n∑
i=1

ci,jx
k
i,j = λk, k = 1,m, i 6= j,

m∑
k=1

λk → min (6)

where λk - sum of distances between all pairs of objects in a cluster k, k = 1,m.
Solving problem (1) - (4), (6) allows �nding partitions of a set of objects with given

distances between all pairs of objects into a given number (m) of subsets (clusters),
which guarantees minimization of the sum due to the minimum of total distances
between all pairs of objects across all clusters.

2 Assessments of the Computational Complexity of

the Clustering Problem and Relaxation Possibili-

ties

Note that even with a signi�cant simpli�cation of the limiting conditions of the above
problem, the NP-hard problem of mixed integer programming is obtained (see, for
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example [6, 7]). Let us show how to somewhat ease the complexity of tasks (1) -
(5) and (1) - (4), (6). For this we use relaxation on auxiliary Boolean variables xki,j
removing the integer conditions (4). Instead, we introduce the boundaries of changes
in continuous variables:

0 6 xki,j 6 1, k = 1,m, i,j = 1, n, i 6= j.] (7)

Relaxation of tasks (1) - (5) and (1) - (4), (6) we denote as (1) - (3), (5), (7) and
(1) - (3), (6) - (7). We note a decrease in the number of Boolean variables in relaxed
tasks by m · n2 . Thus, the total number of Boolean variables (1) in problems (1)
- (3), (5), (7) and (1) - (3), (6) - (7) is equal to m · n in the presence of m · n2 + 1
continuous variables (7) and (5) versus m ·n2 +m ·n Boolean variables in (1)-(5) and
(1-4), (6) tasks.

The di�erence is very signi�cant when applied in practical applications of the
tasks presented. The success of the practical application of conditionally exponential
algorithms strongly depends on the actual number of integer variables. So, relaxation
(1) - (3), (5), (7) and (1) - (3), (6) - (7) have signi�cant advantages over the settings
(1) - (5) and (1)) - (4), (6). At the same time, continuous variables, regardless of their
number in any milp, only a few make them �heavie�. For example, with 3-clustering
a group of 40 patients (splitting a group into 3 clusters) for the relaxed task (1) - (3),
(5), (7) we have m · n = 3 · 40 = 120 Boolean variables, in the original problem (1) -
(5) - m · n2 +m · n = 3 · 402 + 120 = 4920 Boolean variables.

3 Algorithms of Solutions

For presented above options of the NP-di�cult tasks clustering, there are no the-
oretically e�cient algorithms. However, for practical applications, algorithms are
su�ciently developed, which can be referred to as conditionally exponential. An ex-
ample of such an algorithm may be the binary cut and branch algorithm [9, 10]. Its
software implementation was used to �nd solutions to the above clustering problems
(1)-(3),(5),(7) and (1)-(3),(6)-(7).

4 Application of the Developed Clustering Instru-

mentation to Detect Postoperative Cognitive Dys-

function

A series of computational experiments on clustering EEG data based on the above
statements (1) - (3), (5), (7) and (1) - (3), (6) - (7) and the corresponding discrete
optimization algorithms [9, 10] identi�ed the high e�ciency of this tool. The tasks
(1) - (3), (5), (7) using the minimax criterion and the adapted algorithm were used to
analyze indicators of the neurophysiological status of patients who underwent direct
myocardial revascularization under conditions of cardiopulmonary bypass. Neuro-
physiological examination was performed 3-5 days before the operation and 7-10
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days after coronary artery bypass surgery. A detailed description of the sample of
patients and the assessment of EEG and cognitive status presented earlier [11, 12].

For clustering into three groups, the total values of resting EEG power with
closed eyes in the theta1 (4-6 Hz), alpha1 (8-10 Hz) and beta2 (20-30 Hz) bands were
used. These frequency bands were considered in connection with their functional sig-
ni�cance for attention and memory processes [13, 14] and the previously identi�ed
informational role for predicting cognitive decline in the postoperative period of coro-
nary artery bypass surgery [12]. Taking into account the long computation time, a
sample of 40 male patients (56.7±5.08 years) with EEG registration before and after
the operation. Also initial preoperative cognitive status indicators were taken for
analysis: the sum of points on the short mental status scale (SMSS) and a complex
indicator of cognitive status (CCS) as a summary characteristic of the functions of
attention, and memory [15].

The parameters of the three clusters, obtained during the realization of the de-
veloped algorithm for the theta1, alpha1 and beta2 spectral power before and after
the operation, are presented in Table 1.

Based on the results presented in Table 1, the variability of the cluster composition
was 33.5 percents; 22.5 percents and 52.5 percents, respectively, for theta1, alpha1
and beta2 bands. At the same time, the patients set from the cluster 2 moved to the
3rd according to the classi�cation of postoperative power of alpha1 oscillations.

Table 1: Clusters based on the minimax classi�cation criterion for theta1, alpha1
and beta2 rhythm power indices before and after coronary artery bypass surgery

Before surgery After surgery
Cluster Metric Score n Cluster Metric Score n Nv

Theta1 range
1 45.58 15 1 56.18 17(10) (3)2cl, (4)3cl
2 46.07 14 2 41.04 13(10) (3)1cl
3 35.51 11 3 43.21 17(10) (2)1cl, (1)2cl

Alpha1 range
1 77.05 13 1 80.88 14(11) (1)2cl, (2)3cl
2 83.89 14 2 78.90 14(4) (10)3cl
3 74.46 13 3 73.86 12(1) (1)1cl, (10)2cl

Beta2 range
1 47.80 13 1 48.27 14(7) (1)2cl, (6)3cl
2 48.99 12 2 46.60 12(7) (5)3cl
3 48.22 15 3 48.12 14(5) (6)1cl, (1)2cl

Note: n - the number of patients in the cluster; in parentheses
show the number of patients remaining in the same cluster after
the operation or moved from other clusters (cl), respectively (Nv).
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To clarify the functional signi�cance of the selected clusters, one-way Analysis
of Variances (ANOVAs) was performed on each variable (i.e. spectral data in the
corresponding frequency bands, SMSS, and CCS values in the group of participants)
using CLUSTER (3) as a between-subjects factor. Signi�cant e�ects of all analyses
are shown in Table 2. Post-hoc analysis of the revealed e�ects was conducted using
the Bonferroni procedure to adjust for multiple repeated measurements.

Table 2: ANOVA results on theta1, alpha1 and beta2 rhythms, age, and CCS
variables when comparing three selected clusters

Variable F(2,37) P Cluster
1 2 3

Theta1
Power b/s 63.477 <0.0001 0.248 0.024 0.505

Age 5.132 0.011 58.87 57.29 53.09*
Power a/s 80.86 <0.0001 0.298 0.102 0.655

Alpha1
Power b/s 102.34 <0.0001 1.452 0.293 0.920
CCS 2.69 0.08 0.573 0.455 0.575

Power a/s 89.79 <0.0001 0.312 0.293 0.894
Beta2

Power b/s 54.49 <0.0001 -0.278 -0.606 -0.468
Power a/s 73.24 <0.0001 -0.261 -0.651 -0.442

Note: b/s and a/s - power scores before surgery and after
surgery, correspondently; * - p < 0.01; the EEG power
di�erences between clusters when p < 0.0001.

On the next step of analysis, the ANOVAs were performed for the STABILITY
factor (2 levels, i.e., the patient belongs to the same cluster, allocated on the basis
of pre- and postoperative EEG or not). Signi�cant e�ect was obtained only for CCS
and the beta2 rhythm: F(1, 38) = 6.170; p <0.018 that was associated with large
values of CCS in the constant cluster compared to the variable group (0.592 and
0.473). Thus, we can conclude that the developed method of clustering variables has
discriminatory possibilities, since the formed clusters di�er in a given criterion with
a high degree of con�dence. As for the functional signi�cance of the clusters, this
problem requires further study. However, the highlighted e�ect of the higher power
of theta1 rhythm in younger patients is in line with age-related decrease in the power
of low-frequency EEG rhythms [16, 17] whereas revealed lower values of CCF at the
lowest alpha 1 correspond to ideas about the congruent changes of both age-related
activation of the cerebral cortex at these frequencies and cognitive de�cit [17, 18, 19].
The obtained relationship between the high CCS index and the STABILITY factor in
the beta 2 range can be considered as a re�ection of the compensatory hyperactivity
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of the cortex in patients with cardiovascular diseases. Indeed, it was previously
shown that a combined decrease in alpha activity and an increase in the power of
beta rhythms may indicate damage to regional neural interactions [20]. There is
an hypothesis that in patients with low cognitive status due to the long-existing
state of chronic cerebral ischemia, the restructuring of the electrical brain activity is
associated with the dominance of slow rhythms, rather than fast ones, as among those
with a more permanent cognitive status [21]. However, further analysis is needed
to analyze the informational value of coordinating di�erent EEG rhythms and their
local representation for the preservation of cognitive functions in patients undergoing
coronary artery bypass surgery.

Conclusions

The results of computational experiments with data clustering of neurophysiological
testing using the three formal statements presented in this article revealed the highest
e�ciency of the problem decision using the minimax criterion and the adapted for it
algorithm of binary cuto� and branching. The counting time of a desktop computer
to �nd the exact solutions to the implementation of the clustering problem for the
power indices of EEG rhythms in 40 patients, with various modi�cations of the initial
data and the criteria used, is in the range from 15 minutes to two hours. Approximate
solutions can be obtained in a much shorter time, which determines good prospects
for using the created instrument with a signi�cant increase in the dimensions of
realizations into tasks.
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Abstract

In this paper we identify the conditions of formation of the �nancial base
of local self-government, the technique of analysis of the structure, stability
of budgets and e�ciency of sub-federal budget policy, calculations are carried
out on materials of Novosibirsk oblast for the period 2010-2016 years . The
structure of local budgets of Novosibirsk oblast is evaluated, the characteristics
of heterogeneity of budget indicators before and after the transfer of funds from
the regional budget are calculated. The dependence between transfers and tax
and nontax revenues is analyzed; marginal e�ect of increasing the taxes paid to
local budgets is calculated.

Keywords: local self-government, local budget, tax and non-tax revenues
of the local budget, equalization of budgetary provision's di�erentiation, sub-
federal budget policy.

Introduction

The development of intergovernmental �scal relations in Russia in recent years goes
in the direction of strengthening the formalization of the process of distribution of
federal �nancial assistance. It also seeks to eliminate the asymmetry in the �scal
status of the subjects of intergovernmental �scal relations at various levels [1, 2]. In
this case, one has not been able to reach he desired hardness of budget constraints for
the authorities of subjects of the Federation, to establish control over the e�cient use
of resources at the regional level, as well as to achieve the required growth formaliza-
tion of intergovernmental �scal relations [3, 4]. At present, �scal regulation in Russia
is overcentralized; therefore, many municipalities cannot function autonomously and
sustainably, as local taxes and other local revenues make up less than 20% of their
budgets. These problems cannot be solved without consolidating the municipal bud-
get's local revenue base.

Russian municipalities di�er noticeably in both the actual tax revenues and tax
potential. In this respect, we can single out a group of municipal entities, e.g., the
capital cities of oblasts and republics, i.e., centers of constituent entities whose �-
nancial statuses di�er greatly from those of other Russian municipalities. The local
self-government bodies of the constituent entities administrative centers, as a rule,
have budgets comparable to those of the constituent entity itself (excluding the mu-
nicipal budgets). We have selected the Novosibirsk oblast as a research target, as it
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can be classi�ed among the abovementioned group of Russian constituent entities. An
analysis was conducted based on the data on the municipal districts (30) and towns
(cities) subordinate to the authorities of the Novosibirsk oblast (5) in 2010-2016.

1 Speci�c features of revenue generation in the bud-

gets of municipalities of the Novosibirsk oblast

The main revenues of local budgets are tax, non-tax revenues and grants from re-
gional budget. Besides, it is only the tax revenues connected with economic potential
of the given territory that can be regarded as a stable revenue base for the budgets
of local self-government bodies [5]. To estimate the level of autonomy of local bud-
gets, we have analyzed the distribution of the municipalities based on the share of
collected (tax and nontax) revenues in the aggregate revenues of the local budgets.
The calculations results are presented in Table 1.

Table 1: Distribution of the municipalities by the share of collected revenues,
number of municipalities in the group

Share of collected (tax and
nontax) revenues, %

2010 2011 2012 2013 2014 2015 2016

0-10 13 14 14 17 7 8 7

10-20 12 11 11 11 19 18 19

20-30 4 5 4 2 3 3 4

30-40 3 2 1 1 1 3 3

40-50 1 0 3 1 2 1 1

50-60 1 0 0 2 1 1 1

60-70 1 2 2 0 2 1 0

70-80 0 1 0 0 0 0 0

80 or more 0 0 0 1 0 0 0

As can be seen, the proportion of collected revenues for the majority of municipal-
ities of the Novosibirsk oblast was in 2010-2016 within the limits of 20% . Thus, the
situation has worsened compared to the end of 90th - beginning of the 2000s, when
the share of this type of revenues for most municipalities of the Novosibirsk oblast
was in the limits of 20-40% [6]. It is noteworthy that, over the period under study, in
the Novosibirsk oblast, the proportion of collected revenues was more than 30% for
a very small number of municipalities. Over 50% of collected revenues for the entire
period were considered only in the city of Novosibirsk.

One of the weaknesses of the system of intergovernmental �scal relations at the
level of the subject of Federation is a high degree of centralization of budget revenues
on sub-federal level, bias in favor of grants in the structure of municipal budget
revenues [7, 8]. To test this assertion, consider the distribution of the share of grants
in the aggregate budget revenues of municipalities (Table 2).
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Table 2: Distribution of the municipalities by the share of grants in their budgets,
number of municipalities in the group

Share of grants, % 2010 2011 2012 2013 2014 2015 2016

0-20 0 0 0 1 0 0 0

20-30 0 1 1 0 0 0 0

30-40 1 2 2 0 2 1 0

40-50 3 1 0 2 1 1 1

50-60 1 0 3 1 2 1 1

60-70 2 2 1 1 1 3 3

70-80 4 6 4 2 3 3 4

80-90 12 9 11 11 19 18 19

90 or more 12 14 14 17 7 8 7

It follows from Table 2 that, in the majority of municipalities of the Novosibirsk
oblast, grants make up more than 70% of budget revenues, and consistently high
throughout the period considered is the number of territories for which the share of
grants exceeds 90% . In the structure of grants a high proportion of subventions and
subsidies from the upper-level budget, which is caused by the transfer of the powers
and �nancial resources from the regional to the local level.

2 Inhomogeneity characteristics of the �scal capac-

ity of municipalities

When comparing budgets of the same level, it is important to assess the expediency
of concentrating resources from the standpoint of equalizing the municipalities' �scal
capacity and the levels of socio-economic development of the municipalities. This
comparison can be conducted by using the per-capita inhomogeneity characteristics
of the �scal capacity before and after the municipal budgets were given grants from
upper-level budgets [9]. We propose to use variation indicators as characteristics of
inhomogeneity, i.e., the range of asymmetry, scatter, excess of scatter, standard de-
viation, and variation coe�cient. With increasing homogeneity of the �scal capacity
in the sample, the variation indicators should go down. In our work we assessed
the above indicators for the per capita collected and disposable budget revenues of
municipalities (Tables 3, 4).

It follows from the data in Tables 3, 4 that the range of asymmetry between the
municipalities in the Novosibirsk oblast after grant transfers from the oblast budget
was decreasing in 2010�2015. The scatter of the municipalities based on the indicators
of collected and disposable revenues, in general, increases over the period under study.

The excess of scatter is greater than 1 in the most of the explored cases. This is in-
dicative that half of the municipalities with lower values of the indicators under study
are close to one another in these indicators than the other half of the municipalities.
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Table 3: Inhomogeneity of per-capita collected budget revenues

Indicator 2010 2011 2012 2013 2014 2015 2016

Range of asymmetry 8,34 12,22 5,08 6,70 5,81 4,19 3,28

Scatter 1915 2571 2244 2938 2609 2031 1541

Excess of scatter 1,128 1,325 1,254 1,327 1,264 1,237 1,148

Standard deviation 2598 4357 3182 4626 4211 2828 2210

Variation coe�cient, % 57,71 84,76 57,17 67,85 57,02 42,87 33,21

Table 4: Inhomogeneity of per-capita disposable budget revenues

Indicator 2010 2011 2012 2013 2014 2015 2016

Range of asymmetry 6,13 4,00 4,15 3,16 3,11 3,72 3,49

Scatter 9461 7874 8742 10144 9366 10065 10387

Excess of scatter 1,124 1,000 1,038 1,023 0,998 1,044 1,052

Standard deviation 12219 11285 11954 13200 12252 12538 13085

Variation coe�cient, % 39,17 33,39 32,13 27,37 27,71 30,27 29,90

The growth of the standard deviation of disposable revenue as compared to the
standard deviation of the collected revenue is explained by the increase in the average
level of the varied indicator. As seen from Table 3, the indicator of disposable revenues
has a lower variation coe�cient, i.e., the inhomogeneity of the municipalities' �scal
capacity after grant transfer from the oblast budget is decreased.

To determine which municipality groups experienced losses as a result of changes
in the aggregate scatter indicators, we need to consider the changes in the distribution
of territories based on the level of budget revenues as a result of money transfer from
upper-level budgets. Tables 5-6 present the distribution of municipalities by the level
of collected and disposable budget revenues per capita. Tables 7-8 shows the same,
but centered values (the di�erence with the average for the region level).

Table 5: Distribution of municipalities by the level of collected revenues, number of
municipalities in the group

Per-capita revenue, thousand
rubles

2010 2011 2012 2013 2014 2015 2016

1-4 18 19 13 6 0 0 0

4-7 14 10 16 19 23 25 28

7-10 0 3 3 6 7 6 3

10-13 3 1 0 1 2 3 3

13 or more, 0 2 3 3 3 1 1
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Table 6: Distribution of municipalities by the level of disposable revenues, number
of municipalities in the group

Per-capita revenue, thousand
rubles

2010 2011 2012 2013 2014 2015 2016

10-18 3 2 1 0 0 0 0

18-26 11 7 4 4 4 4 2

26-34 10 9 11 3 4 6 8

34-42 4 12 11 8 5 8 9

42-50 4 2 5 10 10 9 6

50-58 2 1 0 4 8 5 4

58-66 1 1 1 2 2 2 4

66 or more 0 1 2 4 2 1 2

The data in Tables 5-6 show that after the grant transfers to municipalities of the
Novosibirsk oblast from the regional budget, there is sharp growth in the per-capita
budget-revenue indicator by territory. If, before the transfers from oblast budget, the
modal interval was from 1 to 7 thousand rubles of per-capita budget revenues, after
the distribution of grants from the upper-level budget per-capita revenues increase
dramatically. This indicates a signi�cant increase in absolute and relative size of �scal
regulation resources in the municipal revenues in the Novosibirsk oblast. To exclude
the e�ect of changes in the average level of budget revenues and assess the changes
in their distribution with regard to the increased �scal capacity standard, we have
calculated centered values of the collected and disposable budget revenues.

Table 7: Distribution of municipalities by level of centered indicators of collected
revenue, number of municipalities in the group

Per-capita revenue, thousand
rubles

2010 2011 2012 2013 2014 2015 2016

Less than −2 8 13 10 16 10 3 2

−2-−1 8 7 10 5 12 17 11

−1-0 4 4 6 3 4 3 10

1-2 12 5 4 6 4 5 8

2-4 0 3 1 1 2 4 1

4-6 1 1 1 1 0 1 1

6-8 2 0 0 0 0 1 2

8 or more 1 2 3 3 3 1 0

If we take into account that all the municipalities of the Novosibirsk oblast are
recipients of regional grants, which results in growth in the average level of �scal
capacity, then the outcomes of the oblast's �scal policy appear to be less e�ective
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Table 8: Distribution of municipalities by level of centered indicators of disposable
revenue, number of municipalities in the group

Per-capita revenue, thousand
rubles

2010 2011 2012 2013 2014 2015 2016

Less than −15 2 3 3 5 4 4 5

−15-−10 4 4 4 2 4 3 4

−10-−5 8 4 5 5 4 5 3

−5-0 6 6 8 7 5 6 8

0-5 6 10 7 6 6 5 4

5-10 1 3 2 3 6 5 4

10-15 4 2 3 2 2 2 2

15-20 1 1 0 0 1 3 2

20-25 1 0 1 3 2 1 1

25-30 1 1 0 2 1 0 1

30 or more 1 1 2 0 0 1 1

because there is an increase in both the number of territories with below average
budget revenues and the number of municipalities with the highest revenues.

3 Assessment of the �scal policy on the economic

development of municipalities

In order to assess how well the current system of intergovernmental �scal relations
cope with functions of alignment of budgetary security di�erentiation of municipalities
and encouraging municipalities to strengthen their own revenue base, you can use
methods of regression analysis and ranking of municipalities in terms of collected and
disposable budget revenues. With this interest are not the ranks, but changing them
in the process of budgetary control. This change can be estimated by calculating the
Spearman and Kendall correlation coe�cients.

Spearman's rank correlation method allows to determine the closeness and di-
rection of correlation between the two signs. Kendall's rank correlation coe�cient
determines the extent to which the ordering of all pairs of objects in two variables and
is used to identify the relationship between quantitative and qualitative indicators,
if they can be ranked. This ratio is preferable to calculate in the case of outliers.
Values of rank correlation coe�cients calculated for series of collected and disposable
budget revenues are presented in Table 9.

As the calculations in 2011-2016 showed a moderate correlation between the ranks
of collected and disposable revenues of municipalities' budget in the region. In 2010,
the relationship was weak. Importantly, in 2010-2016 the relationship of analyzed
signs was reversed, i.e. municipalities with large values of collected budget revenues
had lower values of disposable revenues. This fact indicates that there is a signi�cant
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Table 9: Rank correlation coe�cients

Coe�cient 2010 2011 2012 2013 2014 2015 2016

Spearman's rank corre-
lation coe�cient

−0, 37 −0, 47 −0, 63 −0, 44 −0, 48 −0, 48 −0, 58

Kendall's rank correla-
tion coe�cient

−0, 28 −0, 37 −0, 44 −0, 33 −0, 35 −0, 34 −0, 45

change in the ranks of the municipalities of the Novosibirsk oblast after they received
grants.

To answer the question of whether resources transferred from the oblast budget
to local self-government bodies serve the purpose of intraregional equalization, it is of
interest to determine the dependence between the grants from the oblast budget and
per-capita tax or nontax local budget revenues. Therefore, we propose to estimate
the following equation:

Ti = α + β ·Ri + ξi,

where Ti are per-capita grants from the oblast budget to the ith municipality,
Ri � indicates per capita tax and nontax revenues of the ith municipality, α is the
intercept, β is the slope coe�cient, and ξi are the regression residuals. The results of
the calculations are presented in Table 10.

Table 10: Estimation results for the equation Ti = α + β ·Ri + ξi

Indicator 2010 2011 2012 2013 2014 2015 2016

R2 0,19 0,26 0,42 0,39 0,39 0,41 0,42

Estimate of α 36154 36126 47114 52399 52690 55877 65232

t statistics 8,88 12,03 12,82 13,92 13,37 11,63 10,78

lower bound of 95% con-
�dence interval

27873 30015 39638 44743 41914 46104 52921

upper bound of 95%
con�dence interval

44435 42237 54590 60055 63467 65650 77543

Estimate of β −2, 21 −1, 52 −2, 78 −2, 09 −2, 14 −3, 19 −4, 23

t statistics −2, 81 −3, 38 −4, 84 −4, 56 −4, 16 −4, 76 −4, 89

lower bound of 95% con-
�dence interval

−3, 81 −2, 43 −3, 95 −3, 03 −3, 42 −4, 56 −5, 99

upper bound of 95%
con�dence interval

−0, 61 −0, 60 −1, 61 −1, 16 −0, 86 −1, 83 −2, 47

The given data show that, in the Novosibirsk region during the period from 2010
to 2016 there was a statistically signi�cant negative correlation between these pa-
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rameters, that is the oblast �scal policy is aimed at equalizing the per-capita budget
revenues of the municipalities.

The literature has repeatedly emphasized that, in the given system of intergovern-
mental �scal relations, local governments are not interested in implementing rational,
transparent, or responsible �scal policy. We can assess whether municipalities have
positive or negative stimuli for responsible �scal policy by the marginal e�ect of in-
creases in taxes allocated to local budgets, i.e., by the growth of disposable revenue
that results in the growth of tax revenues to the budget by 1 ruble, as follows:

(Yit − Yit−1) = α + β (Xit −Xit−1) + εit,

where Yit � are disposable revenues of the ith municipality in year t, Xit � are tax
revenues of the ith municipality in year t.

If there are no stimuli to increase tax and nontax revenues, then the regression
coe�cient β must be statistically insigni�cant. If stimuli (increase or decrease) are
present, the regression coe�cient shall be statistically signi�cant (positive or nega-
tive). The city of Novosibirsk was excluded from the calculations. The presented
results indicate that for 2010-2011, 2011-2012 and 2012-2013 years measured depen-
dencies were found to be statistically signi�cant; the estimate of the β coe�cient in
all the regressions is greater than zero. Thus, the stimuli worked towards conserving
and developing municipalities' local tax potential. But other dependencies, namely
2013-2014, 2014-2015 and 2015-2016 years, were found to be statistically insigni�cant,
that is transfers to municipalities were random.

Conclusions

An analysis of the revenue breakdown of the local budgets of the Novosibirsk oblast
speaks of their low level of autonomy, since it is typical for them to not have any
stable revenue base. At present, the proportion of collected revenues in the total
sum of revenues in the local budgets of the municipalities of Novosibirsk oblast, is,
on average, less than 20% . This means the dependence of the local budgets on the
upper-level authorities.

This is supported by the recently increased centralization of the territorial budgets
accompanied by an increase in the percentage of grants in the municipal budgets. In
particular, in the majority of municipalities of Novosibirsk oblast, grants make up
more than 70% f of all their revenues. As calculations have shown, this deprives the
local self-government bodies of stimuli to fund their activities aimed at increasing
their local tax base.

The system of intergovernmental �scal relations is of economic, political, and
social importance for the country's development. However, �nancial aid should play
a secondary role in the development of a local tax base for budgets at each level. In
order for the whole national budget system to function e�ectively, i.e., for budgets of
di�erent levels to be balanced and autonomous, it is necessary, �rst of all, to establish
clear-cut and valid criteria for the distribution of tax revenues between budgets of all
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levels.
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Abstract

The article is devoted to developing a software module that allows inter-
preting �eld data, identifying locations of low and high resistance objects and
evaluating them for the desired minerals.

Keywords: data analysis, geophysical data, interpretation.

Introduction

The rationale for this work is that interpreting received geophysical data has a high
cost, long terms and ine�cient outcome.

The goal of our work is to computerize interpreting data received with the long-
wire method.

To achieve the stated goal, the following tasks were set:

� analyze the subject area;

� create a computer model;

� develop a software module;

� take into account ergonomic and psychological factors.

1 Source data preprocessing

Source data is �eld work materials taken with the long-wire method at the Barobin-
skiy exploration area in Kazakhstan (gold mineralization) by the alternating-current
prospecting equipment developed by Krasnoyarsk geophysicists with contributions
from the Chair of Radio-Electronic Systems of the Siberian Federal University [1].
Prospecting was carried out with a 3 km long wire rerouted each 1 km and a magnetic
�eld survey from each wire position along orthogonal 1 km long pro�les. The wire
was powered by an alternating current of 312 Hz frequency. At the observation sites
the horizontal component of the electromagnetic �eld Hy and the vertical Hz were
measured.

The magnetic �eld intensity values, measured by the device, are total HΣ, condi-
tioned by the �eld of the wire Hw and anomalous objects Han. It is possible to isolate
anomalies at the observation pro�le only after subtracting the normal wire �eld from
the measured values HΣ : Han = HΣ − Hw. Due to the considerable complexity
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of the theoretical de�nition of the normal wire �eld, this action is implemented by
a practical technique in which the values HΣ are averaged over all the pro�les of
(
∑n

i=1 Hy)/n. The e�ect of anomalous areas is minimized and the observation sites
get anomalous values of the horizontal and vertical components at the observation
sites - the formulas (1)-(2).

Han
y = Hy −

∑n
i=1 Hy

n
, (1)

where n is a number of pro�les; Hy is the measured value of the horizontal component.

Han
z = Hz −

∑n
i=1Hz

n
, (2)

where n is a number of pro�les; Hz is the measured value of the vertical component.
As a matter of obtained anomalous values, further location analysis of the con-

ducting objects is carried out. The analysis is based on the position [2], where the
normals to the intensity vectors at the magnetic �eld observation sites indicate the
place of its source, which is the region of eddy current concentration.

2 The computer model

The input parameters for the model are the measured values of the horizontal Hy

and vertical Hz magnetic �eld components for pickets of various pro�les and wire
positions. The output parameters are the areas of occurrence of anomalous objects.

The full magnetic �eld vector is de�ned as the vector sum of the horizontal
−→
Hy and

vertical
−→
Hz components with the coordinates (Hy; 0) and (0; Hz), respectively. As is

known, if the vectors are given by their coordinates, then the sum of these vectors is
a vector which coordinates are equal to the sum of the corresponding coordinates of
the summand vectors. From here we �nd the formula for calculating the full vector
coordinates - the formula (3).

−→
H =

−→
Hy +

−→
Hz = (Hy + 0; 0 +Hz) = (Hy;Hz) , (3)

where Hy is the horizontal component value; Hz is the vertical component value.
Figure 1 shows the vectors for the pickets P1 and P2 located left/right of the wire

position designated by the point O [2].
The next step is to plot normals passing through the observation points to the

vectors.
The equation of line takes the form: y = ax+ b, where a a is the slope of the line,

b is some real number. To construct perpendiculars we use the following property -
the product of the slope ratios of two perpendicular lines is −1. If y = a1x+ b1 is the
equation of the line which the vector lies along, and y = a2x+ b2 is an equation of a
perpendicular line, then a1 · a2 = −1.

The equation of the line passing through two points (x1; y1) and (x2; y2) can be
written as follows - the formula (4).
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Figure 1: The full magnetic �eld vectors ~H

x− x1

x2 − x1

=
y − y1

y2 − y1

(4)

Having made the transformations, we obtain the equation for the slope ratio a1

in the equation of line y = a1x+ b1, which the vector lies along - the formula (5).

a1 =
y2 − y1

x2 − x1

(5)

where (x1; y1) � coordinates of the vector beginning; (x2; y2) - coordinates of the end
of the vector.

Then the slope ratio a2 of the perpendicular line y = a2x + b2 can be calculated
by the formula (6). The ratio b2 can be expressed by substituting the coordinates of
the observation point (x0; y0) through which the normal passes - the formula (7).

a2 = − 1

a1

(6)

b2 = y0 − a2 · x0 (7)

To construct a perpendicular, we need to know its end coordinate. The length of
the perpendicular is equal to the product of the coe�cient of proportionality k the
length of the vector by the length of this vector l. Figure 2 shows an example of �nding
the end coordinate for the perpendicular to the full picket vector located to the left
of the O wire. Using the Pythagorean theorem, you can make the following equation:√

(x0 − x1)2 + (y1−y0)2 = kl, where k is the coe�cient of proportionality, l is the
vector length, (x0; y0) are the origin coordinates, (x1; y1) are the end coordinates.
Since y0 = 0, and the coordinate y1 can be expressed in terms of x1 using the line
perpendicular equation y = a2x+ b2, the equation can be converted to the following

form
√

(x0 − x1)2 + (a2x1 + b2)2 − kl = 0.
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Figure 2: The example of �nding the end coordinate for the perpendicular

The resulting equation is nonlinear, which can be solved using the bisection
method.

The next step is to �nd the intersection points of the normals. To �nd the in-
tersection point of two perpendiculars de�ned by the equations y = a1x + b1 and
y = a2x+b2, we equate these equations a1x+b1 = a2x+b2 to the vectors and express
x - the formula (8).

x =
b2 − b1

a1 − a2

(8)

Substituting the obtained x value of the formula (8) into one of the two line
equations that correspond to the perpendiculars, we obtain the coordinates (x; y) of
the intersection point.

You can �nd the concentration point areas using the k-means clustering algorithm
with the Euclidean distance metrics. For two points A and B with the coordinates
(x1; y1) and (x2; y2) the Euclidean distance is de�ned as follows - the formula (9).

d (A,B) =

√
(x1 − x2)2 + (y1 − y2)2 (9)

3 The problem algorithm

Predicting anomalous objects in the depth of the studied geological section on the �eld
survey materials using the long-wire method is performed according to the algorithm:

1. At each observation point the anomalous values of the vertical Han
z and hori-

zontal Han
y magnetic �eld components are de�ned by subtracting the wire �eld

Hav
z and Hav

y from the observed values of the total �eld Hob
z and Hob

y .
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2. The sum vector
−−→
Han is de�ned by vector summation based on the calculated

anomalous values of
−−→
Han
z and

−−→
Han
y .

3. The normal to the vector
−−→
Han
y is de�ned at the observation point.

4. The listed actions are performed at all the observation points of the pro�le.

5. Vectors and normals are constructed over the entire pro�le. The points of the
normal intersections closest to the surface are secondary current concentration
areas, i.e. anomalously conducting objects. The points of normal divergence
correspond to the areas of high-resistance rock growth.

6. The anomalous object location is distinguished with the k-means clustering
algorithm.

4 Software implementation

The software module is written in C #.
To store data we use the database, the scheme of which is shown in Figure 3.

Microsoft SQL Server is chosen as a DBMS.

Figure 3: The database scheme

In the process, ergonomic and psychological factors were taken into account. A
friendly user interface has been developed. For the convenience of geophysicists work-
ing with the software module, the created user guide comes with the description of
operating with each module function.

Figure 4 shows the main window of the software module.
The interface allows a user to work with the database: add, modify, and delete

records through the tab "Table". Figure 5 shows the form of interaction with the
database for the "Observations" entity. In the DataGridView window, the observa-
tion values are displayed corresponding to the selected wire and picket position in the
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Figure 4: The main window of the module

ComboBox controls. The anomalous values of the horizontal and vertical components
for observations are calculated after closing the form - the formulas (1)-(2) and added
to the "Anobservations" table. The "Observations" and "Anobservations" tables are
related one-to-one.

Figure 5: The "Observations" form

The right pane of the main window (Figure 4) contains the options available for
selection.

Based on "Wire positions" and "Pro�le", the input data in the Sample () function
is formed by sampling from the database. Figure 6 shows a chunk of the input data
- the observations for Wire A1B1 of Pro�le 1.

After sampling the observations, we call the Vectors () function and construct full
vectors.
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Figure 6: The chunk of input data

When a user selects the value of constant of proportionality, for each of perpen-
diculars the end coordinate is calculated. The coordinates are recalculated every time
the user selects a new value.

Right after calculating, the "Construct" and "Intersection Points" elements be-
come available for selection, and then the Perpendiculars () and Interpoints () func-
tions are called, respectively. Perpendiculars to vectors are constructed with the
Perpendiculars () function, and the Interpoints () function is used to �nd the inter-
section points of the perpendiculars.

Figure 7 shows an example of constructing the perpendiculars and their intersec-
tion points. The coe�cient of proportionality is 3, wire A1B1, pro�le 2.

Figure 7: The perpendiculars to the full magnetic �eld vectors and their
intersection points

To isolate concentration areas of the points that correspond to the predicted
low-resistance and high-resistance objects when studying the geological section with
the alternating-current long-wire method, the k-means clustering method was used.
Figure 8 shows the program output.

The secondary �eld sources are concentration areas of eddy currents, arising in
the development areas of highly conducting objects such as sul�de and magnetite
ores or ground saline water. Areas without secondary electromagnetic �eld sources
correspond to low-conducting rocks such as stone masses and gem stone deposits
[3]. Each anomalous object is of interest for constructing a geological section. The
geological nature of anomalous objects is determined with the assistance of auxiliary
geological and mineralogical information.
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Figure 8: Predicting a conducting object in the geological section

Conclusions

The developed software module allows identifying locations of anomalous objects in
the geological environment, to analyze the obtained locations of low or high electri-
cal resistance, which is geophysical information as part of geological prospecting and
exploration. In this case, the source information was processed and a geoelectric sec-
tion was constructed for the Barobinskiy gold mineralization area. Computer-aided
processing of large data volumes shows that there are low and high resistance areas in
the section, which are of interest for prospecting and interpreting with the assistance
of related G&G data. At the surface in the 800 - 1600 m spacing of the pro�le, frag-
ments of quartz with gold were found, according to which it is assumed that we may
�nd a series of gold-bearing quartz veins and stock work at the depth that correspond
to high resistance areas. Low resistance areas may have sul�de mineralization. The
eastern part has mostly near-surface highly conducting salt marsh. This software
module helps signi�cantly reduce the calculating time when processing materials.
The processing tool increases transmission distance using the long-wire method and
isolate anomalous zones. Goal-oriented well drilling of these zones allows reducing
the �nancial and time expenditures of geological prospecting and exploration.
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Abstract

The practical use of the multilingual adaptive - training technology con-
tributes to the intensive accumulation of specialized foreign terminology by
students who study one or more foreign languages for their professional pur-
poses. Electronic frequency dictionaries, built on a multilingual principle, are
the basic components for supporting the multilingual adaptive � training tech-
nology. The article considers the computer-aided approach to the analysis of
specialized frequency dictionaries.

Keywords: multilingual adaptive - training technology, frequency, dictio-
nary, information basis, analysis.

Introduction

The purpose of the information multilingual adaptive - training technology is the
intensive accumulation of specialized foreign terminology of students and specialists
studying one or more foreign languages for their professional purposes. The main
components of its support tools are electronic frequency dictionaries, built on a mul-
tilingual principle, and computer systems that implement the algorithm for training
terminological vocabulary [1-5].

A frequency dictionary (information basis) is the information, whose portions are
given to the student. The student will learn quicker and better the words and phrases
that are found in the texts more often and these words are from narrow subject �eld.
That is why it is necessary to take into account the frequency properties of texts.
Table 1 shows an example of the information presented in the frequency dictionary
[1]:

Eng Ru
Decomposition algorithm, 49 Àëãîðèòì ðàçëîæåíèÿ, áëî÷íûé àëãîðèòì, 15
Correlation analysis, 170 Êîððåëÿöèîííûé àíàëèç, 110

Table 1: Portion of the frequency dictionary

Multilingual frequency dictionaries take into account the frequency properties of
multilingual terminology [6]. An example of a portion of a multilingual dictionary on
system analysis can be observed in Table 2
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Eng De Ru Fr
ability, 4 Fähigkeit, 4 f ñïîñîáíîñòü, 8 Lacapacité, 5
above, 32 über, 100 âûøå, ñâûøå, 19 Plushaut, 44

abstraction, 7 Abstraktion, 1 f àáñòðàêöèÿ, 42 L'abstraction, 15

Table 2: Portion of the multilingual frequency dictionary

The dictionary in a broad sense is the most essential component of the speech
perception model.A main operational unit is a word while speech perceiving. It
follows that, in particular, every word of the perceived text should be identi�ed with
the corresponding unit of the student's (or a reader) internal vocabulary. It is natural
to assume that from the very beginning the search is limited to some sub-�elds of
the dictionary. In a typical case the actual phonetic analysis of the sounding text
gives only some partial information about the possible phonological appearance of the
word, and this kind of information is obliged by a certain set of terminology; therefore,
the problem arises (a) to select the corresponding set according to one or another
parameter and (b) within the determined set (if it is adequately selected) to produce
a �sifting out� of all words, except for the only one that corresponds best to the
given word of the recognized text. One of the "drop out" strategies is the elimination
of low-frequency words. It follows that the terminology for speech perception is a
frequency dictionary. Partly for this reason, when the word identity is largely based
on formal, graphical coincidence, semantics is taken into account insu�ciently. In the
result,frequency characteristics are biased and distorted. For example, if the words
from the combination of "each other" are included by a compiler of the frequency
dictionary in the general statistics of the use of the word "friend", then it is hardly to
be justi�ed. We are to recognize that in the word-combination we already have other
words, and it is more precise that a separate vocabulary unit is a whole combination
taking into account the semantics.That is why training is provided for both clearly
formalized lexical units and well-established lexemes [4-6].

When organizing electronic frequency dictionaries that are the information base
for supporting the multilingual adaptive-learning technology, the following objectives
are pursued [2]:

� to re�ect some of the important qualitative and quantitative aspects of gen-
eral terminology on system analysis in English, German, French and Russian,
resulting from statistical text analysis and description;

� to promote the organization of vocabulary learning and vocabulary accumula-
tion in a rational way with the help of computer interactive training tools.
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1 Texts analysis for the formation of electronic fre-

quency dictionaries

The emerging directions of linguistics are connected with some applied tasks. At
present, the direction of the applied linguistics has been practically formed. It is con-
nected with the foreign languages training. Twenty years ago, a language description
in teaching was considered as a problem of a methodology. Now it is clear that a
methodology has other tasks, and a description of language phenomena should be
carried out within the framework of linguistics and according to its laws.It is neces-
sary to pay attention to the fact that the situation is similar to the way the direction
of �computational linguistics� developed. Initially, problems connected with the auto-
matic training were entirely attributed to the competence of programmers, and only
then, the applied development of machine translation, automatic referencing, etc.,
was recognized as a linguistic value [3].

In the course of the language description some independent results were obtained.
And, moreover, some developments that had appeared earlier, for example, functional
grammar, linguistics of a coherent text, and possibly others, fell into the mainstream
of this new direction.

Consider the peculiarities of pedagogical linguistics in connection with the prob-
lems facing this �eld.

The main peculiarity of the language description for the training purposes is to
take into account the psychological properties of a person related to speech activ-
ity.These peculiarities are associated with the properties of memory (memorization,
storage of information, its activation), understanding of speech and its generation and
with peculiarities of communication, considered in a broader aspect (social, interper-
sonal relations, etc.). If we compare this psychological information with information
about the structure of the language represented by the grammar, in many cases in-
consistencies will be found. This fact is known to all teachers of a non-native language
(especially if it is native to the teacher). First of all, they concern active speech activ-
ity since it requires the use of information on the compliance of language structures
with the intentions of the speaker [6].

Language statistics can be de�ned as an auxiliary discipline of linguistics that ex-
plores the quantitative aspects of the language system use, including a professional-
oriented system. Previously, some scientists used statistical methods successfully
[2,3].Language statistics supplements the qualitative methods of language descrip-
tion through additional data characterizing the frequency of language phenomena. It
is very useful in such practical �eld as information retrieval, lessons in foreign lan-
guages. Mathematically, this approach helps to model professional-oriented language
communication as a probabilistic process, allowing one to determine the objective pa-
rameters of language di�erentiation expressed in various sublanguages, professional
languages, professional dialects or styles.

Linguistics uses statistical methods, primarily in problems covering the language
functionally, in texts, gathering separate passages into a coherent text. It is abso-
lutely impossible to do in any other way because of the wide variety of language
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communication in various professional �elds.
When automating a general statistical analysis, the following steps can be distin-

guished: de�nition of statistical elements (word, phrase, sentence); determination of
the absolute frequency of elements for a single sample and total sample; calculation
of the relative frequency and probability for the main body of professional vocab-
ulary terms; validation of the obtained frequency characteristics by calculating the
standard deviations and the relative error; formalization of results in the form of
lists, tables or graphs; interpretation and synthesis of results, up to the formulation
of patterns.

Since it is almost impossible to cover the whole unity of subject-language commu-
nication even for only one language and one area, subject-language statistics should
be based on the most representative sample tests, i.e. on the written or oral typical
special texts. Each linguistic-statistical analysis begins with the selection and prepa-
ration of the corresponding text base. When speci�c tasks are set in the framework
of applied linguistics, for example, when de�ning terminology for learning in a foreign
language lesson or when compiling vocabulary for internal documentation, the text
base can be very limited.

It is also necessary to pay attention to the type of the texts. Textbooks of higher
and vocational schools of a general character are particularly suitable for the de�-
nition of a scienti�c and technical basic terminology. They guarantee a systematic,
proportional and complete coverage of the material and the necessary language tools
for its presentation.Moreover, they are less in�uenced by the individual language use
by individual representatives of the profession. The further formation of the text base
is built using new journals of a non-special nature.Reference books, reports, progres-
sive messages, and instructions for application other types of texts, by contrast, are
a favor able starting point for observing subject-language peculiarities at the level of
both a sentence and a text.

The �rst result of statistical text processing is absolute frequency. It shows how
often the corresponding phenomenon occurs in the text under study. However, it has
little value for further research in the practical use of the results or in general for
generalized statements, since it directly depends on the size of the selected text.It
serves mainly as an initial value, for example, for calculating the relative frequency.

The relative frequency is a percentage that expresses the proportion of a language
unit in the whole text.It is obtained by dividing the absolute frequency by the length
of the sample, for example, for a word with a particular 186 in one sample from N =
50,000, the relative frequency will be calculated as 186 / 50,000 = 0.00372.

In other words, the relative frequency of a phenomenon is a ratio of the number of
its actual occurrence to the number of its theoretically possible occurrence.It is possi-
ble to equate the relative frequency to the probability of a linguistic phenomenon if a
sample is representative for a subject language.Then it gives grounds for statements
about the statistical structure of the relevant sublanguage or about the importance
of individual elements for the text organization.

A particularly important step in the linguistic and stylistic analysis is the reliabil-
ity control of the determined data. There exist various ways of control.The standard
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deviations (errors), the relative error, and the con�dence interval are primarily taken
into account in stylistic statistics and subject-language statistics.

Standard error (mean square error) is a measure of the variability of the average
frequency of a linguistic phenomenon in partial sampling. Its calculation is done
according to the formula:

S =

√
SAQ

n− 1
, (1)

where S is a standard error; SAQ is a sum of the square of the error; n is a number
of control samples.

The relative error is calculated for certain lexical units in frequency dictionaries
to determine the accuracy of these dictionaries. It is done according to the formula:

|f − p| = Zp

√
p(1− p)

n
, (2)

where f is a relative frequency; p is a probability; Zp is a coe�cient for a given level
of con�dence p; n is a volume of the sample control.

In papers concerning with the linguistic, the simpli�ed versions of this formula
are used. They assume that the di�erence (1-p) is approximately equal to one for a
small p. A general variant of determining the relative error is as follows:

δ =
Zp√
nf

or δ =
Zp√
F

(3)

where δ is a relative error; Zp is a coe�cient for the given level of con�dence p; n is
a sample size; f is relative frequency; F is absolute frequency.

The calculation of the con�dence interval is a sophisticated version of the calcula-
tion of the relative error.The lower and upper limits (p1 and p2) of the oscillations and
the average frequency are determined. There exist di�erent methods of calculation,
for example:

p1 =
fN + 1

2
Zp2 − Zp

√
f(1− f)N + 1

4
Zp2

n+ Zp2
(4)

p2 =
fN + 1

2
Zp2 + Zp

√
f(1− f)N + 1

4
Zp2

n+ Zp2
(5)

χ2 - test, determines whether any observed di�erences occur in di�erent samples, or
whether the samples belong to the same basic population (functional style, sublingual,
objective language, type of text, etc.). In most cases, this involves the veri�cation
(authenticating or falsifying) of the main assumption (null hypothesis); for example,
the expectation that word types play a similar role in the text.The reference value χ
is a sum of the observed and expected frequencies for a certain number of variables
referred to the expected frequencies
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χ2 =
k∑
i=1

(fbi − fei)2

fei
, (6)

where k is a number of variables; i is a variable; fbi is the observed frequency of the
variable; fei is the expected frequency of the variable.

When comparing samples, the expected frequency of fei is usually equated to the
average frequency x.

χ2 =
(xi − x)2

x
(7)

The subject-language statistics use various lists, tables, and graphs to present
the research results.With the help of a circular image and strip charts �rst of all,
parts in percentage values are given. Histograms and a chain of polygons are suitable
for the graphic representation of quantitative peculiarities, such as word length or
sentences length. Curves with a relatively typical �ow exceed this simple combination
of frequencies in qualitative and quantitative terms. They help to recognize the
functional relationships between signs and their frequency.The frequency of language
phenomena can itself become a sign characterized by other data.

There exist, for example, the following dependencies:

� between the frequencies of lexical units and their classes in the frequency dic-
tionary;

� between the frequency and its probability of occurrence in the text;

� between the frequency and a relative error;

� between classes of one frequency dictionary and the cumulative number of lex-
ical units;

� between classes and class wrappers;

� between the frequency and potency of communication;

� between frequency and degree of specialization of the subject lexical vocabulary;

� between the length of the text and the amount of vocabulary, etc.

Linguo statistics helps to determine which language phenomena occur in speech
or texts more often.Statistical methods study the vocabulary of the language inten-
sively. Frequency dictionaries give the information about the general vocabulary.A
frequency dictionary registers words, word forms or word-combinations that have
been encountered in the text (sample) studied for its compilation. Together with
these units (i.e., words, word forms, word combinations), their frequencies are indi-
cated in the dictionary, i.e. numbers show how many times each dictionary item has
been encountered in the given text [6].
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Conclusion

As it has been already noted, the frequency dictionary indicates a number of cases
of the word use in texts that were analyzed to compile a dictionary. Frequency
dictionaries di�er depending on the principle of position of the database position.
Words or word-combinations can be placed alphabetically, as in a typical dictionary,
with its frequency to a word. Also, words and word-combinations can be arranged in
descending order of frequencies, starting from the most commonly used word. The
�rst version of the dictionary is addressed to a student; the second one is to the
learner. A student can also work with the second version of the dictionary to learn
a foreign language independently, for example, when memorizing words and word-
combinations in portions, depending on their frequency or checking pro�ciency in
terminology units, starting with the most frequent ones.
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Abstract

The main idea of this paper focused on the development of a program mod-
ule, which predicts the pharmacy retail income by the machine learning theory.
Beyond that, we want to introduce the best prediction model, which has learned
by speci�c retail dataset. Notice, the architecture of program involves dynamic
upload dataset, by Yandex" Internet service. The dataset represents the set of
features and set of retail points, however in this task, the features describe the
pharmacy industry. So on the �rst step will analyze the dataset and found out
the correlation of the features. Next, will select the relevant features, which
a�ect on income rate of the retail point. The last one will introduce to the
prediction income Average model. In the last, will compare the three mod-
els, there is Average model, Gradient Boosting Regression and Random Forest
Regression.

Keywords: Feature selection, Income prediction, Machine Learning, Arti-
�cial Intelligence

Introduction

Nowadays, Arti�cial Intelligence tools have become more actual in a business area,
particularly machine learning approaches provide insightful economic analysis and an
increase of company income. Indeed, business needs on the statistics, economics, mar-
keting, and mathematical approach, for the analysis of the important retail features
and pro�t markup. Sometimes the businessmen have not su�cient information about
the features quality, which a�ects the pro�tability of the retail stores. Traditionally,
the e�ciency of features was calculated or analyzed by experience way. However, in
the context of selecting the new retail store with an estimated future income rate, the
businessman may make mistake. The experts need to aggregate a stores information
(humans tra�c, income rate, count of bus or metro station, business competition
and etc) for drilling down a database of features. So, identifying the important and
relevant features has a number of an advantage today.

Actually, machine learning provides a variety of choice of universal algorithms
focused on feature selection, recommendation, prediction, and other tasks. Anyway,
those algorithms do not provide the reliable result in a case a small sampling of
fewer than 100 units and features count more than 120 units. Previous, the task of
prediction income of retail was investigated by [5, 3]. By the way, the most advanced
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method is neural network [1], where authors introduce the simple linear regression
then multiple regression and after describe the algorithm of neural network, which
applied on a retail dataset from "Google Places API". In this paper we want to
introduce our decision for prediction retail store income and compare it with the
general machine learning methods.

This paper introduces the module for the retail store's income prediction based
on the mathematical model with the speci�c dataset. In section 2, we will describe
the prediction algorithms and introduce the Average method. In section 3, we will
describe the dataset, particularly the set of features and their multiplicity. By the
way, the huge number of features according to their relevant selection is scaling each
feature to a given range. In the last section, we will apply the method to the dataset
and compare the Average method with other general prediction algorithms.

1 The module development

Every store in the retail network has a set of features which in�uence on the success-
fulness of the store. By the way, for each retail store network has speci�c particular
qualities describe an income of store. In this paper we want to introduce the module,
which analyses the features of the stores' network, select only relevant features and
predict the income for a future stores for target retail network.

For this reason, the Figure 1 shows the general mechanism to this paper, where
we will introduce the prediction module, which runs a red contour. For the ex-
periment the dataset was obtained by "Yandex" services and custumer's statistical
informational.

Figure 1: The diagram of the problem conception

The Prediction module includes the main three step, where on the �rst we nor-
malize the dataset, then selected the relevant features by Boruta alghoritm and in
the end to choose the best prediction alghorithm for set a task.

The raw data should be uniform in the case of the heterogeneous dataset. Indeed,
exist a several type of features, where a dataset may have a binary type, counter and
value. For this reason, we apply the min-max scaling procedure in the interval [0,1].

On the second step, we want to reduce the number of features and compute only
relevant, which in�uence the income rate. In this experiment, we will apply the
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Boruta algorithm, where the features are copied, and then each new feature is �lled
randomly by shu�ing its values. Random Forest is started on the resulting sample.
In order to obtain statistically signi�cant results, this procedure is repeated several
times, variables are generated independently at each iteration.

On the third step, we apply the prediction algorithm to dataset except for irrel-
evant features. In the experiment we tested 3 methods, there are Gradient Boosting
Regression, Random Fores Regressor, Ridge regression, Average method. During ex-
periment we found out the tree-like structure algorithms is a set of decision's tree,
which provide the best result of the prediction. Given a traning set X = x1, ..., xn
with responses income for each shop Y = y1, ..., yn, where N the count of shops. The
Random Forest describes as:

F̂ r =
1

B

B∑
b=1

frb(x
′
)

where B is the number of trees and predictions for unseen samples x
′
can be made

by averaging the predictions from all the individual regression trees on x
′
.

The Gradient Boosting builds the model in a stage-wise fashion like other boost-
ing methods do, and it generalizes them by allowing optimization of an arbitrary
di�erentiable loss function [6].

F̂ g = argminEx,y[L(y, F (x))]

where L(y, F (x)) is loss function, which describes L(y, F (x)) = (F (x) − y) so
−∂L
∂F (x)

= 2(y − F (x)). The parametr α has choosen 0.9, maximal depth = 3,the
number of boosting stages to perform = 100.

Howewer, our idea was the join in two Bagging and Boosting algorithms together
that in this paper introduced as Average method. Indeed, we average the prediction
result after test sample of two methods: Gradient Boosting Regression and Random
Forest Regression.

ˆFavi =
F̂ gi + F̂ ri

2
, i = 0...22

The Regression methods calculate the value of prediction more inaccuracy, it
proves the MAE and MAPE estimation in the fourth sections. Those algorithms are
the basic tools of the statistics and them implementation was introduced in the paper
[4]. For this reason, we did not introduce more information about them.

In this section we introduced the general prediction algorithms in machine learn-
ing. Also, we described the theoretical part of the retail location prediction module.
On the next section we will focus on the retail store's features.
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2 The retail features introduction

At the beginning, we want to consider the retail stores features and their in�uence
on a store income rate. At the end of this section, we will introduce the features
correlation heatmap.

Nowadays, the feature selection has been proccesed by general machine learning
algorithms. They combine the computational complexity, the quick operation and
universal, consequently, the choice of optimal algorithm depends on a formulation of
the problem and the initial dataset. There are a few papers, which describe the retail
feature analysis [2, 3]. One approach focuses on prediction of the retail location by
using neural network [1]. We presume that an accuracy of prediction depends on a
set of features, which in�uence income rate.

Indeed, each store has a number of features, which are usually common to all
stores belonging to the same retail network. Thus, each feature in�uences the income
rate with a greater or lesser degree, accordingly, the owner may manage to income
by establishing the necessary measures of the features. Actually, there are no speci�c
features that clearly a�ect a pro�t, because the number of important features depends
on the category of the store network and the city urbanization. For example, in the
case of pharmacy retail, an important feature is the presence of hospitals and medical
institutions close to the store. We note that there are common features for all store
chains, such as the area of the premises, the number of cash desks and sellers, the
availability of parking, tra�c, bus stations and others.

The paper will investigate the pharmacy industry, where the retail chain has the
set of stores in the count of 22 items and each store has features in the count of 134
items.

Actually, the pharmacy industry has several speci�c types of the features. Some
of them have a radially distance dependence on the store location. An example might
be the count of bus station from the store at a distance of 100 meters, 200 meters, 300
meters, 400 meters, 500 meters and 800 meters radially. Another features is square
of the store in the square meters. Table 1 describes a few features of the pharmacy
industry.

Moreover, the heatmap of correlation matrix on a Figure 2 shows the dependence
between several features and income. The deep red color identi�es a strong positive
correlation, but the deep-blue is a negative correlation. For instance, the feature
"rubric 365-800" means a number of the hospital located within a radius of 800
meters has a strong correlation with the feature "pharmacies-800" - the number of
competition on radius 800 meters.

In the next section, we will refer to the implementation of the prediction model
on the pharmacy retail data set.
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Figure 2: The correlation matrix of the retail features

3 The module prediction on an experimental retail

data

The prediction module consists of the following steps,

1. The retail data preprocessing includes the scaling procedure. In brief, we use
the min-max scaling, which consists in rescaling the range of features to scale
in the unit interval. In addition, the pro�table to ranking the stores on income
rate, where the �rst shop the low income and last the high income, to observe
the income �uctuation.

2. Indeed, several features did not corelate to income and the count of featuers
are massive that uninformative. For this reason, we need to select informative
features, which correlated to income. Therefore, in this experiment, we apply
two-step of selection, where on the �rst, the decision maker selects irrelevant
features or noisy dataset. In the second, we apply feature selection algorithm
Boruta, it works as a wrapper algorithm around Random Forest.

3. Next, we apply the prediction Average method to dataset after preprocessing
procedure. Indeed, in the comparison diagram, we may observe the advantage
of this method.
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Table 1: The retail data before and after scaling procedure

storeID area/scaling residental 100/scaling metro stops 200/scaling malls 400/scaling
1 79.6/0.4688 331/0.4203 1/0.5 0/0
2 93.9/0.5750 513/0.7046 2/1 1/1
3 70.1/0.3982 432/0.5781 1/0.5 0/0
4 77/0.4495 293/0.3609 0/0 1/1
5 80.4/0.4747 702/1 0/0 1/1
22 101.7/0.633 288/0.3531 0/0 1/1

4. In the end, we build the project as a general module for income prediction.
After, this module will integrate to the main business logic for the retail network
system.

Certainly, before the avareged method implementation, we need to organize the
retail store data preprocessing procedure. The experimental sample has 22 stores
and 134 features. The experiment was implemented by using a Python 3.4 version.
The dataset was given by the medicine company and was supplemented by Yandex
services.

At the �rst, we need to structure information by ranking the stores according to
the income rate. At the second, we implement the preprocessing procedure as the
scaling of data set. It was computing by using min-max approach, which provides
distribution values on the unit interval. The intermediate calculation was presented
in Table 1.

After, we apply the Boruta algorithm to normalise dataset. Boruta is heuristic
algorithm for selection of signi�cant features based on the use of Random Forest. It
tries to capture all the signi�cant features in the dataset with respect to an outcome
variable in our case is income. Therefore we de�ned 14 features, which depend on
income change. There are "area", "transport stops 800", "metro tra�c 400-500"
and "metro tra�c 800", "wi� tra�c 100", "street retail 200 - 300" and etc. Indeed,
Figure 3 describes two features "area" and "transport stops 800". On the �rst �gure
we observe the dependence on store's area and them income in the interval between
0.3 and 0.8. The moving average line shows the trend line for feature "area". The tails
of moving the average line in interval [0;0.3] and [0.8;1] describes the low dependency
on the store's income. The second �gure shows the simillar case, wherein the interval
[0.4;0.7] we observe the strong dependence on numbers of transport stations to radius
800 meters to the store's income.

According to this number of features, we apply the prediction algorithms to the
preprocessing dataset. From a large number of prediction algorithms, we have choosen
the Gradient Boosting Regression, Random Forest Regression and Avarage method.
The tree structure algorithms provide more simple interpretation, �exibility, and high
computational speed the speci�c dataset regardless of the count data and the variety.
The results of the data prediction was provided by Table 2. Statistical estimates
are used to estimate the prediction, where the simplest is the deviation of the fact
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a) Feature "area" b) Feature "transport stops 800"

Figure 3: The dependence between income and features "area", "transport stops
800"

Table 2: Comparison the estimations of prediction algorithms

MAE MAPE
Gradient Boosting Regressor 0.29663477 142.6556371
Random Forest Regressor 0.261513839 123.5678737

Ridge 0.567570237 220.6778885
Average method 0.273655219 131.8967422

from the prediction in quantitative terms. The value of mean absolute error supports
Random Forest Regressor.

By the way, the dataset was devided on traning set and testing, but the number of
samples was so small and was di�cult for algorithms predict the exact result. So, we
trained algorithms except for one store and we tested only this store. Other words,
all stores are 22 iterations, where we except one store trained by 21 stores, where
one was testing. During all iterations, we excepted each store from learning. Figure
4 shows the three prediction methods, at �rst thought all methods are simillar but
the curve of Random Forest Regressor more �at than other and it MAE value is low.
However, it is a fact, that the number of samples was poor and the algorithms do not
provide exact result of the prediction, because they necessary the much more quantity
of sample. This problem we may observe on the tails of curve, where the low-income
stores has only 4 units and a similar situation with the high-income stores.

In summery, we computed all steps for explaining the Prediction module which
was included on the union project for the pharmacy retail store's network. By using
this program common person may analyze the location on a city map according to
the features and follow to this prediction's advice.
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Figure 4: The comparative diagram of prediction store's network income

Conclusion

In this paper, we focused on a pressing task as a prediction income of the retail
chain. The prediction module based on Average model, which is union the Gradient
Boosting Regression and Random Forest methods, the feature selection was computed
by Boruta method. Currently, this module would be extended not only the pharmacy
industry but also on the other business area. Despite it, this module was included in
the global service "Mestomer".
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Some directions and results of research in the �eld of educational data anal-
ysis using the NSTU Information System are presented. Such results are useful
for administrative decision-making to university business processes. Received
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Keywords: information system, educational data mining, data analysis,
decision-making support, classi�cation algorithms.

Introduction

Universities are operating today in a very dynamic and competition environment. The
rapid development of information and communication technologies have led to very
strong competition between universities. Leading educational institutions have real-
ized that they need to be proactive, introducing innovative management approaches
and using progressive methods and techniques, in order to remain competitive [1].
Solving the problem of raising a level of higher education, the state places higher
educational institutions in conditions of competitive struggle, in which only universi-
ties that have managed to adjust according to the demands of the time and mobilize
all their resources for this purpose win. The goal pursued by the state is to get
rid of weak universities in the market of educational services. This requires the ad-
ministration of the university to make timely management decisions to improve the
e�ectiveness and educational process and other areas.

The decision-making process in the �eld of education is very complex, as it involves
a wide range of stakeholders who are related to higher education in one way or another
(teachers, employees, students, their parents, ministry employees, etc.). Inevitably,
this process contains many factors of a subjective nature. Among other things, a
competent analysis of information accumulated in the university's information system
is one of the elements to make it possible to increase the level of objectivity and quality
of decisions. University management have to take quickly important decisions, and
therefore information are needed timely and high quality.

Modern universities are collecting large volumes of data referring to their students,
the organization and management of the educational process, and other business pro-
cesses. Huge amounts of data have accumulated on all aspects of the vocational guid-
ance, educational, �nancial, economic, scienti�c and other spheres of the university's
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activity in the Information System (IS) of the Novosibirsk State Technical Univer-
sity (NSTU) since 15 years of its development. This data may be use for making
management decisions to improve the business processes of the university [4]. The
available data usually used for producing simple and traditional reports. Moreover,
much of the data remains unused due to the inability of the university administration
to handle it because of the large volumes and the increasing complexity.

Analysis of educational data (EDM - Educational data mining) for improving
business processes in the university is one of the modern trends in the education
system. It's necessary to introduce advanced information technologies to e�ectively
transform available data into knowledge to support decision making.

This paper describes the results of researches in the next areas:

- the analysis of the correlation of the USE (Uni�ed State Examination) score
and the progress of students,

- the studying on factors a�ecting the students' expulsion,

- the analysis of the demand for educational resources in the Electronic library
system of NSTU,

- the research of approaches to improving the quality of higher education, carried
out using Methods of Expert Estimations.

1 Analysis of the correlation of the USE score and

the of students' progress

It is considered that the average USE score at admission is one of the indicators of
the �e�ectiveness� of the university. This is one of the indicators that the university
reports to the ministry. The generally accepted qualitative model of dependence of
the student's progress at the university of his USE score (Model 1) has the form
shown in Fig. 1.

The research task was to con�rm or disprove the statement that this model is the
only true one [5]. Research of performance by semester and USE average scores of
entrants performed using developed software for the storage and delivery of reports
and tools for regression models building from Caret package of software system R.
Analysis of the reports and regression models showed the dependence of academic
performance of USE average score doesn't always have the type of dependence pre-
sented by Model 1. Students not having the highest score of the exam often show
better academic performance. This type of dependence (Model 2) presented in Fig.
2. Despite the fact that the Model 1 is dominant, and its nature is observed in most
of the cases, the Model 2 of academic performance of USE average score have place in
a number of educational programs in some departments, for some semesters in some
faculties [5].
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Figure 1: The generally accepted
qualitative model of the student's

progress in the university dependence on
his USE average score

Figure 2: The alternative qualitative
model of the student's progress in the
university dependence on his USE

average score

Below is a regression model of student academic performance of direction 02.03.03
�Mathematical support and administration of information systems� (data for 2011-
2017), its high-quality appearance corresponds to a Model 2 (Y � performance in the
100-point system, X � USE score):

Y = −4.3334 + 0.2263X − 0.0015X2 (1)

In general, it can be concluded that the USE average score can not be the basis for
the de�nition of the university's �e�ciency� in terms of �education quality� in the
sense of student performance. Some teachers who were familiar with the presented
data suggested that the nature of Model 2 is a sign of certain problems in the study
process: congestion of students, imbalance of training courses, etc.

2 Research is the investigation of factors a�ecting

the students' expulsion

The task of retaining students is the classical task of EDM, and many publications
are devoted to its solution, for example [2,3,6]. Like any university, Novosibirsk State
Technical University is extremely interested in retaining of entered students, so in ad-
vance it would be useful to know students from �at-risk group� with high probability
to be expelled in order to take up to date measures and to provide assistance to stu-
dents (special training conditions, additional consultations, etc.). The research aim
is to �nd out whether there are templates (sets of input variables-factors) that can
be useful for predicting student expulsions (a variable of the output class). Analyzed
factors in terms of their impact on students' expulsion are:

- an average USE score on admission;

- a category of secondary school (lyceum/gymnasium /secondary school of the re-
gional center/district secondary school/ rural secondary school/college/secondary
technical school);

438



Applied Methods of Statistical Analysis

- place of residence (at home/in a residence hall/ at an apartment);

- social welfare (satisfactory/low: certi�cate from the department of social pro-
tection, orphan, disabled);

- enrollment (on a general basis/target set);

- average score in the �rst session.

The research used data from the University's Information System: data for 2011-
2014 are used to train the classi�er, data for 2011-2018 are used for testing. The
analysis was carried out for all faculties and for all educational programs. Several
di�erent algorithms were used from di�erent packages of the software system R to
build the classi�cation model: decision tree algorithm Cart (function Rpart from
Rpart package), random forest algorithm (function RandomForest from RandomFor-
est package), Support Vector Machine algorithm (function Svm from e1071 package).
Each classi�er was used to test two variants: Variant1 with cross validation by divid-
ing the original sample into 10 equal parts (9 parts were used for training and one �
for testing) and Variant2 � the percentage of separation (2/3 dataset used for train-
ing and 1/3 � for testing). For the majority of faculties and educational programs, a
high accuracy of the classi�er was achieved at the level of 75-82%. Some results of
research are given in Tab. 1.

The classi�cation trees obtained by the CART classi�er contain from one to �ve
levels of hierarchy. The attribute �Average score in the �rst session� appears at the
�rst level of the tree for all faculties, for such faculties as Faculty of Automation
and Computer Engineering, Faculty of Applied Mathematics and Computer Science,
Faculty of Humanities it is enough to carry out the classi�cation with su�cient accu-
racy. For other faculties such attributes as �Social welfare�, �A category of secondary
school�, �Place of residence� and �An average USE score on admission� are displayed
from the second to the �fth level of the tree, which means that these attributes a�ect
most of the classi�cations of the instances, but this e�ect is much less than that of
the attribute �Average score in the �rst session�. At the same time, the attribute
�Enrollment� does not appear in the classi�cation tree for any faculty or any faculty
program, which indicates that it does not a�ect the results of the classi�cation.

The following conclusions can be made from the research results in general:

- The considered input characteristics have di�erent e�ect on the dropout of
students. The decisive factor is �Average score in the �rst session� among those
factors considered in�uencing the results of the classi�cation. Other attributes,
including �An average USE score on admission,� do not have a signi�cant e�ect
on student dropout.

- In most cases the absence of the attribute �Category of secondary school� in
constructed decision trees indicates that this attribute has a rather weak e�ect
on student performance at the university.
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Table 1: CLASSIFICATION RESULTS FOR EDUCATIONAL PROGRAM

Support Vector Machine algorithm

Faculties / Educational
programs

Sample
size

Variant1 Variant2

Accuracy
Accuracy on
the training
sample

Accuracy on
the test
sample

Faculty of
Automation and
Computer Engineering

1178 78.9 79.5 79.6

09.03.01 393 79.6 80.1 78.6

09.03.02 125 84.8 85.5 69.0

09.03.04 98 81.6 83.8 83.1

....... ....... ....... ....... .......

Faculty of
Applied Mathematics
and Computer Science

641 81.1 82.4 77.1

01.03.02 447 80.8 82.2 75.2

02.03.03 194 81.6 85.3 73.8

Aircraft Faculty 1001 78.8 79.7 76.3

05.03.06 33 93.9 95.4 63.6

15.03.03 109 85.3 88.1 78.4

....... ....... ....... ....... .......

Faculties/Educational
programs

CART algorithm Random Forest algorithm
Accuracy on
the training
sample

Accuracy on
the test
sample

Accuracy on
the training
sample

Accuracy on
the test
sample

Faculty of
Automation and
Computer Engineering

79.1 78.1 77.9 80.4

09.03.01 78.6 77.9 77.1 75.4

09.03.02 83.1 73.8 81.9 78.5

09.03.04 55.3 45.5 80.0 72.7

....... ....... ....... ....... .......

Faculty of
Applied Mathematics
and Computer Science

79.1 78.1 77.9 80.4

01.03.02 78.5 76.5 78.5 75.5

02.03.03 81.4 77.9 81.5 80.0

Aircraft Faculty 78.5 77.5 80.8 76.4

05.03.06 68.2 45.5 77.3 65.5

15.03.03 58.3 54.1 86.6 78.4

....... ....... ....... ....... .......
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- The low value of the attribute �Average score in the �rst session� indicates a po-
tential threat of future student dropout with a high probability. Such students
with a high threat of future dropout should be provided with additional assis-
tance measures (special conditions of study, additional consultations, etc.) at
the early stage (after the �rst session) in order to retain them at the university.

In addition, the dynamics of changes in the signi�cance of the studied factors in
the time range and the level of in�uence of the transition from numerical to categorical
data were investigated.

The accuracy of prediction could be increased by considering additional input
factors: the fact of the student's work in parallel with the studying, the student's
personal qualities (motivation, insistence, etc.), school academic performance related
to the student's pro�le. Unfortunately, these data are not currently available in the
Information System. In addition, factors such as the social status of the student's
family, quali�cations, education and family income of parents would be useful, but
the collection of this data is impossible under the Federal Law on Personal Data.

3 Analysis of the demand for educational resources

in the Electronic library system of NSTU

Creation of electronic educational resources (manuals, lecture notes, etc.) is one of
the activities of the teaching sta� of the university. Electronic library system of NSTU
contains several tens of thousands of resources written by scienti�c and pedagogical
sta� of the university. However, the level and quality of these resources very vary.
Just as the level of scienti�c publications are estimated by the citation index, it is
logical to assess the quality of educational resources by their demand. The demand
of educational resources estimated by the number of downloads these resources by
students.

This allows you to get the ratings of the most popular electronic educational
resources and ratings of authors whose resources are most in demand. The qualitative
dependences of these ratings are shown in Fig. 3 and Fig. 4.

At NSTU, as at most universities, the system of e�ective contract introduced and
over the past few years used. Two factors dominated with the highest weights at
the system: they are the publication activity of employees and the amount of money
earned for the university. Twice a year, the results of executing of the e�ective
contract faculties, departments and formed a rating of e�ective contract research and
teaching sta� of the university publicly summer up. Herewith the administration of
the University constantly notes that about one hundred of the most active employees
of the university perform 50% of the indicators of an e�ective contract. This indicates,
according to the administration, the ine�cient work of a large part of the scienti�c
and pedagogical sta� of the university. In this regard, it is interesting to correlate the
performance indicators of the e�ective contract of scienti�c and pedagogical workers
and the demand for electronic educational resources of these employees. At Fig. 5
data on the number of downloads of the authors' resources were superimposed on data
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Figure 3: Download resources of
Electronic library system of NSTU (the

most popular resources)

Figure 4: Download resources of
Electronic library system of NSTU (the

most popular authors)

of scienti�c and pedagogical sta�' rating. We see that the demand for educational
resources of scienti�c and pedagogical sta� from the �rst thousand rating keep at
about the same level, after that they sharply reduce.

Figure 5: Correlation of execution of e�ective contract and the demand for
electronic educational resources of scienti�c and pedagogical workers

The higher demand for educational resources of employees who lead the rating
of an e�ective contract can explained by the fact that their training materials are
prepared in collaboration with other employees. Herewith a demand for educational
resources of those employees who close the rating are increase dramatically. This
indicates that not succeed in scienti�c and research activities, these employees are
very useful for the university in the preparation of high-quality electronic educational
resources.
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4 Research of approaches to improving the quality

of higher education, carried out using Methods of

Expert Estimations

One of directions of research is the analysis of approaches to improving the quality
of higher education, carried out using Methods of Expert Estimations.

As a result, of preliminary conversations with university professors with extensive
teaching experience, eight ways were formulated to solve this problem:

1) To eliminate the direct relationship between the number of university students
and the amount of funding from the ministry, which would allow the university
to get rid of careless students

2) To involve in the process of teaching in a higher educational institution highly
quali�ed specialists from production, research and commercial organizations on
conditions of adequate remuneration.

3) To increase the level of knowledge in the admission of applicants, which will
allow to cut o� poorly trained high school graduates in the entrance examina-
tions.

4) To increase the level of salary for university teacher.

5) To improve the quali�cations of university professors through active use of the
internship system, retraining, and improving scienti�c quali�cations.

6) To enroll more students to participate in scienti�c, design and engineering works
of industrial or scienti�c importance.

7) To refuse to blindly copy the Western-style higher education system.

8) To improve the quality of study courses and their methodological support by
prior obligatory discussion of the courses developed by the teacher within the
pedagogical community of the university.

The study's expert group consisted of 13 employees of the NSTU with work ex-
periment between 7 to 48 years:

The experts represented

- three faculties: the Faculty of Applied Mathematics and Computer Science,
the Faculty of Mechanical engineering and Technologies and the Faculty of
Mechatronics and Automation;

- four departments: Department of Applied Mathematics, Department of The-
oretical and Applied Computer Science, Department of Materials Science in
Mechanical Engineering, Department of theoretical fundamentals of electrical
engineering.

443



Novosibirsk, 18-20 September, 2019

There were three heads of departments, �ve professors, six associate professors, one
senior lecturer and three heads of university departments among the study's experts.

All experts ranked from 3.7 to 10.8, depending on the work experience service,
position, academic degree. The experts' preferences were processed by �ve methods
of expert assessments after conducting the survey: the method of pairwise compar-
isons, the method of weighted expert assessments, the method of preference, the rank
method, the method of complete pairwise comparison.

Among the most unexpected results stands the fact that all �ve methods of ex-
pert assessments gave preference to the alternative �Increasing the level of university
teacher's salary�, despite the fact that among the proposed alternatives were alterna-
tives that deserve more attention. At the same time, it cannot said that mercantile
interest won, since the most of the experts did not put this alternative in the �rst
place.

It addition it should be noted that various experts expressed very di�erent pref-
erences, which indicates the absence of a uni�ed university strategy in approaches to
solving the problem of improving the quality of higher education.
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Abstract

The paper considers the identi�cation of nonlinear stochastic dynamical sys-
tems. One approach for adaptive identi�cation of nonlinear dynamical systems
based on kernel adaptive �ltering is proposed. Simulations illustrating perfor-
mance for one stochastic dynamical system are presented. Convergence rate
and prediction accuracy are analyzed for various noise levels in data.
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Introduction

Nowadays one key problem is identi�cation of nonlinear dynamical systems with
stochastic behavior. Most of up-to-date identi�cation approaches are based on linear
models since their properties and limits are well-known and established. At the same
time, quite often one has to deal with nonlinear systems that cannot be identi�ed by
linear methods. In this regard, kernel methods for identi�cation of nonlinear systems
have become widely used since they allow using linear algorithms to solve nonlinear
identi�cation problems without any assumptions about the model structure.

Over the past decades there have been developed many kernel-based algorithms,
which have become widely used in identi�cation of dynamical systems. Most of re-
searches in the �eld of kernel adaptive identi�cation present results of simulations
illustrating the rate of convergence, accuracy and comparison of the amount of cal-
culations and memory requirements. In many cases, computational experiments are
performed for not optimized parameters that may cause high bias of obtained results.
The purpose of this paper is to analyze properties of adaptive kernel algorithms at
optimal parameter settings on identi�cation problem of stochastic dynamical systems.

1 Kernel methods

Kernel methods rely on the so-called kernel trick [4]. The key feature of kernalization
is that complex and nonlinear functions in original input space X are more likely to be
linear in a high dimensional Hilbert space H, also called feature space. The original
input space X can be mapped to feature space H by using mapping φ : X → H. The
mapping φ can be de�ned explicitly, if a prior knowledge is available. In temrs of ker-
nel methods, the mapping is de�ned implicitly from the training data by a positively
de�ned kernel function K(x1,x2) = φ(x1)Tφ(x2) satisfying Mercer's conditions [4].
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This transformation allows solving nonlinear problems through construction of ker-
nelized counterparts of linear methods by simply replacing inner products in linear
algorithm with kernel.

The core of kernel methods is Representer Theorem [2], that allows solving non-
linear optimization problems through construction a linear combination of kernel
function on training data:

ŷ(x) =
N∑
n=1

αnK(xn,x), (1)

which parameters αn can be found by methods based on least squares or least-mean
squares criterion, like kernel ridge regression [3] and kernel least-mean squares [4].
Next section presents a brie�y review of such algorithms in notations proposed in [5].

1.1 Kernel ridge regression

Assume X = [x1, ...,xn]T ∈ Rn×m as input matrix, y = [y1, ..., yn]T ∈ Rn×1 as output
vector, where n is a number of training data, m is a number of inputs. Regularized
least squares problem, or ridge regression, involves seeking a weight vector w =
[w1, ..., wm] ∈ R1×m that solves:

min
w

J = min
w
‖y −Xw‖2 + c‖w‖2, (2)

where c is a positive Tikhonov regularization constant. Solution of the problem (2)
for w is:

w = (XTX + cI)
−1

XTy, (3)

where I is identity matrix.
Regularization improves stability of matrix XTX allowing the solution of ill-posed

problems and avoids over�tting by trying to keep norm of the vector w small.
In order to construct a kernel-based representation of kernel ridge regression,

transform matrix X and vector w in equation (2) into the feature space:

min
φ(w)

J = min
φ(w)
‖y − φ(X)φ(w)‖2 + c‖φ(w)‖2. (4)

According to Representer Theorem [2], the solution φ(w) of this problem can be
expressed as linear combination of training data in feature space:

φ(w) = φ(XT)α, (5)

where α = [α1, ..., αn]T. Then substitute (5) in (4), denote K = φ(XT)φ(X), and
obtain the kernel-based least squares problem:

min
α
J = min

α
‖y −Kα‖2 + cαTKα, (6)

where vector α can be found by:

α = (K+cI)−1y. (7)
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Prediction of the output ŷn at time n is given by:

ŷn = kT
nα, (8)

where kT
n = [K(xn,x1), ...,K(xn,xn−1)].

Predictions obtained by kernel ridge regression algorithm requires O(n3) calcula-
tions, when its recursive version, kernel recursive least squares (KRLS) algorithm [6],
requires about O(n2) calculations, which is more preferred in online scenarios. Con-
sideration of KRLS algorithm is presented in the next section.

1.2 Kernel recursive least squares

In order to construct a KRLS algorithm [6], assume that data arrive sequentially, one
pair xn, yn at time n. Then, vector α and prediction ŷn at time n can be written as:

αn−1 = K−1
r,nyn−1, ŷn = kT

nαn−1 (9)

where Kr,n = Kn + cI.
By using prediction ŷn and obtained output yn, a priori error en at time n is

calculated:
en = yn − ŷn. (10)

Then kernel matrix Kr,n is updated:

Kr,n =

[
Kr,n−1 kn

kT
n knn + c

]
, (11)

where knn = K(xn,xn).
By introducing the variables:

βn = K−1
r,n−1kn, γn = knn + c− kT

nβn. (12)

the inverse kernel matrix is updated:

K−1
r,n =

1

γn

[
γnK

−1
r,n−1 + βnβ

T
n −βn

−βn 1

]
. (13)

Finally, KRLS prediction ŷn and update of the vector α = [α1, ..., αn]T is per-
formed by the recursive algorithm:

ŷn = kT
nαn−1, (14)

αn =

[
αn−1

0

]
− en
γn

[
βn
−1

]
. (15)

447



Novosibirsk, 18-20 September, 2019

1.3 Kernel least-mean squares

Consider a least squares problem in feature space (3). Its solution w can be obtained
by using stochastic-gradient method [7]:

φ(w)← φ(w)− η

2

∂J

∂φ(w)
, (16)

where η is a learning rate.
After replacing derivate by its instantaneous approximation and removing regu-

larization, an update rule for kernel least-mean squares (KLMS) [4] is obtained:

φ(wn) = φ(wn−1) + ηenφ(xn). (17)

Finally, KLMS prediction ŷn and update of the vector α is calculated by:

ŷn = kT
nαn−1, αn =

[
αn−1

ηen

]
. (18)

If there is a regularization, we obtain so called naive online regularized risk min-
imization algorithm (NORMA), which prediction ŷn and update rule for α is given
by:

ŷn = kT
nαn−1, αn =

[
(1− ηc)αn−1

ηen

]
. (19)

KLMS and NORMA requires only O(n) calculations, what can be more appro-
priate in low cost systems.

2 Problem statement and simulation setup

Nonlinear system
nx

nα

Adaptive algorithm

—

n

ˆ
ny

ne

( , )n x

ny



Figure 1: Kernel-based method identi�cation setup [7].
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Directly applying kernel-based approach to the identi�cation problem, the next
problem statement is obtained. Consider a nonlinear system yn = f(xn) + ξn in-
�uenced by unobservable random e�ects ξn having zero mean and limited variance,
and a set of observable xn. Output of the system yn is synchronically measured
together with observable input xn. Input xn and output yn arrive sequentially, one
data instance at time n = 1, 2, .... Typical setup for online system identi�cation with
a kernel-based method is shown in Fig. 1.

Every identi�cation algorithm have a number of parameters to be chosen prop-
erly in order to obtain lower bias. In general, parameters should be optimized within
selected criterion. There are many approaches to parameter optimization, includ-
ing typical cross-validation, marginal likelihood maximization, adaptive optimization
using stochastic-descent method and etc.

Parameters in�uence on prediction accuracy and convergence speed is one key
problem of the proposed adaptive kernel identi�cation algorithms, which is neces-
sary to specify. Further simulation presents performance results for NORMA and
KRLS algorithms at optimal settings of parameters on identi�cation problem of one
nonlinear dynamical system a�ected by additive noise.

Simulations are performed for a Mackey-Glass time series [9], generated by the
following equation:

dxn
dn

= −bxn +
axn−∆

1 + x10
n−∆

+ ξn, (20)

where a = 0.2,b = 0.1, ∆ = 30, ξn is an additive noise with mean E[ξn] = 0 and
variance σ = 0.1.

Generation of training and test samples is performed by 4-th order Runge-Kutte
method for initial state x(0) = 1.2 and step size h = 1.

Sample size N = 1250, �rst 1000 observations are used for training and last 250
for testing, noise levels ξn = 0%, 5%, 10%, 15%.

Consider a time-delayed vector xn = [xn−1, xn−2, xn−3]T as input data, yn = xn,
n = 1, 2, ..., N as output data.

Assume Gaussian kernel as a kernel function:

K(x1,x2) = exp

(
−‖x1 − x2‖2

2σ2

)
. (21)

Simulations are performed for optimized lenght-scale parameter σ, regularization
parameter c and NORMAs step size η obtained by cross-validation performed o�ine
in terms of normalized mean-squared error (nMSE):

nMSE = log10

[
1

Nσ̂2

N∑
n=1

(yn − ŷn)2

]
. (22)

In next section simulations results, including learning curves and optimal param-
eters con�guration at various noise levels are presented.
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3 Simulations results

Next �gures illustrate convergence curves for KRLS and NORMA obtained on the
test sample throughout the training run.

Figure 2: Learning curves at ξn = 0%. Figure 3: Learning curves at ξn = 5%.

Figure 4: Learning curves at ξn = 10%. Figure 5: Learning curves at ξn = 15%.

Figures 2-5 shows that KRLS has a higher convergence speed and lower steady-
state nMSE on every noise level, that caused by its higher complexity. KRLS updates
all parameters α and inverse kernel matrix K−1

r,n at each iteration, while NORMA
updates only one parameter αn.

Raising regularization parameter c for KRLS in table 1 indicates that with an
increasing noise level the solution becomes more unstable. In case of NORMA op-
timal regularization parameter c is unchanged, because KLMS-type algorithms have
a "self-regularization" property, when their parameter η is small enough. In order
to provide smoothing, lenght-scale parameter σ also increases on each noise level for
both algorithms. Optimal length-scale parameters σ for NORMA is lower than opti-
mal σ for KRLS. It shows that KRLS take into account more data from training set
at prediction point than NORMA, but it is still able to obtain lower nMSE.

Figure 6 presents predictions obtained by KRLS and NORMA on test data at
ξn = 15%. It can be seemed that NORMA has a tendency to oversmooth data where
peaks are observed, while KRLS prediction is more consistent with real output.
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Table 1: Optimized parameters and nMSE per noise level

NORMA KRLS
σ c η nMSE σ c nMSE

ξn = 0% 0.5749 8.17 · 10−12 0.0817 -27.95 4.0456 5.64 · 10−20 -40.51
ξn = 5% 0.5979 8.17 · 10−12 0.0778 -25.64 5.8444 8.54 · 10−7 -28.14
ξn = 10% 0.6547 8.17 · 10−12 0.0709 -22.22 6.9932 4.21 · 10−5 -23.68
ξn = 15% 0.8812 8.17 · 10−12 0.0642 -19.97 7.9412 0.0058 -20.45

Figure 6: KRLS and NORMA prediction on test data at ξn = 15%.

One may noticed that NORMA has �uctuations in nMSE, that is caused by
constant step-size η, which should be chosen properly to yield convergence of the
stochastic-gradient method. NORMA rely on least-mean criterion, thus it is more
persistent to noise e�ects and has lower nMSE spread.

Conclusions

Kernel methods are nonparametric techniques that allow solving nonlinear identi�-
cation problems without any model speci�cation. In this paper the adaptive kernel-
based identi�cation problem of nonlinear dynamical systems is considered, including
its two basic methods: kernel recursive least squares and kernel least-mean squares.
The proposed algorithms were compared during the numerical simulations at opti-
mal parameter con�gurations. In the simulations it is shown that the strength of
kernel least-mean squares algorithm lies in its ability to persist noise e�ects upon suf-
�ciently low prediction error in addition to its computational e�ciency, while kernel
recursive least squares algorithm has lower prediction error, but it is more computa-
tionally complex. Selection of practical identi�cation algorithm is a trade-o� between
accuracy and computational complexity. Obtained results give reason to design modi-
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�cations and to perform application of kernel adaptive identi�cation algorithms. This
paper a�ords a basis for further research and more detailed analysis of kernel adaptive
identi�cation algorithms.
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Abstract

To restore dependencies, it is proposed to use locally adaptive linear regres-
sion models. The question of a priori optimal design of the experiment when
identifying locally adaptive linear regression models is considered.

At the same time, domains of the the operating factors is divided into 2-3
fuzzy partitions. The problem of construction D-optimal design of the experi-
ment is formulated. The problem of constructionD-optimal design is considered
for the case of one and two factors with the number of fuzzy partitions 2 and
3. The analysis of the optimal designs characteristics depending on the fuzzy
partitions intersection zone width is carried out. It is noted that with a decrease
in the fuzzy partitions intersection zone, e�ciency of optimal designs increases,
which a�ects the reduction of the dispersion matrices determinants. The con-
clusion is made about the e�ciency of active identi�cation of locally adaptive
linear regression models.

Keywords: locally adaptive linear regression models, membership function,
optimal design of experiment, criterion of D-optimality.

Introduction

In real situations, knowledge about the object model at the initial stage of the study
is far from complete. In the conditions of complete or partial ignorance of the struc-
ture of an object model, in practice often used the methodology of modeling and
experimentation on the principle from �simple� to �complex�, for example, from lin-
ear to quadratic model, etc. In accordance with the stages of complication of the
model and the experimental design is selected.

If the range of the factors variation is chosen wide enough, then one should ex-
pect that the response behavior in di�erent parts of the factor space will di�er. In
conditions when a priori there are no unambiguous assumptions of structure of ob-
ject model, they often resort to using non-parametric regression modeling technology,
when selection of model is carried out according to the available data. As an exam-
ple of such technology it is possible to consider a support vector machine (see, for
example, [1]- [3]). However, there is a rather e�ective methodology, which, while re-
maining within the framework of a linear parametric model, can obtain descriptions
of the behavior of an object on rather broad domain of actions. It is a technology of
locally adaptive regression models, when the behavior of an object in di�erent parts
of the factor space is modeled by separate local models [4]- [9]. Their e�ciency
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can be also increased due to use of optimal experimental designs for such models.
However, the theory of optimal experimental design for such models has not yet been
developed.

1 Materials and methods

Basic assumptions of the theory of optimal experimental design. Let's
assume that the studied observation model is

y = fT (x)θ + e =
m∑
l=1

fl(x)θl + e, (1)

where fT (x) = (f1(x), ..., fm(x))− vector of known functions from an explanatory
variable x = (x1, ..., xk)

T , which can change in range X̃; θ = (θ1, ..., θm)T - unknown
parameters; e - error term; y - value of an dependent variable. Let results of mea-
surements be independent random variables with the expected value determined by
the regression equation (response function)

E(y/xj) = fT (xj)θ = η(xj, θ) (2)

and dispersion σ2
j in each point xj ∈ X̃, j = 1, N . For the errors ej at xj ∈ X̃

therefore it is possible to write E(ej) = 0; E(ejek) = σ2
j δjk, where δik− Kronecker

delta, j, k = 1, N .
The priori choice of points xj, j = 1, N , according to these or those optimality

criterions also there is a problem of optimal experimental design.
Under the discrete normalized design εN we will understand the set of quantities

x1, x2, ..., xn; p1, p2, ..., pn, where
n∑
i=1

pi = 1, pi = ri/N :

εN =

{
x1, x2, ..., xn
p1, p2, ..., pn

}
,

n∑
i=1

pi = 1, pi = ri/N, i = 1, n.

If the weights of the design points are imposed only restrictions
n∑
i=1

pi = 1, pi ≥ 0,

i = 1, n, then such a design is called a continuous normalized design ε. Further, with-
out loss of generality, we will assume that the observations are uniformally precise,
i.e. σ2

i = σ2
j , ∀i, j = 1, . . . n. For the design ε information matrix takes the form

M(ε) =
n∑
i=1

pif(xi)f
T (xi). (3)

The experimental design ε (or εN), chosen in a certain way, allows, in accordance
with (3), to improve parameter θ estimation accuracy.

We will evaluate the quality of the design ε by the value of a certain functional
of the information matrix M(ε) or the corresponding to it dispersion matrix D(ε) =
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M−1(ε). In this work we will consider a task of constructing D-optimal designs:
ε∗ = Argmax

ε
|M(ε)|.

The necessary and su�cient condition for the D-optimality of the design ε∗ is to
ful�ll [10]:

max
x∈X̃

ϕ(x, ε∗) = trM(ε∗)
∂ ln |M(ε∗)|
∂M(ε)

= trM(ε∗)M−1(ε∗) = m, (4)

where ϕ(x, ε∗) = fT (x)M−1(ε∗)f(x).
The construction of optimal experimental designs is carried out, as a rule, using

the appropriate numerical procedures. In this case, the execution of of conditions
(4) is achieved with some permissible accuracy:∣∣∣∣−min

x∈X
ϕ(x, εs) + trM(εs)

∂ψ[M(εs)]

∂M(εs)

∣∣∣∣ ≤ δ, (5)

where δ - small positive quantity.
In this paper, to obtain optimal designs, we will use the gradient projection

method based on the weights of the design points. The spectrum of the initial design
itself will be a discrete set of points in the form of a su�ciently dense grid on X̃. We
will control the achievement of the extremum point by execution of ratio (5).

Locally adaptive regression models. Locally adaptive regression models
(LAR models) will be speci�ed through the regression tree. Let x1, x2, . . . , xk rep-
resent linguistic variables. Their values are determined by fuzzy sets A, B, . . . ,Γ,
and the degree of intensity of the manifestation of the value will be set through
membership functions. The branches of the decision tree have the form [11]

Πij..l : If (x1 is Ai) ∧ (x2 is Bj) ∧ ... ∧ (xk is Γl) then
y′ij...l = η + αi + βj + ...+ γl.

(6)

Truth of statements (x1 is Ai), (x2 is Bj), ...., (xk is Γl) is de�ned by values of
the corresponding membership functions µAi ∈ [0, 1], µBj ∈ [0, 1], . . . , µΓl ∈ [0, 1].
Degree of truth of the statement Πij...l will be denoted as µ(y′ij..l) and calculate it as
µ(y′ij..l) = µAiµBj · · ·µΓl . Concerning assignment of values µAi , µBj , . . . , µΓl we make
the requirement that for each observation conditions are satis�ed:

I∑
i=1

µAi = 1,
J∑
j=1

µBj = 1, ... ,
L∑
l=1

µΓl = 1;

µAi ∈ [0, 1], i = 1, I, µBj ∈ [0, 1], j = 1, J, . . . , µΓl ∈ [0, 1], l = 1, L.

(7)

Taking into account (7) tree decisions (6) can be represented as an observation
model

yij...l = η +
I∑
i=1

µAiαi +
J∑
j=1

µBjβj + ...+
L∑
l=1

µΓlγl + eij...l. (8)
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After �nding the estimate θ̂T = (η̂, α̂1, ..., α̂I , β̂1, ..., β̂J , ..., γ̂1, ..., γ̂L) for the vec-
tor of parameters θ, the decision tree can be represented as

ŷ=η̂ +
I∑
i=1

µAiα̂i +
J∑
j=1

µBj β̂j + ...+
L∑
l=1

µΓl γ̂l. (9)

Let's consider a situation when as the explaining are used variables, measured in
a quantitative scale now. To simplify the presentation, we consider a particular case
when the number of input factors is two. We divide the scope of the quantitative
variables x1, x2 into fuzzy partitions, which for the �rst factor we will denote as
A1, A2, ..., AI with the corresponding membership functions µ1i ∈ [0, 1], i = 1, I.
Similarly, for the factor x2, these will be partitions B1, B2, ..., BJ with membership
functions µ2i ∈ [0, 1], i = 1, J . We will proceed from the fact that at certain su�-
ciently wide intervals of action of quantitative factors, the behavior of the system's
response can be described by a linear dependence. In this case, the complexity of
the tree can be reduced by trying to replace the representation of the response in
the leaves of the tree, for example, by its linear dependence on input factors. The
decision tree from two factors in this case will consist of branches of the form

Πij : If (x1 is Ai) ∧ (x2 is Bj) then
y′ij = θ0 + θ01i + θ02j + (θ1 + θ11i + θ12j)x1 + (θ2x2 + θ21i + θ22j)x2.

(10)

Here, a part of the summands, namely, θ0 + θ1x1 + θ2x2 is included in each branch
of the tree and determines the overall linear dependence of the response on input
factors throughout the entire area of their de�nition without taking into account its
splitting into partitions. Taking into account (7), the decision tree (10) can be
represented as an observation model

yijl = θ0 +
I∑
i=1

µ1iθ01i +
J∑
j=1

µ2jθ02j + (θ1 +
I∑
i=1

µ1iθ11i+
J∑
j=1

µ2jθ12j)x1+

+(θ2 +
I∑
i=1

µ1iθ21i+
J∑
j=1

µ2jθ22j)x2 + eijl.

(11)

To ensure the identi�ability of model (11), we will reduce it by removing a number
of regressors from it. For example, you can remove regressors from the model µ1I ,
µ2J , and also µ1Ix1, µ1Ix2, µ2Jx1, µ2Jx2. Justi�cation of this technique of ensuring
the identi�ability of the model can be found in [11]- [12].

2 Results and discussions

For the classical linear and polynomial models, many di�erent designs have been
proposed (see, for example, , [10], [13]- [17]). As a rule, in order to compare them,
they were synthesized on standard domains of input factors, namely, each factor
varied in a segment [−1,+1]. When considering locally adaptive regression models
in the prior construction of optimal designs, we need to make assumptions about the
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number, form and location of fuzzy partitions for each factor. At the moment we
con�ne ourselves to the consideration of linear local models. We will assume that in
the region of small values of factors, the behavior of the response dependence di�ers
from the behavior of the dependence in the region of large values, for example, in a
tilt angle. In the case of consideration of three partitions of such areas with di�erent
behavior of the response dependence, there will already be three for each factor.
In this paper we will use trapezoidal membership functions. The relative position
of the fuzzy partitions will be determined in this case by the coordinates of the
intersection points of the neighboring partitions and the width of their intersection
zone. Due to the symmetry of the factors domains with respect to zero, we will place
fuzzy partitions also symmetrically with respect to a zero value. In the general case,
the coordinate of the point of intersection of the partitions will be denoted as x̄µ.
The width of the intersection zone, where the adjacent membership functions have
simultaneously non-zero values, will be denoted as 2∆. The width of the partitions
intersection in�uences the smoothness of the regression dependence transition from
one local model to another.

For the classical linear model, the D-optimal experiment design is concentrated at
the ends of the segment [−1,+1]. These points +1 and �1 will be called characteristic.
They form the spectrum of the optimal design. For a quadratic model, the point 0 is
added to the number of such points. For locally adaptive models with two and three
partitions, points with coordinates x̄µ, ±x̄µ ±∆ can be considered as characteristic
points. For the case of two partitions, the locally adaptive regression model with one
input factor is

E(y/x) = fT (x)θ = θ0 + θ1x+ µ1(x)θ01 + µ1(x)θ11x ,

where fT (x) = (1, x, µ1(x), µ1(x)x).
For a case of three partition it takes a form

E(y/x) = fT (x)θ = θ0 + xθ1 + µ1(x)θ01 + µ2(x)θ02 + µ1(x)xθ11 + µ2(x)xθ12,

where fT (x) = (1, x, µ1(x), µ2(x), µ1(x)x, µ2(x)x).
Tables 1, 2 in the columns entitled as "Spectrum and weights of the D−optimal

design points" show the weights of the points of the optimal designs spectrum for a
linear model with 2 and 3 partitions, and also the values of the information matrix
determinant. The designs were constructed using the gradient projection method
based on the weights of the points. The accuracy of execution of the necessary and
su�cient optimality conditions (5) was provided at the level δ = 1 ∗ 10−3. The
designs are symmetrical and the weights of the points symmetric about zero coincide.
It is characteristic that the spectra of optimal designs are the characteristic points
indicated above.

As can be seen from the analysis of tables 1, 2 at reduction of the width of the
intersection of fuzzy partitions e�ciency of optimal designs signi�cantly increases. It
is quite explainable as the length of the segments on which the membership function
for each of the partitions is equal to 1 increases.

457



Novosibirsk, 18-20 September, 2019

Table 1: Characteristics of the D-optimal design for a linear locally adaptive model
with two partitions, x̄µ = 0

∆
Spectrum and weights of the D−optimal design
points |M(ε∗)|

−1, +1 x̄µ −∆, x̄µ + ∆ x̄µ
0,4 0,2428 0,1941 0,1262 0, 581 ∗ 10−3

0,3 0,2484 0,2308 0,0416 0, 946 ∗ 10−3

0,2 0,25 0,25 0 0, 160 ∗ 10−2

0,1 0,25 0,25 0 0, 256 ∗ 10−2

Table 2: Characteristics of the D-optimal design for a linear locally adaptive model
with three partitions, x̄µ = 0, 3

∆
Spectrum and weights of the D−optimal design points |M(ε∗)|−1, +1 −x̄µ −∆, x̄µ + ∆ −x̄µ + ∆, x̄µ −∆ −x̄µ, +x̄µ

0,2 0,1651 0,1525 0,0893 0,0931 0, 769 ∗ 10−7

0,15 0,1663 0,1629 0,1505 0,0203 0, 177 ∗ 10−6

0,1 0,1666 0,1666 0,1666 0 0, 444 ∗ 10−6

0,05 0,1666 0,1666 0,1666 0 0, 956 ∗ 10−6

Continuous optimal designs in practice, as a rule, are not applied due to the
fact that their full implementation may require a very large number of observations.
In practice, discrete optimal designs are applied, which are constructed for a given
number of observations. To build them, you can use a combi-gradient algorithm [17]
or an algorithm of consecutive addition points in the design [18]- [19]. Due to the
fact that, with a relatively small width of the intersection zone, the weights of the
points of the spectrum of the continuous D-optimal design are close, it should be
expected that the composition of the discrete design points will be mainly formed
by the spectrum points of the continuous design. For example, for a model with two
partitions and ∆ = 0, 3 the discrete design with 4 observations included the following
points: {−1;−0, 3; 0, 3; 1}. The characteristics of this design: |M(ε∗)| = 0, 937∗10−3,
trM−1(ε∗) = 75, 67, are close to those of the continuous optimal design from table 1.

When considering multifactor models and D-optimal designs for them, the same
noted regularities can be observed. Consider for example the case of a two-factor
model.

E(y/x) = fT (x)θ = θ0 + θ1x1 + θ2x2 + µ11(x1)θ3 + µ21(x2)θ4 + µ11(x1)x1θ5

+µ21(x2)x1θ6 + µ11(x1)x2θ7 + µ21(x2)x2θ8.

With a half width of the intersection zone ∆ = 0, 2 and two partitions, the spectrum of
the optimal design will make a full factorial experiment from 16 points with variation
levels for each factor { − 1;−0, 2; 0, 2; 1}. The weights of the points di�er depending
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on whether they are angular or lie on the edges: the weights of the points of the corner
points (±1;±1) are 0,05906, at the points (±1;±0, 2) and (±0, 2;±1) the weight is
0,07915, at the points (±0, 2;±0, 2) the weight is 0,03261.

Conclusion

The methodology of a priori experiment design when constructing locally adaptive
linear regression models is proposed. The characteristic features of the obtained
optimal designs for linear locally adaptive regression models are revealed.
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Abstract

We observe the Galton-Watson Branching Processes. Limit properties of
transition functions and their convergence to invariant measures are investi-
gated.

Keywords: Branching process, Immigration, Transition probabilities, Slow
variation, Invariant measures.

Introduction

Let {Xn, n ∈ N0} be the Galton-Watson Branching Process allowing Immigration
(GWPI), where N0 = {0} ∪ N and N = {1, 2, . . .}. This is a homogeneous Markov
chain with state space S ⊂ N0 and whose transition probabilities are

pij = coe�cient of sj in h(s)
(
f(s)

)i
, s ∈ [0, 1),

where h(s) =
∑

j∈S hjs
j and f(s) =

∑
j∈S pjs

j are probability generating functions
(PGF's). The variable Xn is interpreted as the population size in GWPI at the
moment n. An evolution of the process will occurs by following scheme. An ini-
tial state is empty that is X0 = 0 and the process starts owing to immigrants.
Each individual at time n produces j progeny with probability pj independently
of each other so that p0 > 0. Simultaneously in the population i immigrants ar-
rive with probability hi in each moment n ∈ N. These individuals undergo further
transformation obeying the reproduction law {pj} and n-step transition probabilities
p

(n)
ij := P {Xn+k = j|Xk = i} for any k ∈ N are given by

P(i)
n (s) :=

∑
j∈S

p
(n)
ij s

j =
(
fn(s)

)i n−1∏
k=0

h
(
fk(s)

)
for any i ∈ S, (1)

where fn(s) is n-fold iteration of PGF f(s); see for example [7]. Thus the transition

probabilities
{
p

(n)
ij

}
are completely de�ned by the probabilities {pj} and {hj}.

Classi�cation of states of the chain {Xn} is one of fundamental problems in theory
of GWPI. Direct di�erentiation of (1) gives

E
[
Xn|X0 = i

]
=


an+ i , when m = 1,(

a

m− 1
+ i

)
mn − a

m− 1
, when m 6= 1,
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wherem = f ′(1−) is mean per-capita o�spring number and a = h′(1−). The received
formula for E

[
Xn|X0 = i

]
shows that classi�cation of states of GWPI depends on a

value of the parameter m. Process {Xn} is classi�ed as sub-critical, critical and
supercritical if m < 1, m = 1 and m > 1 accordingly.

The above described population process was considered �rst by Heathcote [3] in
1965. Further long-term properties of S and a problem of existence and uniqueness
of invariant measures of GWPI were investigated by Seneta [13], Pakes [9], [10] and
by many other authors. Therein some moment conditions for PGF f(s) and h(s) was
required to be satis�ed. In aforementioned works of Seneta the ergodic properties of
{Xn} were investigated. He has proved that when m ≤ 1 the process {Xn} has an
invariant measure {µk, k ∈ S} which is unique up to multiplicative constant. Pakes
[10] have shown that in supercritical case S is transient. In the critical case S can
be transient, null-recurrent or ergodic. In this case, if in addition to assume that
2b := f ′′(1−) < ∞, properties of S depend on value of parameter λ = a/b: if λ > 1
or λ < 1, then S is transient or null-recurrent accordingly. In the case when λ = 1,
Pakes [9] studied necessary and su�cient conditions for a null-recurrence property.
Limiting distribution law for critical process {Xn} was found �rst by Seneta [12]. He
has proved that the normalized process Xn/(bn) has limiting Gamma distribution
with density function Γ−1(λ)xλ−1e−x provided that 0 < λ < ∞, where x > 0 and
Γ(∗) is Euler's Gamma function. This result has been established also by Pakes [9]
without reference to Seneta. Afterwards Pakes [7], [8], has obtained principally new
results for all cases m <∞ and b =∞.

Throughout the paper we keep on the critical case only and b =∞. Our reasoning
will bound up with elements of slow variation theory in sense of Karamata; see [11].
Remind that real-valued, positive and measurable function L(x) is said to be slowly
varying (SV) at in�nity if L(λx)/L(x) → 1 as x → ∞ for each λ > 0. We refer the
reader to [1], [2] and [11] for more information.

In second section we study invariant measures of the simple Galton-Watson (GW)
Process. In third section the invariant properties of GWPI will be investigated.

1 Invariant measures of GW Process

Let {Zn, n ∈ N0} be the simple GW Branching Process without immigration given
by o�spring PGF f(s). Discussing this case we will assume that the o�spring PGF
f(s) has the following representation:

f(s) = s+ (1− s)1+νL
(

1

1− s

)
, [fν ]

where 0 < ν ≤ 1 and L(x) is SV at in�nity. By the criticality of the process the
condition [fν ] implies that b = ∞. This includes the case b < ∞ when ν = 1 and
L(t)→ b as t→∞.

Consider PGF fn(s) := E
[
sZn |Z0 = 1

]
and write Rn(s) := 1 − fn(s). Evidently

Qn := Rn(0) is the survival probability of the process. By arguments of Slack [14]
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one can be shown that if the condition [fν ] holds then

Qν
n · L

(
1

Qn

)
∼ 1

νn
as n→∞. (2)

Slack [14] also has shown that

Un(s) :=
fn(s)− fn(0)

fn(0)− fn−1(0)
−→ U(s) (3)

for s ∈ [0, 1), where the limit function U(s) satis�es the Abel equation

U (f(s)) = U(s) + 1, (4)

so that U(s) is PGF of invariant measure for the GW process {Zn}. Combining [fν ],
(2) and (3) and considering properties of the process {Zn} we have

Un(s) ∼ Un(s) :=

[
1− Rn(s)

Qn

]
νn as n→∞.

So we proved the following lemma.

Lemma 1. If the condition [fν ] holds then

Rn(s) =
N (n)

(νn)1/ν
·
[
1− Un(s)

νn

]
, (5)

where the function N (x) is SV at in�nity and

N (n) · L1/ν

(
(νn)1/ν

N (n)

)
−→ 1 as n→∞, (6)

and the function Un(s) enjoys following properties:

� Un(s) −→ U(s) as n→∞ so that the equation (4) holds;

� lims↑1 Un(s) = νn for each �xed n ∈ N;

� Un(0) = 0 for each �xed n ∈ N.
Evidently that this lemma is generalization of (2) and herein it established by

more simple proof rather than as shown in [4].
Further writing Λ(y) = yνL (1/y) we consider the function

Mn(s) := 1−
Λ
(
Rn(s)

)
Λ (Qn)

. (7)

It follows from (5) and from the properties of SV-function that

Mn(s) = 1−
(
Rn(s)

Qn

)ν L(1/Rn(s)
)

L
(
1/Qn

)
∼ 1−

(
1− Un(s)

νn

)ν
∼ Un(s)

n

(
1 + ρn(s)

)
as n→∞,

where ρn(s) = O
(
1/n
)
uniformly for all s ∈ [0, 1).

Thus we obtain the following assertion.
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Lemma 2. If the condition [fν ] holds then

n · Mn(s) −→ U(s) as n→∞, (8)

where U(s) is PGF of invariant measure of GW Process.

In the following theorem we �nd an explicit form of PGF U(s). Write

V(s) :=
1

νΛ (1− s)
.

Theorem 1. If the condition [fν ] holds then

U(s) = V(s)− V(0). (9)

Proof. In pursuance of reasoning from [2, p. 401] we obtain the following relation:

V
(
fn+1(s)

)
− V

(
fn(s)

)
−→ 1 as n→∞.

Thence summing by n we �nd

V
(
fn(s)

)
− V(s) = n ·

(
1 + o(1)

)
as n→∞.

Keeping our designation we easily will transform last equality to a form of

Λ
(
Rn(s)

)
=

Λ (1− s)
Λ (1− s) νn+ 1

(
1 + o(1)

)
as n→∞. (10)

Combining (7), (8) and (10) we reach (9).

2 Invariant measures of GWPI

Consider GWPI. Pakes [8] has proved the following theorem.

Theorem P1 ([8]). If m = 1 then

p
(n)
00 ∼ K exp


en∫

1

lnh (1− ϕ(y))

y
dy

 as n→∞,

where ϕ(y) is decreasing SV-function. If

∞∑
m=0

[
(1− h(fm(0)) (1− f ′(fm(0))

]
<∞,

then

p
(n)
00 ∼ K1 exp


fn(0)∫
0

lnh(y)

f(y)− y
dy

 as n→∞.
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Herein K and K1 are some constants.

Since this point we everywhere will consider the case that immigration PGF h(s)
has the following form:

1− h(s) = (1− s)δ`
(

1

1− s

)
, [hδ]

where 0 < δ ≤ 1 and `(x) is SV at in�nity.
Our results appear provided that conditions [fν ] and [hδ] hold and δ > ν. As it

has been shown in [8] that in this case S is ergodic. Namely we improve statements
of Theorem P1. Herewith we put forward an additional requirement concerning L(x)
and `(x). So since L(x) is SV we can write

L (λx)

L(x)
= 1 + α(x) [Lα]

for each λ > 0, where α(x)→ 0 as x→∞. Henceforth we suppose that some positive
function g(x) is given so that g(x) → 0 and α(x) = o

(
g(x)

)
as x → ∞. In this case

L(x) is called SV with remainder α(x); see [2, p. 185, condition SR3]. Wherever we
exploit the condition [Lα] we will suppose that

α(x) = o

(
L (x)

xν

)
as x→∞. (11)

And also by perforce we suppose the condition

` (λx)

`(x)
= 1 + β(x) [`β]

for each λ > 0, where

β(x) = o

(
` (x)

xδ

)
as x→∞.

Since fn(s) ↑ 1 for all s ∈ [0, 1) in virtue of (1) it su�ciently to observe the case
i = 0 as n→∞. Write

Pn(s) = P(0)
n (s).

The following theorem is generalization of the Theorem P1.

Theorem 2. Let conditions [fν ], [hδ] hold. If δ > ν then

Pn(s) ∼ K(s) exp

−
fn(s)∫
s

1− h(y)

f(y)− y

[
1 + δ(1− y)

]
dy


as n→∞, where K(s) is a bounded function for s ∈ [0, 1) and δ(x)→ 0 as x ↓ 0. If
in addition, the conditions [Lα] and (11) are satis�ed then

Pn(s) ∼ K(s) exp

−
fn(s)∫
s

1− h(y)

f(y)− y

[
1 + o

(
Λ (1− y)

)]
dy

 as n→∞.
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Corollary 1. Let conditions [fν ], [hδ] hold. If δ > ν then

p
(n)
00 ∼ A exp

{
−N

ν(n)

δ − ν
· `
(

(νn)1/ν

N (n)

)}
as n→∞,

where A is a positive constant and N (x) is SV at in�nity de�ned in (6).

Further we need the following result which is an improved analog of the Basic
Lemma of the theory of critical GW processes.

Lemma 3 ([5]). Let conditions [fν ], [Lα] and (11) hold. Then

1

Λ
(
Rn(s)

) − 1

Λ (1− s)
= νn+

1 + ν

2
· ln (1 + νnΛ(1− s)) + ρn(s),

where ρn(s) = o
(
lnn
)

+ σn(s) and, σn(s) is bounded uniformly for s ∈ [0, 1) and
converges to a limit σ(s) as n→∞ which is a bounded function of s ∈ [0, 1).

We make sure that at the conditions of second part of Theorem 2 PGF Pn(s)
converges to a limit π(s) which we denote by the power series representation

π(s) =
∑
j∈S

πjs
j.

Using the Lemma 3 we will establish a speed rate of this convergence in the following
theorem.

Theorem 3. Let conditions [fν ], [hδ] hold and δ > ν. Then Pn(s) converges to π(s)
which generates the invariant measures {πj} for GWPI. The convergence is uniform
over compact subsets of the open unit disc. If in addition, the conditions [Lα], (11)
and [`β] are ful�lled then

Pn(s) = π(s)

(
1 + ∆n(s)Nδ

(
1

Rn(s)

))
,

where Nδ(x) = N δ(x)`(x), the function N (x) is de�ned in (6) and

∆n(s) =
1

δ − ν
1(

νn(s)
)δ/ν−1

− 1 + ν

2ν

ln
[
νn(s)

](
νn(s)

)δ/ν (1 + o(1)
)

as n→∞ and νn(s) = νn+ Λ−1 (1− s).
The following result is direct consequence of Theorem 3.

Corollary 2. If conditions of Theorem 3 hold then

p
(n)
00 = π0 ·

(
1 + ∆nNδ (n)

)
,

where Nδ(n) is SV at in�nity and

∆n =
1

δ − ν
1

(νn)δ/ν−1
− 1 + ν

2ν

lnn

(νn)δ/ν
(
1 + o(1)

)
as n→∞.

Remark 1. The analogous result as in Theorem 3 has been proved in [6] provided
that δ = 1 and f ′′′(1−) <∞.
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Abstract

Data scientists use statistical models and methods along with algorithmic
(machine-learning) approaches to solve problems of classi�cation, forecasting,
pattern recognition, inference and interpretation of results. Practical di�cul-
ties include dealing with enormous datasets with complex structures requiring
substantial computational support. Moreover, when applied in real-world busi-
ness, the challenges for data science multiply as practice induces an additional
level of complexity requiring solutions optimized with respect to cost, time,
and other speci�c regulatory, �nancial or environmental constraints. Here it
is important to complement scienti�c methods with common sense approach,
practical heuristics and judicious decision making during all important phases of
developing data driven solutions. We focus on two complementary yet represen-
tative data science topics: (1) a problem of periodic automated sales forecasting
for a large number of industrial products where we survey forecasting models
and methods along with practical procedures for evaluation of their predictive
performance and weigh empirical evidence of their relative merits in model se-
lection, and (2) a problem of cluster analysis as a basis for personalization and
segmentation of customers and products in a typical e-commerce application.

Disclaimer : This article expresses personal views and opinions of the au-
thors, which may not coincide with policies or positions of their employers.
Examples were chosen for the purpose of illustrating main ideas and do not
refer necessarily or directly to their work on any speci�c project.

Keywords: forecasting intermittent demand, personalization, segmenta-
tion, clustering, angular distance measure.

Introduction

Companies which develop, manufacture or sell thousands of products need regular and
automated forecasts to support various functions such as supply chain management,
sales operations and �nancial planning. Forecasts of demand for products/parts are
typically done on monthly or weekly basis for multiple horizons from one month to
a year. Predictions are based on analysis of individual time-series of various lengths
depending on product age. Given the number of time-series in tens of thousands
or more, automating forecasts becomes a necessity. We do not consider commercial
forecasting packages but work with those developed as a result of mainly academic
research and implemented on freely available software platforms such as CRAN's R
programming environment, see [14], for example.
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Traditional approach to forecasting mostly uses statistical time-series models,
however, along with re-emergence of neural networks as useful non-parametric tools
for pattern recognition, more machine learning methods have been used for clas-
si�cation and prediction. As is usual with heterogeneous methodologies, each of
these approaches may have advantages over the other depending on concrete data
and application area. A number of empirical studies, such as one presented in [11]
have been conducted and practical evidence gathered comparing relative merits of
two approaches in terms of predictive accuracy and requirements for computational
resources.

When evaluating predictive performance and computing requirements, in order
to decide which forecasting methodology to use, it is important to consider complex-
ity of methods and interpretability of the results, as advocated in [6]. Availability
of substantial computational power allows for checking of a multitude of forecasting
models and methods (o�-the-shelf ones or those developed for speci�c applications)
thus making explicit the uncertainty inherently present in the model selection process.
Model choice is usually based on a series of evaluations of individual predictive per-
formance, with a need to employ some form of regularization to counter over-�tting
to the selection procedure and so avoid selection bias, as shown in [3]. Another im-
portant ingredient in performance estimation is choice of the right accuracy metric,
which is especially critical in case of intermittent demand, see [7] and [4].

Complementary approach to searching for a "best" model is to combine forecasts
from a number of models as �rst proposed in [2]. Combined forecasts have some
appealing properties in terms of the upper bound of the predictive error. Importantly,
predictive performance for a large number of individual datasets can also be improved
by aggregating time series in groups and hierarchies and reconciling forecasts at
di�erent levels as presented in [16], and speci�cally for intermittent demand in [12].

The �rst section provides a brief survey of select models, methods and procedures
which we �nd practical and e�ective in developing forecasting solutions on indus-
trial scale for the real-world problems. Our preferences for certain approaches are
supported by published empirical evidence from diverse forecasting applications.

The second part of the paper focuses on segmentation and clustering as a basis
for online store personalization in modern e-commerce. The goal of personalization is
to o�er merchandise desired by customers without need for their explicit querying for
it. Techniques for personalization leverage all available information about customers
and product characteristics along with history of purchases and detailed interaction
with the e-commerce web-site. The processes and methods providing personalization
can be viewed as an application of data mining techniques [10].

At the core of the methods enabling personalized online views are clustering meth-
ods which segment the spaces of customers and products into associated groups.
Depending on the shape of clusters, proximity measures can result in very di�er-
ent groupings which in turn may poorly re�ect the true classi�cation. Thus, one
of the challenges of applying clustering algorithms is the selection of an appropriate
proximity (distance) measure.

We illustrate clustering examples in the online space of products and buyers where
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Euclidean distance works well in one class of cases but yields unsatisfactory associ-
ations in the other, whereas the cosine measure has opposite performance. As a
solution we introduce a novel proximity measure, angular distance measure (ADM),
which performs well in both cases but also in a case where neither Euclidean nor
cosine measure is satisfactory.

1 Forecasting for a large number of time series

A company engaged in research and development (R&D), manufacturing or sales
of thousands of di�erent products or parts (for example, auto parts or electronic
circuits) needs forward looking capabilities in order to make adequate (1) planning
of production capacity, (2) management of supply chain, (3) �nancial planning, (4)
deployment of sales force and (5) directing e�orts of marketing organization. All of
these functions and processes use forecasting projections of the future demand for
parts, which means that applying reliable forecasting procedures is a condition of
critical importance for business success. Our goal is to identify, select, develop and
apply e�ective predictive approaches and methodologies based on objective scienti�c
criteria and proven industrial practices.

1.1 Di�culties with intermittent demand

Analyzing sales of parts/products implies working with time-series that may experi-
ence multiple periods of zero demand. Intermittent demand (ID) is a common place
in many industries from aviation and automotive to defense and semiconductor and
also occurs with products approaching the end of their life cycle. In case of ana-
lyzing tens of thousands of parts a large fraction may be of intermittent demand,
what has direct consequences for inventory control and maintenance of stock levels.
Clearly, reliably and accurately forecasting irregular demand has critical importance
for optimizing inventory levels, with direct �nancial impact on the business.

Di�culty with ID time-series is that usual forecasting methods, such as simple
exponential smoothing (SES), may not apply. Variants of SES compute a forecast for
the next period as a weighted average, Ft+1 = αYt+(1−α)Ft, of the the current fore-
cast, Ft, and demand, Yt, and exhibit an upward bias for periods after zero-demand.
More robust forecasts are obtained using Croston's method and its derivatives (see
[6], and references therein) although these are not based on statistical models. Brie�y,
Croston's method is based on separate estimates of demand size and time-intervals.
Adjusted versions estimate the probability of non-zero demand (instead of the interval
size), use additional parameters, and lower the bias of estimates.

Model based forecasts for ID include �avors of auto-regressive moving average
(ARMA) models such as discrete and integer-valued ARMA which can describe sta-
tionary stochastic processes taking non-negative integer values. Alternative methods
use bootstrapping and temporal aggregation of time series which in case of su�ciently
large data may remove zeroes and allow for predictions to be done using standard
methods such as SES.
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Petropoulos et al. in [12] describe an approach to forecasting ID using multiple
aggregated views of the data (e.g., daily observations turned into weekly, bi-weekly or
monthly). Temporal aggregation lessens intermittence, however, it results in a loss of
information and it's also di�cult to determine an "optimal" aggregation level. A so-
lution is to combine forecasts made on multiple temporal aggregation levels resulting
in improved predictions as shown empirically in the same paper. A complementary
approach to temporal aggregation is described in [13] and is based on transforming
the time series, by switching the roles of time and demand, to represent inter-demand
intervals per cumulative demand. Transformed data have smaller variance and pre-
dictions show improved accuracy over analysis with original data.

1.2 Automated forecasting procedures and accuracy metrics

Making forecast for tens of thousands of time series would be next to impossible with-
out some kind of automation of the process. Commercial packages such as SAS and
Autobox have capability for automated forecasting, whereas freely available CRAN-R
platform o�ers libraries of functions which can be combined into a �exible forecast-
ing system for speci�c needs. We worked with forecast package, developed by R.
Hyndman et al., see [8].

The package implements automatic forecasts using a number of methods and
models including exponential smoothing, ARIMAmodels, Theta method, and splines.
We worked with exponential smoothing methods (ESM) and ARIMA models. It
should be noted that ESM-s are algorithms for producing point forecasts only, but
reformulating them in terms of underlying state space stochastic models provides
a framework for computing prediction intervals along with the same point forecasts.
Akaike Information Criterion (AIC) is used for model selection. Non-linear ESM-s are
intended for non-stationary series, whereas ARIMA models work better for stationary
data. Automatic selection of ARIMA models is done through auto.arima() function
based on a combination of unit root tests, MLE and minimization of the AIC.

In general, automatic models selection is not without risk, since spurious rela-
tionships are bound to happen in a multi-testing setting. Moreover, over�tting the
training data, especially in case of shorter time-series, is another problem that may
adversely a�ect predictive performance of the chosen model. Performance of forecast-
ing methods or models needs to be evaluated in order to measure how predictions
compare to the actually observed values. Model predictions performance computed
on a set of observed points not used in model �tting is then used as the criterion for
selecting a preferred model. It is therefore important to choose appropriate accuracy
metrics as described in [7].

Typical forecast accuracy metrics compute mean absolute error (MAE), or its
variants using median or geometric mean. These errors are on the same scale as
the data so accuracy measurements are scale-dependent. The problem, especially for
intermittent demand, is that output of these functions may be in�nite or unde�ned.

Scale independence is provided by mean absolute percentage error (MAPE) and
this is one of the widely used accuracy metrics in demand planning, for example.
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However, MAPE, de�ned as the mean of absolute values 100(Yi − Fi)/Yi, may also
produce unde�ned or in�nite results on the account of division by zero. Moreover,
distribution of errors can be very skewed in case when actual values are close to zero.
Another problem with MAPE is that it favors smaller rather than larger forecasts
which can be avoided using the symmetric version of MAPE.

MASE is the mean of the absolute values of scaled errors qt de�ned as the ratio
between εt = Yt − Ft and the prediction of a naive method such as average one-step
forecast,

∑n
j=2 |Yj − Fj|/(n − 1). Mean absolute scaled error (MASE) is scale inde-

pendent and is always de�ned except when all observations are the same. In addition
to MASE, working with the error measure based on log(Fi/Yi) is recommended as it
has desirable statistical properties, see [15].

1.3 ML vs time-series models

Modern methods of data analysis are based on automated algorithms for solving
large classes of problems without the need for explicit encoding of speci�c solutions.
This approach goes by names of arti�cial intelligence (AI), machine learning (ML) or
deep learning (DL) and has gained traction and prominence in recent years in diverse
areas of speech recognition, language translation, computer vision, robotics, games,
and many other applications in pattern recognition, classi�cation and prediction.

Typical ML methods include various versions of neural networks, tree-based meth-
ods (such as random forests, gradient boosting machines), kernel methods, and
Bayesian networks. The successes of these methods is largely based on using of
algorithms capable of gradual learning of the underlying structures in the data by
trial and error and iterative improvement of the performance.

We've found �exibility of ML methods to be valuable when the main goal is to
classify data points without a need to interpret the results. In particular, tree-based
methods such as random forests (RF) proved to be most useful for classi�cation tasks
given their (almost) plug-and-play property as it doesn't require extensive optimiza-
tion of hyper-parameters. For example, when forecasting intermittent demand for
a speci�c time-horizon, time-series may be classi�ed in two groups, one of which is
with predicted zero demand, and then these results combined with the forecast from
time-series methods.

Large research body of literature exists on advances of new ML/AI methods [5],
with growing number of applications of ML approaches to forecasting problems, espe-
cially using long-short-term-memory (LSTM), NN-s and tree based algorithms. Yet,
limited objective assessment of performance of ML methods in forecasting is avail-
able to help guide practitioners in deciding when applying ML techniques may be
advantageous over traditional, statistical methods and time-series models.

Typically, academic papers on ML forecasting report forecasts performance but
do not provide comparison with simple statistical methods or naive benchmarks, and
so imply that ML methods make superior predictions although not providing any
supporting empirical evidence. This resembles the situation in statistical literature
in the 1970s and 1980s when forecasting methods were considered to have superior
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predictive accuracy simply because of model complexity and mathematical appeal.
In a recent comparative analysis Makridakis et al. [11] evaluate forecasting per-

formance of ML methods and statistical models on a rich set (of 1000+) of time series.
The study shows that simple time-series models such as linear methods, exponential
smoothing, and ARIMA outperform complex ML approaches, including Multi-Layer
Perceptron (MLP), Bayesian NNs (BNN), Kernel Regression NNs, Radial Basis Func-
tions (RBF), Classi�cation and Regression trees (CART), Gaussian Processes (GP),
and Support Vector Regression (SVR). ML methods also are more computationally
intensive and in general require more data along with feature engineering.

1.4 Temporal aggregating and hierarchical forecasting

Typical business requires decision making at di�erent levels of activity and also needs
forecasts for multiple time horizons. Strategic considerations use aggregated long-
run forecasts whereas operational decisions that are highly dynamical and time con-
strained require detailed individual and short-term forecasts.

Forecasts are done separately at each temporal level using di�erent approaches
and are based on multiple sources of information so it's expected that the results
may not agree. Yet, for consistent decision making it is important to reconcile the
aggregated predictions at multiple temporal and aggregation levels.

Athanasopoulos et al. in [1] introduce a concept of temporal hierarchies in fore-
casting of time-series and the method is implemented in the thief R package. Tem-
poral hierarchy is represented by the connections of grouping structures across the
aggregation levels. Main advantage of using temporal hierarchies is in merging data
from di�erent sources and optimally combining predictions from di�erent aggrega-
tion levels into consistent and reconciled forecasts. This combination allows for better
planning and decision making and also improving forecasting accuracy. Reconcilia-
tion across aggregation levels ensures that higher level forecasts are equal to the sums
of subaggregate predictions. Reconciliation is optimal in the sense that predictions at
individually forecasted levels are adjusted by the least amount to produce consistent
values across the hierarchy.

A complementary approach to working with temporal hierarchies is to forecast
on hierarchies of time series disaggregated by various attributes. For example, total
count of manufactured individual parts can be disaggregated into groups by product
function or type. These categories can be nested within larger groups so that the col-
lection of corresponding time-series would follow a hierarchical aggregation pattern.
Additional to product hierarchy, time series can be grouped according to geography
of sales to di�erent countries and regions. Such aggregation produces more general
structures which are based on both nested and crossed disaggregation factors. Con-
sistent forecasting requires the forecasts to add up in the same way as the data. For
example, forecasts for individual parts should add up to forecasts across grouping
hierarchies. Traditional ways of reconciling forecasts at di�erent levels are not satis-
factory since bottom-up approach, for example, starts with noisy bottom-level data
with errors compounding, whereas the top-down disaggregation introduces bias. A
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recent approach, described in [16] and implemented in hts R package, avoids above
disadvantages and produces consistent forecasts by minimizing the mean squared er-
rors across the entire collection of time series under the assumption of unbiasedness.

1.5 Search for a "best" model and combining forecasts

A trend toward use of more complex forecasting methods has been observed in pre-
vious few decades with econometricians setting the trend (see for example [6] and
references therein). Yet it has been shown in a number of empirical studies (not only
in case of ML vs traditional time-series methods) that simple models were at least as
accurate and often more accurate than complex models. Here, simplicity of the model
is not understood in terms of the number of variables in regression model, or amount
of model development e�ort, for example. Instead, simple forecasting model/method
is taken to be a forecasting process that is understandable to forecast users.

Reluctance to trust and use simple methods comes from bias towards complexity,
which is deemed more persuasive, as explicitly shown in experiments using abstracts
from academic papers � abstracts containing an algebraic equation were judged to be
of higher quality although the mathematical expression was unrelated to the contents.

Ful�lling the goals of the exercise to make sensible forecasts for many thousands
of time-series has a form of a giant optimization which includes repeated searching
in the space of possible models for those that are "best". An example of one level of
this search is obtaining optimal ARIMA model as implemented within auto.arima()

function of the forecast package and using a procedure based on computing unit
roots, MLE and AIC to estimate optimal model parameters. Another example is
searching the space of such "optimal" models in attempt to select a subset of those
with the "best" predictive performance evaluated on the test set not used in model
�tting (and calculating MLE and AIC). Some properties of principled model selection
based on comparison of predictive performance are described in [9].

In our approach to forecasting for a large number of time-series we prefer using
a number of di�erent yet straightforward procedures and methods. We (1) select
automatically time series models with optimal parameters (forecast R-package and
auto.arima() function), (2) use hierarchical multi-horizon methods, and (3) combine
predictive outputs of a select subset of "best" methods. However, it is di�cult, if not
impossible, to �nd a single model outperforming all others on multiple datasets in a
speci�c application. It has been suggested decades ago [2] that combined forecasts
of several models or methods outperform, on average, each individual approach in
terms of predictive accuracy. Similarly, Bayesian model averaging allows for weighted
combination of models' outputs. Combining forecasts has advantage of reducing
variability of prediction errors, and in the case of two models, upper bound for the
error variance of the combined forecast is the smaller of the individual variances.

In addition, we partition the set of time series in natural groups (based on simi-
larity of product, for example) and apply classes of multiple forecasting models and
methods to each group. Predictive accuracy of forecasts is always evaluated on the
observations not used in model �tting and then the outputs of a subset of best per-
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forming methods are combined as simple (or weighted) averages into the �nal forecast.
Forecasts obtained from this procedure can also be viewed as exhibiting a selection

bias or, in some sense, over�tting this very process as described in [3]. The authors
suggest a form of a cross-validation protocol which requires model selection to be an
integral part of the model �tting process with selection step performed anew whenever
a model is trained with a new set of data. Details are too many to explain, but we
are con�dent that we have largely followed the main trust of this approach.

2 Clustering of consumer preferences in e-commerce

A typical modern e-commerce site deploys systems which attempt to treat each cus-
tomer in a "personalized" way so as to o�er the content that is likely to be of interest
to the user. Speci�cally, in developing a personalized system for an online store the
goal is to identify and o�er those groups of products that are in line with customer
preferences and so has a better chance to be purchased. To allow a system to learn
about users' online behavior and their preferred choices, we use all available data
on products, consumer demographics and historical online transactions. Thus, an
important phase in the process of enhancing the website with personalization capa-
bilities is segmentation of customers and products into related groups according to
customers' preferences in a way that leads to increased likelihood of the purchase.

One of the challenges in identifying clusters (groups) of consumers or products
is knowledge on how 'close' or how 'far apart' consumers are to each other. Two
consumers are 'close' when their dissimilarity or distance is small or, equivalently, if
their similarity is large.

There are di�erent proximity measures depending on data types � categorical,
continuous or a mix of the two. Two typical measures for continuous data are

Minkowski distance: µ(x, y) = (Σi|xi − yi|p)1/p, p ≥ 1,

Cosine similarity: κ(x, y) =
< x, y >

‖x‖‖y‖
=

Σixiyi

(Σix2
iΣiy2

i )
1
2

Performance of clustering algorithms depends critically on the used distance (prox-
imity) metric so it is very important to make an appropriate selection. The choice
depends on the shape of clusters which may be visually analyzed in lower dimensional
spaces (d ≤ 3).

Assume that the goal is to cluster two groups of consumers in R2 product space.
Each axis in R2 represents consumers' preference for a product or a group of products.
Figure 1 illustrates a case where one group of consumers has strong preference (with
high variation) for Product 1, whereas the second group of consumers has strong
preference for Product 2 but with lower variance.

Clustering based on Euclidean distance, in this case, may lead to misclassi�cation
of some members of high variability group as indicated by dashed line which wrongly
assigns a part of group's members with strong preference in Product 1 to the group
with preference in Product 2.

Described problem can be solved by using cosine similarity measure, but cosine
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Figure 1: R2 Euclidean

fails in cases when groups of consumers can not be separated by preferences in one of
the products/group of products (see Figure 2). In Figure 2 consumers groups can be
separated by preferences to Product 1, but not by preferences to Product 2. When
applying cosine similarity measure consumers from "Product 2" get misclassi�ed as
the members of "Product 1" cluster.

2.1 Angular Distance Measure

We introduce Angular Distance Measure (ADM), which is a new proximity measure
that can overcome limitations of Minkowski distance and cosine similarity in consumer
preference groupings. ADM consists of a distance metric, a normalizing function, and
an angular component (cosine function).

Angular Distance Measure is de�ned in the �rst orthant of Rd as:

δxy =
µ(x, y)

ϕ(x, y)
[1− cos(x, y)] (1)

where d > 1, x, y ∈ Rd
+, µ(x, y) is a distance function such as Minkowski distance

and ϕ(x, y) > 0 is a normalizing function, with examples given below.

� In case we measure closeness between two points: ϕ(x, y) = (‖x‖+ ‖y‖)1/2.

� In case we measure distance from a cluster center to a point, ϕ(x, y) can be:

1. Cluster's variation, σ2
Cj

= Σx∈Cj
‖x−cj‖
NCj

, where cj is a center of the cluster Cj,

x ∈ Cj and NCj is a number of observations/points in Cj.
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Figure 2: R2 Cosine similarity

2. Cluster's radius, φCj = maxx∈Cj d(x, cj).

Angular Distance measure is symmetric and non-negative by de�nition (note that
cos(x, y) ∈ [0, 1]) as the vectors x and y are in the �rst orthant. Also, ADM can be
zero when x 6= y.

2.2 Application of ADM to grouping of consumer preferences

Applying a clustering algorithm with ADM as distance function to the data in the
Figure 1 and Figure 2 results in proper segmentation (we do not show the graphs). In
particular, (1) ADM correctly partitions customers with high variability of preference
for Product 1 where Euclidean distance fails (Figure 1) and (2) groups correctly
customers in case where cosine similarity fails (Figure 2).

The algorithm implementing segmentation of customers according to their pur-
chase preferences can be divided in two parts: (1) construction of the new prod-
ucts/categories space; and (2) grouping of consumers into segments.

Algorithm �rst reduces initial dimension of product space by aggregating together
similar products (categories) using ADM. For example, in the context of online con-
sumer preferences, the products bought close in time may be regarded as similar.
Similarity between each pair of products is measured by mapping consumers transac-
tions to R2 space where each dimension represents one of the products. "Majority"
rule is applied to consumer transaction data to form two sets in R2 and ADM is com-
puted between centroids of the two sets. Products are aggregated together if they
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are closer than some prede�ned threshold, τ0, which can be set to the maximum of
two sets' variances.
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Figure 3: Two sets aggregation example

Aggregation is illustrated in Figure 3 where diagonal lines represent a "majority"
rule which divides points in two clusters. Left panel in the �gure represents the
case when two products can be aggregated. Clusters (their centroids, in fact) are
located close to each other. Sets on the right side panel cannot be aggregated as
their centroids are far from each other and so the sets form separate clusters.

At the next step, the algorithm aggregates together products with smallest eligi-
ble values of ADM. The algorithm repeats the aggregation steps until all "eligible"
products are aggregated. The algorithm is then repeated from the beginning, for
smaller number of the dimensions, until desired number of dimensions is reached or
a subsequent aggregation cannot be performed.

Below is a high level outline of the �rst part of the algorithm. Main elements of
the input include (1) customers' online transactions for all products, (2) similarity
threshold, τs, and (3) threshold, τo, for splitting product pair 2D space in two parts.
Details of the algorithm and a more thorough analysis of its performance will be
reported elsewhere.

Output of the �rst part of the algorithm is a set of N new product categories
(dimensions). Each dimension represents consumers preference in particular set of
products. Segmentation (partitioning) of consumers is performed in the second part
of the algorithm using N as the number of clusters for K-means algorithm with ADM
as the distance function.
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Algorithm to construct new category space:

1. Let xn = (pni, pnj) be preferences of customer n for the pair of products (Pi, Pj)
2. Construct sets of customers Si = {xn : f(xn, τ0) ≥ 0} and Sj = {xn : f(xn, τ0) < 0}
3. Compute ADM δij between centers ci = T (Si) and cj = T (Sj) of Si and Sj
4. If δij > τs for all (Pi, Pj) then nothing to aggregate. Stop the algorithm.
5. Otherwise, �nd Pi and Pj corresponding to the smallest δij
6. Aggregate pair (Pi, Pj) in one category and remove it from the set of pairs for
which δij ≤ τs
7. Repeat step 6 until set {(Pi, Pj) : δij ≤ τs} is empty
8. Use aggregated products as new dimensions and repeat the algorithm

until desired number of dimensions has been reached.

2.3 Application results

The algorithm was applied to several eBay data sets including one for a retailer's
baby products. Historical consumer transactional data and product topology were
used as inputs to the algorithm. Results of the algorithm were used in a number of
display campaigns targeting consumers on the third party webpages.

As an example, we describe results on a dataset with initial product category
space of 18 dimensions represented by the following categories:
| Infant care | Layette clothes | Diapers & wipes | Baby accessories | Infant bedding |
Newborn | Gear & home | Wooden furniture | Bulk juvenile products | Juvenile room
decor | Consumables | Nursery & gifts | Infant girls, boys | Food formula | Sleepware
| Imaginarium | Kids furniture | Giftware baby |.

Application of the ADM-based algorithm resulted in a new six-dimensional cate-
gory space. The new dimensions are presented in Table 1. Partitioning of consumers
(about 270K) was performed using the newly obtained category space of six dimen-
sions and by setting the number of clusters to six. Numerical results of partitioning
are presented in Table 2. We computed 6 × 6 matrix (not shown) with the centers
of consumers' clusters for six dimensions in which a diagonal element represents a
cluster's projection to the "preferred" dimension.

For instance: Dimension 1 is the 'preferred' dimension of consumers assigned to
the Cluster 1 and Consumers from Cluster 1 made on average 2.56 transactions in
category represented by categories, Diapers and wipes, Food formula, Imaginarium,
along with less than 0.4 transaction in other categories. Similarly for other cluster-
dimension pairs. Results of the algorithm were used for re-targeting of the consumers
and for collaborative �ltering type of targeting.

Comparison of the performance of the ADM based algorithm and K-means cluster-
ing (with Euclidean distance) is summarized in Table 3 Metrics used for performance
measurements include: Click-through rate, Post impression conversion, Total con-
version, Average order value (AOV) and Return on investment (ROI). ADM based
algorithm on average outperformed the K-means clustering on all metrics. Moreover,
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the di�erences between ADM and K-means on the metrics Post impression conver-
sion, Total conversion and Return on investment are also statistically signi�cant.

Table 1: New category space dimensions

Dim. Categories included
1 |Diapers & wipes |Food formula | Imaginarium |
2 |Layette clothes|
3 |Infant care| Consumables | Baby accessories | Giftware baby |
4 |Infant bedding| Kids furniture | Nursery & gifts |
5 |Newborn| Infant girls, boys | Sleepware |
6 |Gear and home| Wooden furniture| Bulk juvenile products| Juvenile

room decor|

Table 2: Counts of consumers per cluster

Cluster 1 2 3 4 5 6
Consumers 6398 32422 99805 62141 6670 168294

Table 3: ADM-based algorithm vs K-means with Euclidean distance

Click-through Post impression Total AOV ROI
rate (%) conversion (%) conversion (%) ($) ($)

ADM 0.0424 0.2595 0.249 93.09 49.93
K-means 0.0393 0.1347 0.130 78.92 26.15

Conclusions

The �rst section provides a brief survey of practical forecasting approaches and meth-
ods when faced with a problem of making large number of forecasts in industrial set-
ting. We prefer combining forecasts from multiple methods or models, over searching
for a single "best" model. In particular, we advocate use of statistical time-series
models capable of producing forecasts for hierarchies of aggregated data and multiple
time scales. Careful evaluation of models' predictive performance, using adequate ac-
curacy metrics, is important in model selection process and must be done on proper
holdout sets. ML techniques still have room for improvement of forecasting perfo-
mance for time series, yet some of ML algorithms (such as RF-s) are among our
favorite tools for classi�cation tasks.

In the second section we illustrate an application of segmentation for e-commerce
personalization, where products and customers are clustered in a way that desired
merchandise can be o�ered to customers without explicit querying. Segmenting the
product-customer space into associated groups depends heavily on the proximity
measures. We described ADM, a novel such measure, which outperforms its Euclidean
and cosine counterparts. Results were illustrated on toy examples and real data.
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Abstract

Real discretization is always accompanied by so-called sampling jitter [2]
that decreases e�ciency of the algorithms constructed without considering it.
To reduce its e�ect, high stability driving generators are recommended to
be used. The quartz generators used in practice have relative instability of
10−8...10−11. However, as it will be shown below, even in this case the sam-
pling jitter can signi�cantly a�ect characteristics of systems for discrete signal
processing. This problem, nevertheless, is not well represented in publications.
The work [1] should be mentioned. The paper [1] deals with e�ect of jitter on
correlative and spectral characteristics of the sequence of samples of random
and deterministic signals. We o�er the mathematical model describing jitter
e�ect in systems with high stability driving generators. We analyse processes
at the output of the sampling gate when observing additive mixture of signal
and noise; the characteristics of the processes at the output of sampling gate
are investigated taking into account sampling jitter e�ect.

Keywords: Sampling, jitter, noise, instability, discrete signal processing.

1 Model of sampling jitter in systems with high sta-

bility driving generators

Let us consider the generalized structure diagram of a system for discrete signal
processing, �g. 1, a. The main elements are input ampli�er 1, �lter 2, sample-and-
hold circuit (SHC) 3, clock-pulse generator 4, and device for processing signal samples
5. Input ampli�er 1 and �lter 2 form the linear part of the system, determine required
dynamic range and prevent overlapping of spectra during input signal discretization.
SHC and the generator form the discretization device.

Figure 1
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For development of sampling jitter model we assume that SHC consists of an ideal
switch controlled by the clock-pulse generator 4 and a capacitor for storing the signal
level over a period required for analog-to-digital conversion, �g. 1, b.

Let us denote the signal at the input of the system as xinp(t), at the output of
the linear part of the system as x(t), the value of the i-th sample at the SHC output
as yi, yi = x(ti), here ti is the time point of taking the i-th sample. The switch
connects the capacitor to the output of the �lter 2 when the sync signal d(t) coming
from the generator exceeds the threshold level h. The sync signal is the sum of the
highly stable oscillation S(t), produced by the generator, and the stationary noise
v(t) always being present in synchronizing circuit. Therefore the time point td when
the threshold level h is crossed by the mixture d(t) = S(t)+v(t) is biased with respect
to the time point ts when this level is crossed by the oscillation S(t), by the random
variable ξ = td − ts, �g.2.

Figure 2

Let instability of the generator be negligibly low, so that we do not consider it.
Then the jitter is determined only by the random component of the time points
when the sync signal crosses the level h, the component being caused by noise in
synchronizing circuits.

Assuming that the oscillation S(t) has the form S(t) = Uss(t), where s(t) is the
periodic signal normalized in amplitude, v(t) is the di�erentiable stationary Gaussian
process with zero mean value and the variance σ2

v ; the signal-to-noise ratio (SNR) in
synchronizing circuits is qv = Us/σv. Then for large values of the parameter qv the
probability distribution of the random variable ξ is represented by the Gaussian with
the zero mean and the root-mean-square deviation

σξ = 1/[qv|s′(ts)|], (1)

where s′(ts) is the derivative of the normalized in amplitude oscillation s(t) at the time
point when the oscillation crosses the level h bottom-up. In particular, if h = 0, s(t) =
sin(ωt), where ω = 2π/Td is the sampling frequency, then σξ = 1/[qvω]. The relative
root-mean-square bias of the sampling instant δξ = σξ/Td is determined in this case
by the expression δξ = 1/[2πqv], and for the signal-to-noise ratio in the synchronizing
circuits of qv = 40 dB has the value of 0.0016 that is signi�cantly (by several orders)
higher than the relative frequency instability of the quartz generator (10−8...10−11).
Thus, the sampling jitter has noticeable e�ect that cannot be neglected in calculation
of e�ciency even in systems with highly stable clock-pulse generators.

483



Novosibirsk, 18-20 September, 2019

2 Mathematical model and equivalent circuit of dis-

cretization device

Let the process x(t) observed at the output of the linear part of the system be the
sum of the useful signal u(t) and the stationary zero mean noise η(t) :

x(t) = u(t) + η(t).

The useful signal u(t) = Umu(t, λ) can be either quasi-deterministic or random. In
the former Um is the signal amplitude, u(t, λ) is the signal normalized in amplitude,
λ = {λ1, ..., λM} is the vector of the signal parameters; in the latter Um is the root-
mean-square value of the signal, u(t, λ) is the realization of the stochastic process
normalized in power, λ = {λ1, ..., λM} is the vector of the process parameters. The
components of the parameters vector λ can be partially or completely unknown. The
mixture x(t) is characterized by the signal-to-noise ratio q = Um/ση , where ση is the
root-mean-square deviation of the noise.

At the output of the discretization device the sequence of N samples yi = x(ti)
taken at the time points ti, i = 1, ..., N, is formed; each sample represents the sum of
the useful signal sample u(ti) = Umu(ti, λ) and the noise component sample η(ti) at
the output of the linear part of the system. For realization of algorithms for discrete
signal processing it is usually assumed that the samples are taken at the time points
ti0 = iTd (Td is the sampling interval), but actually they are taken at the time points
ti = ti0 + ξi, i = 1, ..., N , where ξi is the random bias of the i-th sample because of
jitter.

Let us assume that the random variables ξi, i = 1, ..., N form stationary zero mean
sequence with small root-mean-square deviation σξ, and that the functions u(t) and
η(t) are doubly di�erentiable. Then, using three �rst terms of Taylor series expansion
for representation of the process x(t) in the neighbourhood of the point ti0 due to
smallness of σξ, we can write for the i-th sample at the output of discretization device

yi = x(ti) = u(ti0 + ξi) + η(ti0 + ξi) ≈

≈ u(ti0) + η(ti0) +
1

2

[d2u(ti0)

dt2
+
d2η(ti0)

dt2

]
ξ2
i +

[du(ti0)

dt
+
dη(ti0)

dt

]
ξi+

+
1

2

[d2u(ti0)

dt2
+
d2η(ti0)

dt2

]
(ξ2
i − ξ2

i ). (2)

The �rst three terms in the right hand side of expression (2) describe frequency
distortion of the input oscillation caused by sampling jitter, the rest two terms de-
scribe appearance of additional noise.

The frequency distortions of the input process x(t) caused by sampling jitter are
equivalent, as seen from expression (2), to the e�ect of the �lter with the complex
frequency response K(jω) = 1 − 1

2
ω2σ2

ξ , where ω = 2πf is the angular frequency;
σ2
ξ = ξ2

i is the variance of samples of the random sequence ξi that is constant owing
to its stationarity. The last is valid if the noise v(t) is stationary and sync signal is
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strictly periodic. The additional noise in samples of the process is represented by the
random variables

ςi =
[∂u(ti0)

dt
+
∂η(ti0)

∂t

]
ξi +

1

2

[∂2u(ti0)

∂t2
+
∂2η(ti0)

∂t2

]
(ξ2
i − ξ2

i ) ≈
[∂u(ti0)

∂t
+
∂η(ti0)

∂t

]
ξi.

(3)
It is obvious that ςi and ςj for i 6= j are uncorrelated with each other and with the

noise samples η(ti) . When the useful signal is absent the variables ςi, i = 1...N have
the same variance σς ≈ σ2

η′σ
2
ξ (σ

2
η′ denotes the variance of the derivative η

′(t) of the
process η(t)). Therefore, they can be considered as the samples of stationary noise
having in the frequency band of the width ∆F = 1

2Td
constant power spectral density

Nς = σ2
ς /∆F = 2σ2

ς Td. (4)

In the case when linear part of the system has
∏
-shaped amplitude frequency

response with the boundary frequencies FH and FB, after substituting in (4) the
variance σ2

ς expressed through the parameters of the input noise η(t) and the jitter
ξi, we obtain

Nς ≈ 8π2σ2
ς Td

FB∫
FH

f 2Nη(f)df, (5)

where Nη(f) is the power spectral density of the initial noise.
Appearance of deterministic signal increases the variance of additional noise caused

by sampling jitter by σ2
ui =

(
∂u(ti0)
∂t

)2

σ2
ξ , and the total variance of the i-th sample

(i = 1, ..., N) becomes

σ2
ςi =

(du(ti0)

dt

)2

σ2
ξ + σ2

η′σ
2
ξ =

[(du(ti0)

dt

)2

+4π2

FB∫
FH

f 2Nη(f)df
]
σ2
ξ . (6)

As it follows from (6) the existence of the deterministic signal at the input leads
to appearance at the output of additional nonstationary component of noise with the
variance depending on the derivative of the signal at the time points when samples
are taken.

For the doubly di�erentiable stationary random process u(t) the total variance of
the i-th sample is determined by expression

σ2
ςi

= 4π2σ2
ξ

FB∫
FH

f 2[Nη(f) +Nu(f)]df, (7)

where Nu(f) is the power spectral density of the signal at the output of linear part
of the system.

According to mentioned above, �g. 3 represents the equivalent circuit of the
discretization device taking into account jitter e�ect.
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Figure 3

3 Signal-to-noise ratio at the output of discretiza-

tion device

For characterizing samples of the observed process we will use the signal-to-noise ratio

q2∑ = σ2∑
s
/σ2∑

n
, where for a random input signal σ2∑

s
=

FB∫
FH

Nu(f)|K(j2πf)|2df is the

variance of the samples sequence of the signal component of the process u(t) at the
output of discretization device (Nu(f) is the power spectral density of the signal at the
output of the linear channel of the system, the factor |K(j2πf)|2 takes into account
the e�ect of suppression of the signal high frequency components owing to sampling

jitter); σ2∑
n

=
FB∫
FH

Nη(f)|K(j2πf)|2df + σ2
ςi
is the variance of the samples sequence of

the noise component of the process at the output of the discretization device. For
a deterministic periodic signal σ2∑

s
represents the average power of the signal, and

Nu(f) � its power spectral density consisting of the weighted δ-functions correspond-
ing to harmonic components. Taking into account K(j2πf) = 1 − 1

2
(2πf)2σ2

ξ , and
neglecting second order of smallness values we obtain:

q2∑ ≈
FB∫
FH

Nu(f)df−4π2σ2
ξ

FB∫
FH

f2Nu(f)df

FB∫
FH

Nη(f)df+4π2σ2
ξ

FB∫
FH

f2Nu(f)df

=

q2−
4π2σ2

ξ

FB∫
FH

f2Nu(f)df

FB∫
FH

Nη(f)df

1+

4π2σ2
ξ

FB∫
FH

f2Nu(f)df

FB∫
FH

Nη(f)df

,

where q2 is the SNR at the output of the linear channel of the system. It is obvious
that if the variance of jitter σ2

ξ increases the SNR at the output of the discretization
device decreases.

Let us consider the situation when both the useful signal and the signal in the
synchronizing circuits are sinusoidal. It is possible to show that in this case q2∑ =

q2
(
1− T 2

d f
2
0

q2
v

)
/
(
1 +

q2T 2
d f

2
0

q2
v

), where f0 is the sync signal frequency.
It is interesting to analyse the behaviour of the resulting SNR for various q2 and

q2
v . It is apparent that for the weak jitter (q2

v −→ ∞) the resulting signal-to-noise
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ratio tends to q2∑ = q2/
(
1 +

q2T 2
d f

2
0

q2
v

)
. Then two di�erent cases can be considered. For

a relatively weak input signal
(
q << qv

Tdf0

)
the resulting SNR is determined by the

input ratio q2∑ −→ q2. For a high SNR at the input
(
q >> qv

Tdf0

)
, that is the case for

high precision measurements, the resulting SNR is entirely determined by the SNR
in the synchronizing circuits and tends to q2∑ = q2

v/(T
2
d f

2
0 ). In addition, the SNR at

the output of the discretization device decreases with increase of the signal frequency
owing to suppression of high frequency components of the observed process by jitter.

Conclusion

We o�er a simple linear model for description of in�uence of sampling jitter on the
signal and signal-to-noise ratio in the system of digital signal processing. Within the
bounds of this model, we show that sampling jitter causes frequency distortion of the
signal and appearance of additional noise.
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Abstract

The elementary probabilistic model of text assumes that words of a text ap-
pear independently of each other in a random way. The model is determined by
the probabilities each word to take its meaning. These probabilities satisfy the
Zipf�Mandelbrot law. We develop and implement a statistics of omega-square
type for analysis of correspondence of texts to this elementary probabilistic
model. We present results of the analysis of Shakespeare's sonnets.

Keywords: Zipf's law, statistical test, weak convergence, text analysis.

Introduction

It has long been observed that any author uses more and more di�erent words as
the text is written. Even considering of collected works with hundreds of thousands
and millions of words shows that the emergence of new words never stops. At the
same time, the growth rate of the number of di�erent words decreases as the length
of the text increases. In our study, we call word forms as words, that is, we consider
di�erent forms of a word as di�erent words.

A simple probabilistic model for the number of di�erent words in a text is the
number of non-empty urns in an in�nite urn scheme. The choice of each next word
of the text is associated with a random choice of an urn for the next ball, and the
number of urns is in�nite. The urn is chosen randomly for each ball, independently
of the others. The probability pi of the choice of the urn i is the same for all balls,
i ≥ 1.

Zipf (1936) investigated the frequency of the appearance of words in the text. He
proposed a power law of decrease of frequencies, that is, frequency is proportional
to the rank of the word with some negative exponent. Mandelbrot (1965) modi�ed
Zipf's law and gave a number interpretations of it. We will interpret frequencies as
probabilities of the appearance of words. In accordance with Zipf�Mandelbrot law,
the word with rank i has probability

pi = c(i− δ)−α, i ≥ 1. (1)

Here α > 1 is the Zipf exponent, δ > −1 is the Mandelbrot shift, C is normalizing
constant. If δ = 0 then we have a classical Zipf's law, in this case c = ζ−1(α), and ζ
is Riemann zeta function.
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Let Ri be the number of di�erent words among the �rst i words of the text under
consideration, and n be the number of all words in the text. Sequence R1, R2, . . . , Rn

does not decrease, R1 = 1. We let R0 = 0.
Bahadur (1960) substantiated the law of growth in the number of di�erent words

for a simple probabilistic model of text. He noted that the expectation of the number
of di�erent words is calculated by

ERn =
∞∑
i=1

(1− (1− pi)n) (2)

and has asymptotics

ERn ∼ Γ(1− θ)cθnθ. (3)

Here θ = α−1, θ ∈ (0, 1).
He proved the Law of Large Numbers, that is, convergence Rn/ERn → 1 in

probability.
Karlin (1967) proved the Strong Law of Large Numbers and the Central Limit

Theorem for Rn. The theory of the limiting behavior of a number of di�erent words
and similar statistics within the framework of this elementary models developed by
Dutko (1989), Zakrevskaya and Kovalevskii (2001), Barbour and Gnedin (2009), Bar-
bour (2009), Ohannessian and Dahleh (2012), Chebunin (2014), Muratov and Zuyev
(2016), Chebunin and Kovalevskii (2016, 2018, 2019), Ben-Hamou, Boucheron and
Ohannessian (2017).

Estimation of the Zipf parameter based on the number of di�erent words is stud-
ied in several papers. Zakrevskaya and Kovalevskii (2001) proposed an substitution
estimate and proved its consistence. Ohannessian and Dahleh (2012) proposed an es-
timate as the ratio of the number of di�erent words to the number of words that
present once in the text, and proved its consistence. Chebunin and Kovalevskii
(2018) introduced two classes of estimates that include estimates by Zakrevskaya
and Kovalevskii, Ohannessian and Dahleh, and proved their strong consistency and
asymptotic normality.

The procedure for testing the hypothesis of correspondence of a text to an el-
ementary probabilistic model based on the sequence of numbers of di�erent words
R1, . . . , Rn proposed by Chebunin and Kovalevsky (2019).

Our paper discusses approaches of its practical application to the texts, as well
as the results of the application to the analysis of Shakespeare's sonnets.

Note that the power-law character of the growth in the number of di�erent words
is noted in linguistics, it is associated with the names of Herdan (1960) and Heaps
(1978). Petersen et al. (2012) revealed deviations from this law for very large texts.

The remainder of the article is constructed as follows: we discuss the selection
of words in a text in English and counting the sequence of quantities of di�erent
words in Section 1, we analyze and modify the parameter estimation procedure and
calculating the estimate of the expectation of the number of di�erent words in Section
2, we develop calculation of a statistics of omega-square type in Section 3.The results
of applying the developed statistics to Shakespeare sonnets are in Section 4.
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1 Sequence of numbers of di�erent words

To count the number of di�erent words, we need to learn how to extract words from
the text. A word is technically de�ned as a sequence of characters between two
spaces. But it is necessary to exclude punctuation marks, they are not parts of a
word. There are, however, two exceptions: hyphen between letters is considered as a
part of the word. Also an apostrophe between the letters, and before the word and
after the word is a part of the word (but we need to distinguish the apostrophe from
single quotes).

Words are considered the same if they consist of the same characters in the same
order. Only di�erence allowed for the �rst character: if the ascii codes of the �rst
characters di�er by 32, words are considered the same (because the di�erence between
ascii-codes of uppercase and lowercase English letters by 32). The program forms a
vocabulary of text and record the number of repetitions of any word. A word is
recorded in the vocabulary with the �rst letter (upper or lower case) with which it
�rst met in the text under study.

On the basis of the vocabulary of the text, a sequence of numbers of di�erent
words is calculated.

Figure 1: Sonnet 1
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2 Estimates

So, the researcher has the values R1, . . . , Rn. It is assumed that the two-parameter
model (1) is true. We estimate the parameter θ = 1/α by a modi�cation of the
estimate θ̂ = ln(Rn/R[n/2])/ ln 2, proposed by Chebunin and Kovalevskii (2019). The
strong consistency and asymptotic normality of this estimate are proved in the cited
paper. The disadvantage of this estimate is that [n/2] is shifted to the left relative
to the middle of the interval from 0 to n, if n is odd. Therefore, a correction of this
estimate is proposed: if n is even then θ̃ = θ̂; if n is odd then

θ̃ =
ln(2Rn)− ln(R[n/2] +R[n/2+1])

ln 2
.

This estimate is also strongly consistent and asymptotically normal since R[n/2+1]

di�ers from R[n/2] no more than by 1, and Rn →∞ almost surely.

The estimation of the shift parameter δ is carried out together with the calculation
of the �tted values R̃1, . . . , R̃n. We caculate �tted values by (2) with substitution of
estimates α̃ = θ̃−1, δ̃ instead of parameters α and δ in (1). We change the sum to
in�nity in (1) by sum to M = 106.

As δ > −1, we take δ− = −0.9, δ+ = 100, and �nd δ̃ by dichotomy method as
the root of the equation R̃n = Rn. The root is single due to monotonicity of R̃n as
function of δ̃.

3 Statistical test

To test the hypothesis of correspondence of a text to the Zipf�Mandelbrot model, we
form an empirical bridge just as it was done in the paper of Kovalevskii and Shatalin
(2015). Let us introduce the process Z̃n:

Z̃n(k/n) =
(
Rk − R̃k

)
/
√
Rn,

0 ≤ k ≤ n. Let for 0 ≤ t ≤ 1/n and 0 ≤ k ≤ n− 1

Z̃n

(
k

n
+ t

)
= Z̃n(k/n) + nt

(
Z̃n((k + 1)/n)− Z̃n(k/n)

)
.

We have from (3) and SLLN(
R̃k − (k/n)θ̃Rn

)
/
√
Rn → 0

almost surely uniformely on c in any compact in (−1, ∞) and on k/n in any compact
in (0, 1].

So Z̃n− Ẑn → 0 almost surely in uniform metrics uniformely on c in any compact
in (−1, ∞), process Ẑn is de�ned in Kovalevskii and Chebunin (2019). There is the
Central Limit Theorem for this process, so the limiting distribution depends on θ
only.
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Figure 2: Sonnets 1 and 6

Let W̃ 2
n =

1∫
0

(
Z̃0
n(t)

)2

dt. It is equal to

W̃ 2
n =

1

3n

n−1∑
k=1

Z̃0
n

(
k

n

)(
2Z̃0

n

(
k

n

)
+ Z̃0

n

(
k + 1

n

))
. (4)

Two approaches are possible for evaluating of p-values. One of them is based on
the work of Kovalevskii and Chebunin (2019) and requires �nding eigenvalues ??and
eigenfunctions for an known kernel. The other is based on modeling of sequences of
numbersX1, . . . , Xn in accordance with the law (1), in which estimates are substituted
instead of the unknown parameters. Then we do with these numbers the same as
with the words of the source text. Such modeling should be done about 2 · 106 times,
because 106 simulations are few for a fairly con�dent calculation of the p-value with
an accuracy of 0.001 (see, for example, Philonenko and Postovalov 2019). The p-value
estimate is equal to the ratio of the number of cases when the simulated value (4)
exceeded the calculated value in the text, to the total number of experiments.
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4 Analysis of Shakespeare sonnets

We analyze 6 Shakespeare's sonnets. To give an example of heterogeneous text, we
analyze sonnets 1 and 6 together. The results are shown in Table 1 and in Fig. 1 and
2.

Table 1: Shakespeare's sonnets

sonnet 1 2 3 4 5 6 1 & 6
words 105 114 115 101 104 108 213
θ 0.773 0.782 0.796 0.824 0.933 0.666 0.714

di�erent words 82 86 79 77 84 73 137
δ 7.46 5.82 2.65 3.18 0.656 9.89 10.33
W̃ 2
n 0.027 0.049 0.0066 0.034 0.0074 0.021 0.080
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Abstract

A quantitative measure is described for assessing the tightness of interdepen-
dence between random vectors of di�erent dimensions. It is expressed through
the coe�cients of determination of conditional regressions between components
of random vectors. For the particular case of Gaussian random vectors, this
value is expressed in terms of the determinants of each of the random vectors
and the determinant of their union. It is shown that the coe�cient introduced
meets all the basic requirements for the degree of interdependence tightness
between random vectors. This coe�cient has advantages over the parameters
obtained using canonical correlations analysis. It allows to determine the actual
tightness of interdependence between random vectors. The measure introduced
is fairly easy to interpret. The issues of its practical application in the economy
are considered. The e�ciency of social programs �nancing in the regions was
evaluated.

Keywords: random vector, interdependence, stochastic system, di�erential
entropy, index of determination, correlation matrix.

Introduction

When applying statistical analysis methods for the study of real objects, one often
comes across their multidimensionality [1]. The main purpose of the multidimen-
sional statistical analysis is to identify the nature and structure of the relationships
between the components of the multidimensional feature under study [2]. One of the
actual problems is the quantitative assessment of the tightness of the joint relation-
ship (correlation) between multidimensional random variables. In many applications,
there are several output variables. There arises a problem of assessing the relation-
ship between the set of measured (input) variables X and the properties (output
variables) Y of interest [1]. If the number of output variables is more than one, then
the assessment of the tightness of the correlation between groups of input and out-
put variables is carried out using canonical correlations analysis [3, 4]. This method
is a generalization of the pair-wise linear correlation and allows �nding most of the
correlations between two groups of random variables. The dependence is estimated
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using canonical variables calculated as linear combinations of the original features
for each of the groups. These canonical values should correlate as much as possible
among themselves, and their number is determined by the number of variables in the
smaller set. This method has several signi�cant drawbacks.

First, it is designed only for the case when all the studied features are connected
linearly with each other, which actually implies the existence of a joint normal distri-
bution for each of the random vectors. Second, the maximum value of the correlation
coe�cient between canonical variables is found, while it is required to estimate the
tightness of the actual relationship, which can di�er signi�cantly from the maximum
possible value. Together with the presence of a set of the determined correlation
coe�cients (their number is equal to the dimension of the output variables vector),
this makes it very di�cult to interpret the results, and it is too general and uninfor-
mative for practical purposes. Third, the representation of canonical variables only
in the form of linear combinations of each of the variables groups limits the results
of maximization. Fourth, it is required that the number of input variables should
be not less than the number of output variables, which is also another limitation. It
should be noted that the task of quantifying the tightness of the relationship between
the components of a random vector has been solved. For Gaussian random vectors
in [5], the coe�cient of tightness of joint linear correlation is proposed

De,m(X) = 1− |RX|1/m, (1)

where � X = (X1, X2, ... Xm) is a multidimensional random variable with a joint
normal distribution and the correlation matrix RX.

In [6], the interdependence tightness coe�cient for linear and nonlinear case is
introduced

de,m(X) = 1− exp[−2I(X)/m], (2)

where I(X) = H(X̃) − H(X) � is the di�erence of di�erential entropies of multidi-
mensional random variables X and X̃ = (X̃1, X̃2, ... X̃m), whose components X̃i are
mutually independent and have the same distributions as Xi.

The main disadvantage of formula (2) is the low accuracy of estimation of the
coe�cient de(X), since to calculate the di�erential entropy H(X), it is required to
estimate, by bounded samples, one-dimensional and multidimensional densities of
distributions of correlated random variables. For the purpose of practical implemen-
tation in [7], an equivalent formula was proposed instead of (2),

de,m(X) = 1−
[ m∏
k=2

(1−R2
Xk/X1X2...Xk−1

)
]1/m

, (3)

where R2
Xk/X1X2...Xk−1

� are determination indices of the corresponding regression
dependencies, k = 2, 3...,m. The issues of non-parametric estimation of the de-
termination indices using multidimensional sample data are considered in [8]. The
normalization (exponentiation of 1/m ) proposed in [5, 6] is not formally justi�ed
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even for the joint normal distribution. Indeed, for a Gaussian random vector X we
have [8]

I(X) =
∑m

i=1 H(Xi) + 1
2

ln |R
X̃
| −
∑m

i=1H(Xi)− 1
2

ln |RX| = 1
2

ln |RX|,

therefore, the value I(X) does not explicitly depend on the dimension m of the vector
X. Therefore, along with (1) and (3), the formulas are justi�ed

De(X) = 1− |RX|, (4)

de(X) = 1−
m∏
k=2

(1−R2
Xk/X1X2...Xk−1

). (5)

The purpose of the present research is to describe and test new quantitative feature
of the interdependence tightness between two groups of variables, which does not have
the disadvantages and limitations of the features inherent in canonical correlations
analysis.

1 A measure of interdependence between random

vectors of arbitrary dimensions

Next, we introduce the scalar measure of interdependence between continuous random
vectors of arbitrary dimensions X = (X1, ... Xm) and Y = (Y1, ... Yl).

We de�ne vectors X̃ = (X̃1, ... X̃m) and Ỹ = (Ỹ1, ... Ỹl) such that all components
X̃i are mutually independent and have the same distributions as Xi, and all Ỹj �
are mutually independent and have the same distributions as Yj. We also de�ne two
random vectors of size m+ l as Z = X∪Y = (X1, ...Xm, Y1, ..., Yl) and Z̃ = X̃∪ Ỹ =
(X̃1, ...X̃m, Ỹ1, ..., Ỹl).

Let I(X, Y) = I(Z)−I(X)−I(Y), where I(Z) = H(Z̃)−H(Z), I(X) = H(X̃)−
H(X), I(Y) = H(Ỹ)−H(Y) � are di�erential entropy di�erences of random vectors.
It is known [7] that I(X) = −1

2

∑m
k=2 ln(1−R2

Xk/X1X2...Xk−1
). From here we can get

I(X,Y) = −1

2
ln(1−R2

Y1/X1...Xm
)− 1

2

l∑
k=2

ln
(1−R2

Yk/X1...XmY1...Yk−1
)

1−R2
Yk/Y1...Yk−1

. (6)

We introduce the interdependence tightness coe�cient de(X, Y) between random
vectors X and Y as de(X, Y) = 1− e−2/(X,Y). Keeping in mind (6) we have

de(X,Y) = 1− (1−R2
Y1/X1...Xm

)
l∏

k=2

1−R2
Yk/X1...XmY1...Yk−1

1−R2
Yk/Y1...Yk−1

, (7)

or

de(X,Y) = 1− 1− de(X ∪Y)

(1− de(X))(1− de(Y)
. (8)
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For the particular case, when the vectors X and Y have joint normal distributions
instead of (8), we have

De(X,Y) = 1− |RX∪Y|
|RX||RY|

, (9)

where |RX|, |RY|, |RX∪Y| � are correlation matrix determinants.
The following theorem holds [9].

Theorem. The scalar measure de(X, Y) of the interdependence tightness between
random vectors X and Y satis�es the following conditions:

1. 0 ≤ de(X, Y) ≤ 1.
2. The case de(X, Y) = 0 corresponds to the independence between X and Y, i.e.

at least one of the components of vector Y is functionally (not randomly) associated
with the components of vector X.

3. Case de(X, Y) = 1 is assumed to have a functional relationship between X
and Y, i.e. at least one of the components of vector Y is functionally (not randomly)
associated with the components of vector X.

4. Feature de(X, Y) is a continuous function.
It should be noted that normalization can also be introduced for the coe�cients

de(X, Y) and De(X, Y). Since the dimensions m and l can change simultaneously,
while maintaining a constant value m + l, we will normalize relative to the average
dimension of the vectors equal to (m + l)/2. Therefore, we will assign the following
expressions to the formulas (7)�(9):

de,m,l(X,Y) = 1−
(

(1−R2
Y1/X1...Xm

)
l∏

k=2

1−R2
Yk/X1...XmY1...Yk−1

1−R2
Yk/Y1...Yk−1

) 2
m+l

,

de,m,l(X,Y) = 1−
(

1−de(X∪Y)
(1−de(X))(1−de(Y))

) 2
m+l

, De,m,l(X,Y) = 1−
(
|RX∪Y|
|RX||RY|

) 2
m+l

.

2 Testing the interdependence feature between ran-

dom vectors by evaluating the e�ectiveness of so-

cial programs �nancing in the regions

Consider the use of interdependence feature between random vectors to assess the
e�ectiveness of social programs �nancing in the regions of Russia from 2007 to 2016.
The Human Development Index (HDI) was used as a general feature of regional devel-
opment [10]. In order to take into account the regional speci�cs of the development,
the Russian Federation constituents are divided into 3 groups based on the HDI value.
To ensure statistical stability of the results when building a model, 17 constituent
entities of the Russian Federation with the highest and the lowest HDI values, as
well as with abnormal values or with missing statistical data on individual indicators
were not taken into account. The model also includes features of social programs
�nancing in the regions (expenditures of the Russian Federation constituent entity
consolidated budget and of the regional state extra-budgetary fund on health care
(X1), education (X2) and housing and utilities (X3) � input features), and 9 resulting
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features of regional development: life expectancy (Y1); per capita income, rub. (Y2);
the annual cost of a �xed set of consumer goods and services, rub. (Y3); population
with income below the subsistence minimum,

A prerequisite for selecting the resulting features for the social programs �nancing
of the regions, in addition to their widespread use as features of the quality of life
(including in legal documents), was the existence of a statistical link between them
and the HDI. A discriminant analysis was carried out [4] for annual time-series data
of the resulting indicators Y1, Y2, ..., Y9 for three groups (IND = 1, IND = 2, IND
= 3) during the retrospective period. The results showed steady discrimination of
the three groups.

The stability analysis of the regions in three groups and the results of evaluating
the correlation tightness between the features of social programs �nancing in the
region and those of the regional socioeconomic development allows us to make the
following conclusions.

1. The tightness of the relationship between the features of social programs �-
nancing in the region grows with the increase of HDI, i.e. in developed regions,
budget expenditures are more e�cient.

2. The relationship tightness between the resulting indicators of socioeconomic de-
velopment decreases with increasing HDI. This can be explained by a slowdown
in the coordinated development of the regions. This conclusion is consistent
with the instability of the regions in the same group, especially for entities II
(with average HDI values) and entities III (with high HDI values) groups.

3. Thus, there are opposite trends in the relationship tightness between the fea-
tures of social programs �nancing in the region and the resulting features of
regional socioeconomic development with a change in the HDI.

Next, we determine the tightness of the correlation relationship between the �-
nancing of the health care system, education, housing and communal services, and
the resulting features for the three groups of regions and the value averaged over the
groups. The assessment results are presented in Figure 1.

In general, the results of the study showed a low e�ciency of social programs
�nancing. The socioeconomic development of the regions is rather determined not by
the regional policy and the level of its �nancing, but by the level and characteristics
of the region itself (availability of resources and favorable market conditions). Based
on the estimates obtained, it can be concluded that the e�ectiveness of the social
programs �nancing in the regions with di�erent levels of socioeconomic development
is clearly di�erentiated in times of economic instability. Anti-crisis �nancing aimed
not at socioeconomic development, but at maintaining the current situation and mit-
igating negative consequences, is more e�ective for less developed regions of Russia.
How it happened in 2009 and 2014. The opposite trend was observed in 2012 and
2016 regarding the prosperous regions of Russia. Therefore, as crisis phenomena are
resolved in terms of the socioeconomic development of the underdeveloped region
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Figure 1: The results of the assessment of the relationship between the �nancing of
the health care system, education and housing and communal services and the

resulting features

(high unemployment rate, super high mortality rate, etc.), it becomes imperative to
increase �nancing in social programs. However, this does not mean that only when
the minimum criteria for socioeconomic development are achieved, it is necessary to
�nance long-term projects, they will simply be less e�ective. In stable periods of
development (2007, 2016), the e�ciency of the social programs �nancing in various
regions is approximately at the same level. The presented calculations showed that
in the regions with low HDI values (group I) the tightness of correlation between
the sets of resulting and �nancial features is higher than the value obtained for more
developed regions. With the increase in the HDI value of a region, the impact of
budget �nancing on the quality of life of its population is reduced, which is explained
by the decrease in the e�ectiveness of social programs �nancing in developed regions.
As have already been noted by many researchers, the existing mechanism of stim-
ulation of the Russian Federation entities that have reached the maximum level of
socioeconomic development, without taking into account the additional parameters
of funding e�ciency, is not entirely fair.

Conclusions

1. A scalar measure of interdependence between continuous randomly distributed
random vectors is introduced.
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2. The partial results of the introduced measure for Gaussian random vectors are
obtained.

3. The simplicity of the analysis obtained makes it possible to apply the proposed
feature on su�ciently small samples.

4. The use of the interdependence feature between random vectors by evaluating
the e�ectiveness of social programs �nancing in the regions is presented.
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Abstract

The study of scienti�c migration is of interest from the point of view of the
analysis of economic behaviour of an individual, and the main problem for these
studies is the lack of reliable data on migration of researchers. We have col-
lected the relevant data using the author's methodology of data mining, which
is implemented in the software based on big data technology. This methodology
is based on the analysis of information presented in the abstract and citation
databases of scienti�c literature: data on scienti�c migration are obtained by
analysing changes in a�liation. The methodology was tested on the Scopus
database. The practical value of the study lies in the possibility of using its
results for the development of human resources of Russian science. The paper
deals with the current trends and problems of scienti�c migration. Accord-
ing to statistics, the main factors of scienti�c migration were �nancial factors
and improvement of working conditions in the centres of scientists attraction.
It should be emphasized that scienti�c migration cannot be analysed only in
terms of economic e�ciency, but also takes into account the personal skills and
preferences of scientists. The most e�ective phenomenon for economic growth
is the brain sharing, when highly quali�ed scientists have the opportunity to
travel abroad, improve their skills and at the same time participate in scienti�c
projects of their main scienti�c organization.

Keywords: dynamic modelling, data mining, optimization, international
scienti�c migration, scienti�c capital, academic mobility, human capital export,
behavioural economics.

Introduction

Modern models of the development of the socio-economic system suggest a signi�cant
development of knowledge-intensive industries. At this stage of development, states
and corporations invest huge amounts of money in the development of fundamental
and applied science. Despite the high cost of developing the scienti�c infrastructure,
the most scarce resource for increasing the e�ectiveness of science is human resources.
Under the circumstances, the problem of scienti�c migration can not be considered
without taking into account the global competition for scientists. It happens, both for
well-known specialists with a strong background, and for young researchers starting
their career. Competition for talent in�uences innovation policy initiatives around
the world, stimulating the creation of new jobs and attracting foreign intellectual
capital.
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Attention to the study of scienti�c migration attracted the phenomenon, the so-
called brain drain. Expanding the role of knowledge-intensive industries for economic
development has increased the scienti�c interest in the problem of scienti�c migra-
tion. It is impossible to consider scienti�c migration in isolation from the issues of
technology transfer. In this connection, the results obtained in the study of scienti�c
mobility are interesting, indicating that organizations whose employees are involved
in the "circulation of intelligence" between countries are the most productive in cre-
ating new technologies.

New theoretical approaches and concepts are being developed to evaluate the
processes of scienti�c migration. For example, according to a number of experts,
the current model of migration of scientists is characterized by a transition from a
model of brain drain from one country and the growth of intellectual potential in
another (brain gain) to the model of sharing intellectual potential (brain sharing).
One of the conclusions about the migration to the migratory model is the thesis that
international mobility bene�ts all parties, including countries that are net exporters
of researchers.

A number of scientists believe that the priority motive of scienti�c migration is the
search for an environment where they are most productive, while the environmental
factors, individual indicators of scienti�c e�ectiveness, family factors are signi�cant
factors that in�uence the scientist's mobility. From our point of view, the policy
of multiculturalism helps to attract cadres necessary for the country's development.
Immigrants who remain in touch with their countries of origin can contribute to
the reverse "brain drain". The methods used to study scienti�c migration are also of
interest. For example, using methods of mathematical modelling, the authors identify
factors a�ecting the plans of young scientists on immigration.

The application of theories of social inequality and decision-making in the �eld
of education and migration within the life cycle framework is considered. The study
of scienti�c migration is an extremely topical problem for Russia. In the 2010-ies
among emigrants from Russia from 30 to 70 percent (depending on the country) were
people with higher education. We recognize that the lack of information at the state
level about emigrant scientists makes it di�cult to understand the problem. Data
are available only from sample surveys and studies that are of a local nature. The
long-term leak of Russian scientists abroad is not just a problem, but at a certain
stage it becomes a resource for the innovative development of the Russian economy.

1 Theoretical framework

1.1 Research problem

The study of migration of scientists is of scienti�c interest from the point of view
of macroeconomic research due to the fact that the quality of human capital is the
most important driver of the modern economy. However, migration is fraught with
positive and negative impact.

One of the main trends of science is to increase the mobility of scientists. It is
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assumed that this growth is one of the factors of scienti�c and technological progress.
There is a common understanding that migration �ows a�ect the scienti�c activities
of a country, so both scientists and policy makers are interested in studying accurate
models of this impact, the structure of �ows, and predictors of the scale and direction
of migration.

Although there are many studies on academic mobility, most of them are de-
voted to international migration [3], [14], [9], [10]. To learn how national science
works, what are its strengths and weaknesses, it is really important to know about
cross-border �ows of scientists, but it is equally important to know how mobility is
structured on a national scale.

The main di�culty in carrying out this kind of research is the lack of reliable and
complete information about the migration of scientists, because o�cial statistics give
data on actually migrated individuals, and organizations do not form reports on the
mobility of scientists, which would be presented in the public domain. The construc-
tion of internationally comparable mobility indicators for the scienti�c workforce is
a persistent policy need.

1.2 Theoretical framework

Data on mobility largely comes from census data, labour force survey data recording
(e.g. FCN), longitudinal panels (e.g. NCSES, Eurostat, ETC.), individual and orga-
nization studies, and case studies, none of which are considered su�cient to provide
a comprehensive and up-to-date analysis of scienti�c migration for policy purposes
[1], [6].

In most cases, studies are conducted on mobility in General for highly quali�ed
personnel, without highlighting the features of sub-immigrant groups. Traditionally,
the mobility of the scientist is studied using such methods as state statistics on the
teaching sta� and data on migration [2], analysis of summary and personal web
pages [13], questionnaires and interviews with scientists themselves [4], [8], as well
as government and administrative databases [7].

As an alternative, we propose to use bibliometric data analysis. Studying the
distribution and trends in institutional a�liation, it is possible to track the trajectory
of individual scientists (for example, through the author's pro�le, as on the Scopus
database), as well as to analyze mobility at the level of academic groups, individual
disciplines and countries [11]. This method allows to conduct a comparative study
of the publishing activities of mobile and non-mobile authors Pearson and Cotgrave
[12], and to study the impact of migration on the development of various disciplines
Borjas and Doran [5]. Using the method of a�liation, it is also possible to study the
mobility of groups of elite scientists, which are small, but nevertheless important for
the development of science. These digital traces can record the movement of scientists
between countries; concentrations of representatives of di�erent disciplines in certain
countries or organizations; and allow for the analysis of relative migration �ows.

Given that publications are associated with date information, we can conduct di-
achronic network analyses to identify the trade of scholars not only between locations,
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but among all locations over time. Publication data provide the added advantage that
we can examine the impact of mobility, by measuring citations before, after, and dur-
ing periods of transition. Furthermore, bibliometric data can be analyzed at least
quarterly, which addresses the problem of the delays in obtaining statistics on R&D
personnel that has been repeatedly noted in the literature.

The research of Moed and Halevi [11], who examined migration balances be-
tween a select group of developing and developed countries, using Scopus data. This
work was methodologically useful in that it both discussed and examined the di�-
culties of author-name disambiguation for bibliometric data, including complexities
of homonyms and synonyms in the database.

2 Data Mining Algorithm

2.1 Data Collection

The collection of data on academic mobility is carried out according to our program
of searching and processing data, created on the basis of original algorithms proposed
during the project. The initial data array for articles is presented in the form of a
column-matrix:

As1 = (as1)r·1, s = 1, ..., r, (1)

where the column is the considered organization, s is the line with the article title,
r is the total number of articles with a�liation to the analyzed organization.

These matrix arrays are collected automatically for each year. At the second
stage, the As1 matrix is expanded by adding new columns of characteristics to the
analyzed data set: author's full name, a�liated country and organization, additional
a�liations to other organizations and the number of citations for the considered
article. As a result, 7 datasets on these indicators were obtained, re�ecting Ural
Federal University's scienti�c migration dynamics for the time period since 2011 up
to 2017.

2.2 Data Processing

To re�ect the information on the amount of articles, written by each author, a�li-
ated to the chosen organization, we create a matrix Bk. Here we denote by i the
parameter, which determines the author's ID. After that we launch the author search
algorithm for the assembled data array, re�ected by the matrix A, and obtain the
elements bij for the matrix Bk by accumulating values in case the authors' identi�-
cation numbers in the array coincide with the authors' target numbers. As a result
of the transformations, we obtain the matrix Bk:

Bk = (bkij)m·l, (2)

with the matrix lines representing all the authors of research papers, and the matrix
columns (i = 1, ...,m) - all identi�ed academic organizations.
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This matrix is compiled for each analyzed year, so each article has 3 main indexes
that determine its position in the analyzed data array bkij. We emphasize, that the
resulting matrix Bk is a sparse matrix with elements re�ecting information on the
amount of articles bkij of author i from organization j for selected year k.

In the compiled matrix Bk, the initial scienti�c organization is represented by the
�rst column, so, if the a�liation to the main organization is identi�ed, element bkij
is �xed in the �rst column, specifying the number of articles written by a sccientist,
when he was involved into the �rst scienti�c organization's projects. When the algo-
rithm detects a change in the author's pro�le for a new article, then the amount of
new articles is assigned to the parameter bkij, which is re�ected in column j, where j is
the column ordinal number indicating the organization whose article was published.
To output data on brain drain based on the obtained data array, the elements of
matrix Bk need to be checked for compliance with a number of conditions at the
time interval k=[2011;2017]=[1;N ].

2.3 Algorithm for data processing of scientometrics

In general, the solution of this problem can be represented by a conditional breakdown
of the total time gap into two parts: k1 = [1;N/2] and k2 = [N/2+1;N ] and derivation
of the a�liation data to the considered Russian university in the �rst column j =
1. As a result, the task is reduced to the formation of a �nal matrix X re�ecting
the number of publications attributed to identi�ed scienti�c organizations without
reference to the time criterion:

X = (xij)c·d. (3)

On a time interval k1 = [1;N/2], the search and accumulation of an articles array
attributed to authors i and scienti�c organizations j is carried out as follows: if for
N/2∑
k=1

bkij = xij, xij > 3, then the author i is a�liated with the scienti�c organization j.

Similarly, a search is performed on a time interval k2 = [N/2 + 1;N ].
For each particular case, the following algorithm is checked:

� if the condition
N/2∑
k=1

bkij = xij, xij > 3, j=1 is ful�lled on the time interval

k1 = [1;N/2], the author is considered to be working in the main analysed
organization (Ural Federal University);

� if the condition
N∑

k=N/2+1

bkij = xij, xij = 0, j=1 is ful�lled on the time interval ,

the author is considered to be dismissed from the main analysed organization
(Ural Federal University);

� if the condition
N∑

k=N/2+1

bkij = xij, xij = 0, j 6= 1 is ful�lled on the time in-

terval k2 = [N/2 + 1;N ], the author is considered to be working in a foreign
organization;
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� if the condition
N∑

k=N/2+1

bkij = xij, xij = 0, j 6= 1 is not ful�lled on the time

interval k2 = [N/2 + 1;N ], the author �nished his scienti�c career.

As a result, the �nal matrix X = (xij)c·d re�ects the number of articles written
by the i -th author from the scienti�c organization j. To obtain an array of data on
scientists who have moved to foreign universities, in the matrix X = (xij)c·d we strike
out the �rst column, responsible for a�liation to the main analyzing organization.
As a result, we obtain a sparse matrix Y = (yig)(c−1)·d = (bij)c·d − (bi1)c·1 , in which
all authors who published their works from the UrFU and who have moved to foreign
organizations are listed.

3 Results Discussion

The developed model and software were applied to analyze data on migration of
scientists working at the Ural Federal University. During the collection and processing
of data, a sample was obtained from 8986 scientists who published their work with
a�liation with the Ural Federal University. A total of 367 scientists were identi�ed,
who experienced a constant change in the a�liation of research papers to foreign
universities. After that, the data was further processed, their expert evaluation was
carried out, data on scientists were questioned from the sample, and the change in
a�liation was not related to emigration or another form of long-term cooperation
with a foreign university or a research center.

Information was selectively veri�ed according to information provided by scientists
in social networks. The analysis of the revealed tendencies, in our opinion, is of
interest for the research of the personnel potential of Russian science and education.
It should be noted quite a wide geography of migration of Russian scientists, with
the United States, Germany, Great Britain and France leading as the host countries
(see Fig. 1).

Proceeding from the structure of scienti�c interests of scientists leaving Russia, it
can be noted that the threat to the development of the Russian economy is not only
the fact of their departure, but also the fact that among the departing the share of
scientists engaged in the �elds of knowledge is large, the results of studies in which
either have a direct practical signi�cance , or quickly �nd the introduction. In par-
ticular, such as engineering, computer technology, materials science. The demand
for Russian scientists in the areas of science that provide rapid economic growth is
evidenced by the fact that some scientists, while retaining their publications, con-
tinued their scienti�c and practical activities not in universities but in innovative
companies. Including in such recognized world leaders of innovative economy, like
Facebook, Google.
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Figure 1: Countries hosting Russian scientists.

Conclusions

The study of the scienti�c migration of Russian scientists through the application
of the methodology developed by the authors to analyze international reference
databases of scienti�c publications con�rms the signi�cant impact of international
migration of scientists on Russian science. Emigrate, both young scientists, and rec-
ognized by the scienti�c community of researchers. 18 percent of emigrated scientists
have the Hirsch index in the range from 21 to 82. Migration of Russian scientists
is directed mainly to countries of Western Europe and the United States (up to 72
percent). The main spheres of scienti�c interests of emigrating scientists are natural
sciences and engineering (22 percent of physicists and astronomers, 16 percent of engi-
neering specialists, 14 percent of materials scientists, 10 percent of mathematicians).
Prospective directions for the development of research on scienti�c migration through
the analysis of data in the reference databases of scienti�c publications is the expan-
sion of the volumes of processed data sets presented in abstract research databases,
for example, for all participants in the project to improve the competitiveness of
Russian universities.
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Abstract

It is considered the problem of splitting the time seriesXt of arbitrary nature
into segments generated by one generation mechanism, as well as detecting the
moment of change τ of one generation mechanism to another. Based on the
parameters of ε-complexity, there is considered the time series segmentation
methodology, which does not require any a priori knowledge of the mechanisms
for their implementation.

Keywords: time series models, structural breaks, abnormal observation
detection.

Introduction

There is often a situation in time series processing when time series are generated by
various mechanisms, but a researcher has no a priori information about the mecha-
nisms. In order to extract adequate information from a data array, it is necessary
to segment the series into homogeneous (i.e. data sets, which are generated by the
same mechanism) subarrays. Without this data preprocessing step, it is impossible
to build mathematical models, estimate parameters, and so on.

When the data have been generated by a speci�c probabilistic mechanism, the
segmentation problem is a problem of detecting structural breaks (moments of change
in the mechanism of data generation) in random processes. Structural break detection
is an essential and challenging task. To solve the challenge, we use an approach to the
segmentation of time series of arbitrary nature proposed by B. S. Darkhovsky and A.
Piryatinska [1]. The key idea of the approach is to adopt the ε-complexity which is
an internal characteristic of the data and is sensitive to changes in the mechanisms
of time series generation.

1 Segmentation Approach for Time Series

LetX = {x(t)}Nt=1 be a time series with unknown moments of change in the generation
mechanism ti, i = 2, . . . , k. he mechanisms of time series generation are unknown and
can be stochastic, deterministic, or mixed. The segments of the series [ti, ti+1] , t1 =
1, tk+1 = N , which are generated by the same mechanism, are called homogeneous.
B. S. Darkhovsky and A. Piryatinska formulated and proved the following theorem
[1].

Theorem. For any function x(·) in a certain dense subset of the set of totally
nontrivial functions satisfying the Hölder condition and de�ned by their n values on a
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uniform grid and for any (su�ciently small) κ > 0, δ > 0 and n ≥ n0(x(·)), there ex-
ist a family of approximation methods F ∗, numbers 0 < α(n, x(·)) < β(n, x(·)) < 1,
A(n, x(·)), B(n, x(·)), |B(·)| ≥ c(n, (x·)) > 0, functions ρ(S), ζ(S) and N ⊂ Q =
[α(·), β(·)], µ(N) > µ(Q)− δ such that the following relations hold under approxima-
tion by the methods from F ⊇ F ∗ for S ∈ N

log ε = A+B + ρ(S) + ζ(S), sup
S∈N

max(|ρ(S)|, |ζ(X)|) ≤ κ. (1)

Thus, the relationship between the ε-complexity of a Hölder continuous func-
tion de�ned by an array of function values on a uniform grid and the approxima-
tion error ε is characterized by a pair of real numbers (A,B) denoting the com-
plexity coe�cients [1]. Taking a window of size n in accordance with the theo-
rem, we calculate the complexity coe�cients R(j + 1) for each segment of the series
x(t), t ∈ [jn+ 1, (j + 1)n] , j = 0, 1, . . . ,

[
N
n

]
. We get a new diagnostic vector se-

quence {R(j)}[
N
n ]
j as a result.

The following hypothesis is the key idea of the proposed approach: for the i-th
homogeneity segment [ti, ti+1] of time series Xt for ti ≤ t, t+n < ti+1, the complexity
coe�cients satisfy the relation

R(j) = Ri + ξi(j), (2)

where Ri is the mean of the sequence R(j) on the interval [ti, ti+1], and ξi(j) is a
sequence of random variables with zero expectation. In other words, the hypothesis
means that the mean values of the ε-complexity coe�cients of the time series remain
constant at homogeneity intervals, and a change in the mechanism of series generation
at moments ti, i = 1, 2, . . . , k, leads to the change of these mean values.

Thus, if the hypothesis is true, the problem of time series segmentation is reduced
to the problem of detecting structural breaks in the mean value of the diagnostic
vector sequence R(j). To solve the aforementioned problem, B. S. Darkhovsky and
A. Piryatinska proposed to use the following family of statistics

Y (s, δ) = (
(N1 − s)s

N2
1

)δ(
1

s

s∑
k=1

z(k)− 1

N1 − s

N1∑
k=s+1

z(k)), (3)

where 0 ≤ δ ≤ 1, 1 ≤ s ≤ N1 − 1, N1 =
[
N
n

]
, Z = {z(k)}N1

k=1 is the implementation of
the diagnostic sequence components R [2].

We illustrate the theorem and approach to the segmentation of time series pro-
posed by B. S. Darkhovsky and A. Piryatinska. Piecewise polynomial functions up
to the 10th order inclusive as the family F of approximation methods were used. For
each experiment, a time series was generated and then divided into "windows " of
size n. Each "window" was processed by the method of least squares, and the coef-
�cients of dependence (1) were determined by values of logS and logS. Further, for
each experiment, the moment of change in the generation mechanism of the series
(structural breaks) was detected. The structural breaks were determined with the
use of an algorithm based on statistics (3).
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2 Results of Monte-Carlo Simulation

Let us consider the results of Monte-Carlo simulations. Let xt be the process with
three times of the change in the generation mechanism. Before the �rst structural
break xt is an autoregressive moving average process (ARMA(2, 1)) with parameters
φ = (0.003; 0.1), θ = 0.002, εt are the independent identically distributed random vari-
ables, Eεt = 0, Eε2

t = 1. After the �rst structural break, the process is described by
a deterministic equation. After the second structural break, the process is described
by an autoregressive moving average (ARMA(2, 1)) model with the same parame-
ters. After the third structural break, the time series is represented by independent
identically distributed random variables ξt ∼ U [0; 1].

xt =


εt + sumi=1,2φixt−i + θεt−1, t ≤ k1

x2
t−1 − 2, k1 < t ≤ k2

εt +
∑

i=1,2 φixt−i + θεt−1, k2 < t ≤ k3

ξt, t > k − 3.

(4)

Let us consider the illustration of the theorem (Figure 1). Here the x-axis is the
logarithm of the number of dropped points in percentage form, and the y-axis is the
logarithm of the error in the approximation of the resulting function by the method
from the family F .

Figure 1: Illustration of the Theorem

Note that despite a relatively poor set of approximation methods F , the de-
pendence of the form (1) is realized with good accuracy. Let us consider the re-
sults of Monte-Carlo simulations for the process (4) (Figure 2). The time series is
generated by four di�erent generation mechanisms and has three structural breaks:
k1 = 310, k2 = 620, k3 = 1201.
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Figure 2: Illustration of the Model Realization (4)

The data sample size is N = 1500. The time series is divided into "windows "
of the same size n = 100. A structural break is detected when the di�erence in the
mean diagnostic sequence is signi�cant. Results of Monte-Carlo simulations allow to
detect structural breaks in 3, 6, and 12 windows, which corresponds to the intervals of
300-400, 600-700 and 1200-1300 in the time series xt. Structural breaks are detected
correctly.

In practice, it is often necessary to know the number of observations when the
generation mechanism is changed, or abnormal data behavior is recorded, which is not
typical for the time series observed. In this regard, a modi�cation of the segmentation
method of B. S. Darkhovsky and A. Piryatinska is proposed, which allows a speci�c
number of observations with a �xed anomaly to be obtained.

Consider the model ARCH(2)

Xt = εt

√√√√α0 +

q∑
i=1

αiX2
t−i, (5)

where ε N(0, 1), α = (0.5, 0.3, 0.6). The sample size for the experiment is N = 1000,
and the window size n = 100.

The resulting series has a non-uniform behavior, so the anomalies are selected
jumps being much higher than the average value of the series (Figure 3). We apply
the segmentation method of B. S. Darkhovsky and A. Piryatinska to the time series,
and, as a result, obtain 2, 3, 5, and 6 windows with possible anomalies. Next, we
consider each identi�ed window in the intersection with the neighbors as follows

X1 = {xi ∈ X : i = nt− 50;n(t+ 1) + 50}, (6)

where t is the identi�ed window number. Thus, we consider four obtained time series
to detect an abnormal observation. It is necessary to consider each observation in
the new generated series separately and to check the following three conditions

X1i > X1i−1
+ l;X1i > X1i−1

+ l;X1i > X1i+1
+ l, (7)
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where l is the controlling coe�cient.
Thus, if the observation in the window satis�es three conditions in (7), then the

observation is considered as abnormal.

Figure 3: Detection of Abnormal Observations

Conclusions

Thus, the segmentation algorithm of B. S. Darkhovsky and A. Piryatinska allows
not only time series to be segmented into subarrays generated by various generation
mechanisms, but also abnormal observations to be detected in the time series by
performing a simple modi�cation of the algorithm. The modi�cation proposed was
tested not only on simulation data but also on real data. The modi�ed segmentation
method showed high accuracy in working with real data, which is an undeniable
advantage.
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Abstract

In this paper, we consider the development of a software module for com-
puter analysis and interpretation of the geophysical data of the studied area
of the Barobinskoe �eld, used in prospecting and subsequent exploration of
mineral deposits.

Keywords: Data analysis, e�ective resistance, envelope graphics, pickets .

Introduction

The use of modern methods of interpreting geological data is increasing every year.
This is in�uenced by two factors: economic and temporal. Computer analysis and
interpretation of geophysical data of the studied areas is of practical importance for
the search and subsequent exploration of mineral deposits. Our goal is to reduce time
input and eliminate manual processing errors thus advancing e�ciency of geological
prospecting. To achieve the stated goal, the following tasks were set: analyze the
subject area, computerize processing �eld data of the long-wire method [1], and take
into account ergonomic and psychological factors.

1 Domain Analysis

The analysis of the subject area showed that in the long-wire method for specifying
an electromagnetic �eld a wire with a length of 1 to 10 km or more is laid. A magnetic
and electric component of this �eld is recorded by a ferrite antenna (magnetic version)
or a MN line (electric version) [2]. When passing an alternating current through a
wire, the electromagnetic �elds also create A and B groundings, which add up to the
wire �eld and complicate the general picture. These complicating �elds are local,
most intense in places of grounding and quickly fall o� to the periphery. To eliminate
their in�uence, the working area of the survey is assumed to be equal to 0.8 of the
AB line length. The "long wire" term refers to the length of the main, in which
the grounding electrodes do not a�ect the �eld within the area under study. The
boundaries of the section that meets the long-wire method conditions with an error
of ≤ 5% are shown in Fig. 1.
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Figure 1: The range of the Hy and Hz values that meet the long-wire method
conditions

2 Data sampling

A �eld survey of the magnetic �eld is carried out on either side of a long wire grounded
at the ends, through which an alternating current of a �xed frequency is allowed. To
achieve a great depth of study, a low frequency range is applied. The receiving
device records the parameters in the long-wire �eld � horizontal Hy and vertical Hz,
which make up the magnetic �eld, and calculates their ratio Hy/Hz, using which the
e�ective resistance reff is de�ned with a pattern taking into account the operating
frequency f and the spread r. reff of the electromagnetic method equipment is de�ned
in the measuring device. These parameters as well as the picket values and power line
positions are the source information, which is recorded from the equipment and stored
in an O�ce MS Excel document. The source data contains information on more than
20 pro�les. A fragment of the source numerical geophysical data is presented in Figure
2.

Figure 2: The source geophysical data

The source information is also stored graphically. For example, the graphs of the
e�ective resistance values for pro�le No. 7 are shown in Fig. 3. Further over these
schedules processing will be done. The graphs are presented for ease of application,
and they fully correspond to the values of numerical data (Fig. 2).

The output is a geoelectric section of the study area. As a result of graphic
interpretation, a section of contours of e�ective rock resistance is constructed, where
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Figure 3: The graphs of the e�ective resistance values for pro�le No. 7

low and high resistance zones are distinguished with their substance prediction. To
obtain the desired result, we have decided to develop a software module that would
allow us to read geophysical data from the source �le and automatically process it,
but �rst we need prepare the input data. To do this we have to transfer the data
shown in Figure 4 to an empty excel sheet.

Figure 4: Data selection for processing

The picket parameters are calculated by processing each �lled cell from Excel,
and then added to the two-dimensional array. The �rst value indicates the calculated
picket position, the second � the e�ective resistance. Figure 5 shows an example of
input parameters. Cell A1 shows the power line picket, and then the wire pickets
themselves are located in Column A. Each cell contains the pro�le number and, for
each wire position, indicates the picket position on the pro�le in 40-meter increments.
Column B locates the wire reff . As we use several wires, data on each wire is placed
on di�erent sheets, for convenience in operation.

3 Plotting envelope graphics

The next step was to build an envelope of the e�ective resistance graph. In a conduct-
ing anomalous object under the action of an alternating magnetic �eld of the wire
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Figure 5: The input parameters

eddy currents are induced, which in turn generate a secondary magnetic �eld. The
total magnetic �eld from conducting anomalous objects creates an anomaly of the
measured �eld values at the observation sites, which is displayed in the reff graphs.
Figure 7 shows the program output for constructing a graph of the e�ective resistance
reff and the envelope. The envelope in this case is the arithmetic middling of all the
values of each wire in the range from 2 to i-2, where i is the number of all the wire
points in the input parameters.

Figure 6: The program output

In this paper the calculated graph is presented for visual comprehension and is
an intermediate action for the next work stages.

4 Plotting by method sliding window

The next step of our work was to construct a graph with the sliding window method
in section conducted to eliminate the in�uence of near-surface heterogeneity. In
the graph reff from the wire to the periphery, all the objects of shallow bedding
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(tens of meters) are marked by local anomalies, which corresponds to the pro�ling
function that solves the problem of geographic mapping of the studied area. If we
remove these shallow anomalies (high-frequency background), the graph will have
wide anomalies of deep-laid objects (hundreds of meters), which corresponds to the
function of sounding.

The reff value at each observation site is formed depending on the magnitude and
magnetic �eld direction H at each site of the geological environment under study, and
the H, in turn, is an integral support of the eddy current caused in each conduct-
ing fragment of the environment by the primary alternating magnetic wire �eld and
superimposed conduction and competence currents. Each elementary area (electro-
magnetic cell) of the lower half-space contributes to the total anomalous e�ect at the
observation site, inversely proportional to its remoteness from current sources (wire
and earth conductors) and remoteness from the observation site from the cell.

Since the geological structure of the section is individual at each wire side, then,
following the semi-quantitative interpretation (containing considerable possible con-
struction errors), the reff values calculated at the pro�le points are transferred to
the intersection with the raypath drawn from K (wire) at an angle of 35◦ to the hori-
zon (at provided h = r/3 ). In fact, this angle depends in ratio on the conductivity
response and may vary within a broad range.

The values of the calculated picket parameters are plotted on the z axis, and
e�ective resistance is plotted on the y axis.

Figure 7: The calculated geometrical situation with the long-wire method
(vertically). 0 � the wire position perpendicular to the drawing plane; Ymin and

Ymax � minimum and maximum spread at the observation pro�le

To obtain the Z and Y values, the following formulas were applied:

Z = (Ymin + Yi)/2. (1)

Y = |Ymin − Yi| ∗
1

3
. (2)

For the value indicated in the point itself, we applied the formula (3):

Xi = Yi. (3)

The sliding window method consists in replacing the actual values of the series terms
by the arithmetic mean of several terms closest to it. The set of averaged values
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creates a sliding window. The term, which value is replaced with the mean with
respect to the window, occupies the middle position in the window. The graph
processed by the sliding window method in section can be seen in Figure 10.

Figure 8: The graph of the values processed with the sliding window method in
section

The picket parameters are calculated by processing each �lled cell from Excel and
added to the two-dimensional array. The �rst value indicates the calculated picket
position, the second � the e�ective resistance.

The obtained values of the parameters with the sliding window method were
stored in the Excel �le for contouring. An example of the stored data (the sliding
window method in section) is shown in Figure 11.

Figure 9: An example of the stored data of the sliding window method in section

The columns E, F show the input values, the columns A, B, C show the processed
graph data. Further, the data obtained by the sliding window method are processed
in the Surfer software environment. As a result of processing, the surface e�ective
resistance values are placed in depth, and a contour section is constructed, giving an
approximate idea of the geoelectric section. The processing result is shown in Fig.

520



Applied Methods of Statistical Analysis

12. After that, the resistance contour concentrations are analyzed and evaluated for
the desired minerals in them.

Figure 10: The resistance contours constructed in Surfer

Conclusion

High-resistance (1 and 2) and low-resistance (3) zones with their substance prediction
are distinguished in this pseudosection. At the surface in the 800 - 1600 m spacing of
the pro�le, fragments of quartz with gold were found, according to which it is assumed
that we may �nd a series of gold-bearing quartz veins and stock work at the depth. In
the 2000�3500 m spacing there is a low, marshy land, indicating the presence of salt
marsh, which led to an extensive low-resistivity Zone 3, of little promise for geological
prospecting and exploration. All three zones are recommended for well drilling, and
when con�rming the geophysical prediction Zones 1 and 2 � for prospecting. The
material obtained is tentative data for the subsequent directed geological prospecting
and, in general, signi�cantly reduces its volume and cost.

Figure 11: Substance evaluation

Figure 13 shows the fragments of quartz in selected Zones 1 and 2, as well as the
predominance of wet clay (Zone 3) and the entire right-hand side.

Was developed the software module interface that allows the pickets to be calcu-
lated. When developing the interface, ergonomic factors were taken into account [3].
The interface allows easily loading data and processing it.

The graphs are navigated through the tabs located in the main program window,
shown in the �gure below. We can also use the manual setting buttons on the right
sidebar for more precise setting. Each of these buttons will increase / decrease the
height / width of the graph by the number indicated on the button being pressed.

In this paper psychological factors were taken into account. For this purpose,
a user manual [4] was developed, which contains information about the program,

521



Novosibirsk, 18-20 September, 2019

Figure 12: The main program window tabs

a detailed description of all the program features that are necessary for program
authoring.

The developed software module will not only computerize processing geophysical
data taken with the long-wire method, but also ensure safe storage and easy access
to the information received. It also signi�cantly reduces the time input for data
processing, thereby reducing the cost of all the work done.
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Abstract

The article presents a method for detecting periodic signals under the back-
ground noise using the Murali-Lakshmanan-Chua non-autonomous chaotic os-
cillator. The authors propose to use the calculation of the number of chaotic
bursts during the detection time to recognize the steady state of motion in the
chaotic oscillator. The decision to detect a signal is made by comparing the re-
ceived number with a threshold established by the Neumann-Pearson criterion.
The authors hypothesized that the experimental data for the number of chaotic
bursts has a negative binomial distribution and veri�ed using the χ2 criterion. A
numerical model is presented that implements a system of di�erential equations
for a signal detector based on chaotic oscillator Murali-Lakshmanan-Chua. The
proposed model allowed us to perform statistical studies of the chaotic oscillator
under the narrowband noises.

Keywords: bifurcations, signal detection, Murali-Lakshmanan-Chua oscil-
lator, negative binomial distribution.

Introduction

Currently, a method of detecting deterministic signals under the background noise
using bifurcations in a non-autonomous chaotic oscillator is known [3]. The basic
principle of detection is as follows. Chaotic oscillator parameters are set in such
a way that there is a chaotic state with intermittent behavior. Such a motion is
possible near the boundary with tangential bifurcation. The received signal is fed
into the chaotic oscillator and under the action of the detected signal a bifurcation
occurs, and the chaotic state is replaced by a periodic steady state. One of the most
developed approaches is to use the Du�ng-Holmes oscillator in the numerical model
for detecting periodic signals, and the recognition of the steady state is performed by
calculating the largest Lyapunov exponent [4].

In creating miniature sensors [6], it becomes necessary to have a simple detector
without using numerical models. As a chaotic oscillator for the detector, it is proposed
to use the Murali-Lakshmanan-Chua oscillator [5], which is simpler than the Du�ng-
Holmes oscillator [7] realization in the form of an electrical circuit. To recognize the
motion state, it is proposed to calculate the number of chaotic bursts during the
detection time.
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1 Basic principle

The construction of the detector is carried out on the basis of the Murali-Lakshmanan-
Chua oscillator, which is described by the following system of equations in dimen-
sionless form: {

ẋ = y −m(x)

ẏ = −βy − βx+ A0 sinωτ + η(τ)
, (1)

where x and y are dynamic variables, β is a bifurcation parameter of the system, A0

is an amplitude of the sinusoidal source, ω is a frequency of the sinusoidal source,
τ is time, η(τ) is received signal, m(x) is a function describing a non-linear element
also known as Chua's diode:

m(x) = bx+
1

2
(a− b)(|x+ 1| − |x− 1|), (2)

where a = −1.02 and b = −0.55 are constant coe�cients. The tangential bifurcation
in this system is observed at β = 0.9 , ω = 0.4, A0 = Acr ≈ 0.0825, where Acr -
critical value of amplitude. Near the tangential bifurcation an intermittent motion is
observed in the system, consisting of long laminar phases separated by short chaotic
bursts (Fig. 1). The appearance of chaotic bursts is random in nature. Thus, the

Figure 1: The time dependence for dynamic variable x(τ) with β = 0.9, ω = 0.4,
A = 0.0824

amplitude of the sinusoidal source A0 must be set slightly below the bifurcation
boundary Acr, and a bifurcation must occur upon receipt of a detectable signal.
Above the bifurcation boundary, the chaotic bursts cease. For the signal, supplied to
detect, we introduce the following notation:

η(τ) = d sinωτ + σinn(τ), (3)

where d is the amplitude of the detected signal sinωτ , σin is the e�ective value of the
noise, n(τ) is a narrow-band Gaussian random process with zero mean and variance
equal to one. Denote as A the sum of the amplitudes of the sinusoidal source and
the detected signals. In order for a bifurcation to occur, inequality must be ful�lled:

A = A0 + d > Acr.

524



Applied Methods of Statistical Analysis

It is known that in chaotic oscillator, even with A > Acr, chaotic bursts are possible
under the action of noise [2]. To build a periodic signal detector, it is necessary to
compare the number of chaotic burst N during the detection time τd with a certain
threshold h′, but setting this threshold requires knowledge of the distribution law of
the random variable N .

2 Detection model

The signal detector under the background noise can be built according to the scheme
shown in Fig. 2. The following notation is used: CO is a chaotic oscillator, PD
is a binary phase detector, C is a counter, TD is a threshold device. The detector
works as follows. The received signal η(τ) is fed to the input of a non-autonomous
chaotic oscillator CO. Also, for a chaotic oscillator, the source of a sinusoidal signal
A0 sinωτ is necessary. The output signal of the chaotic oscillator x(τ) is fed to the
input of the binary phase detector PD. If the chaotic oscillator is in a periodic state,
then the process x(τ) will be synchronous with respect to A0 sinωτ and the output
of the phase detector will be a constant level. In the chaotic state, the bursts of the
signal x(τ) are period skips, which is detected by the phase detector. The number of
pulses N counted by the counter through the detection time τd is fed to the threshold
device. If the number of bursts N is below the threshold h′, the hypothesis of the
absence of a detectable signal is accepted, otherwise it is assumed to be present.

Figure 2: Detector structure diagram

The model was created in Matlab / Simulink according to the scheme presented
in Fig. 3. The RandomNumber pseudo-random number generator together with the
BandpassFilter �lter is a source of narrowband noise with a relative bandwidth of
γ = 0.1 and a center frequency ω. For each numerical experiment, 1000 launches were
performed with di�erent Seed value of the source RandomNumber. The block of the
binary phase detector and counter is designated in the model as Subsystem. The
time interval τd corresponds to Z = 500 periods of the sinusoidal source SineWave.
The calculation was performed by the Adams method with an adaptive step. The
obtained number of chaotic bursts of N was saved to a �le for further statistical
processing.
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Figure 3: Numerical model of detector in Matlab / Simulink

3 Numerical experiments

The experiments investigated the statistics of the number of chaotic bursts N during
the detection time at a di�erent amplitude of a sinusoidal source A, such that A > Acr
and di�erent RMS of noise σin. For each numerical experiment, the mean number
of bursts Nm, the standard deviation σN were obtained and a normalized histogram
was constructed. It was found that in all experiments the mean number of bursts
is less than the variance, i.e. Nm < σ2

N . The case of overdispersion means that a
model based on the Poisson distribution cannot be used. If it is necessary to set
the mean and variance independently, then a model based on the negative binomial
distribution can be used [1]:

pNB(N, r, %) =

(
N + r − 1

N

)
%r(1− %)N , (4)

where pNB(·) is the probability mass function of the negative binomial distribution,
r and % are distribution parameters obtained from the expressions:

% = Nm
σ2
N
, r = Nm

1
%
−1
.

Using the criterion χ2 the test was performed to ensure that the experimental
data corresponded to the negative binomial distribution. For this, the chi2gof()
function from Matlab was used. The data on the number of degrees of freedom νDF
and the signi�cance level qSL are summarized in Table 1. For most experiments,
the hypothesis of belonging to a negative binomial distribution was assumed with
qSL > 0.1.

Fig. 4 - 9 show some normalized histograms (1) and corresponding theoretical
dependencies (2).
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Table 1: Results of numerical experiments and their veri�cation by the criterion χ2

σin
Amplitude,A
0.083 0.085 0.09 0.11

2 · 10−3

Nm 24.67 1.41 0 0
σN 8.62 2.03
qSL 0.02 0.12
χ2 51.4 12.74
νDF 33 8

1 · 10−2

Nm 46.2 35.03 14.9 0.041
σN 10.0 9.19 6.02 0.26
qSL 0.11 0.47 0.16 0.74
χ2 49.57 35.8 31.78 0.1
νDF 39 36 25 1

2 · 10−2

Nm 52.46 46.75 33.46 4.9
σN 10.78 10.43 9.44 3.22
qSL 0.91 0.79 0.54 0.026
χ2 29.16 32.35 34.42 25
νDF 41 40 36 14

3 · 10−2

Nm 49.15 45.72 37.8 13.88
σN 10.31 10.22 9.44 5.89
qSL 0.63 0.83 0.26 0.51
χ2 36.45 29.51 40.87 24.16
νDF 40 38 36 25

Figure 4: A = 0.083, σin = 2 · 10−2 Figure 5: A = 0.085, σin = 3 · 10−2
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Figure 6: A = 0.09, σin = 2 · 10−2 Figure 7: A = 0.11, σin = 3 · 10−2

Figure 8: A = 0.11, σin = 2 · 10−2 Figure 9: A = 0.085, σin = 2 · 10−3

Conclusions

The completed studies con�rm the hypothesis of the experimental data for the num-
ber of chaotic bursts has a negative binomial distribution. Of all the numerical
experiments, only the results in two cases did not show a su�cient signi�cance level.
However, it can be explained by the discrepancy in the solution of the Cauchy prob-
lem for an unstable system over large time intervals. From this it follows that for
the detector with the threshold established by the Neumann-Pearson criterion, the
following expression can be written:

h′ = Ψ−1(pF , r, %),

where Ψ−1(·) is the inverse function of negative binomial distribution, pF is probability
of a false alarm. Accordingly, for the probability of correct detection pD, we can write:

pD = Ψ(h′, r, %),

where Ψ(·) is the function of the negative binomial distribution.
This work shows that the use of a chaotic oscillator to detect a signal under the

background noise is possible using a statistical approach to calculating the decision
threshold at di�erent signal-to-noise ratios.
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Abstract

This study is dedicated to development of a tracking algorithm. The main
objective for such algorithm is its mandatory implementation with minimal
computing with minimal computing resources, including the provision of a data
transmission channel. The requirement is dictated by the need to obtain infor-
mation about the ratio of vehicles passing through the intersection in real time.
The data is necessary for adaptive correction of the time shifts for coordination
plans of tra�c lights. The development of the proposed method assumes the
classi�cation of the received tracks for the recognition of emergency situations.

Keywords: real-time tracking, object recognition, convolutional neural net-
work, distance metrics, machine learning, computer vision, adaptive tra�c con-
trol systems.

Introduction

At these days video processing technologies are widely used for solving various kinds
of recognition, control and optimization problems. In particular, to optimize the
lengths of the tra�c light phases it is necessary to know the ratio of the tra�c �ows
at the intersection. Knowing the number of cars traveling in di�erent directions will
allow to make a decision about changing the tra�c pattern, the phase sequence,
adjusting the length of each phase or calculating the o�set of the tra�c light cycle of
one intersection relative to its neighbors.

Thereby the task of constructing, recognizing and classifying the tracks of moving
objects becomes important.

The solution of the tracking problem includes the recognition stage and tracking
stage. There are two most common approaches: object tracking based on �nding
key points of an object, a signi�cant number of these methods are implemented in
the OpenCV library [1], and tracking algorithms based on object classi�cation and
localization using convolutional neural networks [2].

The authors of this study used the second aproach, the main focus of the research
is on the development of a track constructing algorithm. Object recognition and
localization was implemented using the retrained model of YOLO v.3.0 [3]. Tracking
methods implemented in the OpenCV library provide high stability and accuracy of
tracking moving objects. However, this approach does not imply automatic selection
of the tracked objects, as well as the classi�cation of these objects. And provided
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with the dozens of tracked objects the processing speed of a frame becomes on par
with the processing speed of the convolutional neural network.

Therefore, it was decided to use the convolutional neural network with the subse-
quent processing of the output data to form the trajectories of objects. This approach
gives more necessary information such as the class of an object. Also it has a constant
processing speed that does not increase with the number of objects in the frame.

A signi�cant advantage of this algorithm is its ability to obtain the desired results
in real time at the installation site of the camera. Transferring a video stream to
a server for processing was considered ine�cient and costly. The instability of the
transmission of high-quality images for processing and a signi�cant number of data
collection points for the adaptive tra�c control system requires achieving the high
accuracy of data processing results at the low cost of computing resources.

1 Image processing stage

At the stage of detection, the neural network brings the original image to the set
square size and divides it into square blocks based on the hyper-parameter S. Their
number is calculated as S×S. Each block at the detection stage makes an estimation
about objects whose centers are located inside the block. The estimation includes
the coordinates of the object center inside the block and its dimensions. The number
of estimations that is produced by each block is set by the hyper-parameter Q.

Thus, in the course of image processing, the output from each block is the following
matrix:

B =

x1 y1 h1 w1 c1
...

...
...

...
...

xq yq hq wq cq

 , (1)

where xi, yi � are the coordinates of the i-th object (in pixels), hi, wi � are the height
and width of this object (in pixels), ci � is the con�dence level.

Each block also makes a class prediction based on the features that were extracted
during the convolution process. Depending on the number of classes that were ini-
tialized during the training process of the network, the number of output parameters
will also di�er. Thus, the output for each image block is the vector ~p:

~p = (p1, p2, . . . , pk), (2)

where pi � is the probability of the i-th class in this block, k � the number of all
classes.

Next, a decision is made about the presence of an object inside the block or its
absence. The decision is made according to the following rule:

(∃i ∈ B)ci > t, (3)

where ci � con�dence level of the i-th estimation, t � the speci�ed threshold for the
con�dence level.
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That is, if there is at least one estimation with the con�dence level exceeding a
given threshold t � a decision is made about the presence of an object inside the
block. Its coordinates and dimensions are set as:

dj = di, di ∈ Bj,

ci = max(ck), ck ∈ Bj,
(4)

where dj � is the dimension (x, y, w or h) of the j-th object, ck � con�dence level of
the k-th estimation of the block, Bj � is the B matrix of the j-th object.

The class of an object is set as:

aj = h, ph = max(~pj) = max(pj1, pj2, . . . , pjk), h = 1, k, (5)

where aj � class of the j-th object, pj � probability vector corresponding to the j-th
object.

Therefore, each image block generates either one object or none. The �nal set of
objects forms the output matrix:

V =

x1 y1 h1 w1 a1
...

...
...

...
...

xm ym hm wm am

 , (6)

where xi, yi � are the coordinates of the i-th object (in pixels), hi, wi � are the height
and width of this object (in pixels), ai � is the number corresponding to the class of
the object, m - is the resulting number of objects on the frame.

The error rate of the classi�cation module is estimated to be 93.8% [3].

2 Tracking stage

Processing video frame by frame we get a constantly updated sequence of recognized
objects V . Further processing of these objects in order to track each object thus
turns into the association problem for two consecutive frames Vi and Vi−1 (Figure 1).

List of objects is not permanent. In the considered task of detecting vehicles new
objects constantly appear on the frame and old objects disappear with the same rate.
Moreover, detection using a neural network still has a certain error rate � the object
may not be recognized on one of the frames, but reappear on the next one.

In order to provide a constantly up-to-date list of objects, the Vi, the i-th list of
objects, is compared not with Vi−1, but with a constantly updated list of objects V ′.
Objects are deleted from V ′ only after the number of consecutive frames on which
the object is absent will overcome the threshold l.

The general detection algorithm is presented below.

1. Received a list of objects Vi.

2. Association between objects Vi and V ′.

3. Adding new objects from Vi to V ′.
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Figure 1: Object association between two consecutive frames

4. Removing old objects from V ′.

The association between objects Vi and V ′ is made by analyzing the centroids
of each object. For each object from Vi, there is an object closest to it from V ′.
To estimate the distances between objects, the Euclidean metric for two-dimensional
space is used:

distj = min(d(vj, v
′
k)) = min

{
d(vj, v

′
1), d(vj, v

′
2), . . . , d(vj, v

′
m)
}

=

= min
{√

(xj − x1)2 + (yj − y1)2, . . . ,
√

(xj − xm)2 + (yj − ym)2
}
,

(7)

where distj � is the minimal distance from vj, vj � the j-th object from Vi, v′k � the
k-th object from V ′ with k = 1,m, m - the number of objects on the frame.

Then all of the Vi objects are sorted by their corresponding distj values. Each
object, starting from the objects with the smallest distj, is associated with the object
from V ′ closest to it. Association is made only for those objects whose shortest
distance does not exceed the threshold calculated as:

∆ = l ×
√
w2 + h2, (8)

where l � the number of frames on which the object was absent, w � found width of
the object (in pixels), h � its height (in pixels).

Each object from V ′ to which no object from Vi has been assigned is marked as
missing on the frame. If the object is absent on 5 frames in a row, it is declared
disappeared and is removed from V ′.

All objects from Vi, for which there was no match, are added to V ′ as new objects
that were not detected earlier.

The results of the tracking system can be seen in Figure 2.
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Figure 2: Results of the tracking algorithm

3 Track processing

The tracks of objects, after they leave the frame are processed for further work.
The class of the same object can vary on di�erent frames due to the probability of

error during the recognition stage. To establish the true class of an object, a metric
was introduced that assesses the probability that an object belongs to a particular
class. When processing each frame, the neural network makes its contribution to one
of the three indicators, each of which corresponds to one of the considered classes.

For the class that was detected for the given object on the i-th frame, this indicator
is calculated as:

gi = gi−1 +
G√

w2 + h2
, (9)

where gi � indicator for the given object on the i-th frame, w � detected width of an
object on the i-th frame (in pixels), h � its detected height (in pixels), G � special
parameter.

For all the other classes on the i-th frame, the indicator g is transferred from the
previous frame:

gi = gi−1. (10)

When it is necessary to determine the class of an object, the following decision
rule is then applied:

aT = j, gj = max(gi), i ∈ C, (11)

where aT � is the true class of an object, gj � the indicator of an object for the j-th
class, C � the whole set of classes established in the system.

The parameterG is relative and is used exclusively for comparison between classes.
The parameter G can be set to di�erent values depending on the class in order to
give priority to one class over the others. At the moment setting the parameters for
every class remains entirely up to the analyst. In the future, it is possible to present
the settings of this parameter as an optimization problem.
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Collected tracks are compared with pre-marked areas for car counting. The col-
lected data is divided by classes and the tra�c directions and after that sent through
the communication channels to the target system.

The target system is an automated tra�c management system, namely, a module
that allows modeling and simulation of various road junctions.

The collected information on the number of cars makes it possible to simulate
tra�c at the considered intersection, most accurately re�ecting the actual situation
for a given period of time. The analysis of the historical data collected using the
developed tracking system allows to predict the situation at the intersection for the
next period of time.

Substituting the predicted intensity data into the modeling system, it becomes
possible to automatically select the optimal parameters for the tra�c light. An
example of such a system can be seen in Figure 3.

Figure 3: The simulation module of the automated tra�c management system

Information divided by di�erent directions gives an idea of the ratio of those tra�c
�ows. Knowing the number of passing vehicles of di�erent classes allows to estimate
the speed of the transport (since public transport and trucks move slower than other
cars).

Conclusions

The proposed tracking has shown a high accuracy of track construction under various
conditions on the transport network. The algorithm takes into account the possible
absence of the object in the surrounding frames. The frame processing frequency
of the system reaches 25 frames/s, which makes it possible to talk about real-time
multiple object tracking. Further development of the work is aimed at clustering the
tracks to assess the abnormal or emergency situations on a section of the road. In
case of the abnormal tra�c or trajectories at the observable intersection, correction
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of the coordination plans of several tra�c lights is required to reduce the negative
impact of the accident.
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Abstract

A component of national security is food security, which includes providing
the population with food in su�cient quantity and good quality. Russia adopted
a strategy towards its own food production. However, not every region has
natural and climatic conditions and resource potential for food production, and
the vastness of the territory of Russia creates problems in the regularity of inter-
regional food supplies. This leads to disproportion of territorial development in
the sphere of providing the population with own food production. The article
presents the results of a study of regional unevenness and di�erentiation of the
development of the food industry since 2010 and the problems of eliminating
the disproportion of the population's food security. The methodology is based
on the use of statistical tools: methods of classi�cation, evaluation of regional
developmental unevenness, calculation of the coe�cients of di�erentiation and
concentration of production.

Keywords: sustainable development; Russian regions development; food
security; disproportion; di�erentiation.

Introduction

The second goal of the Program of Transforming Our World, adopted by the UN
is to eradicate hunger, achieve food security and improve nutrition. The food and
agriculture sector o�ers key solutions for development, and is central for hunger and
poverty eradication. If done right, agriculture, forestry and �sheries can provide
nutritious food for all and generate decent incomes, while supporting people-centred
rural development and protecting the environment. [1]

Food security is the providing the population with food in su�cient quantity and
good quality. [2�12] There are two main sources of providing the population with
food: own production and import. Since Russia is under sanctions from the United
States and the European Union, it is forced to adopt a strategy for its own food
production. Therefore, each region of Russia is trying to develop the food industry
to provide for own residents with natural foods. [13�19] However, not every region
has natural and climatic conditions and resource potential for food production. As a
result, �rstly, there is uneven development of the food industry in the regions of the
country [20�24]; secondly, the vastness of the territory of Russia creates problems in
the regularity of interregional supplies of agricultural raw materials. This leads to
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disproportion of territorial development in providing the population with food prod-
ucts of their own production. [25�33] The food industry sector includes more than 40
sub-industries, however to address the research problems, the authors consider the
food industry in all regions of the Russian Federation without division into product
types. This will make it possible to analyze and draw general conclusions about the
level of provision of the population with food of own production.

1 Estimation of regions di�erentiation level

The uneven development of the food industry can be viewed from two perspectives:
the unevenness of production volumes by regions of the Russian Federation and the
uneven supply of food for the population.

First, the authors propose to consider the disparity in the development of regions
in the provision of food for the population as the uneven development of the food
industry. To determine the degree of di�erentiation in the development of the food
industry, the Lorenz curve was constructed in the regions for the volume of food
products of own production for 80 regions of the Russian Federation in 2011, 2013
and 2015. [34�36]

Figure 1: Fig. 1. (a) The Lorenz curve for 2011; (b) The Lorenz curve for 2015

The Lorentz curve (Fig. 1) was constructed in two ways: in the �rst case, the
regions of the Russian Federation are indivisible units (on the lines a and b the lines
are marked in blue, and the accumulated share of the regions was plotted along
the X axis), in the second case, the adjustment is made by the population in each
object (the red line in the charts, and the accumulated share of the population was
plotted along the X axis). On the Y-axis, in both cases, the cumulative production
share was presented. In the second case, the deviation of the curve from the uniform
distribution is less than in the �rst, that is, the degree of di�erentiation of the regions
taking into account the structure below.

In order to trace the degree of inequality in dynamics, the Gini coe�cients were
calculated for Lorenz curves of the second type (taking into account the structure of
the population by regions) from the formula (1).
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KG = 1− 2
n∑
i=1

xi · cumyi +
n∑
i=1

xi · yi (1)

Where xi � the share of the population in the i-th region; yi � the share of food
production in the i-th region; n � number of regions

The Gini coe�cient for the Russian Federation in 2011, 2013 and 2015 was 0.349,
0.347 and 0.376, respectively. Despite the low Gini coe�cients, it can be concluded
that before the introduction of sanctions, the di�erentiation of the food industry in
the regions was declining, and now it is growing.

For the same time periods, the Hoover indices, the so-called Robin Hood indices �
the maximum deviation of the Lorentz curve from the equality line � were calculated
from the formula (2):

IG = maxi(i− F (xi)) (2)

Where F (xi) � is the point on the Lorentz curve.
For the Lorentz curves of the second type, the Hoover index was 24.3, 23.9, and

26.7. Thus, the Hoover index con�rms the growth of di�erentiation of regions in terms
of their own food production. Therefore, in order to achieve territorial uniformity
of production, it is necessary to develop the food industry in lagging regions more
rapidly.

2 Typology of regions

For a more detailed analysis of the degree of di�erentiation in the development of the
food industry, a typological grouping of the regions of the Russian Federation was
carried out using the adapted BCG matrix, which makes it possible to compare the
positions of the Russian Federation regions based on a combination of the rates of
growth in production value (the Y-axis) and the relative share of production value
(the X-axis). The regions of the Russian Federation are represented in the diagram
below (Fig. 2) in the form of circles whose radius is proportional to the per capita
production value in each region. To determine the positions that the regions occupy,
the Y-axis was divided into two categories - low and high growth rates (the critical
point is the rate of growth in the Russian Federation), the X axis - low and high
relative shares of production values of individual regions as compared to the average
Russian share (critical point is 1). This allowed to obtain 4 types of regions in terms
of providing the population with own products of food industry enterprises: donors,
self-su�cient, prospective and recipients:

� Recipients are characterized by low rates of growth in production value and a
low relative share of production. The recipient region is unable to provide its
population with the necessary food and is forced to import it.

� Self-su�cient regions are regions with low rates of growth and a high relative
share of production.

539



Novosibirsk, 18-20 September, 2019

� Perspective � high rates of growth, low relative share of production. Perspective
region is one of the most unstable position, which requires additional research.
Without additional actions, prospective regions can easily move to the category
of recipient regions

� Donors are characterized by high growth rates and a high relative share of
production. At the expense of the donor regions, food products are provided
to the population of the recipient regions.

Figure 2: Adapted BCG - matrix by regions of the Russian Federation

Fig. 2 shows the regions of the Russian Federation according to data for 2015, the
growth rates were calculated in comparison with 2013. The result of the distribution
of regions by groups is presented in Table 1.

Table 1: Types of Russian Federation regions by production volumes

2013/2011 2015/2013
Donors 16 24 (12 sustainable)

Self-su�cient 17 5 (4 sustainable)
Perspective 23 15 (7 sustainable)
Recipients 24 36 (15 sustainable)

Territorial distribution of regions into 4 types is shown in Fig. 3. Thus, we can
conclude that in the development of the food industry there are both positive and
negative trends. The positive changes include the growing number of donor regions,
12 sustainable regions in the group of donor regions, and the growth is provided
mainly by self-su�cient regions, which not only retain a relative share of production,
but also increase production rates. Also, positive changes include the fact that in
the category of perspective regions in 2015, there were 8 former recipient regions.
A negative trend is the growth of di�erentiation of regions. Moreover, an increase
in the number of recipient regions was inevitable due to a change in the foreign
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policy situation and the imposition of sanctions, which entailed the need for �nancial
investments in the food industry, as well as the adoption of timely and competent
management decisions.

Figure 3: Cartogram of the distribution of Russian regions by the results of a
typological grouping

3 Typological grouping of regions in terms of food

security for the population

Further, the authors propose to analyze the provision of the population with food.
For this purpose, the typology of subjects of the Russian Federation in terms of
production per capita was implemented. The regions with a high level were those
regions of the Russian Federation whose average per capita production level is higher
than the middle for the Russian Federation by an amount greater than the standard
deviation to regions with a low level - those entities whose per capita production
level is signi�cantly less than the average deviation. The results of typologization are
presented in Table 2.

Table 2: Distribution of the Russian regions by the provision of the population with
food (production per capita).

The provision of the population with food 2011 2013 2015
High level 7 6 3
Middle level 65 66 71
Low level 8 8 6

Thus, it can be traced that the degree of di�erentiation decreases over time � an
ever-smaller number of regions fall into the tails of distribution.
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For the analysis of the degree of variability of average per capita production values,
the coe�cient of variation was calculated, which amounted to 1.22, 1.23 and 1.03 in
2011, 2013 and 2015, respectively, i.e. over time, the variation decreases, which is due
to an increase in the number of donor regions and domestic imports of own-produced
food.

Conclusions

Thus, the results of the study indicate that during the period under review, the
disparities between the Russian Regions Development in the Sphere of Population
provision with the Food of Own Production have grown. This was due to the regions
with high level of food production per capita. But simultaneously there is a shift
towards the concentration of regions around the average level. This is a positive
factor, as it stimulates the growth of own food production in the Russian Federation.
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Abstract

The article discusses a new approach to linear optimization with random
input data. We use computational probabilistic analysis to construct proba-
bilistic extensions and set of solution of systems of linear algebraic equations
with random parameters. Estimates of the probability density function of the
objective function of the random linear programming problem are constructed.
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random systems of linear algebraic equations, linear programming, random in-
put data.

Introduction

The study of many practical problems, including the problem of decision-making,
requires the implementation of the optimization approach. The e�ectiveness of the
solutions depends on several factors. These factors primarily include the data needed
to describe and solve the problem. One of the important factors that should be
considered when solving such problems is uncertainty of input data.

The paper deals with the computational probabilistic approach to solving opti-
mization problems with random inputs. Using methods of mathematical program-
ming, we obtain optimal solutions that depend on these parameters. When prob-
ability densities of input parameters are known, it is possible to construct a joint
probability density function for the optimal solutions.

In most of stochastic programming algorithms the operator of mathematical ex-
pectation is used and averaging procedures are performed [10]. Note that in stochastic
programming the optimal solution is a �xed point. In the case of random program-
ming, a joint probability density function is constructed on the set of solutions of the
optimization problem.

To this end, nowadays mathematical tools for uncertain programming are de-
veloped. Uncertain programming is the theoretical basis for solving optimization
problems for various uncertainty conditions. In [7] three main types of uncertainty,
namely, randomness, fuzziness, and imprecision, are recognized. Since an interval
number can be considered as a special case of an imprecise quantity, interval anal-
ysis, interval arithmetic, and interval programming fall into imprecise programming
[5].

This work continues the research started in [2]. In the present paper, special
attention is paid to the construction of probability density functions of the solution
sets of systems of linear algebraic equations with random coe�cients. In contrast to
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the works [4, 9], the considered approach does not require restrictions on the type of
probability density functions of the input data.

1 Formulation of the problem and background

Let us formulate the problem of random programming as follows:

min f(x, ξ), (1)

subject to (s.t.)
gi(x, ξ) ≤ 0, i = 1, ...,m, (2)

where x is the solution vector, ξ is the vector of parameters, f(x, ξ) is the objective
function, gi(x, ξ) are constraint functions.

As for ξ, we know that this is a random vector. The randomness of random vector
involved in the above statements is formalized through a probability space, (Ω,F , P ),
where, Ω, F , P are the set of random events, the σ � algebra of the subsets of Ω
and the applicable probability measure, respectively. The elements of this probability
space appear as parameters in the input random vector ξ(ω), ω ∈ Ω.

Vector x∗ is the solution of problem (1) � (2), if

f(x∗, ξ(ω)) = inf
U
f(x, ξ(ω)),

where
U = {x|gi(x, ξ(ω)) ≤ 0, ω ∈ Ω, i = 1, ...,m}.

The solution set of (1)�(2) is de�ned as follows

X = {x|min f(x, ξ(ω)), gi(x, ξ) ≤ 0, i = 1, ...,m, ω ∈ Ω}.
Note that x∗ is a random vector, so in contrast to the deterministic problem, for x∗

it is necessary to determine the probability density function for each component of
x∗i .

When both objective function and constraint functions are linear functions, the
problem is called a problem of linear programming. Otherwise, the problem is called
a problem of nonlinear programming.

For example the problem of linear programming with random data is formulated
as follows:

min(c(ω), x), (3)

s.t.
A(ω)x = b(ω), x ≥ 0, ω ∈ Ω. (4)

The vector x∗ is the solution of problem (3) � (4) provided that

(c(ω), x∗(ω)) = inf
U(ω)

(c(ω), x),

where
U(ω) = {x|A(ω)x = b(ω), x ≥ 0, ω ∈ Ω}.
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The solution set of (3) � (4) is

X = {x|min(c(ω), x), A(ω)x = b(ω), x ≥ 0, ω ∈ Ω}.
The probability density functions of random variables x, y, z will be denoted bold
font x,y, z.

We will be interested in estimating the probability density function of the ob-
jective function (c(ω), x∗(ω)), ω ∈ Ω. For these purposes we will use Computational
Probabilistic Analysis (CPA).

2 Elements of Computational Probabilistic Analysis

The basis of Computational Probabilistic Analysis (CPA) is numerical operations on
probability density functions of the random values. These are operations �+�, �−�,
�·�, �/�, �↑�, �max�, �min�, as well as binary relations �≤�, �≥� and some others. The
numerical operations of the piecewise polynomial function arithmetic constitute the
major component of CPA. The use of CPA for these problems is more e�ective than
the Monte Carlo method in a thousand times.

Using the arithmetic of probability density functions and probabilistic extensions,
we can construct numerical methods that enable us solving systems of linear and
nonlinear algebraic equations with random parameter [1].

We will use piecewise polynomial models to represent probability density func-
tions.

One of the most important problems that CPA deals with is to construct proba-
bility density functions of random variables. Let z be a function f(x1, . . . , xn), where
(x1, . . . , xn) is random vector with joint probability density p(x1, . . . , xn).

De�nition 1. By probabilistic extension f(x1, . . . ,xn) of the function f , we mean a
probability density function z of the random variable z

z = f(x1, . . . ,xn).

De�nition 2. Support of the probability density functions f will be called the set

supp(f) = {x|f(x) > 0}.

One possible way to estimate the probability density z of a random variable z

z = f(x1, . . . , xn). (5)

is the Monte Carlo method [8]. For these purposes a random vector (xi1, . . . , x
i
n)

with joint probability density function p(x1, . . . , xn) is generated. Further we are
calculated zi = f(xi1, . . . , x

i
n), i = 1, ..., N . Using the histogram method for zi, we can

construct an estimate of the probability density function z.

Theorem 1 ([3]). Let f(x1,x2, . . . ,xn) be probabilistic extensions of function
f(x1, x2, . . . , xn) and for each real t function f(t,x2, . . . ,xn) be probabilistic exten-
sions of the function f(t, x2, . . . , xn). Then

f(x1,x2, . . . ,xn) =

∫
supp(x1)

x1(t)f(t,x2, . . . ,xn)dt. (6)
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Corollary 1. Theorem 1 infers the possibility of recursive computations for the
general form of probability extensions and reduction to the calculation of the one-
dimensional case.

Let f(x1, . . . , xn) be a rational function. To construct a probabilistic extension z,
we replaced the arithmetic operation by the numerical operation, while the variables
x1, x2, . . . , xn are replaced by piecewise polynomial functions of their possible values.
It makes sense to call the resulting piecewise polynomial functions of z as natural
probabilistic extension [1].

Theorem 2 ([1]). Let x1, . . . , xn be independent random variables. If f(x1, . . . , xn)
is a rational expression where each variable xi occurs not more than once, then the
natural probabilistic extension approximates a probabilistic extension.

3 Systems of linear algebraic equations

Let us consider solution of a system of linear algebraic equations

Ax = b, (7)

where A = (aij) a random matrix and b = (bi) a random right-hand side vector
respectively. Suppose that the random matrix A and the vector b have independent
components with probability densities A = (aij), b = (bi) respectively and

A =

 a11 a12 . . . a1n
...

...
. . .

...
an1 an2 . . . ann

 .

The support of the solution set can be represented as follows [2]

X = {x|Ax = b, A ∈ supp(A), b ∈ supp(b)}.
Construct the probabilistic extension of the solution vector x1(A, b)

x1(A, b) =

∣∣∣∣∣∣∣
b1 a12 . . . a1n
...

...
. . .

...
bn an2 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣
or

x1(A, b)(ξ) =

∫
a12(t12) . . .ann(tnn)

∑
bi∆i(t12, . . . , tnn)∑
a1i∆i(t12, . . . , tnn)

(ξ)dt12 . . . dtnn, (8)

where ∆i(t12, . . . , tnn) ∈ R are minors from the Cramer method for solving SLAE,
tij ∈ supp(aij). The expression( ∑

bi∆i(t12, . . . , tnn)∑
a1i∆i(t12, . . . , tnn)

)
(ξ)

is computed using probabilistic arithmetic.
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4 Random linear programming

It is known that for the problem (3)�(4) the optimal solution x∗ is achieved at the
corner of the set U .

Theorem 3 ([11]). Let the set U is de�ned conditions (4), For a point x = (x1, ..., xn) ∈
U is a corner point if and only if there exist numbers j1, ...jr:

Aj1xj1 + ...+ Ajrxjr = b;xj = 0, j 6= jl, l = 1, ..., r,

where the columns of the Aj1 , ..., Ajr are linearly independent.

For the problem (3)�(4) construct the joint probability density of the vector x∗.
For this purpose, we use a method for the solution of deterministic problems of linear
programming, for example, the simplex method.

Consider the auxiliary problem. Let Aj, bj, cj be sample realizations of the Aj =
A(ωj), bj = b(ωj), cj = c(ωj), ωj ∈ Ω.

min (cj, x), (9)

s.t.
Ajx = bj, x ≥ 0. (10)

�nd a solution x∗j and the corresponding corner point with numbersj1, ...jr.
We solve the random system of linear algebraic equations

(Aj1 ...Ajr)x = b.

If the supports of input parameters are small enough, then due to continuity of x∗j
coincides with x∗. In the case of arbitrary supports of input parameters the search
procedure for A(ωj), b(ωj), c(ωj), should be repeated, using the Monte Carlo method.
In the case that di�erent solutions x∗t are obtained, they can be compared calculating
the probabilistic extension fj = (c,x∗j). Notice, that

x∗ = (Aj)
−1b

and the expression
fj = cT (Aj)

−1b

we can estimate using probabilistic extensions.

Example 1. As a numerical example, consider the following problem

min (c, x), (11)

s.t.
Ax = b, x ≥ 0. (12)

and where A = (aij) is a random matrix, each its element is a random variable with
symmetric triangular distribution and support [aij, aij], similarly, b is random vector
whose elements are random variables with symmetric triangular distribution.

Support are de�ned as follows

A =

(
[1− r, 1 + r] [1− r, 1 + r] [3− r, 3 + r] [1− r, 1 + r]
[1− r, 1 + r] [−1− r,−1 + r] [1− r, 1 + r] [2− r, 2 + r]

)
,
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b =

(
[3− r, 3 + r]
[1− r, 1 + r]

)
, c = (−1,−1, 0, 0).

For r = 0, which corresponds to the deterministic case, the solution is x∗ = (2, 1, 0, 0),
the columns of the matrix A1, A2 correspond to a corner point.

Figure 1: Joint probability density function of the vector (x1, x2).

In Fig. 1 the joint probability density function of the vector (x1, x2) for r = 0.1
with components x3 = 0, x4 = 0 is shown. The solid line is the boundary of the set
of solutions on the (x1, x2) plane. The set X of solutions is the quadrangle with the
vertices (2.0,0.636), (2.444,1.0), (2.0,1.444), (1.636,1.0). Value of the probability is
represented by shades of gray, as can be seen from the Fig. 1 the probability density
is non-uniformly distributed, the highest density is achieved at the center, near the
point (2.0, 1.0).

Consider the estimation of the probability density function of the objective func-
tion

f = cT (A)−1b.

Let

A =

(
a11 a12

a21 a22

)
then

A−1 =
1

∆

(
a22 −a12

−a21 a11

)
,

where ∆ = a11a22 − a12a21. Objective function

f = − 1

∆
((a22 − a21)b1 + (a11 − a12)b2)
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and probabilistic extensions

f(ξ) = −
∫
a12(t12) . . .a22(t22)

1

∆(t11, ..., t22)
((t22 − t21)b1 + (t11 − t12)b2) (ξ)dt12 . . . dt22,

where ∆(t11, ..., t22) = t11t22 − t12t21. The expression(
1

∆(t11, ..., t22)
((t22 − t21)b1 + (t11 − t12)b2)

)
(ξ)

is computed using probabilistic arithmetic.

Figure 2: Probability density function of the random objective function (c, x∗)

In Fig. 2 the probabilistic extensions of f is shown.

Conclusion

The considered approach allows us to represent random programming as an e�ective
method for solving linear optimization problems with random input parameters. For
this purpose, we used computational probabilistic analysis and procedures for cal-
culating probabilistic extensions. This allowed us to construct a probability density
function for the objective function on the set of optimal solutions. The possibility
of constructing a probability density function for a set of solutions of systems of lin-
ear algebraic equations with random parameters is shown. This approach helps the
decision maker to choose the best solutions and allows you to assess the risks.
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Abstract

We consider the problem of time-series forecasting. Nowadays, widespread
classical methods can successfully �nd periodic patterns and simple types of
trends. However, in real-life data there may be more complex regularities. For
example, time series of economic indicators can have quite complex patterns,
because their dynamics can be in�uenced by participants, who, in turn, can
use very complex strategies. In this paper we, �rst, show how it is possible to
combine several methods of forecasting into a single one in such a way that,
asymptotically, the accuracy of the obtained method will be equal to the ac-
curacy of the best method among the combined ones. Secondly, we use this
approach to combine several methods of forecasting, including "classical" data
compression algorithms, a method based on sensing multihead �nite automata
and a method that uses grammar-based codes. The results of computational
experiments are presented.

Keywords: universal coding, time series models, time series forecasting,
arti�cial intelligence.

Introduction

The problem of time series forecasting plays an important role in the study of various
economic, physical and social phenomena. Nowadays, there are a huge number of
approaches to forecasting, among which we mention neural networks [6], exponential
smoothing [5], various models of autoregression and moving averages [2]. But the
problem of developing e�ective forecasting methods is still far from being solved.
Classical methods of forecasting can �nd periodic patterns and basic types of trends
well. In [10] it was described how data compression methods can be used to predict
time series. Besides periodic patterns, compressors can �nd "forbidden" combinations
(for example, if there is no combination 1111 in a sequence from alphabet A = {0, 1},
0 will be correctly predicted after a subsequence of three 1's). But simple patterns,
that are obvious to humans, but cannot be detected by classical methods, still exist.
An example of this type of pattern is 01001000100001 . . ..

In this study we develop a method of time series forecasting which can �nd some
kinds of "di�cult" regularities. We use a close connection between problems of data
compression and time series forecasting. The approach, described in detail in [11],
allows us to e�ciently combine various methods of forecasting that present forecast
as a probability distribution over possible continuations of the process. It's important
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to note that modern data compression algorithms use various heuristics to improve
the compression ratio. For example, some compressors search for an approximation
of the smallest formal grammar that uniquely describes the sequence for compression.
Then, instead of coding the sequence, they encode the found grammar. Thus, we can
apply methods with proven e�ciency to time series forecasting.

To predict words like 01001000100001 . . . we use the algorithm for sensing mul-
tihead �nite automaton proposed in [14]. We modify that algorithm in such a way
that it can be considered as a data compressor. As a result we obtain a method for
forecasting sequences of all mentioned types.

The rest of the paper is organized as follows. In section 1 we discuss how to
e�ectively combine several methods of time series forecasting into a single method.
We also brie�y discuss the connection between data compression and forecasting.
Section 2 describes how context-free grammars can be applied to data compression,
and, therefore, to time series forecasting. In section 3 we show how to use a sensing
multihead �nite automaton together with data compression methods to time series
forecasting. In section 4 the results of our computational experiments are presented.

1 An approach to e�ectively combine methods of

forecasting

Suppose that we have a sequence X = x1, x2, . . . , xt, xi ∈ A, where A is a �nite set
(an alphabet). We consider methods of forecasting which represent forecast of xt+1

as a probability distribution over A. Using any such method φ we can obtain the
probability distribution over At+1 (the set of all possible sequences of length t + 1
over alphabet A) as

Pφ(x1, x2, . . . , xt+1) = Pφ(x1) · Pφ(x2|x1) · Pφ(x3|x1x2) · . . . · Pφ(xt+1|x1 . . . xt)

The estimation of the probability that a ∈ A will appear as the next symbol xt+1

in a sequence x1, x2, . . . , xt can be obtained by the following formula:

Pφ(xt+1 = a|x1x2 . . . xt) =
Pφ(x1x2 . . . xta)∑

b∈A
Pφ(x1x2 . . . xtb)

. (1)

If we want to make a forecast for h > 1 values ahead, we can obtain a probability
distribution over Ah by using a, b ∈ Ah in formula (1).

Using the well-known relation |φ(x)| = − log2 Pφ(x) between the optimal code
length and the probability of a sequence, we can use any data compression algorithm
as a predictor. Therefore, in the text below, we will use the terms predictor and
compressor interchangeably.

Suppose that we have several algorithms of forecasting φ1, φ2, . . . , φk and each of
them works well with a speci�c type of sequence. In this case, we can obtain a single
method out of them with almost the same accuracy as the most accurate one for each
type of sequence, using the following formula:
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Pφ(xt+1 = a|x1x2 . . . xt) =

k∑
i=1

ωi2
−|φi(x1x2...xta)|

∑
b∈A

k∑
i=1

ωi2−|φi(x1x2...xtb)|
, (2)

where the sum of non-negative weight coe�cients ωi is equal to 1. In this study, we

used ωi =
1

k
.

Thus, the formula (2) allows us to "automatically" select the most appropriate
method from the given set. This is due to the fact that the �nal probability dis-
tribution will be mainly in�uenced by the compressor with the highest compression
ratio.

The previously described approach to forecasting can be generalized to forecast
real-valued time series. To do so, we can split the set of all reasonably possible values
of the time series by m subintervals of equal length, numerate these intervals and
then replace the original time series with the series of interval numbers.

Consider the problem of selecting the number of subintervals m. The accuracy
and computational complexity of our algorithm strongly depend on this parameter.
We consider all partitions into 2i intervals, i = 1, 2, . . . , n, m = 2n. For each partition
the forecast is made independently, and then the forecasts are combined with weight
coe�cients. Denote as xi an item of the original time series and as yji an interval
number corresponding to its value in the partition to 2j intervals. We can use all
partitions with weight coe�cients by the formula:

Pφ(yn1 , y
n
2 , . . . , y

n
t ) =

n∑
i=1

γi2
−|φ(yi1,y

i
2,...,y

i
t)|+t(n−i)

n∑
i=1

∑
Z∈Ati

γi2−|φ(Z)|+t(n−i)
, (3)

where Ai = {0, 1, . . . , 2i − 1} is the alphabet of interval numbers and the non-

negative weights γi sum to 1 (we used γi =
1

n
). We add t(n − i) bits to the lengths

of code words in order to fairly compare them.

2 Forecasting using grammar-based compressors

The concept of grammar-based code was �rstly proposed in [7]. The main idea of
this approach is to represent a sequence for compression X as a formal grammar G
using which the original sequence could be uniquely derived: L(G) = {X}, where
L(G) is the set of all sequences that can be derived from G (the language de�ned
by G). To the purpose of data compression it is desirable to �nd as compact G as
possible. In such a general formulation, the problem is reduced to the calculation of
the word's Kolmogorov complexity, which, as known, is not computable. Therefore,
the class of considered grammars is usually limited to context-free grammars (CFG).
The problem of searching the smallest CFG representing given sequence is known

555



Novosibirsk, 18-20 September, 2019

as the smallest grammar problem (SGP). In paper [3] it was proved that SGP is
NP-complete, so we have to use approximation algorithms. Once G is found, instead
of compressing the original sequence, we can compress G using arithmetic coding or
some special algorithm, designed to compress formal grammars. We can illustrate
the basic idea by a simple example. Suppose we want to compress the sequence
10011000100010011. We can represent it with the following context-free grammar:

S → X1X2X2X11
X1 → 1001
X2 → 1000

A variety of grammar-based compressors have been developed, among which we
mention Sequitur [9] and lca [12], which are both based on context-free grammars.

To the purpose of forecasting we can use any grammar-based compressor in for-
mula (2).

3 Forecasting using sensing multi-DFAs

In this section, we consider how to predict words like 010010001 . . . using a compression-
based approach. Words of this type belong to the class of multilinear words, de�ned
in [13]. An in�nite word is multilinear, if it can be written in the form:

q
∏
n≥0

ra1n+b1
1 ra2n+b2

2 . . . ramn+bm
m ,

where
∏

denotes concatenation, q is a some �nite word, m is a positive integer,
and for each 1 ≤ i ≤ m, ri is a nonempty word, ai and bi are non-negative integers
such that ai + bi > 0.

To proceed further, we need the following de�nitions. Multihead deterministic
�nite automata (multi-DFA) predictor is a tuple of the form M = (Q,A, k, T, ., qS),
where Q is the �nite set of states, A is the input alphabet, k ≥ 1 is the number of
input heads, . is the start-of-input marker, aS is the initial state, and T is a transition
function of the form:

T : [Q× (A ∪ {.})k]→ [Q× {stay, right}k ×A].

A sensing multi-DFA is an extension of multi-DFA, in which its transition function
takes an additional argument indicating, for each pair of heads, whether those two
heads are on the same input position.

In [14], an algorithm of forecasting multilinear words was proposed. More pre-
cisely, it was proved that there is a sensing multi-DFA which masters every multilinear
word over alphabet A and an algorithm which it should implement was provided. In
this study we use that algorithm to obtain a probability distribution over An. As a
result, we can use the automaton as an ordinary data compressor in formulas (1-3).

In this paper we don't repeat the description of the original algorithm from [14]
and describe only our modi�cations. The basic idea is as follows. Suppose that a
word x1x2 . . . xn is given, and we have processed a pre�x of this word x1x2 . . . xt,
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t < n. The original algorithm attempts to exactly predict the value of the next
term xt+1. We modify this algorithm so that it gives a probability distribution of the
next symbol using the already processed part of the series x1, x2, . . . , xt. The original
algorithm can be decomposed into two stages:

1. Correction � at this stage, the automaton tries to adjust its heads and in most
situations cannot give a reasonable prediction. In such situations, any value
can be used as the prediction in the original algorithm;

2. Matching � the automaton works under assumption that all heads are posi-
tioned correctly. The automaton gives a certain letter as a prediction.

In the �rst case, we obtain the probability distribution of the next symbol using
the so-called Krichevsky predictor [8]:

PA(xt+1 = a|x1 . . . xt) =
νx1...xt(a) + 1/2

t+ |A|/2
,

where νx1...xt(a) is the number of occurrences of letter a in the word x1 . . . xt.
In the second case, we want to give more weight to the prediction of the automa-

ton. In addition, the more correct predictions were made by the automaton, the more
weight should be given to its prediction. Therefore, we used the following heuristic
formula:

PA(xt+1 = a|x1 . . . xt) =
C + 1/2

C + |A|/2
,

where C is the length of the continuous series of correct predictions by the au-
tomaton up to the current symbol (if C = 0, we have a uniform distribution). We
assign the same probability to the remaining letters.

4 Computational experiments

In this section, we present the results of an experimental study of our algorithm.
We used both well-known �le compression programs and our implementation of the
automaton. The following programs were used:

� zlib, version 1.2.11. It can be downloaded by the link https://www.zlib.net;

� ppmd. We used the implementation of E. Shelwien which can be downloaded
by the link https://github.com/Shelwien/ppmd_sh;

� rp. We used the implementation described in [1];

� automaton, our own implementation.

We begin our description with an arti�cial sequence which is a pre�x of the proper
multilinear word:
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123451122334451112223334445 . . . =
∞∏
i=1

1i2i3i4i5 (4)

We call a sequence of 1s, 2s, 3s, 4s, followed by 5, as a block. The results of
our computations are presented in table 1 (comb. means that zlib, ppmd, rp and
automaton were used as a single method). In table 1, the notation 'a/b' means that
we used the pre�x x1, x2, . . . , xa of word (4) as an initial history to make b one-step
forecasts (for xa+1, xa+2, . . . , xa+b). The error of a method was computed as the sum
of the modules of the b individual errors.

Table 1: The results of forecasting series (4)

History/Forecast zlib ppmd rp aut. comb.
230/200 (10 blocks) 128 70 148 113 70
860/200 (20 blocks) 105 52 153 0 52
5150/200 (50 blocks) 104 51 124.0 0 51
45450/200 (150 blocks) 97 32 171 0 22
80600/200 (200 blocks) 79 12 201 0 0

As can be seen from table 1, the automaton is the best forecasting method for that
sequence. In addition, with increasing sequence length, the accuracy of the combined
method becomes the same as the accuracy of the automaton.

Let us consider another example. To show that our method can be used to forecast
real-world data, we performed computations for the sunspot number time series.
The Royal Observatory of Belgium (WDC-SILSO, Royal Observatory of Belgium,
Brussels, http://www.sidc.be/SILSO/) publishes on its website monthly mean sunspot
number data along with the forecasts. We performed our computations as follows.
For each month from August 2015 to September 2018, we made forecasts for 18
months ahead. Then from the �le 18 month later, we took the observed values and
computed the mean absolute error (MAE):

MAE =
1

h

h∑
i=1

|x̂i − xi|,

where x̂i is the predicted value, and xi is the observed value.
We used the following time series preprocessing techniques:

1. To remove the seasonal component from the series we used seasonal trend de-
composition (STL) [4]. The frequency of the seasonal component was equal to
11 years or 132 month (because the duration of the solar cycle is typically 10-11
years);

2. We used smoothing function: x∗t = (2xt + xt−1 + xt−2)/4;
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Table 2: The results of the sunspots number forecasting

MAE for forecasting horizon Average
1 2 3 4 5 6 8 12 15 18 1-4 1-8 1-18

SILSO 10.5 11.4 11.8 12.7 13.9 14.9 16.5 15.9 17.1 20.3 11.6 13.5 15.5
zlib 10.5 18.2 28.7 16.9 10.6 10.8 28.9 12.5 19.2 16.4 18.6 17.4 19.2
ppmd 10.7 12.9 12.3 10.9 15.3 12.0 25.0 12.9 9.4 16.7 11.7 13.9 15.8
rp 17.4 34.7 57.8 31.0 34.2 29.9 65.5 46.7 65.7 36.1 35.2 38.8 49.1
aut. 26.6 53.2 78.9 52.2 54.9 8.9 114.3 10.2 185.1 10.1 52.7 60.0 92.9
comb. 10.7 12.9 12.3 10.9 15.3 12.0 25.0 12.9 9.4 16.7 11.7 13.9 15.8

3. We split the time series to the 6 time series (so instead of making one forecast
for 18 values ahead, we made 6 forecasts for 3 values);

4. We took a �rst di�erence, i.e. instead of forecasting a series x1, x2, . . . , xt we
considered the series x2 − x1, x3 − x2, . . . , xt − xt−1;

5. We considered partitions to 2, 4, 8 and 16 intervals.

Since SILSO forecasts are made for a smoothed time series, they are 6 months
late due to the smoothing method. Therefore, we used their forecasts from 7 to 25
values ahead. The results of computations are presented in table 2.

As we can see from table 2, our method has comparable accuracy with the method
of SILSO.

Conclusions

In this paper was presented an algorithm of time series forecasting, which can capture
some kinds of "di�cult" regularities. By performing calculations on both arti�cial
and real-world data, we showed that the algorithm can �nd such regularities if they
are present in the data. Otherwise, our modi�cations do not degrade the accuracy of
classical data compression methods.
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Abstract

This paper considers various approaches to the problem of customers' life-
time value predictions. We discuss several approaches that can be used in the
non-contactual settings - Pareto/NBD model, survival analysis approaches and
classical regression techniques. Also we discuss the advantages and disadvan-
tages for each group of methods and the challenges that we face in case of using
survival analysis for customers' lifetime prediction.

Keywords: lifetime, lifetime value, LTV, CLV, Pareto/NBD model, Cox
model, survival analysis, censored data.

Introduction

In marketing, customer lifetime value (or LTV) is a prediction of the net pro�t at-
tributed to the entire relationship with a customer. The reasons to predict customers'
lifetime values may be various, these are the most popular:

� understand di�erence between user's acquisition cost and his future pro�t;

� �nd clusters among users, based on their lifetime;

� focus attention and support on users with long-term LTV forecasts;

� �nd features and characteristics that a�ect (or at least correlate with) LTV
forecast value.

Skyeng is the online English language school and it is the biggest online school in
Russia - we have about 8000 teachers from all over the world and more than 73000
of students, mostly from Russia and eastern Europe.

In our internal processes prediction of student's lifetime and lifetime value is a
very important goal - because we have di�erent costs for customer's acquisiton and
di�erent costs for customer's support. And if we have some amount of users, which
are suggested to churn in the near future - it would be better for us to understand
the total pro�t for each student so we could be able to prioritize our e�orts to keep
these customers.

Also it should be noted that in this paper we speak about lifetime and lifetime
value predictions for companies with non-contractual settings - when the is no con-
tract between customer and company and customer can make a purchase at any
time.

In case of Skyeng, we have students and we do not control their intensity of
studying - so we have non-contractual settings and consider students' lessons as their
random purchases.

There are several approaches to predict lifetime value:
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1. we can consider customer's lifetime value (or customer's lifetime) as a random
variable and use various regression techniques for prediction (starting from sim-
ple linear regression and ending up with gradient boosting on decision trees
models or even neural networks);

2. we can use speci�c models for lifetime and lifetime value prediction, such as
RFM-models (recency-frequency-monetary models), which will be discussed be-
low;

3. we can use survival models for predicting customers' lifetime (in terms of num-
ber of transactions) and then recalculate it to the lifetime value, based on the
price distribution for each customer.

Approach with forecasting lifetime value by lifetime prediction is only valid if
we are sure that price distribution for each customer is normal (or at least close to
normal) and has small variance. In our case we can use such an approach, because the
di�erence in costs per lesson is small and also we usually have some prior information
about the reasons that a�ect the prices for particular student:

� what kind of teacher student has - native or not (because native is more expen-
sive)?

� what was the amount of the last payment (higher payments give you bonuses
and lower prices for each lesson)?

� what were the amounts of all previous payments (to predict future ones)?

Moreover - the approach with prediction lifetime value by lifetime is more stable,
especially if we are going to change prices for our products in future or even change
the strategy of price formation. That is why we will consider only this way of LTV
prediction.

Pareto/NBD model

The Pareto/NBD model is perhaps the most well-known and frequently applied prob-
abilistic model in the non-contractual context [3].

The Pareto/NBD model makes the following assumptions regarding the customer
population:

� Purchase count follows a Poisson distribution with rate λ. In other words, the
timing of these purchases is somewhat random, but the rate (in counts/unit
time) is constant. In turn, this implies that the inter-purchase time at the
customer level should follow an exponential distribution;

� Lifetime distribution follows an exponential distribution with slope µ. The
expectation value of such distribution is 1

µ
and corresponds to the lifetime of

the user;
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� The latent parameters λ and µ are constrained by two prior gamma distributions
representing our belief of how these latent parameters are distributed among
the population of customers. These two gamma distributions have parameters
(r, α) for the purchase count and (s, β) for the lifetime. The goal is to �nd these
four parameters. From these, all actionable metrics can be derived.

The Pareto/NBD model focuses only on modeling lifetime and purchase count,
but LTV involves not only lifetime but also the cost of every purchase. So there
is monetary value extension to the Pareto/NBD model - so called Gamma-Gamma
model [2].

Survival models

Another approach to LTV prediction is to use survival analysis techniques, e.g. fa-
mous Cox model [1]. In that case we should consider the number of customer's
purchases as positive random variable - our time-to-event observation.

But there are some di�erences between customers LTV data in comparing with
classical time-to-event data. When we speak about LTV in marketing or e-commerce
data usually consists of user's transactions in time and each transaction has its own
cost (in some cases costs may be the same). The count of these transactions per user
we can consider as user's lifetime and the sum of these transactions we can consider
as user's lifetime-value. So we have some important di�erences in data, that can be
explained with the Figure 1, which shows a few purchasing trajectories for di�erent
types of customers. Time goes from left to right, the vertical dashed line represents
the present time, and each small, vertical line represents a purchase/lesson made by
a customer:

Figure 1: Customers' puchases

The main thing is that we don't know exactly if the `failure' has occurred. As
failure-event we usually consider the fact that user has churned (stopped any future
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relationships with the company). All that we know is the time from the last trans-
action/lesson and based on this information we need to decide whether this user has
churned or not. Usually companies have some �xed period based on historical data or
any past experience and after that period customer is considered as churned user. But
the obvious disadvantage of this approach is illustrated at the Figure 1 - customers
can have very di�erent frequency of purchases and one �xed value for everybody can
be a bad solution. So in our work we decided to use di�erent technique, which is
based on the previous intensity of purchases for each customer. For instance, we
can use Pareto/NBD model, which was discussed above, for predicting probability of
churn or 'failure' event.

Another problem is that we have a lot of censored observations - our active stu-
dents. And in case of prediction these censored data are more important than our
churned users, which are complete observations - because newer students have the
most relevant features and face the most relevant business processes and for churned
users all the covariates can be irrelevant.

So we need to achieve a balance here - we can't neglect censored observations,
because of its importance and on the other hand, we can't use all of the censored
data in models, because it will lead to poor parameters' estimation.

Comparison of the approaches

Table 1: Comparison of the approaches

Pareto/NBD Survival analysis Regression tech-
niques

LT/LTV can be used both for
lifetime and lifetime
value predictions

supported by the na-
ture of the models

unsupported - we
can't add any co-
variates to these
models

Censored
data

can be used only
for lifetime predic-
tion and then we
need to recalculate to
LTV

supported, but we
need to �nd a bal-
ance between cen-
sored and completed
data

supported - we can
add any covariates,
even time-varying to
these models

Covariates can be used both for
lifetime and lifetime
value predictions

unsupported (so for
prediction we have
only churned and
possibly irrelevant
users)

supported - but
mostly we can add
only time-�xed co-
variates to these
models

Let us consider the main advantages and disadvantages of all discussed methods.
The Table 1 presents features of the each approach for three points of view:

564



Applied Methods of Statistical Analysis

� can we use it for predicting lifetime value or only lifetime?

� can we use censored data? because as it was mentioned above - censored data
are the most relevant for us;

� can we use covariates? because besides student's intensity of lessons we have a
lot of features like age, gender, country, level of english and so on.

Conclusions

We discussed why the companies need to forecast customers' lifetime values and the
problems that they face in making these predictions. We also discussed three main
groups of methods for solving that problem, its advantages and disadvantages. And
as a conclusion we can say that only the methods of survival analysis can provide the
most correct results - as a combination of using covariates and censored (the most
relevant) data.
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Abstract

The e�ect of a heat load regulator �false� operation is inherent in sys-
tems with cross connections (boilers � main steam main � turbine, fast-
response PRDS - fast-response pressure-reducing and desuperheating station).
The boiler heat load regulator (HLR) is triggered �falsely� to a signi�cant ex-
ternal disturbance from the steam line. The work is devoted to the problem of
a boilers HLR response correction solving for the regulator �false� operation
leveling for a thermal power plant (TPP) with cross links (or the combined heat
and power plant (CHP)). The solution is based on the analysis of the data from
measurement sensors in real time.

Keywords: coal thermal power station, combined heat and power plant,
steam line, heat load regulator, �false� operations, algorithm of leveling, cor-
rection circuit.

Introduction

Thermal power plant with cross connections is a system of boilers and turbines con-
nected by a single heat line. Boilers produce superheated steam, which is collected
in the main steam line. Next, steam enters for heating system water and the turbine
to produce electricity. In such a uni�ed system, control of each boiler separately is
sensitive to external disturbances and to changes in the station load.

To maintain a given level of steam consumption, an automatic control loop is
implemented - a heat load regulator (HLR). The di�erence between the current value
of the steam �ow and the target �ow is supplied to the controller input. In some
solutions, a pressure change in the steam collecting chamber is additionally added
through the adder.

The scheme and experience of implementing this solution is described in detail in
[1]. The heat load regulator of the boiler unit is triggered �falsely� with a signi�cant
external disturbance from the steam main. Such a disturbance may be caused by a
change in the load of the turbines, that is, the execution of the dispatch schedule and is
the normal operation of the station. The situation is accompanied by a change in the
load on the boiler and turbines. In the case when a part of the boiler remain with its
previous load, then their HLR will "falsely" work out, which will lead to an increase in
the total time for reaching the steady state. Since the system of boilers, pipelines and
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turbines is a system of interconnected vessels, where one a�ects all, �false� operations
introduce additional disturbances to the natural pressure �uctuations in the pipeline
and make it di�cult to stabilize the entire system. The physical essence of the
processes occurring at the time, and the reasons for the appearance of such values of
consumption on the sensors were described in detail by A.S. Klyuev in �Installation
of Systems for Automatic Regulation of Drum Steam Boilers� [2].

The �false� operation of the regulator e�ect results are:
- increased risk of pressure �uctuations (higher than desired);
- with regular �false� border operations (feasible area) are observed in a wider

range than recommended;
- increase the total time to enter the mode;
- increased equipment wear.
Today the solution of "false" operation problem is to change the HLR task and

the raw coal feeder speed by operator in manual mode.

1 Problem formulation

A system of 4 boilers of CHP included in a common steam main is considered as a
research object.

Let there is a boiler unit (object of study), which is part of an interconnected
system (group of boiler units, the main steam line and turbines).

The boilers structures are the same. Each boiler has a set of regulators (the level
in the boiler drum, vacuum, etc.), which have the task of maintaining or control-
ling certain variables. We should note, that boilers has the heat load regulator (PI
controller), that controls its steam capacity.

Let a disturbance occurs in the system (change in turbine load). In the same time
the task for the studied object (boiler) does not change.

In this case one of the main control system disadvantages is the false operation of
the heat load controller of boiler in the base mode as the reaction to perturbations
from the main steam line side.

It is required to form a control action on the object in such a way as to minimize
the e�ect of �false� triggers of the heat load regulator of the considered boiler unit.

2 The false HLR operation leveling algorithm

To solve the problem, an algorithm for leveling �false� heat load regulator operations
in automatic mode is proposed.

To do this, we introduce into the control circuit an algorithm (named control
unit) that analyzes the general situation of the station load and levels the �false�
HLR responses if it is nessasary.

For boilers with constant load it leaves the current number of the raw coal feeder
revolutions, that ensuring their load in the steady state. The state stabilization will
be the task of the boiler units, which introduce disturbances, that is, change the load.

567



Novosibirsk, 18-20 September, 2019

The integration scheme of the data processing algorithm requires the complete
preservation of the existing station control scheme, so that the basic control loop is
always included in the work.

The solution scheme is presented in the �gure (1).

Figure 1: The scheme of the rpm number of raw coal feeder correction (by the
proposed control unit) with the HLR enabled

The following notation are used in the diagram: B(1, . . . , N), T (1, . . . , k) �
boilers and turbines; control unit (CU) � the proposed algorithm for calculating
the raw coal feeder (RCF) rpm number in the boiler , taking into account the load
change throughout the station; HLR(1, . . . , N) � classical proportional-integral (PI)
regulator of heat load (for each boiler); BTask(1, . . . , N) � steam consumption task
in each boiler; TTask(1, . . . , k) � steam consumption task for each turbine; ΣTTaski
- total task for turbines; Ft(1,. . . , k) � measuring steam consumption turbines; Turn
RCF (1, . . . , N) � rpm number of raw coal feeder from boiler HLR; F RCF (1, . . . , N)
� corrected raw-coal feeder turnover values; ξ(1, . . . , N) � uncontrolled disturbances
(changes in fuel quality, air regime, thermal properties of feed water, the operation
of the superheated steam temperature controller, etc.); hN.1, (N � boiler number)
� steam �ow �uctuations, measurement accuracy; hN.2, (N � boiler number) � the
conversion of the output signal in the RCF rotation frequency.

In the base control scheme PI regulators control the values of the steam �ow by
changing the input in�uences (rpm number of raw coal feeder).

The proposed control unit (CU) monitors the current situation according to the
process data and, if necessary, includes an algorithm for leveling �false� operations.
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The leveling algorithm is activated in the boiler where an external disturbance by
other boilers is detected when the station load changes. It works only for boilers
where HLR task remains unchanged.

The leveling "false" regulator operations [4] algorithm consists of the following
steps:

1. Fix a change of the turbine task;
2. Trace changes of the task to boiler units;
3. If the boiler has not received a change in steam �ow task, then switch o� it

HLR
4. The control unit supplies the input of the boiler with the value of the RCF

revolutions from the previous step (before the turbine load changes).
5. After the end of the transient processes in boilers with a modi�ed load, the

control unit turns on the RCF in the boiler without changing the load with zero value
of the integrating component.

The main feature of the solution is the use of current information, that is, the latest
measurements from sensors throughout the station to correct the reaction of each
boiler, which is expected to have a �false� operation of the regulator. In this regard,
it is important to ensure the �ow of raw data from sensors with reliable values into
the algorithm, that requires the information-measuring system and instrumentation
stability.

In developing and testing the HLR operation correction algorithm, raw data
archives were used. Data was written to the �le in increments of 30 seconds.

The initial archive was the unloading of process control parameters, in *.mbd, MS
Access format. Data acquisition time: from june 4, 2017 to december 14, 2017. The
data processing period is taken from June 5 to June 27, 2017.

List of the thermal power plant variables [3]:
- the coal consumption in boiler: 0-6000 a rpm number of raw coal feeder.
- the steam pressure in the drum is in range 120-150 kgf/cm2;
- the steam �ow from boiler: 0-600 t/h
- the steam pressure in the manifold (main line): 120-150 kgf/cm2;
- the steam �ow in the manifold (main line): 0-1700 t/h ;
- the heat load regulator task (�ow task) in boiler: 0-600 t/h. (the max value of

�ow task for di�erent boilers is 350 or 500 t/h)
- the total number of fuel turns for monitoring the task change process: 0-24000

rpm.
Some computational studies of the imitation object are carried out in the paper.

3 Test experiments on the object model

To test the proposed algorithm of the HLR false operations correcting, an experiment
was conducted. On the ABB (Asea Brown Boveri Ltd.) platform a prototype of the
station with 4 boilers combined into a single steam main was created (see in �gure
(2)).
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Figure 2: Imitation model of the station with 4 boilers

The simulation model is based on the following dependencies derived from real
data:

1. Main steam line pressure is calculate as:

PMSL = ((F1 + F2 + F3 + F4− Ft− FPRDS)40e−st
1

(Ts+ 1)

1

5Ts
) + 125. (1)

where PMSL - steam pressure in the main steam line, F1 � steam �ow of boiler 1; F2
� steam �ow of boiler 2; F3 � steam �ow of boiler 3; F4 � steam �ow of boiler 4, Ft
- turbine steam �ow, FPRDS � pressure-reducing station �ow.

2. To calculate the pressure of each boiler separately the following formulas are
used:

Pdrm1 = (3.7V 120.0000001
1

(Ts+ 1)(Ts+ 1)
) +

PMSL

(Ts+ 1)
. (2)

where Pdrm1 � drum pressure 1, V 1 - a rpm number of the heat load regulator 1;

Pdrm2 = (3.8V 220.0000001
1

(Ts+ 1)(Ts+ 1)
) +

PMSL

(Ts+ 1)
. (3)

where Pdrm2 � drum pressure 2, V 2 - a rpm number of the heat load regulator 2;
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Pdrm3 = (3.9V 320.0000001
1

(Ts+ 1)(Ts+ 1)
) +

PMSL

(Ts+ 1)
. (4)

where Pdrm3 � drum pressure 3, V 3 - a rpm number of the heat load regulator 3;

Pdrm4 = (4V 420.0000001
1

(Ts+ 1)(Ts+ 1)
) +

PMSL

(Ts+ 1)
. (5)

where Pdrm4 � drum pressure 4, V 4 - a rpm number of the heat load regulator 4.
3. To calculate the steam �ow of each boiler separately the following formulas are

used:

F1 = 170
√
Pdrm1 − PMSL, (6)

F2 = 170
√
Pdrm2 − PMSL, (7)

F3 = 223
√
Pdrm3 − PMSL, (8)

F4 = 223
√
Pdrm4 − PMSL. (9)

4. To calculate the steam �ow of turbines and pressure-reducing station �ow the
following formulas are used:

FT = 177.7KV FC.Turb

√
PMSL. (10)

FPRDS = 9KV FC.PRDS

√
PMSL. (11)

where KV FC.Turb - valve �ow coe�cient of turbine, KV FC.PRDS - valve �ow coe�cient
of pressure-reducing station.

5. The proportional-integral regulator for HLR imitation is described as:

W (s) =
Kp(Ts+ 1)

Ts
. (12)

where Kp, Ts - parameters of PI regulator.
It should be noted that the e�ciency of the control with the use of PI regulator

depends on when and how accurately it is set. Since over time some characteristics of
the object may change, which will require the setting of the PI controller parameters.

Next, we show the result of the experiment with the leveling Control unit turned
on and without it on the imitation model (�gures (3), (4)).

We compare the results of steam �ow control in the main line with the use of the
PI-regulator and the proposed controller that corrects the reaction of the boiler heat
load controller. It is required to bring the system to the setpoint state when changing
the target for steam �ow in the pipeline, by controlling the heat load controller of
the one boiler. The remaining boilers of the CHP plant are in the base mode (and
their regulators react to the pipeline pressure changes).
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Figure (3) shows the di�erence in the rpm number of raw coal feeder (RCF) with
the control unit turned on (algorithm for leveling �false� operations) and without it.

Figure 3: An example of the RCF speed change with control unit operation and
without it

Figure (4) illustrates the di�erence in the operation of the boiler with the leveling
algorithm turned on and without it.

Figure 4: The Boiler steam �ow with and without control unit operation

As we can seen from the �gure (4), variations in steam �ow at the output of the
boiler with the leveling algorithm turned on are much lower. Thus, the use of the
leveling algorithm allows us to avoid additional pressure �uctuations introduced into
the system under consideration in the presence of �false� regulator operations, as well
as to reduce the time for the entire system to achieve the speci�ed performance.

572



Applied Methods of Statistical Analysis

Conclusions

The introduction of the proposed algorithm in the control system at the plant will
allows correcting the false reaction of the heat load regulator of boilers in order to
achieve the setpoint.

The proposed algorithm allows to avoid the e�ect of "false" operation, calculates
the required value of the control action. It blocks the control signal from the heat
load regulator by transferring the calculated values, then returns control to it, zeroing
the integrating component. As a result of all the above actions, the control unit helps
prevent unwanted pressure �uctuations in the main steam line.
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